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Abstract. We develop refinements of the Levenshtein bound in q-ary Hamming spaces
by taking into account the discrete nature of the distances versus the continuous behav-
ior of certain parameters used by Levenshtein. The first relevant cases are investigated
in detail and new bounds are presented. In particular, we derive generalizations and
q-ary analogs of a MacEliece bound. We provide evidence that our approach is as
good as the complete linear programming and discuss how faster are our calculations.
Finally, we present a table with parameters of codes which, if exist, would attain our
bounds.
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1. Introduction

Let Q = {0, 1, . . . , q − 1} be the alphabet of q symbols and H(n, q) be the set of
all q-ary vectors x = (x1, x2, . . . , xn) over Q. The Hamming distance d(x, y) between
points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) from H(n, q) is equal to the number
of coordinates in which they differ. A non-empty set C ⊂ H(n, q) is called a code.
The investigation of the connections between the codelength n, cardinality |C| and the
minimum distance d = d(C) = min{d(x, y), x 6= y ∈ C} is of great importance in Coding
Theory.

The spaces H(n, q) are sometimes considered as polynomial metric spaces (cf. [9,

14, 16]), where using ”inner” products 〈x, y〉 := 1 − 2d(x,y)
n instead of distances is very

convenient. We define Tn = {t0, t1, . . . , tn}, where ti := −1 + 2i
n , i = 0, 1, . . . , n, as the

set of all possible inner products.

Let s ∈ Tn and

Aq(n, s) := max{|C| : C ⊂ H(n, q), s(C) ≤ s},
where s(C) = max{〈x, y〉, x 6= y ∈ C}, be the maximal possible cardinality of a code
in H(n, q) of prescribed maximal inner product s. In Coding Theory this quantity is
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usually denoted by Aq(n, d), where s = 1 − 2d
n (= tn−d) and d is the minimum distance

of C (so we have replaced the condition d(x, y) ≥ d by 〈x, y〉 ≤ s).
Levenshtein (cf. [14, 15, 16], see also [9]) developed theory and proved universal upper

bounds for Aq(n, s). In this paper we describe refinements of the Levenshtein bound that
can be applied for obtaining better bounds in the majority of the cases. Our refinements
have two major advantages – they are easy to derive and allow analytic investigation to
certain extent.

Improvements of the third Levenshtein bound in the binary case q = 2 were obtained
by Tietäväinen [25] and Krasikov-Litsyn [13], who developed bounds for d = n − n+j

2 ,
where 0 < j < 3

√
n. Earlier, in 1973, linear programming bounds were obtained by

McEliece (unpublished, see [18, Chapter 17, Theorem 38]) who proved the asymptotic
bound A2(n, s) . (n− j)(j+2), where 2d+ j = n is as above, s = 1− 2d

n , and j = o(
√
n).

The McEliece bound was improved in [25] and [13] for j = o(n1/3).

On the other hand, binary codes of length n = (22m + 1)(2m − 1), size M = 24m and
minimum distance d = 22m−1(2m−1) (so j = 2m−1) were constructed by Sidelnikov [22].
This shows that the McEliece bound is of the correct order of magnitude. We also note
that the maximum possible size of a code for j = 1 and n ≡ 1 (mod 4) is still unknown.

Much less is known in the q-ary case, where analogs of the Tietäväinen bound were
obtained in [19]. Our results give a generalization of the McEliece bound – first as we
prove it for every n ≥ q ≥ 2 and second, as we obtain its q-ary asymptotic analog.

This paper is organized as follows. In Section 2 we explain the general linear program-
ming bound, the Levenshtein bound and related parameters. Section 3 is devoted to
general description of our refinements and discussion on its limits. We develop the first
relevant case giving a rigorous proof for the refinement of the third Levenshtein bound
in Section 4, where we also investigate the asymptotics of the new bounds. We also
provide evidence that our bounds for large enough d

n = 1−s
2 are as good as the complete

linear programming despite being considerably simpler. Asymptotic bounds from the
refinement of the fourth Levenshtein bound are presented in Section 5. We also compile
a table of feasible parameters for good codes attaining our bounds.

2. Preliminaries

2.1. Krawtchouk polynomials and the linear programming framework. For
fixed n and q, the (normalized) Krawtchouk polynomials are defined by

Q
(n,q)
i (t) :=

1

ri
K

(n,q)
i (d),

where d = n(1−t)
2 , ri = (q− 1)i

(
n
i

)
, and K

(n,q)
i (d) =

∑i
j=0(−1)j(q− 1)i−j

(
d
j

)(
n−d
i−j
)

are the

(usual) Krawtchouk polynomials that obey the three-term recurrent relation

K
(n,q)
0 (d) = 1, K

(n,q)
1 (d) = n(q − 1)− qd,
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K
(n,q)
i+1 (d) =

i+ (q − 1)(n− i)− qd
i+ 1

K
(n,q)
i (d)− (q − 1)(n− i+ 1)

i+ 1
K

(n,q)
i−1 (d), for i ≥ 1.

We point out that even if the Krawtchouk polynomials K
(n,q)
i (d) are defined for all non-

negative integers i, the normalized polynomials Q
(n,q)
i (t) are only defined for integers

i ∈ [0, n]. If f(t) ∈ R[t] is a real polynomial of degree m ≥ 0, then f(t) can be uniquely

expanded in terms of the Krawtchouk polynomials as f(t) =
∑m

i=0 fiQ
(n,q)
i (t).

The next (folklore) assertion is the main source of linear programming bounds (aka
Delsarte bounds) for Aq(n, s).

Theorem 2.1. Let n ≥ 2 and s ∈ [−1, 1) be fixed and f(t) be a real polynomial of degree
m such that:

(A1) f(t) ≤ 0 for every t ∈ Tn ∩ [−1, s];

(A2) the coefficients in the Krawtchouk expansion f(t) =
∑m

i=0 fiQ
(n,q)
i (t) satisfy fi ≥ 0

for every i.

Then Aq(n, s) ≤ f(1)
f0

.

2.2. The Levenshtein bound. The so-called adjacent polynomials as introduced by
Levenshtein (cf. [16, Section 6.2], see also [14, 15]) are given by

(1) Q
(1,0,n,q)
i (t) =

K
(n−1,q)
i (d− 1)∑i
j=0

(
n
j

)
(q − 1)j

, Q
(1,1,n,q)
i (t) =

K
(n−2,q)
i (d− 1)∑i

j=0

(
n−1
j

)
(q − 1)j

,

Q
(0,1,n,q)
i (t) =

K
(n−1,q)
i (d)(

n−1
i

)
(q − 1)i

,

where d = n(1− t)/2.

For a ∈ {0, 1} and i ∈ {1, 2, . . . , n−1}, denote by t1,ai the greatest zero of the adjacent

polynomial Q
(1,a,n,q)
i (t) (see (1)) and also define t1,10 = −1 as well as t1,0n = 1. We have

the interlacing properties t1,1k−1 < t1,0k < t1,1k , see [16, Lemmas 5.29, 5.30]. For a positive
integer m = 2k − 1 + ε, ε ∈ {0, 1}, let

Im :=
[
t1,1−εk−1+ε, t

1,ε
k

)
.

Then the set of well defined intervals {Im}2n−1
m=1 forms a partition of the interval [−1, 1)

into non-overlapping subintervals. For every s ∈ Im, Levenshtein used Theorem 2.1 with
certain polynomials of degree m

(2) f (n,s,q)m (t) = (t− s)(t+ 1)εA2(t)

(see [16, Equations (5.81) and (5.82)]), where deg(f
(n,s)
m ) = m, to obtain (see [16, Equa-

tions (6.45) and (6.46)])

(3) Aq(n, s) ≤ Lm(n, s; q) = q1−ε

(
1−

Q
(1,1−ε,n,q)
k−1 (s)

Q
(0,ε,n,q)
k (s)

)
k−1+ε∑
j=0

(
n

j

)
(q − 1)j
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for every s ∈ Im. The bound (3) is attained by many codes with good combinatorial
properties but is weak in many other particular cases. It is also worth to mention its
good asymptotic behavior (see [3], [16, Section 6.2]).

In [6] two of the authors obtained (for any q) and investigated (for q = 2) necessary
and sufficient conditions for global optimality of the Levenshtein bounds (see also [16,
Theorem 5.47]). Here we discuss another possibility of improving Levenshtein bounds by
taking into account the discrete nature of the set of inner products.

3. Our refinement – vanishing at inner products instead of zeros of the
Levenshtein’s polynomial

The roots −1 ≤ α0 < α1 < · · · < αk−2+ε < αk−1+ε = s of the Levenshtein polynomials

f
(n,s,q)
m (t) (we recall that m = 2k−1 + ε, ε ∈ {0, 1}) are exactly the roots of the equation

(4) (t+ 1)ε[Pk(t)Pk−1(s)− Pk(s)Pk−1(t)] = 0,

where Pi(t) = Q
(1,ε,n,q)
i (t) ∈ Q[t]. Since (4) is equivalent to an equation with integer

coefficients, the double zeros αi, i = ε, . . . , k−2+ε, will rarely coincide exactly with inner
products from the set Tn. Taking this into account we obtain the following refinement of
the Levenshtein bound.

We first locate the nodes αi, i = ε, . . . , k − 2 + ε, with respect to the elements (the
inner products) of Tn. Then, if αi ∈ (tj−1, tj) for some integer j ∈ [1, n], we replace the
double zero αi by two simple zeros1 γ2(i−ε)+1 = tj−1 and γ2(i−ε+1) = tj . After setting
γ2k−1 = s, we define the polynomial

f(t) = (t+ 1)ε
2k−1∏
i=1

(t− γi)

of degree m = 2k − 1 + ε. We observe that the values of this polynomial in the interval
(tj−1, tj) are positive and, in particular, f(αi) ≥ 0, with (very rare apart from αk−1+ε =
s ∈ Tn) equality case if and only if αi = tj . Finally, in the case when the degree
m exceeds the codelength n we reduce the polynomial f(t) to its remainder from its

division by g(t) =
n∏
i=0

(t − ti). This operation is standard when the polynomial metric

space (PMS) is finite.

This construction clearly implies that the condition (A1) is satisfied. Moreover, using
the quadrature formula

(5) f0 =
1

Lm(n, s; q)
+

k−1+ε∑
i=0

ρif(αi)

1In the special case αi = tj for some i = ε, . . . , k − 2 + ε and j there are two possible replacements of
αi – by tj−1 and tj or by tj and tj+1. Our choice is simple – we check both and take the better one.
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(see [16, Theorem 5.39]) and the inequalities f(αi) ≥ 0 we conclude that f0 > 0 always
follows.

The condition (A2) for i ≥ 1 can be easily checked numerically in every particular case,
and it is satisfied in the great majority of the cases we considered. We give a rigorous
proof for the case m = 3 below.

Summarizing, whenever we have (A2), Theorem 2.1 gives upper bound for the cor-
responding Aq(n, s). Clearly, this is a strict improvement of the Levenshtein bound (3)
if and only if αi 6∈ Tn for at least one i. Note that αi ∈ Tn occurs very rare – this is
connected to integral zeros of Krawtchouk polynomials (see [12, 23]).

Our numerical results cover wide range of values of q, n and s, as we inspect all feasible
s for given q and n. Unfortunately, comparisons with well established sources such as
[7, 1, 4] can be made in small range, namely, for alphabet size q = 2, 3, 4, and 5, and for
lengths n ≤ 28, n ≤ 16, n ≤ 12, and n ≤ 11, respectively. In these ranges we recover the
following best known upper bounds

A3(14,−1/7) ≤ 237, A4(11,−3/11) ≤ 320, A5(11,−5/11) ≤ 250

(the Levenshtein bounds are 256.5, 364, and 265, respectively).

It is clear that, in every particular case, the numerics from our refinements can not be
better than the complete (integer) linear programming (see, for example [26]). However,
we are going to show strong evidence that for every fixed m, our method gives the
same results as the complete linear programming gives for large enough n despite being
considerably simpler for computation.

The much easier computation allows us to go for large lengths. Bounds for large lengths
were numerically investigated (for binary codes only) by Barg-Jaffe [2]. Our computa-
tional results agree well with their application of the simplex method for large d

n = 1−s
2 .

We give a short table for comparison. The bounds are computed for 1
n log2A2(n, s).

Table 1. Bounds for binary codes, n = 1000, d
n = 1−s

2 ∈ [0.25, 0.45].

d/n 0.25 0.3 0.35 0.4 0.45
Lm(n, s; 2) 0.387 0.283 0.191 0.115 0.505
our bound 0.386 0.281 0.188 0.110 0.047

simplex from [2] 0.380 0.280 0.188 0.109 0.047

This comparison and our computational results for larger q lead us to the conjecture
that our method matches the best results possible by Theorem 2.1 for large enough ratio
d/n = (1− s)/2.

Conjecture 3.1. For a fixed q ≥ 3 there exist a constant sq such that whenever s ∈
[−1, sq) ∩ Tn (that is large enough d/n = (1 − s)/2) the above refinements are the best
that can be obtained by Theorem 2.1.
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In order to support this conjecture, in Figure 1 we present graph for the function sq(n)
defined as the range [−1, sq(n)) ∩ Tn where our improvement is optimal in the sence of
Theorem 2.1.

50 100 150 200 250 300 350 400 450 500

n
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-0.6

-0.4
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q10

Figure 1. The function sq(n) for some q’s and codelengths n ∈ [3, 500].

We note also that, similarly to [2], our computations do not support the conjecture of
Samorodnitsky [20] on the exponential strength of the linear programming method.

Semidefinite programming was shown to be better than the linear programming in
most particular cases (see, for example, [10, 21, 17]) but it hardly gives bounds in analytic
forms. So we see another advantage in giving analytic form of our bounds in the first
cases (see the next sections).

4. The refinement of L3(n, s; q)

In this section we apply our refinement in the case of the third Levenshtein bound.
We provide proof for the feasibility of the chosen polynomial as well as some numerical
results for the global optimality of this polynomial.

4.1. Proof of the feasibility of suggested polynomial. Let us set2

(6) d = n− 1− n− 2 + j

q
,

where the parameter j will be explained below. We proceed with the general case of
upper-bounding Aq(n, s) in the range

s ∈ I3 =
[
t1,11 , t1,02

)
=

[
−(q − 2)(n− 2)

nq
,−(q − 2)(n− 2)

nq
+
S1 − q
nq

)
,

2This convention is natural extension of McEliece’s d = (n− j)/2 used for q = 2.
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where S1 =
√
q2 + 4(q − 1)(n− 2). Since d = n(1− s)/2, we obtain the ranges for d and

j to be

(7) d ∈
(

(n− 1)− n− 2

q
− S1 − q

2q
, (n− 1)− n− 2

q

]
⇐⇒ j ∈ J3 =

[
0,
S1 − q

2

)
.

The simple form of J3 justifies the change of the variable.

In the particular case of m = 3 the polynomial defined in (2) becomes

f
(n,s,q)
3 (t) = (t− α0)

2(t− s) = (t− α0)
2(t− α1) ,

where s = α1 = 1 − 2d
n = −1 + 2(n−2+j+q)

nq and α0 = −1 + 2j(n−1)
nq(j+q−1) , since α0 and s are

the roots of the equation (4) for k = 2 and ε = 0. Let us set d0 = n(1−α0)
2 = n− j(n−1)

q(j+q−1)

and define e to be the unique rational number in the interval (0, 1] such that d0 + e is
integer. We point out that

α0 ∈
(

1− 2(d0 + e)

n
, 1− 2(d0 + e− 1)

n

]
and that e = r

q(j+q−1) , where r is the positive remainder from the division of j(n− 1) by

q(j + q − 1), i.e. r ≡ j(n− 1) (mod q(j + q − 1)) and r ∈ (0, q(j + q − 1)] ∩ Z.

Now we are in a position to define our improving polynomial as

(8)

f(t) =
(
t− 1 + 2(d0+e)

n

)(
t− 1 + 2(d0+e−1)

n

)
(t− s)

=
(
t+ 1 + 2e

n −
2j(n−1)
nq(j+q−1)

)(
t+ 1 + 2(e−1)

n − 2j(n−1)
nq(j+q−1)

)
×(

t+ 1− 2(n−2+j+q)
nq

)
= f0 + f1Q

(n,q)
1 (t) + f2Q

(n,q)
2 (t) + f3Q

(n,q)
3 (t),

where the coefficients fi, i = 3, 2, 1, 0, are given by

f3 =
8(q − 1)3(n− 2)(n− 1)

q3n2
> 0,

f2 =
8(q − 1)2(n− 1)A

q3n2(q + j − 1)
,(9)

f1 =
8(q − 1)

(
(eq −B)2 + C

)
q3n2

,(10)

f0 =
8
(
a2(2− q − j) +Da+ E

)
q3n3

> 0,
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for

A = −j2 + (2eq − 1)j + (q − 1)(2n+ 2eq + q − 4),

B =
1

j + q − 1

[
j(j − 2)− n(q − 1) +

q

2
(3j + q − 1)

]
,

C = −j2 + (−q + 2)j + (3n− 2)(q − 1)− q2

4
,

D = (j + q − 1)[2n(q − 1)− q] + q,

E = −n(n− 1)(q − 1)2(j + q),

a =
(n− 1)(q − 1)(q + j)

q + j − 1
+ eq.

We proceed with the proof of the positivity of the coefficients f1 and f2.

Lemma 4.1. We have f2 > 0 for every n ≥ 2 and q ≥ 2.

Proof. It follows from (9) that it is enough to prove that A > 0. Observing that A is a
concave quadratic function in j, according to (7) we have to check the positivity of A for

j = 0 and j = S1−q
2 , respectively. For the former we have

A = (q − 1)(2n+ 2eq + q − 4) ≥ (q − 1)(2n+ q − 4) > 0

and for the latter

A =

(
eq +

q − 1

2

)
S1 + eq(q − 2) +

(2n+ q − 4)(q − 1)

2
> 0,

whenever n ≥ 2 and q ≥ 2. �

Lemma 4.2. We have f1 > 0 for every n ≥ q ≥ 2.

Proof. According to (10) it is sufficient to show that C > 0. As in the proof of Lemma
4.1, we observe that C is a concave quadratic function of j so we check its values at the
limits of the interval J3. We obtain those to be

(3n− 2)(q − 1)− q2

4
≥ (3q − 2)(q − 1)− q2

4
= 2 +

q

4
(11q − 20) > 0

and
S1 + 2n(q − 1)− q − q2/4 ≥ S1 +

q

4
(7q − 12) > 0,

whenever n ≥ q ≥ 2. �

Remark 4.3. Our numerics suggest that we might always have f2 > f1 > f0. Since
f0 > 0 follows by the formula (5), another proof of the positivity of f1 and f2 could
probably be done along these lines.

Theorem 4.4. We have

(11) Aq(n, s) ≤
a(a+ q)dq

a2(2− q − j) +Da+ E
,
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where the parameters are determined as above.

Proof. The condition (A1) is obviously satisfied by our improving polynomial. The con-
dition (A2) is satisfied as well – Lemmas 4.1 and 4.2 give f2 ≥ 0 and f1 ≥ 0, respec-
tively, f3 > 0 is obvious, and f0 > 0 follows, as mentioned above, from (5). Therefore

Aq(n, s) ≤ f(1)
f0

and simplifications give the desired bound. �

Example 4.5. For q = 4, n = 11 and s = −3/11 (this s corresponds to minimum distance
d = n(1−s)/2 = 7) we are in the range of the third Levenshtein bound L3(11, s; 4). Since
α0 = −17

22 ∈
(
− 9

11 ,−
7
11

)
and α1 = s = − 3

11 , we have our improving polynomial as follows:

f(t) =

(
t+

9

11

)(
t+

7

11

)(
t+

3

11

)
=

63

5324
Q

(11,4)
0 (t) +

117

484
Q

(11,4)
1 (t) +

45

44
Q

(11,4)
2 (t) +

1215

484
Q

(11,4)
3 (t)

and A4(11,−3/11) ≤ f(1)
f0

= 320 (here L3(11,−3/11; 4) = 364). The best known lower

bound in this case is A4(11,−3/11) ≥ 128 (see [7]). Further analysis via the distance
distributions of a putative quaternary (11, 320,−3/11) code C does not give a contradic-
tion. Indeed, all possible inner products of C are − 3

11 , − 7
11 and − 9

11 and such a code
must be distance regular, i.e. every point of C has the same distance distribution, which
turns out to be integral.

We now calculate the asymptotic form of the bound from Theorem 4.4.

Corollary 4.6. Let j = cnα ∈ J3 for some positive constant c and some α ∈ [0, 1/2].
The behavior of the upper bound given by (11) as n→∞ is as follows

(12) Aq(n, s) ≤ [(q − 1)n− (j + q − 2)](j + q) + j(j + q − 1)2 + o(1), α ∈ [0, 1/5),

(13) Aq(n, s) ≤ (q − 1)(q + j)n+ j3 +
c5n5α−1

q − 1
+ o(n), α ∈ [1/5, 1/2),

and

(14) Aq(n, s) ≤
c(q − 1)2

q − 1− c2
n3/2 +

(q − 1)(c4 − (q − 1)(3c2 − q2 + q))

(q − 1− c2)2
n+ o(n), α = 1/2.

Proof. The upper bound in (11) can be re-written as

(15)

Aq(n, s) ≤ [(q − 1)n− (j + q − 2)](j + q) + j(j + q − 1)2

+
[(q − 1)n+ (eq + 1)(eq + 1− q)]j6 + Pq,e,n(j)

(q − 1)2(j + q)n2 +Qq,e,n(j)
,

where Pq,e,n(j) and Qq,e,n(j) are polynomials in j of degrees 5 and 3, respectively, and
with coefficients that are linear in n. We notice that for the fraction in (15), the nominator
is of order Θ(n1+6α) and that the denominator has the order Θ(n2+α) for all α ∈ [0, 1/2].
This gives the result in (12) since 1 + 6α < 2 + α when α ∈ [0, 1/5).
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To obtain (13), we observe that for large n the nominator behaves like (q − 1)nj6 +
Θ(n1+5α). For all α ∈ [1/5, 1/2) we have 1 + 5α − (2 + α) < 1 and also iα < 1, for
i = 0, 1, 2. Now (13) follows by ignoring the terms of orders in n that are less than 1.

Finally, by substituting j = c
√
n in (15) and performing polynomial division for the

polynomials in the variable x =
√
n we arrive at (14). �

4.2. On Conjecture 3.1 for m = 3. We reformulate the linear programming bound
back to its classical form (see [8, Sections 3.2 and 3.3], [9, Section 3B], [15, Corollary
2.7]).

Theorem 4.7. Let the polynomial g(z) =
∑n

i=0 giK
(n,q)
i (z) satisfies the conditions

g0 > 0, gi ≥ 0, i = 1, 2, . . . , n;

g(0) > 0, g(i) ≤ 0, i = d, d+ 1, . . . , n.

Then Aq(n, s) ≤ g(0)/g0, where s = 1− 2d/n.

In the light on Theorem 4.7 the best upper bound on the quantity Aq(n, s) is obtained

by the polynomial g∗(z) = 1 +
∑n

i=1
x∗i
ri
K

(n,q)
i (z) = 1 +

∑n
i=1

K
(n,q)
i (z)

(q−1)i(ni)
x∗i for which the

coefficients x∗ = (x∗1, x
∗
2, · · · , x∗n) constitute a solution to the linear optimization problem

(16)

minimize x1 + x2 + · · ·+ xn

subject to
n∑
l=1

K
(n,q)
l (i)

rl
xl ≤ −1, i = d, (d+ 1), . . . , n

xl ≥ 0, l = 1, 2, . . . , n.

Applying the KKT optimality conditions (see for example [5, Section 5.5]) we can
conclude that necessary and sufficient condition for x∗ to be optimal is the existence of
numbers λl, l = 1, 2, . . . , n, and µi, i = d, d+ 1, . . . , n, such that

(17)

λl = 1 +
n∑
i=d

µi
K

(n,q)
l (i)

rl
≥ 0, l = 1, 2, . . . , n,

λlx
∗
l = 0, l = 1, 2, . . . , n,

µig
∗(i) = 0, i = d, (d+ 1), . . . , n,
µi ≥ 0, i = d, (d+ 1), . . . , n.

Equation (17) turns out to be a very powerful tool for checking the global optimality of
a given polynomial. In particular, if we have a polynomial f(t) of degree m that satisfies
conditions (A1) and (A2) of Theorem 2.1 and has m different roots in the interval [−1, s],
then we can exactly determine the numbers µi, i = d, d + 1, . . . , n, if the Krawtchouk
expansion of f(t) in (A2) has strictly positive coefficients. The polynomial f(t) would
then be globally optimal if and only if all the lambdas, λl, l = 1, 2, . . . , n, calculated as



REFINEMENTS OF LEVENSHTEIN BOUNDS IN q-ARY HAMMING SPACES 11

in (17) are non-negative. Our approach for improving the Levenshtein bound very often
results in such polynomials.

Let us now consider the polynomial f(t) as defined by (8) and let us set g(z) =
1
f0
f
(
1− 2z

n

)
. We can easily verify that

(18) g(z) = 1 +
3∑
i=1

fi
f0

K
(n,q)
i (z)

ri
.

We now determine the Lagrange multipliers λ∗i and µ∗i for the polynomial defined in (18).
It has already been shown that fi > 0, i = 0, 1, 2, 3, which according to (17) means that
λ∗i = 0, i = 1, 2, 3. Since g(i) = 0 only for i ∈ {d, d0 + e−1, d0 + e} we have µ∗i = 0 for all
i ∈ {d+ 1, d+ 2, . . . , n} \ {d0 + e− 1, d0 + e}. The remaining three µ∗i ’s can be obtained
from the system of linear equations

(19) µ∗d
K

(n,q)
l (d)

rl
+ µ∗d0+e−1

K
(n,q)
l (d0 + e− 1)

rl
+ µ∗d0+e

K
(n,q)
l (d0 + e)

rl
= −1, l = 1, 2, 3.

The system (19) has an unique solution (µ∗d, µ
∗
d0+e−1, µ

∗
d0+e

) with help of which we can
calculate the remaining λ∗i , for i = 4, 5, . . . , n, according to

(20) λ∗i = 1 + µ∗d
K

(n,q)
i (d)

ri
+ µ∗d0+e−1

K
(n,q)
i (d0 + e− 1)

ri
+ µ∗d0+e

K
(n,q)
i (d0 + e)

ri
.

The first step towards the calculation of the lambdas is the following statement.

Lemma 4.8. The weights (µ∗d, µ
∗
d0+e−1, µ

∗
d0+e

) that solve system (19) can be calculated
as

µ∗d =
n(q − 1)CD[C + q(j + q − 1)]

AB[B + q(j + q − 1)]
,

µ∗d0+e−1 =
en(q − 1)E[C + q(j + q − 1)]

AB
,

µ∗d0+e =
(1− e)n(q − 1)CE

A[B + q(j + q − 1)]
,

where

A = −(q + j − 2)[eq(j + q − 1)]2 + (n− 1)(q − 1)(j + q)[n(q − 1)− j(q + j − 2)]

+eq(j + q − 1)[(q2 + jq − q − 2j)(q + j − 2) + 2n(q − 1)],

B = (n− 2 + j)(q − 1) + j(j − 1) + eq(j + q − 1),

C = (n− 1)(q − 1)(j + q) + eq(j + q − 1),

D =
[
(n− 1)(q − 1) + (2e− 1)(j + q − 1)

q

2

]2
+ (j + q − 1)2

[
(n− 1)(q − 1)− q2

4

]
,

E = (j + q − 1)3[(n− 1)(q − 2) + n− j].
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Proof. Direct check shows that the above defined µ∗d, µ
∗
d0+e−1 and µ∗d0+e satisfy (19) for

any n, q, e ∈ (0, 1], j ∈ J3 and l = 1, 2, 3. �

The non-negativity of µ∗d, µ
∗
d0+e−1 and µ∗d0+e for n ≥ q ≥ 2, j ∈ J3 and any e ∈ [0, 1)

can be derived from Lemma 4.8 by showing the positivity of the parameters A,B,C,D
and E. Obviously B > 0 and C > 0 with the only exception of the trivial case n = q = 2,
e = j = 0 for which B = 0. The parameter D is positive since (n−1)(q−1) ≥ (q−1)2 ≥
(q/2)2 whenever n ≥ q ≥ 2 with equality only for n = q = 2. As A is a quadratic
function in e with negative leading coefficient, its positivity for e ∈ [0, 1) can be checked
by investigating the values for e = 0 and e = 1. For these values we have (n−1)(q−1)(j+
q)[n(q−1)− j(q+ j−2)] and [(n(q−1)+q+1)j+(n+1)q(q−1)][n(q−1)− j(q+ j−2)],
respectively. For any j ∈ J3 we have

n(q − 1)− j(q + j − 2) ≥ n(q − 1)− S1 − q
2

(q +
S1 − q

2
− 2) = (q − 2) + S1 > 0,

which shows the positivity of A. Finally, the positivity of E follows from the fact that
(n− 1)(q − 2) + n > (S1 − q)/2 ≥ j.

We summarize the above observations into the following result.

Theorem 4.9. Let f(t) be the third degree polynomial given in (8) and let λ∗i , for i =
4, 5, . . . , n, be given by (20), where the triple (µ∗d, µ

∗
d0+e−1, µ

∗
d0+e

) is defined as the unique
solution to the linear equation system (19). Then if λ∗i ≥ 0 for every integer i ∈ [4, n],
the bound (11) on Aq(n, s) is the best one that can be obtained by the linear programming
method described in Theorem 2.1.

The above statement is a powerful tool for checking the global optimality of the sug-
gested polynomial in the case of the third Levenshtein bound. A similar result can be
obtained for the cases when the bound of higher order is valid. However, in those cases
the non-negativity of the µ∗j ’s is not always true and thus has to be added to the non-
negativity condition on the λ∗i ’s. Some observations in this directions are provided in the
next section.

Our numerical results suggest that Theorem 4.9 is applicable in all cases with very few
exceptions. We have been able to verify that for codelengths n up to 1000 and alphabet
sizes in the range 3 ≤ q ≤ 10, the only cases when the suggested polynomial does not
provide the optimal linear programming bound are for q = 3 and n ∈ {5, 7, 8, 9}.

5. Refinements of L4(n, s; q) and L5(n, s; q)

The Levenshtein bound Aq(n, s) ≤ L4(n, s; q) is valid in the range

s ∈ I4 =
[
t1,02 , t1,12

)
=

[
S1 − (q − 2)(n− 2)− q

nq
,
S2 − (q − 2)(n− 3)

nq

)
,
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where S1 is as above and S2 =
√
q2 + 4(q − 1)(n− 3), n ≥ 3. Then

d ∈ D4 =

(
n− 1− n− 3

q
− q + S2

2q
, n− 1− n− 2

q
− S1 − q

2q

]
⇐⇒ j ∈ J4 =

[
S1 − q

2
,
S2 + q

2
− 1

)
.

The polynomial from (2) is

f
(n,s,q)
4 (t) = (t+ 1)(t− α1)

2(t− s) = (t− α0)(t− α1)
2(t− α2),

where s = α2 = 1− 2d
n = −1+ 2(n−2+j+q)

nq again, α1 = − (n−2)(j(q−2)+2(q−1))
nqj , and α0 = −1

(α1 and s are the roots of the equation (4) for k = 2 and ε = 1).

We set d0 = n(1−α1)
2 = n−1− (j−q+1)(n−2)

qj and define e to be the unique rational number

in the interval (0, 1] such that b := d0 + e is integer. Then our improving polynomial is

(21)
f(t) = (t+ 1)

(
t− 1 + 2b

n

) (
t− 1 + 2(b−1)

n

)
(t− s)

= f0 + f1Q
(n,q)
1 (t) + f2Q

(n,q)
2 (t) + f3Q

(n,q)
3 (t) + f4Q

(n,q)
4 (t),

The positivity of the coefficients f1, f2 and f3 can be approached like in the previous
section but we prefer to omit the cumbersome calculations and to go directly to an
asymptotic.

Theorem 5.1. Provided fi ≥ 0 for i = 1, 2, 3, 4, we have

Aq(n, s) ≤
q3b(b− 1)(n(q − 1)− j − q + 2)

(1− j)q2b2 + C1qb− C2
,

where b and j are determined as above, C1 = j(q − 1)(2n − 1) + j − q, and C2 =
(q − 1)(n− 1)[(q − 1)(j + 1)n+ 2(j − q + 1)].

Proof. Under the assumptions, the polynomial f(t) satisfies the conditions of Theorem
2.1. Thus it is enough to compute f(1) and f0 and to plug in f(1)/f0. �

We are not aware of improvements of the fourth Levenshtein bound in the spirit of
the discussion from the previous section. We proceed with an analog of the McEliece
bound. The interval J4 is short and we can express j as j = S1−q

2 + c, where c ∈[
0, (q − 1)

(
1− 2

S1+S2

))
is some constant. Note that c ∈ [0, q − 1).

Theorem 5.2. For any s = S1−n(q−2)+2c+q−4
nq ∈ Tn and c ∈

[
0, (q − 1)

(
1− 2

S1+S2

))
we

have

(22) Aq(n, s) .
q(q − 1)2n2

2(q − c)
as n→∞.
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Proof. For large n and c ∈
[
0, (q − 1)

(
1− 2

S1+S2

))
, we have

f4 > 0, f3 ∼
16(q − 1)3

q4
> 0, f2 ∼

16(q − 1)2.5

q4n0.5
> 0, f1 ∼

32(q − 1)2

q4n
> 0.

Therefore (A1) and (A2) are satisfied and Aq(n, s) . f(1)/f0. The calculation of the
asymptotic of f(1)/f0 now gives (22). �

The analytical investigation of the refinement of the fifth Levenshtein bound L5(n, s; q)
seems technically quite difficult. It is convenient, however, to illustrate the computational
strength of our method – we are able to reach lengths 10000 (for q = 3) in about 30
minutes of computations on an Intel Core2 Duo P9300 @ 2.26GHz processor. For any
fixed n we compute all bounds in the range of L5(n, s; 3), which amounts to 225654 cases
in the codelength range 6 ≤ n ≤ 10000. The computations include verification of the
fact that fi ≥ 0 for i = 1, 2, 3, 4, 5. With no exception, the requirement (A2) in Theorem
2.1 has been satisfied.

Finally, we note that the refinement of L5(n, s; q) is attained asymptotically (since
the Levenshtein bound L5(n, s; q) itself is attained) by the Kerdock codes [11] of length
n = 22`, cardinality M = n2 = 24` and minimum distance d = (n−

√
n)/2 = 22`−1−2`−1.

6. Parameters of putative codes attaining our bounds

In the table below, we list all codes which would attain, if exist, our refinement of the
third Levenshtein bound L3(n, s), in the range n ≤ 100 for the lengths and 2 ≤ q ≤ 5
for the alphabet size. The bound L3(n, s) is shown in the fourth column. The sixth
column contains the roots of our polynomials, i.e. the only three possible inner products
of attaining codes, and the last column gives the distance distribution of such codes
(ordered accordingly to the inner products). The cases where the best known upper
bound from [7] is repeated are marked with asterisk.

The putative optimal codes must be 3-designs and this allows one to compute their
distance distribution. Of course, if the distance distributions is not integral, such code
does not exist. For lengths n ≤ 300, there are 7 out of 38 (for q = 2), 14 out of 54
(for q = 3), 20 out of 47 (for q = 4), and 18 out of 39 (for q = 5) cases which pass the
integrality test. Extended version of the table will be uploaded on the Internet.

Table 2. Parameters for attaining the refinement of L3(n, s), n ≤ 100, 2 ≤ q ≤ 5
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q n d L3(n, s) Refinement Inner products Distance distribution
2 12 5 62.50 60 −1/2,−1/3,−1/6 5, 15, 39
2 56 25 1135 1100 −5/28,−1/7, 3/28 175, 275, 649
2 90 41 2863.69 2788 −2/15,−1/9, 4/45 492, 697, 1598
2 96 45 1161 1155 −1/6,−7/48, 1/16 90, 252, 812
*3 4 2 33 27 −1,−1/2, 0 6, 8, 12
3 7 4 57 54 −1,−5/7,−1/7 4, 14, 35
3 20 12 312.429 306 −7/10,−3/5,−1/5 16, 85, 204
3 25 15 531 513 −3/5,−13/25,−1/5 114, 75, 323
3 27 16 874 840 −5/9,−13/27,−5/27 272, 84, 483
3 40 24 2421 2349 −1/2,−9/20,−1/5 928, 144, 1276
3 52 32 2094 2052 −1/2,−6/13,−3/13 608, 208, 1235
3 88 55 5745 5670 −5/11,−19/44,−1/4 1925, 440, 3304
4 4 2 83.20 64 −1,−1/2, 0 21, 24, 18
*4 5 3 76 64 −1,−3/5,−1/5 18, 15, 30
4 8 5 182.50 160 −1,−3/4,−1/4 15, 60, 84
4 9 6 136 128 −1,−7/9,−1/3 16, 27, 84
*4 11 7 364 320 −9/11,−7/11,−3/11 99, 55, 165
4 13 9 196 192 −1,−11/13,−5/13 9, 39, 143
4 18 12 697.6 640 −7/9,−2/3,−1/3 135, 144, 360
4 42 30 1190.59 1184 −16/21,−5/7,−1/7 36, 259, 888
4 49 35 1660 1640 −5/7,−33/49,−1/7 205, 245, 1189
4 56 39 7676.5 7176 −9/14,−17/28,−11/28 1287, 2093, 3795
*5 4 2 167.86 125 −1,−1/2, 0 52, 48, 24
*5 5 3 191.67 125 −1,−3/5,−1/5 44, 40, 40
*5 6 4 145 125 −1,−2/3,−1/3 44, 24, 60
5 9 6 485 375 −1,−7/9,−1/3 44, 162, 168
*5 11 8 265 250 −1,−9/11,−5/11 40, 44, 165
5 16 12 385 375 −1/− 7/8,−1/2 30, 64, 280
5 21 16 505 500 −1,−19/21,−11/21 16, 84, 399
5 25 18 3621 3645 −19/25,−17/25,−11/25 1638, 132, 1694
5 45 34 3649 3250 −7/9,−11/15,−23/45 429, 792, 2028
5 55 42 3705.8 3675 −43/55,−41/55,−29/55 132, 1078, 2464
5 72 56 3257.26 3250 −29/36,−7/9,−5/9 64, 585, 2600
5 75 57 12141 11970 −53/75,−17/25,−39/75 4617, 608, 6744
5 91 70 9725 9625 −5/7,−9/13,−49/91 2695, 780, 6149
5 92 70 26339.3 25025 −16/23,−31/46,−12/23 7084, 4784, 13156
5 100 76 55841 55195 −17/25,−33/50,−13/25 26809, 912, 27473
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