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Abstract

For any channel, the existence of a unique Augustin mean is established for any positive order and probability mass function
on the input set. The Augustin mean is shown to be the unique fixed point of an operator defined in terms of the order and the
input distribution. The Augustin information is shown to be continuously differentiable in the order. For any channel and convex
constraint set with finite Augustin capacity, the existence of a unique Augustin center and the associated van Erven-Harremoés
bound are established. The Augustin-Legendre (A-L) information, capacity, center, and radius are introduced and the latter three
are proved to be equal to the corresponding Rényi-Gallager quantities. The equality of the A-L capacity to the A-L radius for
arbitrary channels and the existence of a unique A-L center for channels with finite A-L capacity are established. For all interior
points of the feasible set of cost constraints, the cost constrained Augustin capacity and center are expressed in terms of the A-L
capacity and center. Certain shift invariant families of probabilities and certain Gaussian channels are analyzed as examples.
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1. INTRODUCTION

The mutual information, which is sometimes called the Shannon information, is a pivotal quantity in the analysis of various
information transmission problems. It is defined without referring to an optimization problem, but it satisfies the following two
identities given in terms of the Kullback-Leibler divergence

I(p; W) = inf yep(y) Dp@ W] p © q) (1)
= infyepy) Yy p(@)D(W ()] q) )

where P())) is the set of all probability measures on the output space (Y,)), p is a probability mass function that is positive
only on a finite subset of the input set X, and W is a function of the form W : X — P()). Either of the expressions on
the right hand side can be taken as the definition of the mutual information. One can define the order av Rényi information
via these expressions by replacing the Kullback-Leibler divergence with the order o Rényi divergence. Since the order one
Rényi divergence is the Kullback-Leibler divergence, the order one Rényi information is equal to the mutual information for
both definitions. For other orders, however, these two definitions are not equivalent to the definition of the mutual information
or to one another, as pointed out by Csiszdr [2]. The generalization associated with the expression in (1) is called the order
« Rényi information and denoted by I¢2(p; W). The generalization associated with the expression in (2) is called the order «
Augustin information and denoted by I, (p; W). Following the convention for the constrained Shannon capacity, the order «
Augustin capacity for the constraint set A is defined as sup, ¢ 4 I, (p; W).

For constant composition codes on the memoryless classical-quantum channels, the Augustin information for orders less
than one arises in the expression for the sphere packing exponent and the Augustin information for orders greater than one
arises in the expression for the strong converse exponent, as recently pointed out by Dalai [3] and by Mosonyi and Ogawa
[4], respectively. For the constant composition codes on the discrete stationary product channels, these observations were
made implicitly by Csiszar and Korner in [5, p. 172] and by Csiszar in [2]. For the cost constrained codes on (possibly
non-stationary) product channels with additive cost functions, the cost constrained Augustin capacity plays an analogous role
in the expressions for the sphere packing exponent and the strong converse exponent. The observations about the sphere
packing exponent were also reported by Augustin in [6, Remark 36.7-(i) and §36] for quite general channel models. Therefore
Augustin’s information measures do have operational significance, at the very least for the channel coding problem. Our main
aim in the current manuscript, however, is to analyze the Augustin information and capacity as measure theoretic concepts.
Throughout the manuscript, we will refrain from referring to the channel coding problem or the operational significance of
Augustin’s information measures because we believe the Augustin information and capacity can and should be understood
as measure theoretic concepts first. The operational significance of the Augustin information and capacity can be established
afterward using information theoretic techniques together with the results of the measure theoretic analysis, as we do in [7].

All of the previous works on the Augustin information or capacity, except Augustin’s [6], assume the output set Y of the
channel W to be a finite set [2], [3], [8]-[11]. This, however, is a major drawback because the finite output set assumption
is violated by certain analytically interesting models that are also important because of their prominence in engineering
applications, such as the Gaussian and Poisson channel models. We pursue our analysis on a more general model and assume'
the output space (Y,)) to be a measurable space composed of an output set Y and a o-algebra of its subsets ). Our analysis
of the Augustin information and capacity in this general framework is built around two fundamental concepts: the Augustin
mean and the Augustin center.

Recall that the mutual information is defined as I(p;W) £ > p(z)D(W (2)|| q1,,) where g1, = >, p(z) W(z). Hence
the infimum in (2) is achieved by ¢; ,. Furthermore, one can confirm by substitution that

> p(@)D(W(2)] ¢) = Ip: W) + D(arp | 0) Vg e P().

Thus ¢, is the only probability measure achieving the infimum in (2) because the Kullback-Leibler divergence is positive
for distinct probability measures. A similar relation holds for other orders, as well: for any « in R+ there exists a unique
probability measure ¢, , satisfying I, (p; W) = >, p(2) Do (W (2)|| ga,p). We call the probability measure ¢, p, the order o
Augustin mean. In [6, Lemma 34.2], Augustin established the existence of a unique ¢, , for a’s in (0, 1] and derived certain
important characteristics of g, , that are the corner stones of the analysis of the Augustin information and capacity. We establish
analogous relations for orders greater than one in §3, see Lemma 13-(d).

In [12], Kemperman proved the equality of the (unconstrained) Shannon capacity to the Shannon radius® for any channel
of the form W : X — P()) and the existence a unique Shannon center for channels with finite Shannon capacity. Using
ideas that are already present in Kemperman’s proof, one can establish a similar result for the constrained Shannon capacity
provided that the constrained set is convex, see [13, Thm. 2]: For any channel W of the form W : X — P()) and convex
constraint set A,

suppea Ip3 W) = inf yep(y) suppen D p(x)D(W (2)] q) - 3)

We have additional hypotheses in §5.4, but those assumptions are satisfied by essentially all models of interest, as well.
2Shannon radius is defined as inf ;e p(y) sup,cx D(W (z)|| q).



Considering (2), one can interpret (3) as a minimax theorem. Furthermore, if the Shannon capacity for the constraint set A is
finite, then there exists a unique probability measure ¢;,w 4, called the Shannon center for the constraint set A, such that

sup,eq I(p; W) = sup,c4 ZI p(z)D(W (2)| g1, w,a) -

The name center is reminiscent of the name of the corresponding quantity in the unconstrained case, which is discussed in
[12]. Augustin proved an analogous result for I, (p; W) assuming « to be an order in (0,1] and A to be a constraint set
determined by cost constraints, see [6, Lemma 34.7]. We prove an analogous proposition for I, (p; W) for any « in R+ and
convex constraint set A in §4, see Theorem 1. We call the corresponding probability measure ¢ w4 the order o Augustin
center for the constraint set A.

Constraint sets determined by cost constraints are frequently encountered while employing the Augustin capacity to analyze
channel coding problems. One can apply the convex conjugation techniques to provide an alternative characterization of the
cost constrained Augustin capacity and center. Augustin did so in [6, §35], relying on a quantity that was previously employed
in discrete channels by Gallager [14, pp. 13-15], [15, §7.3] and in various Gaussian channel models® by Gallager [14, pp.
15,16], [15, §§7.4,7.5], Ebert [16], and Richters [17]. We call this quantity the Rényi-Gallager information and analyze it in
§5.3. Compared to the application of convex conjugation techniques to the cost constrained Shannon capacity provided by
Csiszar and Korner in [5, Ch. 8], Augustin’s analysis in [6, §35] relying on the Rényi-Gallager information is rather convoluted.
In §5.2, we adhere to a more standard approach and provide an analysis, which can be seen as a generalization of [5, Ch. 8],
relying on a new quantity, which we call the Augustin-Legendre information. We show the equivalence of these two approaches
using minimax theorems similar to the one described above for the constrained Augustin capacity.

Some of the most important observations we present in this paper have already been derived previously in [6, §§33-35],
[10], [18], [19]. In order to delineate our main contributions in the context of these works, we provide a tally in §1.3. Before
doing that, we describe our notational conventions in §1.1 and our model in §1.2.

1.1. Notational Conventions

The inner product of any two vectors y and ¢ in R, i.e. Zle u'q', is denoted by u - q. The ¢ dimensional vector whose
all entries are one is denoted by 1 for any ¢ € Z+, the dimension ¢ will be clear from the context. We denote the closure,
interior, and convex hull of a set § by c18, int8, and chS, respectively; the relevant topology or vector space structure will
be evident from the context.

For any set Y, we denote the set of all subsets of Y —i.e. the power set of Y— by 27, the set of all probability measures
on finite subsets of Y by P(Y), and the set of all non-zero finite measures with the same property by M+(‘j). For any p in
M+(‘j), we call the set of all y’s satisfying p(y) > 0 the support of p and denote it by supp(p).

On a measurable space (Y,)), we denote the set of all finite signed measures by M ()), the set of all finite measures by
Mg(y), the set of all non-zero finite measures by M+(JJ), and the set of all probability measures by P()). Let p and ¢ be
two measures on the measurable space (Y,)). Then p is absolutely continuous with respect to ¢, i.e. p=gq, iff ©(&) = 0 for
any & € ) such that ¢(€) = 0; u and ¢ are equivalent, i.e. u ~ ¢, iff u<q and ¢<p; p and ¢ are singular, i.e. pu L g, iff
3€ € Y such that (&) = ¢(Y \ €) = 0. Furthermore, a set of measures W on (Y, )) is absolutely continuous with respect to
q, i.e. W=gq, iff w=gq for all w € W and uniformly absolutely continuous with respect to g, i.e. W<""q, iff for every € > 0
there exists a ¢ > 0 such that w(€) < e for all w € W provided that ¢(€) < 4.

We denote the integral of a measurable function f with respect to the measure 4 by [ fu(dy) or [ f(y)u(dy). If the integral
is on the real line and if it is with respect to the Lebesgue measure, we denote it by [ fdy or [ f(y)dy, as well. If x is a
probability measure, then we also call the integral of f with respect u the expectation of f or the expected value of f and
denote it by E,,[f] or E,[f(Y)].

Our notation will be overloaded for certain symbols; however, the relations represented by these symbols will be clear from
the context. We use 7(+) to denote both the Shannon entropy and the binary entropy: A(p) = >, p(y)In ﬁ forall p € P(Y)

A

and fi(z) £ zIln1 +(1—2)In L forall z € [0, 1]. We denote the product of topologies [20, p. 38], o-algebras [20, p. 118],
and measures [20, Thm. 4.4.4] by ®. We denote the Cartesian product of sets [20, p. 38] by x. We use the short hand X7}
for the Cartesian product of sets Xi,...,X,, and YJ* for the product of the o-algebras ), ...,V,. We use |-| to denote the
absolute value of real numbers and the size of sets. The sign < stands for the usual less than or equal to relation for real
numbers and the corresponding point-wise inequity for functions and vectors. For two measures ;. and ¢ on the measurable
space (Y,)), u < ¢ iff u(&) < ¢(€) for all € € Y.

For a,b € R, a A b is the minimum of @ and b. For f : Y — R and ¢g : Y — R, the function f A g is the pointwise
minimum of f and g. For u, ¢ € M()), u A ¢ is the unique measure satisfying 9% = %% A % v-a.e. for any v satisfying
pu<v and g=<v. For a collection J of real valued functions Arcgf is the pointwise infimum of f’s in F, which is an extended

real valued function. For a collection of measures U C M()) satisfying w < w for all v € U for some w € P(Y), Ayeut

3 Augustin assumed neither a specific noise model nor the finiteness of the output set. Nevertheless, Gaussian channels are not subsumed by Augustin’s
model in [6, §35] because Augustin assumed a bounded cost function.



is the infimum of U with respect to the partial order <. There exists a unique infimum measure by [21, Thm. 4.7.5]. We use
the symbol V analogously to A but we represent maxima and suprema with it, rather than minima and infima.

1.2. Channel Model

A channel W is a function from the input set X to the set of all probability measures on the output space (4,)):
WX —=P). 4)

Y is called the output set and ) is called the o-algebra of the output events. We denote the set of all channels from the input
set X to the output space (Y,)) by P(Y|X). For any p € P(X) and W € P(Y|X), the probability measure whose marginal
on X is p and whose conditional distribution given z is W (z) is denoted by p&® W. Until §5.4, we confine our discussion to
the input distributions in P(X) and avoid the subtleties related to measurability. The more general case of input distributions
in P(X) is considered* in §5.4.

A channel W is called a discrete channel if both X and ) are finite sets. For any n € Z+ and channels W;:X; —P())
for t € {1,...,n}, the length n product channel Wy ,,1: X7 —P(Y7") is defined via the following relation:

Wim(a) = @), Wila) Val € X7,

A product channel is stationary iff Wy =W for all t€{1,...,n} for some W:X—P(}).
For any ¢ € Z+, an ¢ dimensional cost function p is a function from the input set to R’ that is bounded from below, i.e.
that is of the form p : X — RY, for some z € R. We assume without loss of generality that®

infiex p'(z) >0 Voe{l,... 0}

We denote the set of all cost constraints that can be satisfied by some member of X by I';* and the set of all cost constraints
that can be satisfied by some member of P(X) by I,:

Iy & {peR:, 3z € X st p(z) < o} 5)
I, 2 {peR:, : 3Ip € PX) sit. Zmp(x)p(x) < o} (6)

Then both I'S* and I', have non-empty interiors and I, is the convex hull of I'7”, i.e. I), = chl;".
A cost function on a product channel is said to be additive iff it can be written as the sum of cost functions defined on

the component channels. Given W;:X; — P(Y;) and p;: X %Réo for t€{l,...,n}, we denote the resulting additive cost
function on X for the channel W[y ;) by p1 ), i.€.
() = pelar) VP € X,

1.3. Previous Work and Main Contributions

The following is a list of our contributions that are important for a thorough understanding of the Augustin information
measures and related results that have been reported before.

I. For all « in (0, 1), [6, Lemma 34.2] of Augustin asserts the existence of a unique probability measure ¢, , satisfying
Io(p; W) = Do(W || ga,p| p) and characterizes qq,, in terms of the operator® T,, , (-) as follows:

e Ta,p (‘Ia.,p) = Qa,p and Go,p ™~ q1,p-

o If 1 p<qand T, ,(q) = g, then gop = q.

o lim) o0 H‘Iomp* fo.,p (q1.p) ’ =0.

« Da(Wllqlp) = La(p; W) + Da(gapll q) for’ all ¢ € P(Y).
We can not verify the correctness of the proof of [6, Lemma 34.2]; we discuss our reservations in Appendix C.
Lemma 13-(c) is proved® relying on the ideas employed in Augustin’s proof of [6, Lemma 34.2]. Lemma 13-(c)
implies all assertions of [6, Lemma 34.2] except for lim, ||qa7p7Tg7p (ql_,p)H = 0; Lemma 13-(c) establishes
iy, o0 || gap — T4, (5.,) || = O instead —see (37) and Remark 6. Unlike [6, Lemma 34.2], Lemma 13-(c) also bounds

4The structure described in (4) is not sufficient on its own to ensure the existence of a unique p® W with the desired properties for all p in P(X). The
existence of such a unique p® W is guaranteed for all p in P(X), if W is a transition probability from (X, X) to (Y,)), i.e. a member of P(Y|X) rather
than P(Y|X).

S Augustin [6, §33] has an additional hypothesis, Veex p(z) < 1. This hypothesis, however, excludes certain important cases, such as the Gaussian
channels.

SThe operator T, , (-), defined in (28), is determined uniquely by « and p and well-defined for all g with finite Do (W|| g| p).

"To be precise [6, Lemma 34.2] asserts the inequality Do (W || ¢ p) > Io(®; W) + $lga,p — q||? rather than the one given above. But Augustin proves
the inequality given above first and then uses Pinsker’s inequality to establish the one given in [6, Lemma 34.2].

80ne can prove Lemma 13-(c) using the ideas employed in the proof of Lemma 13-(d), as well.



Do(W]| q| p) from above. This bound is new to the best of our knowledge. The following inequality summarizes the
upper and lower bounds on D, (W || ¢q| p) established in Lemma 13-(c,d):

Diva(qapll @) = Da(W| gl p) — Ia(; W) > Dina(qapll @) Vg e P). @)

For finite Y case, the existence of a ¢ in P(Y) satisfying both ¢ ~ ¢y, and Top (¢) = ¢ has been discussed by other
authors. We make a brief digression to point out the discussion of the aforementioned existence result in these works.

While deriving the sphere packing bound for the constant composition codes on discrete stationary product channels,
Fano implicitly asserts the existence of a fixed point that is equivalent to ¢; , for each a in (0, 1), see [22, §9.2,
(9.24) & p. 292]. Fano, however, does not explain why such a fixed point must exist and does not elaborate on its
uniqueness or on its relation to g, , in [22, §9.2].

While establishing the equivalence of his expression for the sphere packing exponent in finite Y case to the one
provided by Fano in [22], Haroutunian proved the existence of a fixed point that is equivalent to ¢; , for each « in
(0,1), see [18, (16)-(19)].

While discussing the random coding bounds for discrete stationary product channels, Poltyrev makes an observation
that is equivalent to asserting for each « in [1/2,1) the existence of a fixed point that is equivalent to ¢; ., see [19,
(3.15), (3.16) and Thm. 3.2]. Poltyrev, however, does not formulate his observations as a fixed point property.

In our understanding, the main conceptual contribution of [6, Lemma 34.2] is the characterization of the Augustin mean
as a fixed point of T, , (+) that is equivalent to ¢; ,. Bounds such as the one given in (7) follow from this observation
via Jensen’s inequality.

II. For o € (1,00), Lemma 13-(d) establishes the existence of a unique Augustin mean ¢, , and proves that it satisfies (7)
as well as the following two assertions:

Ta,p (‘bc.,p) = Ga,p and qop ~ q1 p-
If T, ,(q) =g, then gup = q.

Lemma 13-(d) is new to the best of our knowledge. For o € (1, 00) case, neither the characterization of ¢, , in terms
of T, , (), nor the inequalities given in (7) have been reported before, even for finite Y case.

IIL. I,(p; W) is a continuously differentiable function of « from R+ to [0,%(p)] by Lemma 17-(e).

IV. The following minimax identity is established in Theorem 1 for any convex constraint set A

sup,e 4 infyepyy Da(W|l ¢ p) = inf yepy) sup,ea Da(W|l q| p) -

Theorem 1 establishes the existence of a unique Augustin center, g, ,w, 4, for any convex A with finite Augustin
capacity and the convergence of {q, ,® }.ez, t0 ga,w 4 in total variation topology for any {p(l)}zez , C A satisfying
lim, o Ia(p(l); W) = Cu,w 4. Augustin proved this result only for a’s in (0, 1] and the constraint sets determined by
cost constraints, see [6, Lemma 34.7]. For A = P(X) case similar results were proved by Csiszar [2, Proposition 1]
assuming both X and Y are finite sets and by van Erven and Harremogs [8, Thm. 34] assuming Y is a finite set.

V. The following bound in terms of the Augustin capacity and center established in Lemma 21 is new to the best of our
knowledge

SUPpena Da(WH ‘I| p) > Caw,a + Da/\l(‘Ia.,W,AH ‘I) Vq € P(y)

A similar bound has been conjectured by van Erven and Harremoés in [8]. For the Rényi capacity and center, we have
proved that conjecture and extended it to the constrained case elsewhere, see [13, Lemmas 19 & 25].

VL. The Augustin-Legendre information I} (p; W), defined as I, (p; W) — X - E,[p], as well as the resulting capacity, center,
and radius are new concepts that have not been studied before, except for &« = 1 case. Thus, formally speaking, all
of the propositions in §5.2 are new. The analysis presented in §5.2 is a standard application of the convex conjugation
techniques to characterize the cost constrained Augustin capacity and center. A similar analysis for & = 1 case is provided

by

Csiszar and Korner in [5, Ch. 8] for discrete channels with a single cost constraint. The most important conclusions

of the analysis presented in §5.2 are the followings:

C2 y» defined as sup,,cp(x) 12 (p; W), satisfies 2y, = sup, g Ca,w,, — A - 0 for all X € RS, by (76).
Ca,w,o = infr>g Cé, w +A-oforall p € intl, and the set of \’s achieving this infimum form a non-empty convex
compact set whenever C, w,, is finite by Lemma 29.

Cry = Sg} w Where S v 1s defined as inf ep(y) Squex Do (W (x )|| q) — X\ - p(x) by Theorem 2.

If C’A ' < oo, then there exists a unique A-L center ¢ w satisfying C2 = sup, cx Do (W (2)[| 42 ) — X p( )
Furthermore lim,_s oo anyp 4, W|| = 0 for all {p(z)}lez+ C P(X) satlsfymg lim, o0 I} (p(z) W) = C>‘
Theorem 2.

If Cow,e=Cy 2w+ Ao <oofora)eRy,, then gow,, = qa w by Lemma 31.

If W[4, is a product channel with an additive cost function, then Cof Wi Zt 1 a w, forall A € R>0, a € R+

and whenever either of them exists ¢ Wi is equal to @}, g2 w, by Lemma 32.



VIL. The Rényi-Gallager information I2*(p; W) is a generalization of the Rényi information I¢ (p; W) with a Lagrange multiplier
because 12°(p; W) = I2(p; W). This quantity was first employed by Gallager in [14] by a different parametrization and
scaling; later considered by Arimoto [23, §IV], Augustin [6], Ebert [16], Richters [17], Oohama [24], [25], and Vazquez-
Vilar, Martinez, and Fabregas [26] with various parametrizations, scalings, and names. We chose the scaling and the
parametrization so as to be compatible with the ones for Augustin-Legendre information. The most important conclusions
of our analysis in §5.3 are the followings:

. Cg/\/\ = 52 w by Theorem 3, where oA "W is defined as sup,,cp(x) L3 (p w).

o If C2 yy < 00 and lim, o0 I3 (p™); W) = C2 . then lim, o ||¢2%, — ¢2 1/ || = 0 by Theorem 3.

. supmexD (W(x)| q) = - p(x) > C{W + D (qa_’WH q) for all ¢ € P()}) by Lemma 35.
Lemma 35 is new to the best of our knowledge. For the case when both o € (0,1) and V,exp(z) < 1, Theorem 3 is
implied by [6, Lemma 35.2].
While pursuing a similar analysis in [6, §35], Augustin assumed the cost function to be bounded. This hypothesis,
however, excludes certain important and interesting cases such as the Gaussian channels. The issue here is not a matter
of rescaling: certain conclusions of Augustin’s analysis, e.g. [6, Lemma 35.3-(a)], are not correct when the cost function
is unbounded. We do not assume the cost function to be bounded. Thus our model subsumes not only Augustin’s model
in [6, §35] but also other previously considered models, which were either discrete [14, pp. 13-15], [15, §7.3], [23, §1V],
[25], [26] or Gaussian [14, pp. 15,16], [15, §§7.4,7.5], [16], [17], [24].

VIIIL. For channels with uncountable input sets the Shannon information and capacity is often defined via the probability
measures on the input space (X, X’), rather than the probability mass functions on the input set X. In §5.4, we discuss
how and under which conditions one can make such a generalization for Augustin’s information measures. The most
important conclusions of our analysis are the followings:

o If W is a transition probability (X, X") to (Y,)) —i.e. W € P(Y|X)— and ) is countably generated, then

- I,(p; W) is well defined for all @ € R+ and p € P(X) by (112), (113), and Lemma 37

— I)p; W) is well defined for all a € Ry, p € P(X), and A € R, by (114) provided that p is X'-measurable.
o If W e P(Y|X), X is countably separated, ) is countably generated, and p is X’-measurable, then

= C2w = supper 12 (p; W) for all X in R, by Theorem 4 where AN s deﬁned as {p € P(X) : X-E,[p] < oo}
- If C>‘ w < oo fora\in RE,, then Ca w = sup,can Do (W] qa W’p) E, [p] by Theorem 4.

= Co,w,o = SUD,e a(p) La(p; W) for all g in int [, by Theorem 5 where A(o ) is defined as {p e P(X) : E,[p] < o}.
- If Cy,w,, < o0 for a p in intl, then Ca,w,g = SUP,e (o) Da(W|| ga,w 0| p) by Theorem 5.

Thus the A-L capacity and center as well as the cost constrained Augustin capacity and center defined via probability
mass functions are equal to the corresponding quantities that might be defined via probability measures on (X, X),
provided that X is countably separated and ) is countably generated.

2. PRELIMINARIES
2.1. The Rényi Divergence
Definition 1. For any o € R+ and w, q € /\/l+(y) the order o Re’nyi divergence between w and q is

—L_In [(dy “v(dy) a#1
Da(w] q) = | _ @®)
fdy [n 1n5} v(dy) a=1
where v is any measure satisfying w<v and g<v.

Customarily, the Rényi divergence is defined for pairs of probability measures —see [8] and [27] for example— rather than
pairs of non-zero finite measures. We adopt this slightly more general definition because it allows us to use the Rényi divergence
to express certain observations more succinctly, see Lemma 1 in the following and §5.3. For pairs of probability measures
Definition 1 is equivalent to usual definition employed in [8] by [8, Thm. 5].

Lemma 1 ([13, Lemma 8]). Let v be a positive real number and w, q, v be non-zero finite measures on (Y4,)).
o If v < g, then Dy(w| q) < Da(wl| v).
o If ¢ =~yv for some vy € R+ and either w is a probability measure or o # 1, then D, (w|| ¢) = Do(w]| v) —In~.

If both arguments of the Rényi divergence are probability measures, then it is positive unless the arguments are equal to
one another by Lemma 2.

Lemma 2 ([8, Thm. 3, Thm. 31]). For any « € R+, probability measure w and q on (4,))

2
Da(w]| q) > 5% [lw — q|".



For orders in (0, 1] this inequality is called the Pinsker’s inequality, [28], [29]. For orders in (0, 1) it is possible to bound
the Rényi divergence from above in terms of the total variation distance. For aw = 1/2 case [30, eq. (21), p. 364] asserts

Dijp(w] ¢) <2In m- C)

As a function of its arguments, the order o Rényi divergence is continuous for the total variation topology provided that
a € (0, 1). For arbitrary orders we only have lower semicontinuity, but that holds even for the topology of setwise convergence.

Lemma 3 ([8, Thm. 15]). For any « € R+, D (w|| q) is a lower semicontinuous function of the pair of probability measures
(w, q) in the topology of setwise convergence.

Lemma 4 ([8, Thm. 17]). For any a € (0, 1), Do(w|| q) is a uniformly continuous function of the pair of probability measures
(w, q) in the total variation topology.

The Rényi divergence is convex in its second argument for all positive orders, jointly convex in its arguments for positive
orders that are not greater than one, and jointly quasi-convex in its arguments for all positive orders.

Lemma 5 ([8, Thm. 12]). For all « € R+, w, qo, ¢1 € P(Y), B € (0,1), and v satisfying (qo + q1)<v,
Da(wl[ Bq1+ (L= B)ao) < BDa(w| a1) + (1 = B)Da(wll qo) -
Furthermore, the equality holds iff % = % w-almost surely.
Lemma 6 ([8, Thm. 11]). For all « € (0,1], wy, w1, qo, 1 € P(Y), B € (0,1), and v satisfying (wo + w1 + qo + ¢1)=<v,
Da(Bwy + (1 = B)uoll B + (1 = B)q0) < BDa(wi]l 1) + (1 = B) Da(woll qo) - (10)

Furthermore, for o = 1 the equality holds iff %% = %% and for o € (0,1) the equality holds iff %% = %%
and Do(w1 || ¢1) = Da(wol| g0)-

Lemma 7 ([8, Thm. 13]). For all o € R+, wo, w1, go, ¢1 € P(Y), and 5 € (0,1)
Do (Bur + (1 = B)uwol| Bgr + (1 = B)g0) < Dalwi 1) V Dalwoll go) -

Lemma 8 ([8, Thm. 3, Thm. 7]). For all w,q € P(Y), Do(w|| q) is a nondecreasing and lower semicontinuous function of
o on Ry that is continuous on (0, (1V Xu,q)] where Xu.q = sup{a: Dy(w| q) < oo}

Since Do (w| q) = 125 D1-a(ql| w) for all a € (0,1), Lemma 8 and (9) imply

Da(w] q) < Dy (w|| q) if « € (0,1/2]
T | 25 Dip(wl q) if ae (1/2,1)

For a slightly tighter bound, see [30, eq. (24), p. 365].
If G is a sub-o-algebra of ), then for any w and ¢ in P(})) the identities wig(€)=w(&) for all £€G and ¢qg(E)=q(€)
for all €€ G uniquely define probability measures w;g and g,g on (Y,G). We denote Dy, (wgl| ¢ig) by DS (w]| q).

Lemma 9 ([8, Thm. 21]). Let )y C Yo C --- C Y be an increasing family of o-algebras, and let Voo = o(U2,)),) be the
smallest o-algebra containing them. Then for any order o € R+

lim, o0 D3 (wl q) = D> (wl| q)

2.2. Tilted Probability Measure
Definition 2. For any o € R+ and w, ¢ € P(Y) satisfying D, (w|| q) < oo, the order « tilted probability measure wg is

dwl A —a)Do(w w\ad —a
L A (1—a)Daf IIq)(cé_V) (d_g)l .
Note that wi = w for any ¢ satisfying D;(w|| ¢) < oo. For other orders one can confirm the following identity by

substitution: if Do (w|| ¢) < oo, then for any v € P () satisfying both Dy (v|| w) < oo and Dy (v|| ¢) < oo also satisfies
2Di(v] wg) + Da(wl q) = 125 Dy (v]| w) + Dy (]| g).-

This identity is used to derive the following variational characterization of the Rényi divergence for orders other than one.

Lemma 10 ([8, Thm. 30]). For any w,q € P(Y)

Do (wl] g) = | MEvere) 25 D10l w) + Difvl @) @ € (0,1)
SUp,ep(y) T2 D1 (vl w) + Di(v] @) a € (1,00)



where 12—~ Dy(v|| w) + D1 (v|| q) stands for —oco when o € (1,00) and Dy (v|| w) = Dy(v|| q) = oo. Furthermore, if Do (w|| q)
is finite and either a € (0,1) or Di(wl|| w) < oo, then

Da(wll q) = 125 D1 (wgll w) + Di(wgll q) - (12)

We have observed in Lemma 8 that D, (w|| ¢) is continuous in « on the closure of the interval that it is finite. Lemma 11,
in the following, establishes the analyticity of D, (w]|| ¢) in « on the interior of the interval that D, (w|| ¢) is finite. Lemma 11
also establishes the analyticity —and hence the finiteness— of Dy (w?|| w) and D (wZ|| ¢) on the same interval. This allows
us to assert the validity of (12) on the same interval:

Da(wll ¢) = 725 Di(wil w) + Di(will ¢) Va € (0, Xw,q)-

Lemma 11. For any w, q € P(Y) satisfying Xw.q > 0, for Xw.q = sup{a : Dy(wl|| q¢) < 0o}, Do(wl q), Di(wd|| w), and
Dy (wl|| q) are analytic functions of o on (0, Xw,q). Furthermore,

_1 K—1
9" Do(w||q) _ ! Z (¢ 1)» 1 thu,q(@ p#1 (13)
oar T
a=¢ H!Ggﬁ;( ) p=1
where G;q(qﬁ) is defined in terms of the set J; as follows
Je = {(91,92,--50¢) 2 3 € Z=o Vv and 131 + 292 + ...+ tg; = t}, (14)
(¢ — 1) Dy(w]| q) t=0

Gi’vq(d)) £ (g1+g2++2.—1)! (=1) dw dgq T\’ . (15)

S, " L (P B [(n e -0 ) ) ez

Lemma 11 is new to the best of our knowledge; it is proved in Appendix A using standard results on the continuity and
differentiability of parametric integrals and Faa di Bruno formula for derivatives of compositions of smooth functions.

Note that J; = {(1)}, d2 = {(2,0),(0,1)}, and J3 = {(3,0,0),(1,1,0),(0,0,1)}. Thus one can confirm using (15) by
substitution that

2
Gi,q(d’) = % Ewg [52] Ewg [5]2) = %Ewg |:(§ - Ewg [5]) :|
G24(6) = 4Bug €] — 1Bus [€2) By €] + $Bug €] ~ 3B (¢ - Eurl9)’|
w,q 31wy 2w, wy 3w 31 w?
where f —1In dq . If we substitute these expressions for G}, ,(¢), G2, (¢), and G} ,(¢) in (13) and use the identity

€ = ﬁ (1 C:; + GO (¢)) which holds w/-almost surely for ¢ € (0, xw,q) \ {1}, we get the following more succinct

expressions for the first two derivatives of D, (w|| g) with respect to «:

B - (o— 1)2D1( ) ¢7é 1
aaDoz(wH Q)‘a:d) =93, w 2 )
1B, (e - Ditwl )] 01

@ (Ew; {(“iﬁ)Q} — 2Dy (wg|| w) — [ D (wg| w)f) 6#1
B3 - il )] s-1

Analyticity of Do (w|| ¢) on (0, xw,q) implies that for any ¢ € (0, x.,q) there exists an open interval containing ¢ on which
D, (wl| q) is equal to the power series determined by the derivatives of D, (w] q) at « = ¢. If we have a finite collection
of pairs of probability measures {(w,, ¢,) },cy, then for any ¢ that is in (0, x,,q, ) for all ¢ € J there exists an open interval
containing ¢ on which each D, (w,|| ¢,) is equal to the power series determined by the derivatives of D, (w,|| ¢,) at a« = ¢.
When the collection of pairs of probability measures is infinite, then there might not be an open interval containing ¢ that
is contained in all (0, Xw,,q,)’s. Lemma 12, in the following, asserts the existence of such an interval when Dg(w,| ¢,) is
uniformly bounded for a 8 > ¢ for all » € J. In addition, Lemma 12 asserts uniform approximation error terms, over all 2 € J,
for the power series on that interval.

(16)

62 _ 17
s Dalull 0)| (a7



Lemma 12. For any v, ¢, 5 € R+ satisfying ¢ € (0,5) and w, q € P(Y) satisfying Dg(w|| q) <,

6"Da(w||q) H!TKJrlli d) % 1
Dol < ) (18)
. a=¢ KITRT p=1
T n—g|” 1
K=1 (1) 9" Du(w — [n—1+ __T} o #1
‘Dn(w“ -3 g 2ot a_d)‘ <{ T Rl T - gl < a9)
I=[n—¢|7 N
where
1 14e(VAY
o ey [SEe ] et (20)
1+ey p=1 -
IA(B=T) a

Lemma 12 is new to the best of our knowledge; it is proved in Appendix A using (13) together with the elementary properties
of the real analytic functions and power series.

2.3. The Conditional Rényi Divergence and Tilted Channel
The conditional Rényi divergence and the tilted channel allows us to write certain frequently used expressions more succinctly.

Definition 3. For any a €¢ R+, W : X — P(Y), Q : X — P(Y), and p € P(X) the order o conditional Rényi divergence for
the input distribution p is

DLW QIR 2 Y p(e)Da(W ()] Qa)). e
If 3¢ € P(Y) such that Q(z) = ¢ for all z € X, then we denote Do (W | Q| p) by Do (W]| ¢ p).

Remark 1. In [11] and [31], Do (W || Q| p) stands for D, (p® W|| p® Q). For o« = 1 case the convention used in [11] and [31]
is equivalent to ours; for v # 1 case, however, it is not. If either « = 1 or D (W (z)|| Q(z)) has the same value for all z’s with

positive p(z), then Do, (p@ W p® Q) = 3, p(2) Do (W (z)[| Q(2)), else Da(p@ W p® Q) < 3, p(2) Da(W ()| Q(x)) for
a € (0,1) and Do(p@ W p®Q) > >, p(z)Do(W(z)|| Q(z)) for o € (1,00). The inequalities follow from the Jensen’s
inequality and the strict concavity of the natural logarithm function.

Definition 4. For any o € Ry, W : X — P(Y) and Q : X — P()), the order « tilted channel W2 is a function from
{z: Do(W(z)|| Q(z)) < oo} to P(Y) given by

(x —a z z 21 0]
AWI@) & o(1-a) Dol W (@) Q) {%ﬁ)} [%ﬁ’} . (22)

If 3¢ € P(Y) such that Q(z) = ¢ for all # € X, then we denote W@ by WJ.

3. THE AUGUSTIN INFORMATION

The main aim of this section is to introduce the concepts of Augustin information and mean. We define the order av Augustin
information for the input distribution p and establish the existence of a unique Augustin mean for any input distribution p and
positive finite order « in §3.1. After that we analyze the Augustin information, first as a function of the input distribution for
a given order in §3.2 and then as a function of the order for a given input distribution in §3.3. We conclude our discussion
by comparing the Augustin information with the Rényi information and characterizing each quantity in terms of the other in
§3.4. Some of the most important observations about the Augustin information and mean were first reported by Augustin in
[6, §34] for orders not exceeding one. This is why we suggest naming these concepts after him. Proof of the lemmas presented
in this section are presented in Appendix B.

3.1. Existence of a Unique Augustin Mean

Definition 5. For any a € R+, W : X —P()), and p € P(X) the order o Augustin information for the input distribution p is

L(p;W) £ infyepy) Da(W]l gl p). (23)
One can confirm by substitution that
Di(Wllqlp) = Di(W| q1pp) + Dia1pll @) Vg ePQ) (24)
where
Q= Z p(z) W(x). (25)

T



Then Lemma 2 and (23) imply
Lp;W) = Di(W| a1, p) -

Thus the order one Augustin information has a closed form expression, which is equal to the mutual information. For other
orders, however, Augustin information does not have a closed form expression. Nonetheless, Lemma 13, presented in the
following, establishes the existence of a unique probability measure g, , satisfying I,(p; W) = Do(W|| ga,p| p) for® any
positive order o and input distribution p. Furthermore, parts (¢) and (d) of Lemma 13 present an alternative characterization
of ga,p by showing that ¢, , is the unique fixed point of the operator T, , (-) satisfying ¢1,p<¢a,p. Lemma 13-(e) provides
an alternative characterization of the Augustin information for orders other than one.'?

Definition 6. Let « be a positive real number and W be a channel of the form W : X — P()).

e Forany p € M+(3C), the order o mean measure for the input distribution p is given by

e [, 00 (252

where v is any measure for which (3°_ p(z) W(z))=<v.
e For any p € P(X), the order o Rényi mean for the input distribution p is given by

g A Hap
©p = Thaall" @7

o For any p € P(X), the order o Augustin operator for the input distribution p, i.e. T, , (-) : Qa,p — P(Y), is given by

Top (@) 2 Y p(a) Wi(x) Vg € Qap (28)

where Qu , £ {q € P(Y) : Da(W|| g/ p) < 0o} and the tilted channel W7 is defined in (22). Furthermore, T, , (¢) = ¢
and T4} (¢) = T, , (T, (¢)) for any non-negative integer s.
Lemma 13. Let W be a channel of the form W : X — P(Y) and p be an input distribution in P(X).

(a) I.(p; W) < Do(W| q1,p| p) < R(p) < 00 for all o« € Ry where ¢, is defined in (25).
(b) Li(p;W) = Dy(W|| q1,p| p). Furthermore,

Dy(Wl qlp) = Llp; W) = Di(q1pll ¢) Vg€ PD). (29)
(c) If a € (0,1), then 3qqy p such that I,(p; W) = Do (W || qa.p| p). Furthermore,
Ta,p (qayp) = qcc.,p; (30)
lim g0y —To, (@2,) [ =0, 31)
Di(gapll 4) = Da(Wll gl p) = La(p; W) = Da(gapll 9) Vg € P(Y), (32)

and qo,p ~ q1p. In addition,"! f qp<qandT,, (¢) = ¢, then qap = q.
(d) If a € (1,00), then 3qy,, such that I,(p; W) = Do (W|| qa,p| p). Furthermore,

Top (Qa,p) = Ga,p; (33)
Da(Gapll ) = Da(W] q| p) — In(p; W) > D1(gapll ) Vg e P(), (34)

and Go.p ~ q1,p- In addition, if T, , (q) = q, then qup = q.
(e) If a € Ry \ {1}, then

L (p; W) = 125 Dy (Wileor|| Wp) + Li(p; Wilr) (35)

_ )infvepin 755 DV Wip) + Lip; V) a€(0,1)
supyepyix) Toa D1(VII Wip) + L(p; V) a € (1,00)
= % infyepyx) (DL(V] Wp) + 2L (p; V) .

(36)

This is rather easy to prove when Y is a finite set. The uniqueness of ga,p follows from the strict convexity of the Rényi divergence in its second argument
described in Lemma 5. If Y is finite, then 7()) is compact and the existence of ga,p follows from the lower semicontinuity of the Rényi divergence in its
second argument —which follows from Lemma 3— and the extreme value theorem for the lower semicontinuous functions [32, Ch3§12.2]. For channels with
arbitrary output spaces, however, P()) is not compact; thus we can not invoke the extreme value theorem to establish the existence of Gou,p-

10This alternative characterization is employed to prove the equivalence of two definitions of the sphere packing exponent and the strong converse exponent.

Note that To,p (@) = ¢, on its own, does not imply ga,p = ¢ for a’s in (0, 1). Consider for example a binary symmetric channel and let ¢ be the
probability measure that puts all of its probability to one of the output letters. Then T, , (¢) = ¢, but ga,p # g, for all p € P(X) and « € (0, 1).
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The convergence described in (31) holds not just for the Rényi mean ¢ , but also for certain other probability measures,
as well. Remark 6 in Appendix B describes how one can establish the following more general convergence result for any
a € (0,1) and p € P(X):

lim, o || gup— T, (0)]| = 0 if g ~ g1 and esssup,, | [In 3| < o, (37)

Part (a) is proved using Lemma 1; I, (p; W) < h(p) was proved by Csiszér through a different argument in [2, (24)]. Part (b),
which is well known, is proved by substitution. Part (c) is due to'? Augustin [6, Lemma 34.2]. Part (d) is new to the best our
knowledge. Part (e) was proved for the finite Y case by Csiszdr [2, (A24), (A27)].

Definition 7. For any o € R+, W : X — P(Y), p € P(X) the unique probability measure ¢, on (Y,)) satisfying
I.(p; W) = Do(W|| ga,p| p) is called the order o Augustin mean for the input distribution p.

Lemma 2 and (29), (32), (34), imply the following bound, which is analogous to [33, Thm. 3.1] of Csiszér:

\/2 DQ(Wqu\ﬁ\)l—Ia(p;W) > [/ gap — 4l Vg € P(Y),Va € Ry

The Augustin information and mean have closed form expressions only for o = 1; for other orders they do not have closed
form expressions. However, the fixed point property T, , (ga,p) = ¢a,p established in Lemma 13-(c,d) and the definition of
Top () given in (28) imply the following identity for the Augustin mean:

% _ [Zz p(2) (dvcli/lfz))a e(17(3¢)DCY(W(90)Hqa,p)} “ Vi qr <. (38)

In §3.3, we use this identity in lieu of a closed form expression while analyzing I, (p; W) and ¢, as a function of a.

Lemma 14. For any length n product channel Wiy ) : X — P(Y[") and input distribution p € P(XY) we have

L@:Wan) <D, lalps W) (39)
for all & € R+ where p; € P(X:) is the marginal of p on Xy. Furthermore, the inequality in (39) is an equality for an o € R+
iff qo,p satisfies

Go,p = ®t:1 Go,p; - (40)
If p=Q}_, i, then (40) holds for all & € R+ and consequently (39) holds as an equality for all o € R+

3.2. Augustin Information as a Function of the Input Distribution

The order o« Augustin information for the input distribution p is defined as the infimum of a family of conditional
Rényi divergences, which are linear in p. Then the Augustin information is concave in p, because pointwise infimum of
a family of concave functions is concave. Lemma 15 strengthens this observation using Lemma 13.

Lemma 15. For any o € R+ and W : X — P (), I.(p; W) is a concave function of p satisfying

Ia(plﬂ VV) > ﬂla(m; W) + (1 - ﬂ)Ia(pm VV) + 5Da/\1(qa,p1 ” ‘Iaypg) + (1 - ﬂ)Da/\l(qa,po” ‘Iayma) (41
Ia(pﬂ§ W) S B]a(pl; VV) + (1 - B)Ioz(pO; W) + BDa\/l(me || Qa,pg) + (1 - B)Da\/l(%,po” q&,p@) (42)
Ia(pﬁ;w) S ﬂla(pl;W) + (1 - ﬂ)Ia(pO;W) + ﬁ(ﬂ) - Da/\l((Ia.,pBH ﬂ%x,}h + (1 - ﬂ)qoc,Po) (43)

where pg = Bp1 + (1 — B)po for all py, p1 € P(X) and B € [0,1].

Lemma 15 implies that for any positive order « and channel W, the order & Augustin information I, (p; W) is a continuous
function of the input distribution p iff sup,,cp(x) la(p; W) is finite.'3 Furthermore, if SUp,ep(x) In(p; W) is finite for an n € R+
then {1,(p; W) }ae (o0, is uniformly equicontinuous in p on P(X).

In order to see why the finiteness of sup,cq(x) I, (p; W) is necessary for the continuity, note that the non-negativity of the
Rényi divergence for probability measures and (41) imply that

Ia(Pﬁ; W) - Ia(PO§ W) > ﬂ(la(pl; W) - Ia(p0§ W)) =+ ﬂDa/\l(%e,pl ” qaﬁpﬁ) + (1 - ﬂ)Da/\l (‘Ia,poH qa-,m)
> ﬂ(Ia(pl;W) - Ia(pO;W))'

12To be precise [6, Lemma 34.2] does not include the assertion D1 (ga,p|| q) > Da(W /|| q| p) — Ia(p; W) and claims (31) for qi,, instead of g3 ,. We
cannot verify the correctness of Augustin’s proof of [6, Lemma 34.2], see Appendix C for a more detailed discussion.

13The Rényi information, discussed in §3.4, has already shown to satisfy analogous relations, see [13, Lemma 16-(d,e)]. The only substantial subtlety
is that for orders in (0, 1) the Rényi information is a continuous function of p even when the corresponding capacity expression is infinite because the
Rényi information is quasi-concave rather than concave in p for orders in (0, 1), see [13, Lemma 6-(a)].
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On the other hand ||pg — po|| < 2. Thus if there exists a {p, }.cz, C P(X) such that lim,joc Lo (p,; W) = oo then I, (p; W) is
discontinuous at every p in P(X).

The converse statement, i.e. the sufficiency, can be established together with the equicontinuity. For any pg, p1 € P(X) such
that pg # p1 let sp, s1, and sy be

gn = —P1APO
AT e Apoll?
__ _pP1—pi1/A\po
L= 1T Apoll?
__ _Po—P1APpo
§g = 2 HLoke
0 = 1=Tlp1 Apoll

Then sp, s1, 50 € P(X) and s; L s9. On the other hand ||p; — po|| = 2 — 2||p1 A pol|- Therefore,

_ (2=llpr—poll llp1—poll
b1 = ( 2 )8/\ + 2 51,

_ (2=|lpi—po P1—Po
po = (Zlzi=pollyg 4 m—poll o

Thus as a result of Lemmas 2 and 15 we have

Lapos W) = L pr; W) < (L2520l ) o Leaspoll (7, (505 W) — 115 W)
< (Lol o degeoll 505 ) Vi, po € P(X), 0 €Re. (44

Thus

[ 1o (po; W) — La (p1; W) Sﬁ(“m;pou) + Lerpol sup,ep(x) In@; W) Vp1, po € P(X),a € (0,7].

3.3. Augustin Information as a Function of the Order

The main goal of this subsection is to characterize the behavior of the Augustin information as a function of the order for
a given input distribution. Lemma 16 presents preliminary observations that facilitate the analysis of Augustin information as
a function of the order; results of this analysis are presented in Lemma 17.

Lemma 16. For any channel W of the form W : X — P(Y) and input distribution p € P(X),
(@) Do(W(2)| ga,p) < In 15

) p(z)’
(b) [p(x)]= T W(z) < Ga,p,
dga,p la—1]| 1
(C) 1n dql,? ‘ S a 1n minx:p(m)>0 p(:l?) ’

Bounds given in Lemma 16 follow from (38) via elementary manipulations.

Lemma 17. For any channel W of the form W : X — P(Y) and input distribution p € P(X),

(a) Either (o —1)I,(p; W) is a strictly convex function of o from R+ to [—h(p),00) or I,(p; W) = >, p(z)In~(z) for some
~v: X — [1,00) satisfying %VZ—I(I) =(z) W(z)-a.s. for all x € supp(p) and go.p, = q1,p for all o € R+

(b) %Ia@; W) isa nonincreasiﬁ; and continuous function of o from R+ to R.

(¢) I(p; W) is a nondecreasing and continuous function of o from R+ to [0, h(p)].

(d) {ln flzcl"p tyey is an equicontinuous family of functions of o on R+.

(e) I.(p; Ws is a continuously differentiable function of « from R+ to [0, h(p)] such that
LW,y = ZEDa(W| gl p)l,_, (45)

i D (W | wp) 61

2 .
5. B | (042 - D) a,)) | o=t

) If (o — 1)1, (p; W) is strictly convex in «, then I (p; o‘f“’p) —ie. Dl( o‘f“’”” qayp} p)— is a monotonically increasing
continuous function of o on Ry else I (p; Wa™") = >, p(z) In~y(z) —i.e. Dy (Wa™" || gap| ) = 32, p(z) Invy(z)— for

some 7y : X — [1,00) satisfying % =(z) W(z)-a.s. for all x € supp(p) and Go.p, = q1,p for all o € R+

(g) limgyo [y (p; WO?“’”) = limg o I (p; W).

The (strict) convexity of (o« — 1)I,(p; W) in o on R+ is equivalent to the (strict) concavity of the function sl o (p; W) in
s on (—1,00), see the proof of part (f) for a proof. The concavity of the function sl (p; W) in s on (—1,00) and parts (b)
and (c) of Lemma 17 have been reported by Augustin in [6, Lemma 34.3] for orders between zero and one. Parts (a), (d), (e),
(f), and (g) of Lemma 17 are new to the best of our knowledge. Lemma 17 is primarily about the Augustin information as a
function of the order for a given input distribution. Part (d), i.e. the equicontinuity of {In 2‘;‘1": }yey as a family of functions
of the order o, is derived as a necessary tool for establishing the continuity of the derivative of the Augustin information, i.e.

part (e). Note that Lemma 16-(c) has already established this equicontinuity at o = 1.

(46)
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3.4. Augustin Information vs Rényi Information

The Augustin information is not the only information that has been defined in terms of the Rényi divergence; there are
others. The Rényi information, defined first by Gallager'* [14] and then by Sibson [34], is arguably the most prominent one
among them because of its operational significance established by Gallager [14].

Definition 8. For any o € R+, W : X — P()), and p € P(X) the order a Rényi information for the input distribution p is

Lip:W) £ infyepy) Dalp@W|p® q). (47)
As noted by Sibson [34], one can confirm by substitution that
Do(p@W | p®q) = Da(p@W|p®ql,) + Dalqs,] 9) Vp € P(X),q € P(V),a € Ry
where ¢f, , is the Rényi mean defined in (27). Then using Lemma 2 we can conclude that
L@:W) = Do (p@W| p® qS,) Vp € P(X),a € R+, (48)
Da(p® Wl p @ q) = 1i(p; W) + Da(as 5 || 0) Vp € P(X),q € P(Y),a € Ry (49)

For orders other than one the closed form expression given in (48) is equal to the following expression, which is sometimes
taken as the definition of the Rényi information,

I3 W) = 3255 Inf|pa p | ae R\ {1}

Note that unlike the order av Augustin mean, the order o Rényi mean has a closed form expression for orders other than one,
as well. Furthermore, the inequalities given in equations (29), (32), (34) of Lemma 13 are replaced by the equality given in
(49). A discussion of the Rényi information similar to the one we have presented in this section for the Augustin information
can be found in [13].

The order one Rényi information is equal to the order one Augustin information for all input distributions. For other
orders such an equality does not hold for arbitrary input distributions. However, it is possible to characterize the Augustin
information and the Rényi information in terms of one another through appropriate variational forms. Characterizing the
Augustin information in a variational form in terms of the Rényi information is especially useful, because the Augustin
information does not have a closed form expression whereas the Rényi information does. This characterization also implies
another variational characterization of the Augustin information.

Lemma 18. Let W be a channel of the form W : X — P(Y) and p be an input distribution in P(X).

26— Da( W(@) laa,p)
(a) Let uqp € P(X) be uqp(z) = p(o) P Tm ) Sor all z; then

(@)
L@ W) = I3 (a,p; W) + =5 D1(p|| ta,p) (50)
_ ) supuepp) L@ W) + Z5 Dilpllu) o €(0,1) _ 1)
infuéﬂ’(f)C) Iag(u; W) + ﬁDl(p” U) o e (15 OO)

a—1)Do W ()14,
(b) Let o,y € P(X) be tp(w) = LD LD

= 3. () e O ) for all x; then

Ié(p; W) = Ia(aa,p; W) - ﬁDl(aa,p” p) (52)
SUP e (X) Io(a; W) — ﬁDl(aH p) a€(1,00)
(c) Let fo,p : X —= R be fop,(7) = [Da(W ()| Gap) — La; W) L{pz)>0y for all z; then
(03 l/a
Lp;W) = =% nE, {(Zm p(z)e(t= s (®) {dvgy(m} ) } (54)
ay 1/a
= =% Ininfs.g [fj—0 E, [(ZI p(g;)e(l—a)f(z) [d"g_y)} ) ] ) (55)

Lemma 18-(a) was first proved by Poltyrev, [19, Thm. 3.4], in a slightly different form for o € [1/2,1) case assuming that
Y is finite. Equation (53) of Lemma 18-(b) was first proved by Shayevitz, [10, Thm. 1], for finite Y case. Shayevitz, however,
neither gave the expression for the optimal a,,,, nor asserted its existence in [10]. Lemma 18-(c) was first proved by Augustin,
[6, Lemma 35.7] for orders less than one.'?

4Gallager uses a different parametrization and confines his discussion to « € (0, 1) case.
15 [6, Lemma 35.7-(d)] is implied by the stronger inequalities established using (32) and Lemma 18-(c).
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The following inequalities are implied by both u = p point in the variational characterization given in Lemma 18-(a) and
a = p point in the variational characterization given in Lemma 18-(b). These inequalities can also be obtained using the
Jensen’s inequality and the concavity of the natural logarithm function.

I(p; W) > I5(p; W) a € (0,1] (56)
L W) < I2(p; W) a € [1,00) (57)

4. THE AUGUSTIN CAPACITY

In the previous section we have defined and analyzed the Augustin information and mean; our main aim in this section is
doing the same for the Augustin capacity and center. In §4.1, we establish the existence of a unique Augustin center for all
convex constraint sets with finite Augustin capacity and investigate the implications of the existence of an Augustin center for
a given order and constraint set. In §4.2, we analyze the Augustin capacity and center as a function of the order for a given
constraint set. In §4.3, we bound the Augustin capacity of the convex hull of a collection of constraint sets on a given channel
in terms of the Augustin capacities of individual constraint sets and determine the Augustin capacity of products of constraint
sets on the product channels. Proofs of the propositions presented in this section can be found in Appendix D.

Augustin provided a presentation similar to the current section in [6, §§33,34] and derived many of the key results —such
as the existence of unique Augustin center and its continuity as a function of order, see [6, Lemmas 34.6, 34.7, 34.8]— for
orders not exceeding one. Augustin, however, defines capacity and center only for the subsets of P(X) defined through cost
constraints. We investigate that important special case more closely in §5.

4.1. Existence of a Unique Augustin Center

Definition 9. For any a €R+, W:X—P()), and ACP(X), the order o Augustin capacity of W for constraint set A is
Cawa £ sup,cq Lo W).
When the constraint set A is the whole P(X), we denote the order o Augustin capacity by C, w, i.e. Cow = Co,w,2()-
Using the definition of the Augustin information I, (p; W) given in (23) we get the following expression for Cy, w4
Caw.a = supp,cq infgepy) Da(W| 4| p). (58)

Theorem 1 in the following demonstrates that at least for convex A’s one can exchange the order of the supremum and infimum
without changing the value in the above expression.

Theorem 1. For any order o € R+, channel W of the form W : X — P(Y), and convex constraint set A C P(X)

sup,e 4 infyepyy Da(Wll ¢ p) = inf yepy) sup,eq Da(W]l | p) . (59)

If the expression on the left hand side of (59) is finite, i.e. if Co,w 4 €R>0, then 3\qo,w,a €P(Y), called the order o Augustin
center of W for the constraint set A, satisfying

Cow,a = suppe g Do (W gow,alp) - (60)

Furthermore, for every sequence of input distributions {p(z)}zez+ C A satisfying lim,_, o I, (p(z);W) = Cq,w,a, the corre-
sponding sequence of order o Augustin means {q,, , hiez, is a Cauchy sequence for the total variation metric on P(Y) and
Qo WA is the unique limit point of that Cauchy sequence.

In order to prove Theorem 1, we follow the program put forward by Kemperman [12] for establishing a similar result for
a=1and A = P(X) case. We first state and prove Theorem 1 assuming that the input set is finite. Then we generalize the
result to the case with arbitrary input sets. In the case when X is a finite set, we can also assert the existence of an optimal
input distribution for which the Augustin information is equal to the Augustin capacity.

Lemma 19. For any order o € R+, channel W of the form W : X — P()) with a finite input set X, and closed convex
constraint set A C P(X), there exists p € A such that 1,(p; W) = Cow.a and qowa € P(Y) satisfying

Do(W| gaw,alp) < Caw,a Vp € A. (61)
Furthermore, o3 = qa,w,a for all D € A such that I, (p; W) = Caw,a-

If A is P(X), then the expression on the right hand side of (60), is equal to the Rényi radius S, defined in the following.
Thus Theorem 1 implies Co, w = So, w-

Definition 10. For any o € R+ and W : X — P(Y), the order o Rényi radius of W is

Sa,W = infqu(y) SUPgzex DQ(W(m)” Q) :
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Theorem 1 asserts the existence of a unique order o« Augustin center for convex constraint sets with finite Augustin capacity.
However, a probability measure g, w4 satisfying (60), i.e. an order av Augustin center, can in principle exist even for non-
convex constraint sets.

Definition 11. A constraint set A for the channel W : X — P()) has an order o Augustin center iff 3¢ € P())) such that

sup,eq Da(W| gl p) = Cow,a- (62)

If Cow 4 is infinite, then all probability measures on the output space satisfy (62) as a result of (58) and the max-min
inequality. Thus for constraint sets with infinite order o Augustin capacity all probability measures on the output space are
order av Augustin centers. On the other hand, some constraint sets do not have any order a Augustin center. Consider for
example p; and po satisfying qo.p, # Ga.p, and Io(p1; W) = I, (p2; W). Then (62) is not satisfied by any probability measure
for A = {p1,p2} and A does not have an order o Augustin center. Lemma 20 asserts that if Augustin center exists for a
constraint set with finite Augustin capacity, then the Augustin center is unique.

Lemma 20. Let A C P(X) be a constraint set satisfying Co w4 € Rxo, and qo,w.a be a probability measure satisfying (62).
Then for every {p(z)}zez+ C A satisfying lim,_, . I, (p(z) ; W) = Cq,w,A the sequence of order o Augustin means {qamm bz,
is a Cauchy sequence with the limit point q. w,a and the order o« Augustin center qn w4 IS unigue.

For any A that has an order av Augustin center and a finite C, w,4, Lemma 13-(b,c,d) and Lemma 20 imply that

Cow,A — ]a(p; W) > Da/\l(‘]mp” ‘Ia.,W,A) Vp € A.

Lemma 13-(b,c,d) and Lemma 20 can also be used establish a lower bound on sup,c 4 Do(W | g| p) in terms of the Augustin
capacity and center.

Lemma 21. For any constraint set A that has an order o Augustin center and a finite Co, w4 we have

sup,ca Da(Wll ¢l p) = Caw.a + Dani(gaw.all q) Vg ePD). (63)

Note that the form of the lower bound given in (63) is, in a sense, analogous to the ones given in (29), (32), (34). The bound
given in (63) is a van Erven-Harremoés bound'® for o € (0, 1], but it is not a van Erven-Harremoés bound for o € (1, 00)
because we have a D1 (ga,w 4| ¢) term rather than a Dy (ga,w.4ll ¢) term for o € (1, 0).

For orders other than one, using Csiszar’s form for the Augustin information given in (36) and the definition of the Augustin
capacity, we obtain the following expressions:

inf =Dy (V|| W I (p; 0,1
Ca’W’A{suppeAm vero 2R DV WD)+ hsV) ac (0.1) o

SUPpe A SUP v ep(y|X) 2 D1V Wlp) + hip;V) a€(l,00) .
Then
Cow,A = SUDPyepy|x) SUPpea 7o D1(VI| Wp) + Li(p; V) Va € (1,00).

For o € (0,1), if the constraint set A has an order o Augustin center, e.g. when A is convex, then one can exchange the
order of the supremum and the infimum and replace the infimum with a minimum whenever the Augustin capacity is finite
by Lemma 22, given in the following.

Lemma 22. For any « € (0,1), if the constraint set A for the channel W : X — P()) has an order « Augustin center, then

Coaw,a =nfyepyx)suPpeq 725 D1(VI| Wi p) + Lip; V). (65)
If Cow,A is finite, then Wo*""*" satisfies
Cow.a = SUDpeq 725 Di(Wa™"" || W|p) + L (p; Wa="™") . (66)

Lemma 22 is proved using Csiszdr’s form for the Augustin information, given in Lemma 13-(e), and Lemma 20. In [35],
Blahut proved a similar result assuming both X and Y are finite sets and A = P(X). Even under those assumptions Blahut’s
result [35, Thm. 16] imply (65) and (66) for all orders in (0,1) only when C, v is a differentiable function of the order .
Blahut was motivated by the expression for the sphere packing exponent; consequently, [35, Thm. 16] is stated in terms of an
optimal input distribution at a given rate R € (Cy,w, C1,w) and the corresponding optimal order o*(R).

16In [8] van Erven and Harremoés have conjectured that the inequality sup,cy Da(W (2)| @) > Ca,w + Da (quH q) holds for all ¢ € P(Y).
Van Erven and Harremoés have also proved the bound for the case when o = oo, assuming that Y is countable [8, Thm. 37]. We have confirmed van
Erven-Harremoés conjecture in [13, Lemma 19] and generalized it to the convex constrained case for the Rényi capacity and center in [13, Lemma 25]. See
§4.4 for a brief discussion of the Rényi capacity and center; a more comprehensive discussion can be found in [13].
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4.2. Augustin Capacity and Center as a Function of the Order
Lemma 23. For any channel W of the form W : X — P(Y) and constraint set A C P(X),

(a) Cow.a is a nondecreasing and lower semicontinuous function of « on R+.

(b) I?TO‘ Co,w,A 1s a nonincreasing and continuous function of o on'’ (0,1).

(¢) (o —1)Cow,a is a convex function of o on (1,00).

(d) Cow.a is nondecreasing and continuous in o on (0,1] and (1, xw .a] where xw 4 = sup{¢: Csyw.a € R>o}.
(e) If sup,c 4 ];(p; W) € R>o for a ¢ > 1, then Cyw, 4 is nondecreasing and continuous in o on (0, (1V xw . a)].

The continuity results presented in parts (d) and (e) are somewhat unsatisfactory. One would like to either establish the
continuity of C, w4 from the right at o« = 1 whenever Cy w,4 is finite for a ¢ > 1 or provide a channel W and a constraint
set A for which Cy w4 is finite for a ¢ > 1 and lim, 1 Cow,a > C1,w,.a. We could not do either. Instead we establish the
continuity of Co w,4 from the right at & = 1 assuming that sup,,c 4 1§ (p; W) is finite for a ¢ > 1.

Since Cyw = Sg,w by Theorem 1 and I} (p; W) < Sy,w for all p € P(X) by (47), sup,,c 4 13 (p; W) is finite for all A C P(X)
whenever Cy yy is finite. Thus C, w,4 is nondecreasing and continuous in « on (0, xw 4] for all A C P(X), provided that
Cs,w is finite for a ¢ > 1.

Lemma 21 allows us to use the continuity of C, w,4 in  and Lemma 2 to establish the continuity of g, w4 in a for the
total variation topology on P(}Y).

Lemma 24. For any n € R+, W : X — P(Y), and convex A C P(X) such that Cyw,a € R+,
Dani(gawall @o,w.a) < Cow,a — Cow,a Va, ¢ such that 0 < o0 < ¢ <. (67)

Consequently, if Cow,a is continuous in o on I for some T C (0,7, then qow.a : Z — P(Y) is continuous in o on I for
the total variation topology on P(}).

4.3. Convex Hulls of Constraints and Product Constraints

In the following we consider two kinds of frequently encountered constraint sets that are described in terms of simpler
constraint sets. Lemma 25 considers convex hull of a family constraint sets and bounds the Augustin capacity for the convex
hull in terms of the Augustin capacities of the individual constraint sets. Lemma 26 considers a product channel for the
constraint set that is the product of convex hulls of the constraint sets on the component channels that have Augustin centers
and shows that Augustin capacity has an additive form and Augustin center has a product form.

Lemma 25. Let o be a positive real, W be a channel of the form W : X — P(Y), and A be a constraint set that has an
order o Augustin center and a finite C,, y a4 for all 1+ € T. Then

c
sup,eg Cowum < Cowa <1In E e © WAL

where A is the convex hull of the union, i.e. A = ch(Ule(rA(l)). Furthermore,
. Ca,W,Am = Cawa <00 & SUPpeAa Da(WH o, W, A ()

10) < Caywwq(z) = Ga,W,A = Qo,W,A0)-

C
C . o, w,A )
o Cowa =} cye omal) <00 quwam L dawaw Vi #7and|T] <00 = qawa = ,er Sommm daw,A®-

Note that if A® is convex and CO“WVA(” is finite, then A has a unique order o Augustin center by Theorem 1.

Lemma 26. For any o € R+, length n product channel Wiy ) : X7 — P(VY'), and constraint sets Ay C P(Xy) that have
order o Augustin centers

n

CaaW[l,n]7A = Oa,W[l,nyA? = E =1 Csz,Az

where A={peP(X}):prechA, YVt € {1,....n}}, ie.ap € P(X}) isin Aiffforall t € {1,...,n} its X, marginal p; is in
the convex hull of A;. Furthermore, if Co, w, a, is finite for all t € {1,...,n}, then qowy, A = oWy A7 = @iy o, Wi A,

Remark 2. Note that the convex hull of any subset of A is a subset of A because A is convex by definition. In particular,
AP CchAT CA. Then Cow,, ,cna; =2 11 Ca,w, 4, by Lemma 26. Furthermore, if C, w, 4, is finite for all ¢ € {1,...,n},
then ¢ow;, ,cnar = Qj—1 do, w;.4, by Lemma 25.

Remark 3. The constraint set A7} described in Lemma 26 may not be convex, yet A7 is guaranteed to have an order «
Augustin center.

17We exclude o = 1 case because we do not want to assume C1,w,A to be finite.
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4.4. Augustin Capacity vs Rényi Capacity
Using the Rényi information instead of the Augustin information, one can define the Rényi capacity, as follows.

Definition 12. For any o € R+, W : X — P()), and A C P(X) the order o Rényi capacity of W for constraint set A is
Cow.n £ sup,cq L3; W) .
When the constraint set A is the whole P(X), we denote the order o Rényi capacity by Cowsle. CF = Cag,w,?(x)'
Since L (p; W)=1I7(p; W), C} w 4= C1,w.a by definition. We cannot say the same for other orders; by (56), (57) we have
Cowoa< Cawa a € (0,1],
C;’VWyA > Cow.A a € [1,00).
As a result of definitions of the Rényi information and capacity we have

Cowa =suppeq infyep) Da(p®@W|p®q).

The Rényi capacity satisfies a minimax theorem, [13, Thm. 2], similar to Theorem 1: For any convex constraint set A C P(X)

SUPpea iqu{é?”(y) Da(p® WH PRq) = inquP('y) SUPpeA Da(p® WH P®q).
If C2 4 is finite, then 3!¢? |\, , € P(Y), the order o Rényi center W for the constraint set A, satisfying

Cow.a =5UPpeq Da (p@ Wip® qZ7W7A) .

Consequently, the Rényi capacity equals to the Rényi radius provided that A =P(X). Hence Cow=Caw and q; y = qa,w
by Theorem 1. The other observations presented in this section have their counter parts for the Rényi capacity and center;
compare for example Lemma 21 and [13, Lemma 25].

5. THE COST CONSTRAINED PROBLEM

In the previous section, we have defined the Augustin capacity for arbitrary constraint sets and proved the existence of a
unique Augustin center for any convex constraint set with finite Augustin capacity. The convex constraint sets of interest are
often defined via the cost constraints; the main aim of this section is to investigate this important special case more closely. In
§5.1 we investigate the immediate consequences of the definition of the cost constrained Augustin capacity and ramifications
of the analysis presented in the previous section. In §5.2 we define and analyze the Augustin-Legendre (A-L) information,
capacity, radius, and center. The discussion in §5.2 is a generalization of certain parts of the analysis presented by Csiszdr and
Korner in [5, Ch. 8] for the supremum of the mutual information for discrete channels with single cost constraint, i.e. o = 1,
|X| < oo, [Y| < o0, £ =1 case. In §5.3 we define and analyze the Rényi-Gallager (R-G) information, mean, capacity, radius,
and center. The most important conclusion of our analysis in §5.3 is the equality of the A-L capacity and center to the R-G
capacity and center. In §5.4, we demonstrate how the results presented in §5.1, §5.2, and §5.3 can be used to determine the
Augustin capacity and center of a transition probability with cost constraints. Proofs of the propositions presented in §5.1,
§5.2, and §5.3 can be found is Appendix E.

Augustin presented a discussion of the cost constrained capacity Cy w,, in [6, §34] for the case when the cost function p
is a bounded function of the form p : X — [0, 1]¢ and the order « is in (0,1]. In [6, §35], Augustin also analyzed quantities
closely related to the R-G information and capacity. The quantities analyzed by Augustin in [6, §35] have first appeared in
Gallager’s error exponents analysis for cost constrained channels [14, §6], [15, §7.3,§7.4,§7.5]. Unlike Augustin, Gallager did
not assume p to be bounded; but Gallager confined his analysis to the case when there is a single cost constraint, i.e. £ = 1
case, and refrained from defining the R-G capacity as a quantity that is of interest on its own right. Other authors studying
cost constrained problems, [23, §IV], [24]-[26], have considered the R-G information and capacity, as well. Yet to the best of
our knowledge for orders other than one the A-L information measures, which are obtained through a more direct application
of convex conjugation, have not been studied before.

5.1. The Cost Constrained Augustin Capacity and Center

We denote the set of all probability mass functions satisfying a cost constraint o by A(p), i.e.

Alo) £ {p € P(X) : Ey[p] < 0}

A(p) # 0 iff o € I, where I', is defined in (6) as the set of all feasible cost constraints for the cost function p. A(p) is
nondecreasing in p, i.e. 01 < g2 implies A (1) CA(02). We define the order «« Augustin capacity of W for the cost constraint
o as

Lp:W) ifoeTl
Cow,e £ SPpes(e) o @3 W) e © ¢ Va € Ry. (68)
—00 if o € R, \ I,
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We defined C, w,, for o’s that are not feasible in order to be able to use standard results without modifications. Since A(p) is
a convex set, Theorem 1 holds for A(g). We denote'® the order o Augustin center of W for the cost constraint ¢ by g, w,,-

For a given order o, the Augustin capacity Cq ., is a concave function of the cost constraint p. Hence, if it is finite at an
interior point of I',, then it is a continuous function of the cost constraint ¢ that lies below its tangent planes drawn at interior
points of I',. Lemma 27, in the following, summarizes these observations.

Lemma 27. Let W be a channel of the form W : X — P(Y) with the cost function p of the form p : X — Rézo.

(a) For any oo € R+, Cyw,, is a nondecreasing and concave function of o on Rgo, which is either infinite on every point in
intI, or finite and continuous on intl,.
(b) If Cow,p is finite on intl, for an a € Ry, then for every o € intl, there exists a \ow,, € RS, such that

Ca,W,Q + )\a,W,g . (é - Q) Z Ca,W,@ v@ S Réo (69)

Furthermore, the set of all such \ow,,’s is convex and compact.
(c) Either Cow,p=00 for all (a,0)€(0,1)xintl, or Cow,, and qa,w,, are continuous in (o, ) on (0,1)xintI’, for the
total variation topology on P(Y).
If the cost function for a product channel is additive, then the cost constrained Agustin capacity of the product channel is
equal to the supremum of the sum of the cost constrained Augustin capacities of the component channels over all feasible

cost allocations. Furthermore, if there exists an optimal cost allocation, then the Augustin center of the product channel is a
product measure. Lemma 28, given in the following, states these observations formally.

Lemma 28. For any length n product channel Wy, ) : X7 — P(V}') and additive cost function pyy ) : X7 — R, we have'®
Cotinpe =S { D Cowio i, 01 <0, 00 €RE ) Vo € RSy, a € Ry (70)

If Cawiy .0 € Ro foran o € R+ and (o1, . . ., 0n) such that Cowy, 1,0 = >ori Cawi o, then Qo Wi pr0 = Q1 da, w00

Since the Augustin capacity is concave in the cost constraint by Lemma 27-(a), Ca,w, ,),0 = Z?:l Co,w,,2 whenever Wy

n

is stationary and p; = py for all ¢t € {1,...,n}. Alternatively, if I',,’s are closed and C,, w,,,’s are upper semicontinuous
functions of ¢ on I',,’s, then we can use the extreme value theorem?® for the upper semicontinuous functions to establish
the existence of a (o1, ..., 0n) satisfying both Cow;, 1.0 = D1 Caw,.o, and 3}, 0+ < o. However, such an existence

assertion does not hold in general, see Example 3.

5.2. The Augustin-Legendre Information Measures

The cost constrained Augustin capacity C, w,, and center go,w,, can be characterized using convex conjugation, as well.
In this part of the paper, we introduce and analyze the concepts of the Augustin-Legendre information, capacity, center, and
radius in order to obtain a more complete understanding of this characterization. The current method seems to us to be the
standard application of the convex conjugation technique to characterize the cost constrained Augustin capacity. Yet, it is not
the customary method. Starting with the seminal work of Gallager [14], a more ad hoc method based on the Rényi information
became the customary way to apply Lagrange multipliers techniques to characterize the Augustin capacity, see [6, §35], [24],
[25]. We discuss that approach in §5.3. Theorem 2 presented in the following and Theorem 3 presented in §5.3 establish
the equivalence of these two approaches by establishing the equality of the Augustin-Legendre capacity and center to the
Rényi-Gallager capacity and center.

Definition 13. For any o € R+, channel W of the form W : X — P()) with a cost function p : X — R%,, p € P(X), and
A€ REZO, the order oo Augustin-Legendre information for the input distribution p and the Lagrange multiplier )\ is

L@;W) 2 Lp;W) — X -Ey[p]. (71)

Note that as an immediate consequence of the definition of the A-L information we have

infaso I3 ;W) + X+ 0 = &a p(0) (72)

where £, (+) 1 RE, — [—00, 00) is defined as

A I, (p; > E
€apl0) 2 _O(ZW) e rlel (73)

18This slight abuse of notation —which can be avoided by using Ca,w,A(e) and go w4 (o) instead of Co w,, and ga,w,o— provides brevity without
leading to any notational ambiguity.

191f Ca,w,,0, = —00 forany t € {1,...,n}, then Z?:l Ca,w,,0, stands for —oo; even if one or more of other Cq w,,,,’s are equal to co.

20Consider the function f(o1,...,on) which is equal to Sote1 Cawyor if >ofq 0t < oand gp € Iy, forall t € {1,...,n} and which is equal to
—oo otherwise. We choose a large enough but bounded set using the vector o to obtain a compact set for the supremum.
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Then the Augustin-Legendre information I (p; W) can also be expressed as

LXp;W) = sup,soéap(0) = A0 (74)

Remark 4. Note that if f : RS, — (—00, 0] and f* : (—00,0]* — R are defined as f(0) £ —&a.»(0) and f*(v) & 177 (p; W),
then f* is the convex conjugate, i.e. Legendre transform, of the convex function f. This is why we call I (p; W) the Augustin-
Legendre information.

Definition 14. For any o € R+, channel W of the form W : X — P())) with a cost function p : X — Rgo, and \ € Rgo the
order o Augustin-Legendre (A-L) capacity for the Lagrange multiplier \ is

Caw = Subpep) Lo @:W). (75)
Then as a result of (73) and (74) we have
CS,W = Sup,>g Cow,o— A0 Ve Réo. (76)
Hence, using the max-min inequality we can conclude that
Caw,e < infr>0 CL y + A0 Vo € RE,. (77)

Then Cow,, < oo for all g € RE, provided that C ;, < oo for a A € R=o. But € ;, = oo might hold for A small enough
even when C, 1, < oo for all o € RY,, see Example 1.

Remark 5. In [6, §33-§35], Augustin considered the case when the cost function p is a bounded function of the form
p: X —[0,1]%. In that case Cly < oo forall X e RY, provided that C, w,, < oo for a ¢ € intl, because Cy w1 < 00
by Lemma 27-(b) and C,, w1 = Co,w and CQ‘,W < CY = Cow forall X e RY, by definition.

The inequality given in (77) is an equality for many cases of interest as demonstrated by the following lemma. However,
the inequality given in (77) is not an equality in general, see Example 2.
Lemma 29. Let o € R+ and W be a channel of the form W : X — P(Y) with a cost function p : X — Rézo. Then

(a) C(;\ w is convex, nonincreasing, and lower semicontinuous in X on RS, and continuous in X on {\: 3¢ > 0 s.t. Ci}f,ﬂ < oo}

(b) If X is a finite set, then Cyw,, = infy>q OS,W + Ao

(c) If o € intl, then Cuw,, = infy>g C&\,W + A - o. If in addition Cyw,, < 00, then there exists a non-empty convex,
compact set of \o,w,,’s satisfying both (69) and Cy w,, = C;‘j,"‘;v’g +Aaw,o - 0

(d) If Co,w,p is finite and Cyw,p = C&\W + Ao for some p € I, and \ € Rgo, then lim,_, o Io)é‘ (p(z);W) = COQ\VW for all
{pW}iez, € A(0) st limy o0 1o (P W) = Cowp-

Using the definitions of I, (p; W), I (p; W), and C;W given in (23), (71), (75) we get the following expression for Ca)\,W‘

Ca w = sup,ep(x) infgep) Do (Wl al p) = A~ Eylp] . (78)

The A-L capacity satisfies a minimax theorem similar to the one satisfied by the Augustin capacity, which allows us to
assert the existence of a unique A-L center whenever the A-L capacity is finite.

Theorem 2. For any o € R+, channel W : X — P(Y) with a cost function p : X — Réo, and Lagrange multiplier \ € R‘éo

sup,ep(x) fger) Da(W gl p) — A - Ep[p] = inf e p(y) suppepxy Da(Wl gl p) — A - Ey o] (79
= inf ep(y) supgex Da(W(z)[ ¢) — A p(z). (80)

If the expression on the left hand side of (79) is finite, i.e. if O&\,W < o0, then Elqéjw €P(Y), called the order o Augustin-
Legendre center of W for the Lagrange multiplier )\, satisfying
Caw = $Wpep(x) Da (Wl 43w | p) = A+ Eplp) (81)
= sup,ex Da (W () g2, w) — A+ p(2). (82)
Furthermore, for every sequence of input distributions {p®},cz, C P(X) such that lim, .. I} (p; W) = Coi w the
corresponding sequence of order o Augustin means {q, , tez. is a Cauchy sequence for the total variation metric on
P(Y) and qéﬁw is the unique limit point of that Cauchy sequence.

Note that Theorem 2 for A = 0 is nothing but Theorem 1 for A = P(X). The proof of Theorem 2 is very similar to that of
Theorem 1, as well; it employs Lemma 30, presented in the following, instead of Lemma 19. Note that, Lemma 30 for A =0
is nothing but Lemma 19 for A = P(X), as well.
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Lemma 30. For any a € Ry, channel W : X — P(Y) with a cost function p : X — R., for a finite input set X, and
Lagrange multiplier \ € R, there exists a p € P(X) such that I)p; W) = Cé\,w and El!qgw € P(Y) satisfying

Da(Wll a3 w|p) =X Eplp] < CQ Vp € P(X). (83)
Furthermore, qo. = ¢} yw for all p € P(X) such that I3 (p; W) = C2 4.

Note that the expression on the left hand side of equation (79) is nothing but the A-L capacity. Thus Theorem 2 is establishes
the equality of the A-L capacity to the A-L radius defined in the following.

Definition 15. For any o € R+, channel W : X — P()) with a cost function p : X — Réo, and \ € Réo, the order «
Augustin-Legendre radius of W for the Lagrange multiplier ) is

Saw = infeepy) sup,ex Da(W ()] q) = X~ p(z). (84)
If C&\,W is finite, then Lemma 13-(b,c,d), Theorem 2, and the definition of Ioj\ (p; W) given in (71) imply that
Oo/}.,w — I;(0; W) > Dan1(¢apll QQ,W) Vp € P(X).

Using Lemma 13 and Theorem 2 one can also establish a bound similar to the one given in Lemma 21. However, we will not
do so here because one can obtain a slightly stronger results, using the characterization of the A-L capacity and center via
R-G capacity and center presented in §5.3, see Lemma 35 and the ensuing discussion.

As a result of Lemma 29-(c), we know that if C, v , is finite for a o € int/l,, then there exists at least one Ao, w,, for
which Cy w o, = C;‘_’“V’VW’Q -+ Ao, w0 - 0 holds. Lemma 31, given in the following, asserts that for any such Lagrange multiplier
the corresponding order o« A-L center should be equal to the order ov Augustin center for the cost constraint g. Thus if there
are multiple A\, w s satisfying Co w o, = C;C“WW’Q + Aa,w,o - 0, then they all have the same order o A-L center.

Lemma 31. For any o € R+, channel W : X — P(Y) with a cost function p : X — Réo, and a cost constraint ¢ € I', such
that Co o < 00, if Cow,o = C’\W +X-oforaX€RY,, then gow., = qé,W.

«

For product constraints on product channels, the Augustin capacity has an additive form and the Augustin center has
a multiplicative form —whenever it exists— by Lemma 26. The cost constraints for additive cost functions, however, are
not product constraints. In order to calculate the cost constrained Augustin capacity for product channels with additive cost
functions, we need to optimize over the feasible allocations of the cost over the component channels by Lemma 28. In addition,
we can express the cost constrained Augustin center of the product channel as the product of the cost constrained Augustin
centers of the components channels —using Lemma 28— only when there exists a feasible allocation of the cost that achieves
the optimum value. For the A-L capacity and center, on the other hand, we have a considerably neater picture: For product
channels with additive cost functions the A-L capacity is additive and the A-L center is multiplicative, whenever it exists.

Lemma 32. For any length n product channel Wy ,,) : X — P(Y{") and additive cost function ppy ) @ XT — Réo we have
A " A ¢
Cow =D, Caw, VA € RSy, o€ Ry, (85)
Furthermore, if C&\, Wi < 0O then qé, Wiy = (A qé, W,

The additivity of the cost function py; ,,; implies for any p in P(XT)

n

Ey (] =D, Enled]

where p; € P(X;) is the X; marginal of p. Thus Lemma 14 and the definition of the A-L information imply
]o)c\(p; I/V[l.,n]) < ]o): (pl Q- Q Pn; I/V[l_’n])
=, Resw). (86)

Lemma 32 is proved using (86) together with Theorem 2.

5.3. The Rényi-Gallager Information Measures

In §5.2, we have characterized the cost constrained Augustin capacity and center in terms of the A-L capacity and center.
The A-L capacity is defined as the supremum of the A-L information. Gallager —implicitly— proposed another information
with a Lagrange multiplier in [14, (103) and (116)]. Augustin characterized the cost constrained Augustin capacity in terms of
the supremum of this information, assuming that the cost function is bounded, in [6, Lemmas 35.4-(b) and 35.8-(b)]. We call
this supremum the R-G capacity. The main aim of this subsection is establishing the equality of the A-L capacity and center
to the R-G capacity and center. We will also derive a van Erven-Harremoés bound for the A-L capacity and center and use it
to derive the continuity of the A-L center as a function of the Lagrange multiplier \.
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Definition 16. For any o € R+, channel W : X — P()) with a cost function p : X — R%,, p € P(X), and A € RY, the
order o Rényi-Gallager (R-G) information for the input distribution p and the Lagrange multiplier X is

inf ,epy) Da (p@ We%A'p" pP® q) ac R\ {1}
inf ep) Dilp@®@ W p®q) —A-Eplp] a=1

I ;W) £ { (87)

If A\ is a vector of zeros, then the R-G information is the Rényi information. Similar to the Rényi information, the R-G
information has a closed form expression, described in terms of the probability measure achieving the infimum in its definition.

Definition 17. For any « € R+, channel W : X — P()’) with a cost function p : X — Rgo, p € P(X), and X € Réo, the
order o« mean measure for the input distribution p and the Lagrange multiplier X\ is

[, pitnon (2]

The order o Rényi-Gallager (R-G) mean for the input distribution p and the Lagrange multiplier X is

D s ey (89)

Both 1) ,, and ¢, depend on the Lagrange multiplier A for v € R+\{1}. Furthermore, one can confirm by substitution that

Da(p® We“T”'PH p®q) = Da(p® Wel?T“A'PH @ a2 ) + Da(ay o) aeR:\ {1} (90)

Then as a result of Lemma 2, we have
120 W) = Da(pe We 5| p 0 422, o1
= g2y In [, | a € R\ {1}, 92)

Neither M{‘,p, nor ¢ ; depends on the Lagrange multiplier A. In addition, one can confirm by substitution that

Di(p&Wlp®q)— A -Eylp| = Dl(p®WHp® fop) —A-Eylp] + Dl(Qf,Ap

Q) . 93)
Then as a result of Lemma 2, we have
I p: W) =D1(p®WHp®qlg,Ap) —A-Ep[p]. (94)

Using the definitions of the A-L information and the R-G information given in (71) and (87) together with the Jensen’s
inequality and the concavity of the natural logarithm function we get

LpyW) > I W) a € (0,1]
;W) < I3 (p: W) ael,00).

It is possible to strengthen these relations by expressing the A-L information and the R-G information in terms of one another
as follows.

Lemma 33. Let W be a channel of the form W : X — P(Y) with a cost function p : X — Rézo, p be an input distribution
in P(X) and X be a Lagrange multiplier in R.,,.

A A _ p(a)et=Pa(W@lla,p)+(a—D)A-p(2)
(a) Let uj , € P(X) be uy () = S p(2)e DDV @ e ) @ DX p(z
T

LXp;W) = 12 Wa,ps W) + =25 D1 (p|] ta,p) (95)

_ [swbacopn 1@ + 25Dl ) ae (0,1)
inf,cp(x) I w; W) + ﬁDl(pH u) a€(1,00)

(a=1)Da( W@ 124 ) +(1-a)r-p(@)

; for all x; then

(96)

(b) Let a), € P(X) be a ,(z) = —22°

~ (a=1)Da( W@ la?\p +(A—a)X-p(z)
Z' p(z)e
T

I ;W) = 12 (a) ;W) — 25 Di(a || p) (97)

_ Jinfaepx) I@W) = 5 Di(allp)  a€(0,1)
supgep(x) Lo (@ W) — s Dilal p) € (1,00)

for all z; then

(98)
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(c) Let [, : X =R be [ (x) = [Da(W(2)|| ga,p) — X+ p(x) — 12 (0; W)L (0)>0y for all z; then

De;W) = 2 InE, [(Zm p()e1=) 02, @) x0(2)) {dvgy(m]“)l/“} ©99)
— % Ininfp.p -0 B, {(ZI p(z)e1= @3 p(2) [dvdv_u(x)r)/] | 100

Lemma 33 for A = 0 is Lemma 18, which was previously discussed by Poltyrev [19], Shayevitz [10], and Augustin [6].

Definition 18. For any o € R+, channel W : X — P()) with a cost function p : X — Réo, and \ € Réo, the order «
Rényi-Gallager (R-G) capacity for the Lagrange multiplier \ is

C\y & suppepey 190 W) -

. .. by . . . . . A
Using the definition of I2*(p; W), given in (87), we get the following expression for Ca'w

Cag:\W _ {suppey(x) infqep(y) D, (p@ We%“XpH P® q) ae R\ {1} (101)

sup,ep(x) ifgep) Da(p@Wp® q) = A Eylp] a=1

The R-G capacity satisfies a minimax theorem similar to the one satisfied by the A-L capacity, i.e. Theorem 2. Since both the
statement and the proof of the minimax theorems are identical for the order one A-L capacity and the order one R-G capacity,
we state the minimax theorem for the R-G capacity only for finite positive orders other than one.

Theorem 3. For any a € R+\{1}, channel W :X — P(Y) with a cost function p:X — R%,, and Lagrange multiplier N R%,,

SUP,ep(x) infqep(y) D, ( ® We o H PR q) = infqep(y) SUP,ep(x) D, ( ® We o H PR q) (102)
= inf e 5P Da( W (@) @) A- pl). (103)

If the expression on the left hand side of (102) is finite, i.e. if C’g “w < 0o, then 3'q w € P(Y), called the order «
Rényi-Gallager center of W for the Lagrange multiplier ), satzsfymg

11—«
C2 = suppepx) Da <p® WeTA'pH P® qf;?w) (104)
= SUPgex Da(W(fﬁ)H q;?w) —A-p(z). (105)

Furthermore, for every sequence of input distributions {p'},ez, C P(X) such that lim, . I3 (p); W) = C;AW, corre-
sponding sequence of the order o Rényi-Gallager means {q;/\p(l) hez, is a Cauchy sequence for the total variation metric on

P(Y) and qgé’\W is the unique limit point of that Cauchy sequence.

Proof of Theorem 3 is very similar to the proofs of Theorem 1 and Theorem 2. It relies on Lemma 34, given in the following,
instead of Lemma 19 or Lemma 30.

Lemma 34. For any o € Ry \ {1}, channel W : X — P(Y) with cost function p : X — R, for a finite input set X, and
Lagrange multiplier \ € R, there exists a p € P(X) such that I)p; W) = C&\,W and 3!q27W € P(Y) satisfying

Da(pewe' s | po gy < o2y vp € P(X). (106)

Furthermore, in_ﬁ = q;?‘w for all p € P(X) such that I3 p; W) = C;’?‘W.

The expression on the left hand side of (102) is the R-G capacity, whereas the expression in (103) is the A-L radius defined
in (84). Thus Theorems 2 and 3 imply that

Chw=5rw=C0w Vo € R, ) € R,. (107)

Furthermore, whenever C) w 1s finite the unique A-L center described in (82) is equal to the unique R-G center described in
(105) by Theorems 2 and 3 as well.

oow =4 w Va € Re, A € RS, st CF gy < 0. (108)

In order to avoid using multiple names for the same quantity, we will state our propositions in terms of the A-L capacity and
center in the rest of the paper.
If COiW is finite, then (90), (91), and Theorem 3 for « €R+\ {1} and (93), (94) and Theorem 2 for o = 1 imply that

CXw — 12 W) > Da (a2 23.w) Vp € P(X).
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Using the same observations, we can prove a van Erven-Harremoés bound for the A-L capacity, as well.

Lemma 35. For any a € R+, channel W : X — P(Y) with a cost function p : X — R%,, and Lagrange multiplier X € R%,
satisfying Co/t\’W < 00

sup, e Da(W(2)] q) — A+ p(z) > C2 w + Da (a3 wl| @) Vg e P(Y). (109)

One can prove a similar, but weaker, result using Lemma 13 and Theorem 2. The right most term of the resulting bound is
Da/\l(q27W|| q) rather than D, (qé,w‘ q).

Lemma 35 and the continuity of the A-L capacity Cé‘, w as a function of A, established in Lemma 29-(a), imply the continuity
of the A-L center qg},W in X for the total variation topology on P()) via Lemma 2.

Lemma 36. For any o € R+, channel W : X — P()) with a cost function p : X — Réo, and Lagrange multiplier \g € Réo
satisfying Ci“w < 00,

D, (QQ?W ‘

Furthermore q&w is continuous in X on {\: Je >0 s.t. C2t <od} for the total variation topology on P(Y).

Q) < Ol = Cly VA1, As € R, such that Ao < Ay < o (110)

5.4. Information Measures for Transition Probabilities

We have defined the conditional Rényi divergence, the Augustin information, the A-L information, and the R-G information,
only for input distributions in P(X), i.e. for probability mass functions that are zero in all but finite number of elements of
X. In many practically relevant and analytically interesting models, however, the input set X is an uncountably infinite set
equipped with a o-algebra X. The Gaussian channels —possibly with multiple input and output antennas and fading— and the
Poisson channels are among the most prominent examples of such models. For such models, it is often desirable to extend the
definitions of the Augustin information and the A-L information from P(X) to P(X). For instance, in the additive Gaussian
channels described in Examples 4 and 5, the equality I,(p; W) = C,, w, is not satisfied by any probability mass function p
satisfying the cost constraint; but it is satisfied by the zero mean Gaussian distribution with variance p.

In the following, we will first show that if )/ is a countably generated o-algebra, then one can generalize the definitions of
the conditional Rényi divergence, the Augustin information, and the A-L information from P(X) to P(X) provided that W
and @ are not only functions from X to P()), but also transition probabilities from (X, X’) to (Y,)). After that we will show
that if in addition X is countably separated, then the supremum of A-L information I (p; W) over P(X) is equal to the A-L
radius S, O/} w see Theorem 4. This will imply that the cost constrained Augustin capacity C,, w,, —defined in (68)— is equal
to the supremum of the Augustin information I, (p; W) over members of P(X) satisfying E,[p] < p, as well, at least for the
cost constraints that are in the interior of the set of all feasible constraints, see Theorem 5.

Let us first recall the definition of transition probability. We adopt the definition provided by Bogachev [21, 10.7.1] with a
minor modification: we use W(&|z) instead of W (z|E).

Definition 19. Let (X, X) and (Y,)) be measurable spaces. Then a function W : Y x X — [0,1] is called a transition
probability (a stochastic kernel / a Markov kernel) from (X, X) to (Y,)) if it satisfies the following two conditions.

(i) For all 2 € X, the function W (-|z): ) — [0,1] is a probability measure on (Y,)).

(ii) For all & € Y, the function W(&|-) : X — [0,1] is a (X, B([0, 1]))-measurable function.

We denote the set of all transition probabilities from (X, X) to (Y,)) by P(Y|X) with the tacit understanding that X and
Y will be clear from the context. If W satisfies (i), then W : X — P(}) is a channel, i.e. W is a member of P()|X), even if
W does not satisfy (ii). Hence P(Y|X) C P(Y|X). Inspired by this observation, we denote the probability measure W (-|z)
by W (z) whenever it is notationally convenient and unambiguous.

In order to extend the definition of the conditional Rényi divergence from P(X) to P(X’), we ensure the X'-measurability of
Do (W(z)|| Q(z)) on X and replace the sum in (21) with an integral. If (X, 7) is a topological space and X is the associated
Borel o-algebra, then one can establish the measurability by first establishing the continuity. Such a continuity result holds if
both % and %ff) are continuous in z for v-almost every y for some probability measure v for which (W (z)+ Q(z))<v
for all € X. At times this hypothesis on W and ) might not be easy to confirm. If, on the other hand, W and () are
transition probabilities from (X, X) to (Y,)) for a countably generated ), then the desired measurability follows from the
elementary properties of the measurable functions and Lemma 9, as we demonstrate in the following.

Lemma 37. For any « € R+, countable generated o-algebra ) of subsets of Y, and W,Q € P(Y|X) the function
Do (W) Q) : X — [0, 00] is X-measurable.

Proof of Lemma 37. There exists {&,},ez, C Y suchthat ) = o({€, : » € Z+}) because ) is countably generated o-algebra.
Let ), be

ylé 0’({81,...,81}) 'LGZ+.
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Then Y1 C Yo C--- C Y, Y =0(UX,Y,), and Lemma 9 implies that
Do (W (2)]| Q(z)) = lim, 00 DY (W ()| Q(x)) vz € X. (111)

On the other hand ), is finite set for all » € Z+. Thus for all » € Z+ there exists a ),-measurable finite partition &, of Y. Thus
as a result of the definition of the Rényi divergence given in (8) we have

I ece, (W)™ (QE]2)) ™" a e R+ \ {1} _

W(Elz
Yece, W(Elz) In 55 a=1

Then DY+ (W (z)|| Q(x)) is a X-measurable function for any 1 € Z+ by [21, Thm. 2.1.5-(i-iv)] and [21, Remark 2.1.6] because
W (€|z)and Q(&|x) are X'-measurable for all £ € &, by the hypothesis of the lemma. Then D, (W (z)| Q(z)) is X-measurable
as a result of (111) by [21, Thm. 2.1.5-(v)] and [21, Remark 2.1.6]. [l

DY (W (=)l Q=) {

Definition 20. For any a € R+, countable generated o-algebra ) of subsets of Y, W € P(Y|X), and p € P(X) the order «
conditional Rényi divergence for the input distribution p is

Da(W|| Q| p) £ / Da(W(2)]| Q(x)) p(dz). (112)

If 3¢ € P(Y) such that Q(z) = ¢ for p-a.s., then we denote D, (W|| Q| p) by Do (W] q| p).

Then one can define the Augustin information and the A-L information for all p in P(X), provided that W is in P()|X)
for a countably generated ) and p is a X-measurable function.

Definition 21. For any a € R+, countable generated o-algebra ) of subsets of Y, W € P(Y|X), and p € P(X) the order «
Augustin information for the input distribution p is

In(p; W) £ infyepy) Da(W gl p) - (113)

Furthermore, for any X-measurable cost function p : X — Réo and \ € Rgo the order o Augustin-Legendre information for
the input distribution p and the Lagrange multiplier \ is defined as

L2 W) = La(pi W) = A By [o] (114)
with the understanding that if A - E,[p] = oo, then I} (p; W) = —oo.

Although we have included X - E,[p] = oo case in the formal definition of the A-L information, we will only be interested
in p’s for which X - E,[p] is finite. We define A* to be the set of all such p’s:

AN E {p e P(X): A Ey[p] < o0} (115)

For an arbitrary o-algebra X, the singletons (i.e. sets with only one element) are not necessarily measurable sets; thus P(X)
is not necessarily a subset of A*. If X is countably separated, then the singletons are in X’ by [21, Thm. 6.5.7], P(X) c A*
and sup,c a» Lp; W) > Cé,w- The reverse inequality follows from Theorem 2 and we have sup, ¢ 4 Lp;W) = Cé,w-
Theorem 4 states these observations formally together with the ones about the A-L center through a minimax theorem.

Theorem 4. Let X be a countably separated o-algebra, ) be a countably generated o-algebra, W be a transition probability
from (X, X) to (4,)), p: X — Réo be a X-measurable cost function, and o € R+. Then for all \ € Rgo we have

sup,e 4» infyepy) Do (Wl gl p) — A - Eplp] = infjepy) sup,cax Da(W| gl p) — X Eyp] (116)
= inf epy) supgex Da(W(2)| @) — X p(z) (117)
=Cow (118)

where A* is defined in (115). If Cé\,w is finite, then E!QQ,W €P(Y), called the order o Augustin-Legendre center of W for
the Lagrange multiplier )\, satisfying
Caw = suppe » Do (W1 a2 w|p) = A~ By[o] (119)
= sup,exe Da(W (@)l 43 w) — A+ p(2). (120)
Proof of Theorem 4. Since P(X) C A*, the max-min inequality implies
sup,ep(x) ifgery) Da(Wll gl p) — A Ey[p] < suppc an inf jepy) Da(W | | p) — A - Eplp]
< infqu(y) SUPye.ar Do (Wl qlp) = A-Eylp]
= infoepy) sup,ex Da(W (@)l ¢) — A~ p(z).
Thus (116) and (117) hold as a result of (79) and (80) of Theorem 2 and (118) follows by (80) of Theorem 2 and (78).
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If C&\W is finite, then as a result of Theorem 2 there exist a unique qé,W € P(Y) satisfying

sup,ex Do (W () 43 w) = A pl2) = O3 w -
Then (119) and (120) hold because sup,c 4» Do (W || q| p) = A-Eyp[p] = sup,co Do(W (z)|| ) —A-p(z) forany ¢ € P(Y). O

Let A(o) be the subset P(X) composed of the probability measures satisfying the cost constraint g,
Ale) £ {p € P(X) : Ey[p] < o}

Then A(g) C A(e) and sup,,c 4(p) lo(p; W) > Ca,w,, Whenever X is countably separated. For the cost constraints in int/},
reverse inequality holds as a result of Lemma 29-(c) and Theorem 4 and we have sup, ¢ 4(,) lo(p; W) = Ca,w o Theorem 5
states these observations formally together with the ones about the Augustin center through a minimax theorem.

Theorem 5. Let X be a countably separated o-algebra, ) be a countably generated o-algebra, W be a transition probability
from (X, X) to (4,)), p: X — Réo be a X-measurable cost function, and o € R+. For any ¢ € intI’, we have

SUP,eA(o) I gery) Da(W| gl p) = infjep ) sub,e o) Da (Wl 4| p) (121)
= Ca,w o (122)

where Cy,w o is defined in (68). If Co w .o € Rxo, then lqq w ., € P(Y), called the order o Augustin center of W for the
cost constraint o, satisfying

OQ,W,Q = SUPpeA(p) Da(WH qu,W,Q| p) (123)
= Suppeﬂ(g) Da(W|| QOt,W,Ql p) : (124)
Furthermore, o, w ., = q&w for all \ € R, satisfying Co w o = C&\W + Ao

Proof of Theorem 5. Since A(p) C A(p), the max-min inequality implies

SUP e (g) 0fgep(v) Da( W 4] P) < SUPye4(p) infyep () Da(W | 4l p)
< infqu(y) SUDpe A(p) Do(W|| q| p).

Thus both (121) and (122) hold whenever C, w , = 0o by (58). On the other hand, as a result of Theorem 4 for any A with
finite C&\W there exists a unique q&w satisfying (120). Thus we have,

inf gep(v) SUPe a(9) Do (W 4l p) < suppea(e) Do (Wl a2 w | P)
< suppea(e) Da (Wl @ w|p) = A-Eplo] + -0
< Oo):.,w + A o.
Furthermore, if C, 1, € R, then there exists at least one A € RY, satisfying C, ., = C2w + Ao by Lemma 29-(c).
Then (121) and (122) hold when C, w , € R and (123) holds for ¢, w , = qé’W provided that Co, w , = C;W + Ao
On the other hand ¢, w,, is a probability measure satisfying (124) by Theorem 1 and ¢o, w,, = q&w for all \ satisfying
Co,w.o = C2 w + X+ 0 by Lemma 31. O

The countable separability of X and countable generatedness of ) are fairly mild assumptions satisfied by most transition
probabilities considered in practice. Hence, Theorems 4 and 5 provide further justification for studying the relatively simple
case of probability mass functions, first.

The existence of an input distribution p satisfying both E,[p] < ¢ and I, (p; W) = Cqa,w,, is immaterial to the existence
of a unique ¢, w,, or its characterization through qQW for \’s satisfying Co,w ., = C&\,W + A - o by Lemma 29-(c,d) and
Theorem 5. Although one can prove the existence of such a p for certain special cases such an input distribution does not exist
in general. Thus, we believe, it is preferable to separate the issue of the existence of an optimal input distribution from the
discussion of C,, w,, and ¢o,w,, and their characterization via C&\,W and qé,w- That, however, is not the standard practice,
[36, Thm. 1].

We have assumed ) to be countably generated in order to ensure that the conditional Rényi divergence used in (113) is
well-defined. In order to define the Rényi information, however, we do not need to assume ) to be countably generated,;
the transition probability structure is sufficient. Recall that if W € P(Y|X), then for any p € P(X) there exists a unique
probability measure p® W on (X x Y, X ® }) such that

p@W(E, x &) = / W(&ylz)p(de). V€, e X, Ey Y
EID

by [21, Thm. 10.7.2.]. Thus I2(p; W) is well defined for any W € P(Y|X) and p € P(X).
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Unfortunately, the situation is not nearly as simple for the R-G information. In order to define the R-G information using
a similar approach one first shows that We oA is a transition kernel —rather than a transition probability (i.e. Markov
kernel)— and then proceeds with establishing the existence a unique measure p® We "> for all p in P()). For orders
greater than one, resulting measure is a sub-probability measure and one can use (87) as the definition of the R-G information.
For orders between zero and one, on the other hand, p® We a 2P is a o-finite measure for all p’s in P(X), but it is not
necessarily a finite measure for all p’s in P(X’). Thus for orders between zero and one, one can use (87) as the definition of

the R-G information, only after extending the definition of the Rényi divergence to o-finite measures.

6. EXAMPLES

In this section, we will first demonstrate certain subtleties that we have pointed out in the earlier sections. After that we
will study Gaussian channels and obtain closed form expressions for their Augustin capacity and center.

6.1. Shift Invariant Families

Example 1 (A Channel with an Affine Capacity). Let the channel W : R>o — P(B(]0,1))) and the associated cost function
p: Rzo — Rzo be

W@ — fo(y—z — Ly —z)),

plz) = |z]

where v is the Lebesgue measure on [0,1) and f,’s are given by

fZ(y) - eH_l]l{yE[O,e*Z*l)} Vi € Z>o.

Let u, be uniform distribution on [z,2 4 1); then one can confirm by substitution that T, , (uo) = uo. Then using the Jensen’s
inequality together with the fixed point property we get?!

Do W] q| w,) > Do (W] uo| w,) + Dani(uoll q) -

Thus ug is the unique order ov Augustin mean for the input distribution w,, i.e. ¢4, = o, and I (u,;W) = Do (W] uo| u,)
—and hence I, (u,;W) =1+ 1— for all + € Z+ and o € R+. Then using E,, [p] =+, we can conclude that C,, w,, > (0 + 1)
not only for p € Z>o but also for p € R>o because C, v, is concave in ¢ by Lemma 27-(a). One the other hand, one can
confirm by substitution that

DaW] o] p) = Eylp] + 1. (125)
Thus I, (p;W) < (0 + 1) for any p satisfying the cost constraint 9. Hence,

Cow,e=0+1,

o, W,0 = U0-

Then as a result of (76) we have

or oo Ae0,1)

oW 1 Mefl,o0)

Then using (125) and Theorem 4, we can conclude that g ;, = ug for all A € [1, 00).

Example 2 (A Channel with a Non-Upper Semicontinuous Capacity). Let the channel W : R — P(B([0,1))) and the
associated cost function p : R — Rxo be

Wt = fay(y—2— Ly —=))
=zl x>0
PE)=gle) 4 <o

where v is the Lebesgue measure on [0,1) and f, :€ [0,1) — Rxo are given by

21+1]l{y€[07271—1)} 2> 0
F(y) = {321 ye0,2/5) 1=0.
2L {ye0,1/2)} 1 <0

2ISee the derivation of (32) and (34) of Lemma 13-(c,d) given in Appendix B.
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Following an analysis similar to the one described above we can conclude that

o _Je+1)ln2 o>0
oW In3/2 0=0"

Clw = .
In2 A€ ln2,00)
Hence C,,w,, # infy>o CO’)WJr A-pfor p=0.

Example 3 (A Product Channel without an Optimal Cost Allocation). Let W; and W5 be the channels described in Examples
1 and 2 and p; and py be the associated cost functions. Let W[; 5) be the product of these two channels with the additive cost
function gy 9}, i.e.

Wit ,2) (21, 12) = Wi(z1) ®@ Wa(m),
pri,2)(z1, 12) = p1(m1) + p2(72).
Then Lemma 28 implies
o _Jo+1+In2 0>0
o, Wi 21,0 — 1+1n% 9:0.

Note that for positive values of p there does not exist any (o1, 02) pair satisfying both C,, Wit 20 = Ca,wr 01 + Ca, W 0, and
the cost constraint g1 + g2 < p at the same time.

6.2. Gaussian Channels

In the following, we denote the zero mean Gaussian probability measure on B(R) with variance 02 by ¢,2. With a slight
abuse of notation, we denote the corresponding probability density function by the same symbol:

22
Po2(z) = L 202 Vr € R.

2o

We use the Gaussian channels and the corresponding transition probabilities interchangeably; they have the same cost constrained
Augustin capacity and center by Theorems 4 and 5.

Example 4 (Scalar Gaussian Channel). Let W be the scalar Gaussian channel with noise variance o and the associated cost
function p be the quadratic one, i.e.

W(El) = /8 o (y — 2)dy Ve € B(R),
p(z) = 22 Vz € R.

The Augustin capacity and center of this channel are given by the following expressions:

/2 (1—a)
ot gy feme 2 e R\ {1}

Cow.p = 2(aba,0,0+(1— Vaba,o o+ (1—a)o? (126)
iln(1+ %) a=1
o ,W,0 = P4,0,09 (127)

2 2

G0 2 0° + 8 — 52 +1\/(§ — 53)% + 00 (128)
Furthermore, Cq,w,, is continuously differentiable in ¢ and its derivative is a continuous, decreasing, and bijective function of
o from R+ to [0, 2/25%) given by

d _ [e%
d_QOa,W,Q = 2000 o+ (1—a)a?) (129)

= o ) 130
ao+o?+y/(ao—02)2+40a20? (130)

In order to prove these, we first demonstrate that the Augustin mean for the zero mean Gaussian distribution with variance g is the
zero mean Gaussian distribution with variance 6o, 0,0, i.€. a0, = 9., ,- This will imply L, (o,;W) = Do (W|| ¢, ., | ©0)-
D, (W|| @QQYM‘ goQ) is equal to the expression on the right hand side of (126). In order to establish (126) and (127), we
demonstrate that this value is the greatest value for the Augustin information among all input distributions satisfying the cost
constraint o. Consequently, we have Cow,, = Io(@0o;W) and ¢o,w,p = Ga,p,- Then we confirm (129) using an identity, i.e.
(133), obtained while establishing g, ,, = g

«o,0,e

27



One can confirm by substitution that

2 9o/ 5 (1—)

DQ(W(I)” 900) = 2(2—;9-";(_19 ) 1) . 1 ,/oﬁ“r(lfoc)o' . (131)
% —+ 5 hl o2 a = 1
Then the order « tilted channel W, defined in (22), is a Gaussian channel as well:
ng@ex:/ 2 (—ai‘gx)d.
( | ) e @m Y ab+(1—a)o? Y
Then T, , (¢) is a zero mean Gaussian probability measure whenever both p and ¢ are so. In particular,
Ta,ng (909) = b (132)

2 26 .

(a9+(1—oz)<72) g+a9+(1—a)a2
Consequently, if g is a fixed point of T, (+), then 0 satisfies the following equality
0[0°—0(o+(2—2)0*)+(1-1)s'] =0. (133)
0u,0,0, defined in (128), is the only root of the equality given in (133) that is greater than o? for a’s in Ry; it is the only

) = B 1 G,
t22

«@,0,0

positive root for a’s in (0,1), as well. Furthermore, using (132) one can confirm that Tap, (cpgz

is a fixed point of T, (). Then using the Jensen’s inequality together with this fixed point property we ge

Do (W]| q| S%) > Dy (W” SDGQ,U,,_,| Sﬁg) + Dina (‘P@a,o,gH Q) Vq € P(B(R)).

Thus ¢y, , , is the order v Augustin mean for the input distribution ¢,, i.e. ga,p, = ¥4, , and Iy (p,;W) = Do (W| 900&,0,9’ ©o)-
On the other hand, (131) implies

Da (W[ @0.....| P) = szl + Ia(0iW) ¥p € P(B(R)). (134)

Then I, (p;W) < Io(pg;W) for all p satistying E, [p] < o. Consequently, Co.w,, = la(po;W) and go,w,p = Ga,p,-
For o = 1 case (129) is evident. In order to establish (129) for o € R+\{1} case, note that

d — a —a®p (0a.0.0—0%) d
5 Caio = Tmrs =agom | Mot st + Moty | dfe

_ a a? 2 1),.2 1y,.4]1 d
= Nt T=ae) T Nt e a)e 0 Paoe — fame (0 (2= 3)0%) + (1= )0 F500.0.0-

Then (129) holds for o € R+\ {1} because 0, , is a root of the equality in (133).
The A-L capacity and center of this channel are given by the following expressions:

(%ln\/éﬁLaTl—%i)\lH\/QU:/\) ]l{)\E(O,#)} QER+\{1}

CMy = (135)
, N . _
(a A —1InvV2eo )\) ]l{)\e(o,ﬁ)} a=1
Gow = Pox (136)
+
0, L o+ ’% iy (137)

Then C2; is a continuously differentiable function of A and its derivative is a continuous, increasing, and bijective function

of A from R+ to (—o0, 0] given by

d A a—2032)
ix Cow = 7_2/\(a+(a271)2a2/\)H{AS%%}' (138)

The expressions for the A-L capacity and center given in (135) and (136) are derived using the expressions for Augustin
capacity and center, (76), (129), (130), (131), and Lemma 31.
o If A € (0,%/20%), then there exists a unique g}, 1 satisfying diQCa,W7Q|Q:QQYW =\ by (130). Furthermore, g}, y,, satisfies
Ca)\.w: Ca,W,gin f)\ggyw by (76) because dig Ca,w o 1s decreasing in o. Then (135) follows from (126) and (129). On
the other hand q&w = o, W, by Lemma 31 because Ca.,W,gg’W = Ca)‘,WJr )\QQ,W. Then (136) follows from (127),
(128), (129), and (137). In addition one can confirm that g} y, = —£% C2 by solving d% Ca,W,g|Q:Q§’W = X explicitly
for Q;\L_VW. We, however, do not need to obtain that explicit solution to confirm (135) and (136).
o If X € [2/20%,00), then Do (W || @52| p) — AEp[0] <0 by (131). On the other hand, C2 y;, > 0 because A-L information

is zero for the probability measure that puts all its probability mass to z = 0. Hence Cé‘_’W =0 and qé,w = @y,2. Thus,
both (135) and (136) hold.

22Derivation of this inequality is analogous to the derivation of (32) and (34) of Lemma 13-(c,d), presented in Appendix B.
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Example 5 (Parallel Gaussian Channels). Let W[ ;) be the product of scalar Gaussian channels W, with noise variance o,
fore € {1,...,n} and pyy ,) be the additive cost function, i.e.

Wit,n) (Elz") =/8 [szl Yoz (Y — 1) | dyp’ Ve € B(R™),
pr,n)(21") = 21:1 a} Vil € R™.

As a result of Lemma 28, the cost constrained Augustin capacity of Wy, satisfies

Ca.,W[ly,,],g = Supgl ..... oniy, 0250 COC7 W0,

Since Cq,w,,o,’s are continuous, strictly concave, and increasing in g, the supremum is achieved at a unique (9u,1,- - -, Qa,n)-
Then ga,w;; .0 = 9o Wi,001 @ @ Ga,W, 0., Dy Lemma 28. Furthermore, since Cq,w,,,’s are continuously differentiable
in g,, the unique point (94,1, .-, 0q,n) can be determined via the derivative test: di&cavwwg'b'@w:@a,z = A, for all 2’s with a
positive g, and di& Coa, W, 0,1 0:=0a.. <A for all »’s with a zero g, for some A\, € R+. Thus using (130), we can conclude
that the optimal cost allocation, i.e.(9a.1, - - -, Oa,n). Satisfies

|a72012/\

|+
Qo = 33 (at2(a—1)oZra)

(139)

for some A, that is uniquely determined by constraint )" | 0., = 0 because the expression on the right hand side of (139)
is nonincreasing in A\, for each :. Consequently,

n
OO[,W[L”],Q = Zl:l Cakuga,z (140)

n
Go Wi e = Q)| Pbocr v (141)

where 0, 5, is defined in (128). Using the constraints for the optimality of a cost allocation we obtained via the derivative
test, i.e. d%leWuQJ@w:@a,z =\, for all ¢’s with a positive g,,, and d%lca,Wu@J@w:Qw < A, for all 2’s with a zero gq,,,
together with (129) —instead of (130)— we obtain the following alternative characterization of 6, o, in terms of o, and
A« that does not depend on g, ,’s explicitly

2 |+
— 52 1 o
90‘;"’17@&,1 - Ul + 2Xa «

(142)

The A-L capacity and center of W[; ;) can be written in terms of the corresponding quantities for the component channels
using Lemma 32 as follows:

A _ " A
Cawp .y = E :Zzl Co,w,»

A _ LY
Gown, =@ @w.

The cost constrained Augustin capacity and center and A-L capacity and center of vector Gaussian channels with multiple
input and output antennas can be analyzed with a similar approach with the help of singular value decomposition.

7. DISCUSSION

Similar to the Rényi information, the Augustin information is a generalization of the mutual information defined in terms of
the Rényi divergence. Unlike the order v Rényi information, however, the order o Augustin information does not have a closed
form expression, except for the order one case. This makes it harder to prove certain properties of the Augustin information
such as its continuous differentiability as a function of the order , the existence of a unique order o Augustin mean ¢, ,, Or
the bounds given in (7). However, once these fundamental properties of the Augustin information are established, the analysis
of the Augustin capacity is rather straightforward and very similar to the analogous analysis for the Rényi capacity, presented
in [13].

Previously, the convex conjugation techniques have been applied to the calculation of the cost constrained Augustin capacity
through the quantity 72 (p; W), which we have called the R-G information. Although such an approach can successfully
characterize the cost constrained Augustin capacity via the R-G capacity; it is non-standard and somewhat convoluted. A more
standard approach, based on the concept of A-L information I} (p; W), is presented in §5.2. The A-L information has not been
used or studied before to the best of our knowledge; nevertheless the resulting capacity is identical to the one associated with
the R-G information. The optimality of the approach based on the R-G information seems more intuitive, in the light of this
observation.

Our analysis of the Augustin information and capacity was primarily motivated by their operational significance in the
channel coding problem, [6]. We investigate that operational significance more closely and derive sphere packing bounds
with polynomial prefactors for two families of memoryless channels —composition constrained and cost constrained— in [7].
Broadly speaking, the derivation of the sphere packing bound for memoryless channels in [7] is similar to the derivation of
the sphere packing bound for product channels in [37], except for the use of the Augustin capacity and center instead of the
Rényi capacity and center.
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APPENDIX
A. Proofs of Lemmas on the Analyticity of the Rényi Divergence
Proof of Lemma 11. Let g(«) and f(«, y) be

o) 2 / (42" (42) " v(ay), A1)

flav) 2 () (42) (A2)
where v is any reference measure satisfying w<v and ¢<v. Note that
Do (w]| q) = =15 Ing(a) a e R\ {1} (A.3)
Furthermore g(«) does not depend on the choice of v, but f(«, y) does.
;’O;f(a, y) = (1n ‘Cii—f —1In %)Kf(a, ) VK € Z>o. (A.4)
Then using the inequality zln z > —1/c we get
e r )] < (£)" 304 ey + (2) 7O gen Vh € Z20, € (o, 00).

Invoking the Stirling’s approximation for the factorial function, i.e. v/2mr(%/e)® < k! < ey/k(%/e)", we get

" K! d )
| oarf (@, y)] < A= (a1~ G20 caay + (J;@ay))ﬂn du>d3}) Vi € Zzo,¢ € (a,00). (A.5)

On the other hand [ f (¢, y)v(dy) = e(¢=DPs(wl9) and for all ain (0, X4,,) there exists a ¢ in (e, X4, 4) With finite Dy (w]| ¢).
Then as a result of [21, Corollary 2.8.7-(ii)], g(c) is an infinitely differentiable function of « on (0, x., ) such that

%g(a) = / [8‘1, flay y)] v(dy) Vk € Zz>o. (A.6)
Consequently, if x,, 4 > 1, then
Di(wll q) = Z ng(a)|, _, - (A7)
Using (A.5) and (A.6) we get
|2 g(a)| < ﬂr—n (m n (¢g(i)>~) Vi € Ziy ¢ € () X q)- (A.8)

Thus g(«) is not only infinitely differentiable but also analytic in « on (0, x.,q) by [38, Proposition 1.2.12]. On the other
hand g(a) € R+ for all o € (0, Y 4) because g(a) = e(*~DPa(wll9) by (A.3) and D, (w| ¢) € R=o by Lemmas 2 and 8 and
the definition of X, 4. Thus In g(c) is analytic in « on (0, x.,4) because composition of analytic functions is analytic by [38,
Proposition 1.4.2]. Then D, (w|| ¢) is analytic in @ on (0, xw,q) \ {1} because the quotient of analytic functions is analytic at
points with open neighborhoods on which the function in the denominator is non-zero by [38, Proposition 1.1.12].

Now we proceed with establishing the analyticity of D, (w|| ¢) at & = 1 for x,, 4 > 1 case. Since In g(«) is analytic in «
on (0, xw,q) We can write In g(«) as a convergent power series around any point in (0, x.,,) for some neighborhood. Thus,
there exists a ¢ > 0 for which the following two identities hold for all n € (1 — 0,1+ 9)

o0 ‘ 71|1
Zz:o Tl g ng(@)] | < o0,
> I e ng(@)],y =Ing().
Then using In g(1) = 0 together with (A.3) and (A.7) we get

2—1
Dy(w]l q) = Dy(w] q) + > = Zomgla)],_, Ve (1—8,1+9). (A.9)

Then D, (w|| ¢) is analytic on (1 —,1+ J) by [38, Corollary 1.2.4] because it is equal to a function defined by a convergent
power series.
The convergent power series given in (A.9) determines the derivatives of D, (w|| ¢) at « = 1 by [38, Corollary 1.1.16]:

K n+1

2 Do(wl| q)|,_, = =5 2 Ing(a) K € Z+. (A.10)

a=1
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Using (A.3) together with the elementary rules of differentiation we can express the derivatives of D, (w|| ¢) in terms of the
derivatives of In g(«) for other orders in (0, xu,q4). as well

" - K | 6n—t 1 at
WDG((U}H q>|o¢:¢ o Zt:() m (Wﬁ‘a_d)) (Wln!](a)

=3 S & nga )’ KEZi,6€(0,xwg) \ {1}.  (AID)

On the other hand by Faa di Bruno formula for derivatives of the composition of smooth functions [38, Thm. 1.3.2] we have

9t t! §ILtazt o+ 1 ot J1 1 82 J2 1 ot It
gar n9(0) =, i <am+m+~-+n Inr Tg(a)> (ﬁmg(a)) (5@9(04)) (w1 5ar9(@)

1490 —1)! 1 Ji 2 J2 t Jt
= ZH jllJ2t|| 7 C 1)g(ga-)’_)]11jtgzjj +]}) (11| aaal g( )) (%%g(a)) e (tl‘ B[Lfg( )) Vi € Z+.
Then using (A.1), (A.2), (A.4), and (A.6) we get
—1)! t _ w 1 Ja
Zongla) =y, st WT (LUE, | (g2 - ) ) Vi € Zs. (A.12)

The expression given in (13) for x*" derivative of D, (w|| ¢) with respect to o follows from the identity In g(1) = 0 and
equations (A.3), (A.10), (A.11), and (A.12).

In order to prove the analyticity of Dy (wZ|| w) and D;(wZ|| q), first note that as a result of (16), which follows from (13),
we have

Dy (wf]| w) = (6 =12 ZDalwll @), V6 € (0, Xw.g)- (A13)

Since D, (w|| ¢) is analytic in v on (0, Xuw,q). SO is %Da(wﬂ q). Hence, Dy (wl|| w) is analytic in v on (0, xu,q). Since
Dy (ng w) is analytic in ¢ on (0, x4,q), it is finite on (0, X4, 4). Thus (12) holds for all « in (0, x.,4) and (A.13) implies

Dy (wf q) = Do(wll q) — 61 = ¢) ZDalw]0)],_, V6 € (0, Xu.q):
Thus D;(wl|| ¢) is an analytic function of v on (0, X,4), as well. O
Proof of Lemma 12. As results of (A.2), (A.4), (A.5), and Definition 2 we have

. dgl - Datwllay, (1 ewfl)DB(qu))

Ewg |: hl D i| S \/ﬁ (Oﬂ' + (ﬁf&)l VZ S Z+.

Then using Dg(w|| ¢) < v together with Lemma 8 we get
dw dgl® 2! VA
Ewg[lnﬁ—lnd—g :| 7W VZ€Z+.

Then using (13) and (15) we get,

K
I + k! 1 1 (Giga+42=1)! (L (1vB)y\I1Ha2+ -+
9" Do(wllg) ‘ e P e Al G E) DY M n iyl Y ¢ #1
dar = = )
o=¢ 1 ittty =D ¢ (1v J1tg2+ e B
H!(l/\(ﬁ—l))"+1 ZH~+1 - ]f!]g!...]mjll! (6( ﬁ)’Y) (b =1

On the other hand Mﬁlﬂﬁ Hr = £(1+ €)'t by [38, Thm. 1.4.1]. Thus we get the following inequality,

which implies (18) for 'the JT deﬁned in (20).

o 1 14eVA)Y t
k! ;::1 [g—1= 71 ( oA (B—9) + Vﬂ{tzl}) ¢ 7£ 1

1teBY Kk+1 B .
K! (71AJ(Fﬂ_1)) o=1
As a result of [38, Corollaries 1.2.4 and 1.2.5] the following equality holds on the open interval in which the power series on
the right hand side is convergent,

0" Do(wllq)
aan

<
a=ao¢

oS} — )
Dy(wla) =3~ U5 5 Dawl o)., (A.14)

limsup,._, </1

Note that as a result of (18) we have

K

2o Dalwl @),y | <
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Thus radius of convergence of the power series on the right hand side of (A.14) is at least * = by [38, Lemma 1.1.8], i.e. by
Hadamard formula. Thus for all n € (¢ — T,(,b + = ) using (18) and (A.14) we get

k=1, _ i\ 9" Dofw .
Iyt ~ S e et | <5 e (1 + ).

1=0
and ) ° (1 +1)z" = ﬁ for |z <1 we get,

Using identities ) = 2* = 1=

z

r—1 7 61 w
‘Dn(w| Q) — Z (n L¢>) aiw ll9)

1=0

T~+1|

—¢|" 1
a_¢‘ < Sl []lwzl} + (H -1+ W) 11{@51}} :

B. Proofs of Lemmas on the Augustin Information

Proof of Lemma 13.
(13-a) I,(p; W) < Do (W || ¢q| p) for all ¢ € P(Y) by definition. On the other hand, D, (W (2)|| ¢1,,) < —Inp(z) for all z with
positive p(z) by Lemma 1 because p(z) W(z) < q1 ,. Hence, I,(p; W) < =3 p(z)Inp(z).
(13-b) Note that as a result of Lemma 2 and (24),

Dy(W| gl p) = Di(W| a1p| p) + 1.5 — all” Vg € P().
Then ¢, is the unique probability measure satisfying I; (p; W) = D1 (W || ¢1,,| p). Then (29) follows from (24).
(13-¢c) Let 8 and < be
A .
S = IMNg:p(z)>0 p(a?),
$2 {s €M) : ipsoy < sa) < (57 P2l ) 1,00y Vo € X}
The statements proved in (c-i), (c-iv), (c-vi), and (c-vii) collectively imply part (c).

(c-i) If qp=u and T, , (u) = u, then Do(W || u| p) = Io(p; W), (30) and (32) hold for qa.p, = u, and qq,p is unique:
Note that T, ,, (u) = u and g1 ,<u imply

(1>

=3, o) (W—)W} W g
Then one can confirm by substitution that
Do (ul| q) 1nz Do(W ()|l q)=Da(W (z) ) Vg e P(Y).
Then Jensen’s inequality and convexity of the exponential function imply
Da(ull q) < Da(W|[ gl p) = Da(W | ul p) Vg e P(Y). (B.1)

Then u is the unique probability measure satisfying I, (p; W) = Do (W|| u| p) by Lemma 2. Consequently (30) and
the lower bound given in (32) hold.

In order to establish the upper bound given in (32) for ¢ € Q, ;. first note that W (z)~<wu for all 2 with a positive
p(z) because g1 ,~<wu. Thus for all z with positive p(z) we have

Do(W ()l q) = Da(W(2)] w) = 35 {ln/(“&f’”’)“(%)l‘%(dy) — (@ =1)Da(W(z)] u)
_ ﬁln/(%;)l* (W (x) jap(1-a) Dol W (2)l) ()

= o () - u(ay

=yt [(4) 2 W (o) dy) Vg€,
where ¢.. is the component of ¢ that is absolutely continuous in u. Consequently,
DalWllalp) = Da(Wlulp) = 55 3 pla)ln [(4) 2 Wi@)dy) Y€y (B2

On the other hand using the Jensen’s inequality and concavity of the natural logarithm function we get

X ple)n [ W@ < 75 3 o) [ ()] W)
— [ ()] 7o p (a0 (B.3)

IN
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Since T, , (u) = u by the hypothesis, using (B.2) and (B.3) we get
Di(ull ¢) = Da(Wl gl p) = Da(W | u|p) Vq € Qap-

In order to establish the upper bound given in (32) for ¢ ¢ Q,, we need to make the following additional
observation. If ¢ ¢ Q,, ,, then there exists an « for which p(z) > 0 and W(z) L ¢ because Do (W (z)|| ¢) = o0
implies W(z) L ¢ by (11). As a result there exists an event & € ) such that such that u(€) > 0 and ¢(&) =0
because W(z)<q,p and ¢ p<u. Consequently D;(u| ¢) = oo and the upper bound in equation (32) holds for
q ¢ Qq,p, as well.

(c-i)) Do(W|| g p)—Da (W T, , (q)| p) > D1 (T, (¢)|| q) for all q € Qq,,: Note that T, , (¢)<q for all g € Qu ,, by
definition. Then

DalWllal9) = Da(WI Ty ()] 9) = 22 3wl [ (F2) " wata)(y)

e 3, 0o [ [ (F2) | wean
=Di(T,, (q)||q)- (B.4)

The inequality follows from the Jensen’s inequality and the concavity of the natural logarithm function.

(c-iii) {T% , (¢ ez, I8 totally bounded for total variation metric on M Y): For any ¢ € Q,,,, as a result of
o,p «,p + sD
definitions of T, , (-) and p4,, we have

Y

dr,, ,(q) dpta s dgy1—
= = () (g e

where s(z) = p(z)el=¥)Po(W(@)ll9)_ Furthermore, if Dy (W || q| p) < Do (W || qgéyp‘ p), then s € 8.
In addition ¢, ,, is equal to i, for an s € 8. In particular

g9 —
QO(7p - /'[/04,80

where sy = ||fta,p]|” “p. One can confirm by substitution that ||ua ,||~ " = e(1=)Da(POWIIp®42,,) - Furthermore,
Do (p@W |l p® qg,) >0 by Lemma 2 and D, (p@ Wl p ® ¢3,,) < Dao(W| q&,p‘ p) by the Jensen’s inequality
and the concavity of the natural logarithm function. Thus sy € 8.

On the other hand, D, (W || Th.p (qgtyp)‘p) < Do (W] qgé_’p| p) for all + > Z+. Thus we can write T}, , (qg“p) in
terms of the elements of f, s as follows:

dT;p gz,p _ (dpas —a)’ v dita,s) ya(1—a)t
altha) (Y1 [T (S yeti=e™
where s,(z) = ()= Do W @ITL) (2,5)).

In order to prove that {T;m (qg,p)}zez . is totally bounded, we prove that a superset of it, i.e. B defined in the
following, is totally bounded.

B2 {pe M) g = () [ () for some s, € 5 2

v v dv
B 2L Uez, B, (B.6)

Let us denote the number of z’s with p(z) > 0 by . Then § is isometric to a cube in?* R”. We divide each side of
the cube into n equal length intervals. Thus 8 is composed of n" sub-cubes. Furthermore, fio s < jiqo,5z Whenever
s <'s by definition. Thus, for any s € 8§ we have

F_QDQ(WHqup‘p) ¢ o

1
'LLO‘7LSJ7I S 'LLavs S |:1+ — n :| ‘LLO‘7LSJ71

where |s],, is the corner point that satisfies | s],, < § for all § in the sub-cube for the sub-cube that s is in.
In order to approximate members of B, one can use the preceding discretization on each s, given in definition B,.
Thus we have n(*tD* point set X, ,, such that:

L2 po(Wllad,plp) _ o
Vb e B, dp e X, , such that p < b < |1+ £ S

n

23We assume R” has the metric d : R” x R® — R given by d(z,2) = > 1, |2t — Z| for all 2,z € R".
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One can use the points of X, ,, to approximate the points in U;~,B;, as well. We apply the approximation with
the sub-cubes described above for the last 2 components of b, i.e. for 2 s,’s with the largest indices. The remaining
component of 4 is set to the minimum element of?* y, s. Then

1—(1—a)? (1—a)*

l—a

eTDa(WHq&',plp)7 o elzaDa(WHqg,plp) o
Wb €U By 3ue X, such that p<b< |1+ < o= DelWiad ) B

sn S

Let K, be K = Ujeqo,...,n} K n- Then
(1—a)™

=2 po(Wiled,p|p) =
[e* g } 1| supyes el

Q=

lgana(Wan plp) _
WeB FueX, such that ||[b—pl|<||1+ < -

Note that sup,cg ||ita,s|| is finite and its coefficient converges to zero as n diverges. Furthermore, X,, is a finite
set for any n. Thus B is totally bounded. As a result every subset of B, and hence {Tg,p (qg,p)}zez .+ 1s totally
bounded.

(c-iv) {T%, (¢%.) hrez. has a subsequence {TZEJ,? (42.,) Ysez, satisfying lim, oo HTZEJ,? (¢%,) —uH =0 fora u~qp:
The existence of a limit point u and convergent subsequence follow from the compactness of the completion of
{T4.» (2. p)}zem The completion is compact by [39, Thm. 45.1] because {T¢, , (2. p)}zem is totally bounded.
Note that Ty, , (qa p) =<q,p because ¢, , ~ q1,p. Then u<gy ;, because any probability measure that is not absolute
continuous in ¢ ,, is outside the closure of {T?, , (g3 ,) }ez, -
On the other hand, jin;, < g3, by definition because ||ziq || < 1. Furthermore, for any ¢ € Q, ;, we have

(4 -
T =3 p Z’) ()
dpa, d
= (%) (d_g)
Hence, if p10,p, < ¢, then g, < T, ( ). Consequently, fiq, < Thp (qg,p) for all + € Z+. Hence piq,p < u,
because otherwise u can not be in the closure of {T¢, , (qa p)}z€Z+' Then ¢ ,<u because ¢, ~ [a,p-
(c-v) T, ,, () 2 Qap — P(Y) is continuous if both Q, , and 73(,)7) have the total variation topology: First, note that

(z+t)1=* — 2172 is a monotonically decreasing function of z on Rxo for fixed ¢t € R0 and a € (0,1). Then for
any z with positive p(z) and ¢1, ¢2 € Qq,, as a result of Holder’s inequality we have

ey () - (o) () o < f (252)°

<lg— '

11—«
d d
- v(dy)

Hence e(*~DPo(W(@)9) 74 (1) is a continuous function of ¢ from Q,_, to M (J) for the total variation topology.
Then WJ(z) is a continuous function of ¢ for the total variation topology, as well, because D, (W (z)| q) is
continuous in ¢ for the total variation topology by Lemma 4. Thus T,, , () : Qa,, — P(Y) is continuous.

(c-vi) The limit point of the convergent subsequence {TZEJ,? (4%.,)Ysez, is a fixed point of T,, , (-), i.e. T, , (u)=u: Using
the non-negativity of the Rényi divergence for probability measures and (B.4) we get

Da(Wlazylp) 23 ., Da(WIT,, (4,) ) = Da(WliTay (To, (42,))] 2)

=z ZZEZZO Dy (Tayp (T?l-,p (q(iy,,)) H Tap (qge-,p)) ‘

Then lim, o0 Di (T, (T4, (q;,p)) T2 (42.,)) = 0. Hence lim, o D (T, (T2 (a2,) )| T80 (a3, ) = 0.
On the other hand, D (T H q) is lower semicontinuous in ¢ for the total variation topology because the
Rényi divergence is lower semlcontlnuous in its arguments for the topology of setwise convergence —and hence
to the total variation topology— by Lemma 3 and T, , (1) is continuous in the total variation topology. Then
Dy (Ta,p (u) H u) = 0 because Ta(Jg (qCY p) converges to u in total variation topology as 7 diverges. Thus T,, , (u) = u
as a result of Lemma 2.

(c-vii) ¢a,p satisfies (31): Recall that D, (w|| ¢) is continuous in ¢ for the total variation topology by Lemma 4. Furthermore,

T4 (48,5) ~ doup|| =0, and Da(W |l gop| p) = La(p; W). Then
p) = Ia(p; W) :

lim, o0

limjﬁoo Da (WH T;(JZZ (qOéaP)

24Such a minimum element might not exist for an arbitrary set of measures, but for the image of § it exists: the minimum element is the image of the
minimum point of 8.
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On the other hand D (W|| T, , (¢2.,)| P) = Do (W TS} (45.,)| p) = La(p; W) for all ¢ € Z+ by (B.4) and the
definition of the Augustin information. Thus

lim, o0 Do (W T, (45,)] P) = Ia(p; W) .
Then as a result of (32), which is implied by the assertions we have already established, we have
Hmz—wo Doz (qOuPH Tzoz,p (chv,p)) = 0.

Then lim, o0 | Ga,p — T, (42.,) || =0 as a result of Lemma 2.

dq
dpra,p

Remark 6. For any g satisfying ¢ ~ pia,p with a finite esssup,, ‘hl

, we can define the sets 8§ and B, as follows

+ 1—ea
8§ & {5 eM (X): §11{p(z)>0} <s(z) < (6 < D‘](W“q‘p)) ]l{p(a:)>0} Vz € :X:},

B, {b eM'(Y):db — G 1_[z (d‘;%)‘l(l*‘l)%] for some v € {—I',0,T'} and s, € S} :

v 5=1

(1>

where T’ = d:jq ‘ Then one can confirm that e 1'¢g < p, s < el'g forall s € 8.
o, p

Using this property, we can repeat the rest of the analysis with appropriate modifications to establish the following:

(1-a)Do(Wllglp) _ Ing
< o tesssup, In

My o0 || Gap— Thp (0)|| =0 if ¢ ~ pa,p and esssup, ‘hl dig,p‘ < 00, (B.7)

On the other hand, ¢1,;, ~ fto,p by [13, Lemma 1-(a)] and ‘ln i‘fJ‘ < % 1n% holds ¢i,,-a.s. by [13, Lemma 2-(a)].
Thus ¢, satisfies the condition given in (B.7) and the convergence described in (B.7) is equivalent to the one in (37).
(13-d) Let the function f(-) and the set of channels U be

FV) & 225DV Wp) + Lip; V) VYV eu,
U= {VePlsupp(p)) : Di(V[| W[p) < oc}.
The statements proved in (d-i), (d-iv), (d-v), and (d-vi) collectively imply part (d).
(d-i) If T, , (u) = u, then Do(W || u|p) = Lo(p; W), (33) and (34) hold for qup = u, Ga,p is unique and qo.p ~ q1,p:
DaWllalp) = Da(Wlulp) = 45 3 plo)n [() " Wi@)dy)  Va€ 9y B

where ¢.. is the component of ¢ that is absolutely continuous in u.
On the other hand using the Jensen’s inequality and concavity of the natural logarithm function we get

a1 ZZP(I)M/(%”)I_Q Wa(2)(dy) > 355 Zmp(ﬂﬁ)/ [ln(%)l_“} Wq' (z)(dy)
- / [in()] 7., (1)(dy). (B.9)
Since T, , (u) = u by the hypothesis, using (B.8) and (B.9) we get
Do(Wll gl p) = Da(W || u| p) = Di(ul ) Vq € Qap. (B.10)

Di(ull¢) > 0 for all ¢ € P(Y) \ {u} by Lemma 2 and D, (W || ¢|p) = oo for ¢ ¢ Q, , by definition. Then u
is the unique probability measure satisfying I, (p; W) = Do (W || u| p) and (33) holds. In addition ¢; ,~<u because
otherwise D, (W || u| p) would have been infinite. Furthermore, u~ ¢ , because D; (ul| ¢1 ) is finite by (B.10) and
part (a).

The lower bound given in (34) holds for ¢ € Q,, by (B.10) and for ¢ ¢ Q. , by definition. In order to establish
the upper bound given in (32), note that T, , (u) = u implies

- [, 0o (22" co-ormann]
Then one can confirm by substitution that
Do (ull ¢) = 15 mZ p(z)el@=D(Pa(W(@)lla)=Da(W(2)lw)) Vg e P(Y).
Then Jensen’s inequality and convexity of the exponential function imply
Dao(ull q) = Da(W| gl p) = Da(W| ul p) Vg e P(Y).

35



(d-ii) f(-) : U — R is concave and upper semicontinuous on U for the topology of setwise convergence:* Using the
definition of the tilted channel given in (22), the identity given in (29), and the joint convexity of the order one
Rényi divergence in its arguments, i.e. Lemma 6, we can write f( V') as the sum of three finite terms as follows
for all V e U:

V) = 2DV W p) = Dy (30, p@) V(@) a1p) + Da(Wl a1l ). (B.11)

Then f(-) is a concave because the order one Rényi divergence is convex in its first argument by Lemma 6.
Similarly, f(-) is upper semicontinuity for the topology of setwise convergence, because Rényi divergence is lower
semicontinuous in its first argument for the topology of setwise convergence by Lemma 3.

(d-iil) W £ {V € U : maxy.pz)>0p(@)D1(V(2)|| W(z)) < 2Lh(p)} is compact for the topology of setwise conver-
gence: For any v € P()) and w € 73())) the 1dent1ty zlnz > —1/c implies that

/\3;11 2] w(dy) < Du(o]w) + e

Then for any v € R+ and w € P(Y), the set of Radon-Nikodym derivatives {S—Z}v: Dy(v]|w)<~ 18 uniformly
integrable because it satisfies the necessary and sufficient condition for the uniform integrability given by de la
Vallee Poussin [21, Thm. 4.5.9]. Hence, {v € P(Y) : D1 (v| w) < vy}<*"w. Then® {v € P(Y): Di(v|| w) <~}
has compact closure in the topology of setwise convergence by [21, Thm. 4.7.25]. On the other hand the set {v €
P(Y) : Di(v]] w) <~} is closed, i.e. it is equal to its closure, because Rényi divergence is lower semicontinuous in
its arguments for the topology of setwise convergence by Lemma 3. Hence {v € P()) : D1 (v|| w) <~} is compact
in the topology of setwise convergence for any v € R+ and w € P()). Then U is compact in the topology of
setwise convergence because product of finite number of compact sets is compact by [39, Thm. 26.7].

(d-iv) 3U, € W s.t. f(Uy) = supy ey f(V): Note that W € U and f(W) = I (p; W). Furthermore, I, (p; W) > 0 by
Lemma 2 and part (b). On the other hand, if p(z)Dy(V (z)|| W(z)) > 2=L#i(p) for an z, then f(V) < 0 because
Dy (V(z)|| W(z)) >0 by Lemma 2 and [, (p; V) < h(p) by part (a). Thus,

suvauf(V) = suvau/f(V).

On the other hand, 3U, such that f(U,) = supy <y f( V') by the extreme value theorem for the upper semicontin-
uous functions [32, Ch3§12.2] because U is compact and f(-) is upper semicontinuous for the topology of setwise
convergence.

(d-v) f(U) = Do(W|| us| p) where u, & > p(z) Us(x): As a result of Lemma 10 we have

Do(W | us|p) = supy ey t25 vV W[p) + Di(V| us| p) .- (B.12)

On the other hand 2= D (U«| W|p) + Di(Us|| us| p) = f(Us) because I)(p;Us) = Di(Us| u| p) by part (b).
Then D, (W || u*|p) > f( U,) is evident by (B.12).
In order to prove Do (W | u.|p) < f(U.), let us consider a V € U and define V) and ¢ for each 2 € Z+ as

v A =y 41y,
gW & ly, 41 ZI p(z)V(z)
As a result of the decomposition given in (B.11) we have
F(VW) = ﬁpl(v(ﬂ p) _ D (qu) ql,p) + Da(W| a1l p) .

Then using the Jensen’s inequality and convexity of the order one Rényi divergence in its first argument established
in Lemma 6 we get

q1,
W e

-«

= LU + Dyl aup)) + 2 [22 D1V W) + Di(V] gl 2)] = D1 (0]
= % [f(U*) + D1 (] a®)] + 2 [ DV W)+ D (VI )]

Then using f(U.) = supy ey f(V) > f(V®) and Dy (u.] ¢V) >0 we get
(U = 122DV Wp) + D (V] )| p) Vi€ Zs.

F(VO) > ke [0y (0 W ) + LDu(V] W )] — Dy (g

aip) + Da(Wll a1,p| p)

(Il,p)

25The set U is a subset of the Cartesian product of a finite number of copies of 7()’). What we mean by the topology of setwise convergence on U is
the product topology obtained by assuming topology of setwise convergence on each component of the Cartesian product. We employ this terminology in the
rest of the proof without explicitly mentioning it.

%6Note that {v € P(¥) : D1 (v|| w) <~} is bounded in variation norm by definition.
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On the other hand, lim,_, ., D (VH g™ | p) > D1 (V|| us| p) because lim, Hq(z) — Uy || = 0 by construction and
the Rényi divergence is lower semicontinuous in its second argument for the topology of setwise convergence by
Lemma 3. Then

f(U.) > 2=Di(V|| W|p) + Di(V| us| p) vV el.
Hence, f(U.) > Do(W|| us| p) by (B.12).
(d-vi) T, , (u) = we and U.(z) = Wi (x) for all x such that p(z) > 0: Note that Dy (W|| u.| p) < oo by part (d-v)
because f(U,) < h(p) < oo by definition. Consequently, we can define the tilted probability measure W+ (z)

for each z such that p(z) > 0. Using the definitions of f(-) and the tilted channel W2 together with the identity
I (p; U.) = Dy (Uy]| us| p), which follows from part (b), we get

F(Us) = Da(W | sl p) + 125 D1 (Usll Wi p) -

Since f(U,) = Do(W| us|p) by part (d-v) we get Dy(U.|| W¥|p) = 0. Hence U.(z) = W2l (x) for all
z such that p(z) > 0 by Lemma 2. As a result T, , (u.) = u. because T, , (u:) = >, p(z) Wy (z) and

=, p(z)U.(z) by definition.
(13-e) We prove the statement for a € (0,1) and o € (1, 00) cases separately,

o Recall that > p(z) Wo*"(z) = ¢a,p by parts (c). Then as a result of (29) we have
Li(p; Wier)y = Dy (Wi || a,p| p) - (B.13)
Then (35) follows from Lemma 10 and I, (p; W) = Do (W || ga,p| p) for o € (0, 1).
On the other hand as a result the definition of the Augustin information, and Lemma 10 we have
I (p; W) = inf jepy) infyepyix) 725 Di(VI| Wi p) + Di(V] gl p)
= infyepyx) infger) 7255 D1(VI Wl p) + Di(Vglp).

Then (36) follows from the definition of the order one Augustin information.

o Note that for o € (1,00) identity given in (35) is nothing but f(Wa*") = I, (p; W) which is already established in
the proof of part (d). Similarly (36) is equivalent to supy cp(y|x) f(V) = Ia(p; W) which is established in the proof
of part (d).

O

Proof of Lemma 14. The following identity can be confirmed by substitution

Da<VV[1,n] H ®t:1 Qo p, p) = Zt:l Da(WtH Qa,pz,|pt) .
Then using (29), (32), (34) we get

Zt:l Ia(pt; Wt) Dl/\a (Q()z,pH ®t 1 Qa,p,,) Z Ioz (p; I/V[l.,n]) Z Zt:l Ia(pt; Wt) - Da\/l (Q()z,pH ®t:1 Qa,p,,) .

Thus (39) holds for all p € P(X7) because Rényi divergence between probability measures is non-negative. Furthermore,
(39) holds as an equality iff for an o € R+ iff ¢, , satisfies (40) because the Rényi divergence between distinct probability
measures is positive.

If p=@);_, p:, then one can confirm (40) for v=1 case by substitution. In addition for any o €R+\{1} one can show by
substitution that the probability measure ¢ = @}, ¢a,p, is a fixed point of T, ap (-), ie. T, , (q) = g. Furthermore, 1 ,<q
because ¢1,p, <qa,p, for each ¢ € {1,...,n}. Thus for « €R+\ {1} the identity in (40) fol]ows from Lemma 13-(c,d). O

Proof of Lemma 15. Note that D, (W || ¢| p) is linear and hence concave in p for any ¢ by definition. Then I, (p; W) is concave
in p because pointwise infimum of a family of concave functions is concave. Furthermore by Lemma 13-(b,c,d), 3!qq,,, such
that Do (W | gaps | p3) = Ln(pg; W). In addition,

Da(W” (Ia,pg}pﬁ) ﬂD (W” o, pg}pl) 175)DQ(W|“]&,pg|p0)-

Then equation (41) and (42) are obtained by bounding Do, (W || ga,ps| 1) and Do (W || ga,ps | po) using Lemma 13-(b,c.d).
On the other hand, Lemma 1 implies

Do (W|| B4a,pr + (1 = B)da,pe| P8) = BDa(W|| Bga,p, + (1 = B)ga,pe| p1) + (1 = B) Da(W | Bga,p, + (1 = B)da,po | Po)
< BDa(W | gapi | 1) = BIn B + (1 = B) Da(W | gapo | Po) — (1 = 8) In(1 — )
= Blapi; W) + (1 = B)1a(po; W) + 1(53) .
Then (43) follows from the lower bound on D, (W/|| ¢| p) given in Lemma 13-(b,c,d). O
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Proof of Lemma 16. Note that as result of (38) we have,
[p(a:)]éelaa Dol W (@ll900) W (2) < gur.p Vi e X. (B.14)
(16-a) Using Lemma 1 and (B.14) we get
Da(W (@) gap) < Da (W(fc)ll [p(2)] " PV @) 7 (7))
_ 1 1 1n p(z) + O‘Tlea(W(a:)H Go,p) -

(16-b) We employ (B.14) together with D, (W (z)|| qa_,p) > 0 for a€(0, 1] case and together with part (a) for a € (1, 00) case.
(16-c) We prove « € (0, 1) case and « € (1,00) case separately.

e «a € (0,1): First use Jensen’s inequality, i.e. E[¢*] < E[¢]%, in (38); then invoke Dy (W (2)|| ga.p) < In —=:

p(z)”
dga.p z) l-ap - o
Gz <37 p(a) Grle s Pl WDlaes)

a—1

< (minz:p(z)>0 p(x))T
Recall that if £(z) > 0 for all z, then ) _[¢(2)]* > [>°, &(x)]*. Using Do (W (2)| ¢a,p) > 0 we get
z)

Aoy 1 o
Qo > 3™ (p(a)* L5 DaW () 1)

. l-o
> (mlnz:p(z)>0 p(I)) oo
e « € (1,00): First use Jensen’s inequality, i.e. E[¢] > E[{]a, in (38), then invoke Do (W (2)|| ¢a,p) < In p(w)

d o, aDa W o
Qo > 3™ p(a) L) 5 LW (@) 40

> (Ming:p(z)>0 p(z)) "= .
Recall that if £(z) 2 0 for all z, then 3, [¢ (x)]a < [z £(@))". Using Da(W (2)]| gap) > 0 we get

dga,p = dW(z) 1= ) Do(W ()| o, p
T < Z To el M aa,p)

l—a

< (mlnz:p(z)>0p(x)) oo

Proof of Lemma 17.

(17-a) For brevity, let us denote (o — 1)I,(p; W) by ¢(«) in this part of the proof. We first prove the dichotomy about ¢(-) on
(0,1) and on (1, 00). Then we extend this dichotomy to R+ assuming that g(-) is convex on R+. After that we establish
the assumed convexity of g(-) on R+.

Let ag = Baq + (1 — B)ayg for any g, o1 € (0,1) and 5 € (0, 1). Then for any ag, a1 € (0,1) and 5 € (0,1) we have

Bg(ar) + (1= B)g(00) > Blor — 1) Day (Wil s p| 8) + (1= B)(00 — 1) Dety (Wl s ] )
Y s (e, [<%ff3>‘“DB(Eqw [aye]) ™
> Y pla)n,,, [(356)]

= g(agp)

where the first inequality follows from the definition of the Augustin information and the second inequality follows from
the Holder’s inequality. Furthemore, the first inequality is an equality iff gay,p = Gas,p = Gay,p by Lemma 13-(c) and the

second inequality is an equality iff 3};‘/—(“”) = () holds W (z )—a s. for all 2 € supp(p). On the other hand, if ddV;(I) =v(x)
ag.p a,p

holds W (z)-a.s., then W7 (z) = W (z). Consequently, if & (z) = v(z) holds W (x)-a.s. for all z € supp(p) then

Ga,p = q1,p by Lemma 13-(c) because T, ,, (¢a.p) = q1,p- Thus elther g(+) is strictly convex on (0,1) or dWz) ~(z)

daip
W (z)-a.s. for all z € supp(p) and I, (p; W) Z p( )1nfy( ) for all o € Ry. '
(ag—1)(1—B8)
Let ag = Bag + (1 — B)ag and dql (ddqgllp”) e (ddq;’l”:) o for any g, a; € (1,00) and 8 € (0,1). Then
B 1-8
d xr [e%1% d @1,p —Q1 d xr « d an,p —Q
By(ar) + (1= B)glao) = > p(@)In (B, [(ed)™ (eee)i= | )7 (B, |(G) (e =]
)\ d @1,p —Q d @Qg,p — —Q
>3 p(e) By, | () (Gare) (o) (G )1 =901 e0)]
= (ag = 1) Doy (Wl 5| P) — (ap = 1) In|u]
[

> g(ap)
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(17-b)

(17-¢)

(17-d)

where the first inequality follows from the Holder’s inequality and the second inequality follows from the definition of
Augustin information and the fact that ||u|| < 1, which is consequence of the Holder’s inequality. Furthermore, the first

W) (ddern )35 = JO(%)J—% — ~(z) holds W (z)-as. for all z € supp(p) and the
second inequality is an equality iff u = Qay,p DY Lemma 13- (d) because ||p| < 1 by the Holder’s inequality. On the
other hand, ||u|| =1 iff gny,p = ¢a,,p as a result of the Holder’s inequality. Thus the second inequality is an equality iff
Goo,p = Gan,p = Gay,p- Hence both inequalities are equalities, i.e. Sg(a1)+(1—58)g(a0) = g(ap), iff Gag.p = Gas,p = Gar,p

= v(z) holds W(z)-a.s. for all € supp(p). Following a reasoning similar to the one for oo,y € (0,1)

inequality is an equality iff

case and invoking Lemma 13-(d) instead of Lemma 13-(c), we conclude that either g(-) is strictly convex on (1,00) or
ddvgl(z) v(z) W(z)-as. for all z € supp(p) and I,(p; W) =", p(z)Iny(z) for all o € Ry+.

We assume the convexity of g(-) on R+, in order to establish the strict convexity of g(-) on R+ using the strict convexity
n (0,1) and (1,00). Note that if ag € (0,1], a1 € (1,00) and ag € (1,00), then there exists an € € (0, 3) such that

ag_c € (1,00). Thus

Bg(a1) + (1= B)g(a0) = =5z 9(a1) + 155 [(B — €)g(ar) + (1 = B+ )g(a)]
e 9(on) + 1i;i€9(04ﬁ76)
€ 1—

> g(=fe + 1—Bieaﬁ*5)

= g(ap).
Similar manipulations can be used to prove the strict inequality for ap € (0,1), aq € [1,00).,ap5 € (0,1) case and
ap € (0,1), ag € (1,00), ag =1 case.
Now we are left with establishing the convexity of g(-) on R+ that we have assumed. Invoking Lemma 13-(e) for
a € R+ \ {1} case and using Dy (W | W|p)=0 for a=1 case we get

g(@) = supyepyx) (@ — Di(p; V) —aDi (V[ W|p).

Then g(«) is convex in « because pointwise supremum of a family of linear/convex functions is convex.

On the other hand, using V' = W we can deduce that, g(a) > (a— 1)1 (p; W). and [, (p; W) € [0, h(p)] by Lemma 13-(a).
Thus g(a) > —h(p).

Since (o — 1), (p; W) is finite and convex in @ on R+, it is continuous on R+ by [20, Thm. 6.3.3]. Then =21, (p; W) is
continuous in « on R+, as well. Furthermore,

=2 W) =infyepyi S2L@; V) + Di(V]| W p)

by Lemma 13-(a,e) and Dy(W| W|p) = 0. Then 1=21,(p; W) is nonincreasing in o because infimum of a family of
nonincreasing functions is nonincreasing. Note that 2=, (p; V) + Dy (V|| W/|p) is nonincreasing in a because I (p; V) is
nonnegative.

I,(p; W) is nondecreasing in « because the pointwise infimum of a family of nondecreasing functions is nondecreasing
and the Rényi divergence is nondecreasing in its order by Lemma 8.

Since (o — 1)I,(p; W) is finite and convex in « on R+, it is continuous on R+ by [20, Thm. 6.3.3]. Then I,(p; W) is
continuous on (0,1) and (1,00). In order to extend the continuity to R+ we need to prove that I, (p; W) is continuous
at @ = 1. Note that as a result of the definition of the Augustin information we have I, (p; W) < Do(W|| ¢1,,| p) for all
a € R+. Since I, (p; W) is nondecreasing in o we have

Y]

Lp;W) < La(p; W) < Do(W| 15| p) Va € (1,00). (B.15)
Since go,p < (Ming.p )0 p(x))’%qlm by Lemma 16-(c), using Lemma 1 we get
Do (W gap| P) = Da(Wll q1.p| p) + 25 In(ming.p(0) >0 p(2)) Vo € (0,1).
Recall that Do (W || ga,p| p) = In (p W) by Lemma 13-(c) and I, (p; W) is nondecreasing in «. Thus we have
Da(W| a1,p] p) + 5% m(ming.p ()50 p(2)) < La(p; W) < Lip; W) va e (0,1). (B.16)

On the other hand, Dy(W || q1.,| p) < A(p) < oo for any ¢ € R+ by Lemma 13-(a). Then Do (W || q1,,| p) is continuous
in o by Lemma 8. Furthermore, D1 (W || ¢1,,| p) = I (p; W) by Lemma 13-(b). Then

limg_1 Doz(WH ql,plp) = Il(p;I/V) .

Then the continuity of I, (p; W) at a = 1 follows from (B.15) and (B.16).
Let 7, () be 7, () £ 2L D, (W(2)|| ¢a,p). Then we can rewrite (38) as follows:
n
dgnp _ 1 dW(z 1—¢)Dy( W (z » ¢ To () —Ts
In dgl _ lnz << L )) e(1=&)Dy(W ()]l a4, )> (7= (¢) =7 (n))
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Let us assume without loss of generality that ¢ > 7. Then using the Jensen’s inequality we get

In ggﬁ <In d‘é“”" + maxm:p(mbo(n(d)) —71(n))- (B.17)
On the other hand, using the fact that )" [£ £(z))? > &z )] for non-negative &(z) we get
In m > In % + (1 - %)1 (minz:p(z)>0 p(.Z')) + minz:p(z)>0(TI(¢) - Tw(n))' (B'18)

If {72(®)}4:p(z)>0 is equicontinuous in «, then {In ‘é‘”’}yey is equicontinuous in « by (B.17) and (B.18). On the
P

other hand, there are only finitely many z’s with positive p(x). Thus {7;(a)}.p(z)>0 is equicontinuous if each 7, (c) is

continuous. We are left with establishing the continuity of 7, ().

Let gz() : [777‘?] — R+, fz(a) : [777‘?] Xd — Rxo, and s. : [ ¢] - P(y) be

)2 [fila)
(2 ) <ddz> -

fu(o, y)
A ¢-a

Sa = G np T ﬁ%,p-

lI>

Then f,(c, y) is differentiable in « and its derivative can be bounded using Lemma 16-(b) and the identity Tln% < %:
i — (AW (=) dsq )1 =@ dW(z) dW(z) dsa \ 7% 1—a |dgs,p _ danp
Zhey) = (L) (d2)' 7 n ) 4 ()T (dan) ™ Lz [dess o

EZACHINNES [éﬂ ——)"In 11%( L )P L=8l [dtee 4 dana ]

p(z) AT p(z) "L p(ﬂc)”Al

dgs.p dqn,p) |:L 1 [ ( — 1+¢):|
v + v e + —1_ In + Vﬂ € mn, ¢) .
( d at) [+ o) p(z)w - )

The expression on the right hand side is v—integrable. Thus as a result of [21, Corollary 2.8.7] we have

Zge(a) = [ Zfele,y)rv(dy).

IN

Furthermore, a%ga;(a) is continuous by [21, Corollary 2.8.7] because a%]‘I(cz7 y) is continuous in a. Then Ing.(@) jg 5

(0%
continuous function on [n, ¢] that is continuously differentiable on (7, ¢). Then, as a result of mean value theorem [40,
Thm. 5.10] we have

Baleh 00| < (6 — ) supgeg | 22| (B.19
Using Lemma 16-(b) and the identity TIH% < % we get
pae) |20 o 2], )
<[22+ S [ et ) (ln e = L qn,pl)] . (B20)
We bound In g, (/) using the definition of g,(3) together with Lemmas 16-(b) and 1:
.02 (8)| = 18 = 11Ds (W (@)l =2 4v.p + 52 6.»)
< 18- 1IDs(W ()] [ﬁ_,][p(w)]m + B [p(@)) 7| W)
<(8v 1>DB(W<m>H [p(2)] 7 W (2))
< G oks VB € [, ¢]- (B.21)
The Augustin information is nondecreasing in its order by part (c). Thus Lemmas 2 and 13 imply that
o = ol < /727 Ualos W) — 1,03 W)). (B.22)
On the other hand, one can confirm by substitution that
To($) — 7o () = 12pl0) — Dneln), (B.23)

Then the continuity of 7, («) in « is implied by (B.19), (B.20), (B.21), (B.22), (B.23) and the continuity of the Augustin
information in the order established in part (c).
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(17-e) D, (W || g4,pl p) > IL,(p; W) for any ¢ € R+ and n € R+ by the definition of the Augustin information. Then the
differentiability of D, (W|| ¢| p) in « established in Lemma 11 implies that

1yp;sW) — Io(p; W) : Dn(Wllg.plP) = De(Wllgs.pP)
%Shmniqﬁ L) d¢,p|P P! 9¢.p|P

limy, ¢

n—ae
= g5 Da(Wll a6,/ )|, (B.24)
. L(p;W)— 14p; . Dy(W p|p)=Dg(W P

lim, 1 n® V‘?}_J(p W) > lim, n(Wllge \p7)7_¢¢( llgs.p1P)
= 52 Da(W | 4o, P)| \_y - (B.25)
Similarly,”” Dg(W|| ¢;.»| ) > I,(p; W) for any ¢ € R+ and € R+ by the definition of the Augustin information. Hence,
limn¢¢ In@?”?]:i;zb(??m > hmnld) Dn(W”‘In,ﬂpT)]:gfp(WHqu,p‘P) (B26)
lim,; g In(PM??:;a%(P?W) < limypg Dn(WHIZn,HP%:f&WHQn,p\P)_ (B.27)

For any 0 € (0, ¢) by Lemma 16-(b) and Lemma 1 we have

Do (W (2)|| qy,p) < < GooAT 5) 7 In p(m) Vnn—¢| <d,a € Ry (B.28)

Then as a result of Lemma 12, there exists®® a K , > 0 such that for 7 close enough to ¢ we have

Dy(W | ) = Do(W | gl 2) = (0= ) 2 DalW | gy p)] | < Kol = oI (B.29)

We show in the following that -2 Dy (W || gy, | p)’aqu is a continuous function of 7, i.e.
li 2 Da(W = 2L Do (W v R B.30
iy 22 Da (W gl )],y = 2 Da(Wll a5l )], 6,8 € Re. (B.30)
Using (B.29) and (B.30) we get
1imn~>¢ DTI(WHq77vP|p,,)7:§¢(W”qT]w77|p) —_ Q%DG(W” q¢,p| p)|a:¢ . (B31)

Differentiability of the Augustin information and (45) follow from (B.24), (B.25), (B.26), (B.27), and (B.31).
In order to establish the continuity of %DQ(WH @n.p| p)‘a: o 07, ie. (B.30), let us first recall that the expression for
the derivative of the Rényi divergence given in (16):

AW/ (z)

dWimP (z)
WZIZ’(I)I d¢q1,p <1n d$V(z) )‘h,p(dy) ¢ F#1
. |
>, 2 (f W) (1 AWV, (dy) — (D) (W (2) qn,pﬂ?) b=1

25 DaWll @yl p)],_, =

Recall that,

1-¢
dW (z dgy.,
DAW (@) ) = { T2 ) () st o2
¢ n,p) = dW(I) n dW(a:) —p Y400 (dy) ¢*1.
dqi,p a1, ndq1,p q1,p\AY =

Then Dy(W ()| gy,p) is continuous in n for any ¢ € R+ by [21, Corollary 2.8.7-(i)] because {ln 3Z¥:i}y€y is equicon-
< \n;ll In by Lemma 16-(c). On the other hand,

. . dgn.p
tinuous function of 7 by part (d) and ‘111 g

1
ming.p(z)>0 P(z)

dW P (z) z dan.,
In e = pn QU (1 — ) In $22 4 (1 — §) Dy(W (2)]| ) -

Thus { dql }yeg is equicontinuous in 1 because {In 33?"’ }yey is equicontinuous and Dy (W (z)|| ¢y,p) is continuous
2P 1

in 7. Furthermore, using Lemma 1, Lemma 16-(b), and the identity Tln% < < we obtain the following bounds

61 b—1
AWy (@) |, AW (@) | AW (x) 1 L ]t R
£ el < W (]1 e A1 gy 5] m[55] ) it ¢ € [1,00), (B32)
=@ <1 {(—w@ >0
dquwp(z) dWQTMJ(I) dW(z) 1 dgn,p 1—¢ 1 ﬁ :
day | TaWE | S da, Lawtre et dan L awir e g [m)} if ¢ €(0,1). (B.33)
Ty <1} {—=we—>1

2TEor ¢ € (1, 00), we can also use (36) of Lemma 13-(e) to establish reverse inequalities for (B.24) and (B.25).
28Note that, this is not just the Taylor expansion of D (w|| q) around o = ¢ for a given (w, ¢) pair. Lemma 11 allows us to apply the Taylor expansion
for a family of (w, ¢) pairs around o = ¢ simultaneously if we can bound Dg(w/|| ¢) uniformly for all (w, ¢)’s for some 3 > ¢.
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(17-)

Using ’111 ig" L < ";1‘ In minI;p(Il)>0p(m) —i.e. Lemma 16-(c)— in (B.33), we get
—In—1] i
AW P (z) AW (z) dW(2) 1 n 1 1 1T )
o 01y e | < A1y L %gop(x)} x {p(w)} if ¢ € (0,1). (B.34)

Using (B.32) and (B.34), we get the following bound for all ¢ € R+ and 7 € [a, b]

4 ® —-1-1 1
AW, () | AW (z) Aw(z) (1 [L}T [L}T . L{L}W
dai,p dW(x) < A, \e T 2@ In p(z) + I:%iop(x) pe | p() :
Then {d‘?ql’m(z) In d‘;V]q;V (I()“”) } - is bounded from above by a ¢ p-integrable function for any closed interval
nela

[a,b] C R+. Thus Dl(W‘;’JWH W‘ p) is a continuous function of 7 by [21, Corollary 2.8.7-(1)] for all ¢ € R+. Then
2 Do (Wl qmp|p)]a:¢s is continuous in 7 for ¢ € R+ \ 1. The continuity of -2 Do (W /|| .p|P)|,_, in 7 follows from
the continuity of D;(W(z)|| ¢,,p) and [21, Corollary 2.8.7-(i)] via the following bound, which can be established using
the identity 7(In7)?L,¢(0,1} < = and Lemma 16-(b),
2 2
AW (2) (ln ddW(z)) < danp 4 | dW(2) (lnp(z)) _ (B.35)

dqi,p an,p — dqi,p €2 dqi,p nAl

Now we are left with establishing the continuity of the derivative of the Augustin information. Since {In fi‘fz‘l"”}yey is
. . . . 5P
equicontinuous in « by part (d), for any € > 0 there exists a § such that

€ dpp < Gnp < € dop vz n — ¢l <.
On the other hand (p(a:))ﬁ W(z) < qg,p by Lemma 16-(b). Then as a result of Lemma 1
DQ(W(I)qup)gﬁlnﬁz)Jre Vo —nl <0, Vo € Ry
Hence, Lemma 12 implies the existence of a 7 € R+ that does not depend on 7 such that
7@’%&(;2&%,,}@) Ot_(i" < glrftlg V| —nl <. (B.36)
Then limsup,_, o | 2= (ZDa(W| ¢np| p)) }a:(b‘l/ K < 7. Thus the radius of convergence of the Taylor’s expansion of

MW around o = ¢ is at least % for all n € [¢— 9, ¢+ 6] by Hadamard’s formula [38, Lemma 1.1.8]. Furthermore,

we can use (B.36) to bound higher order derivatives:

<
a_¢‘ - Z’L:l ol a_d)‘
2 o 2 At . o . . 1
<Y @A) BT V- ¢ <6, B |B—¢| < L
Using identities Yoo & < >°7° 08" < 3 4%¢ for £ > 0 and > 2 1%¢" = ( E for [¢] <1 we get,

ODA(W |l qn.plP)
oo

_ ODW(W | g,p|P)

"M Da(W || ay.5|p)
da Dot 1

a=p

9D(W | gn.p|P)
[o2e1

ODA(W |l qn.p T|8— . .
a_ﬁWL_Jsmﬂm% Vn-ln*¢|§5,vﬂ-lﬂf¢l<%-

Then using (45) we get

dar (I=7ln—¢])?

OD(W 14-7|n—
B, — 22L0ln)| | < 4l - ol gl - ol < 5L

9D(W gy .p|P)

3G o if the latter limit exists. However, we have already es-

Hence, limy, 4 22 Io(p; W)| = lim, ¢

tabhshed the existence of that limit in order to calculate the derivative of the Augustin information: it is equal to
I (p; W)| . Thus the Augustin information is continuously differentiable in the order.
Let us start Wlth analyzing the case when (« — 1)I,(p; W) is strictly convex in «. The chain rule for derivatives implies

3351 L (W) =10 e _(p; W)"'S(Lrs)? a5 Lo ; W)’a_—'
2 2
Using (46), (B.35), and the fact that Eyy ;) [( dW(z) — Dy (W (2)]| ql,p)) } <Ew) |:(1D %VZ—I(?) ], we get

Li(p; W) s=0
a1 :
Iﬁ(p;W)f 1D1<W r p> s € (—1,0)U (0,00)

9 . _
s SI%*"(Z% W)‘s:() N
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(17-g)

Then as a result of (35), we can assert the following expression for all s € (—1,00)

q_1 »
%Sfﬁ ;W) =1 (p;Wlf“’) : (B.37)

+

Then the continuous differentiability of I, (p; W) in o on R+, established in part (e), implies the continuity of I (p; W)
in o on R+.

In order to prove that I; (p; We*") is monotonically increasing in o on R+, note that the strict convexity of (a— 1)1, (p; W)
in « on R+ is equivalent to the strict concavity of s o (p; W) in s on (—1, 00) because the inequality

(ap = Dlay(ps W) < Blar — D)o, (0 W) + (1 = B) (a0 — 1) Lae (0; W)
holds for o, a1 € R+, § € (0,1), and ag = Bag + (1 — )y iff the inequality

sl 03 W) > psil (i W) + (1= p)sol 1 _(p; W)

holds for s = 1599, s = 1290 5, — sy 4 (1 — ) and p = 222,

[e77) [e5] ap
On the other hand for any strictly concave function f(-) and s1, $a, $3, 54 satisfying s1 < so < s3 < 54 wWe have®

f(s2)=f(s1) > fls)=f(s3)

82— 81 84 —83

9.1

Thus (p;W L ) is a decreasing function of s on (—1,00) by (B.37) and the definition of the derivative because
T+s

51# (p; W) is strictly concave in s. Hence [ (p; Waq“”’) is an increasing function of o on R+.

If (o — 1)1, (p; W) is not strictly convex in « then there exists a v : X — [1, 00) satisfying %fj) =v(z) W(x)-as. for

all z € supp(p) and ¢o, = q1,, for all & € Ry by part (a). Thus Wa*"(z) = W(z) and %ﬂim

z € supp(p). Consequently I (p; Wo*?) =3, p(z) Inv(z).
Let us define Iy(p; W) to be lim, o I, (p; W), such a limit exists because I, (p; W) is non-decreasing function of & on R+.
Then (a—1)1,(p; W) is convex in « on [0, 00), as well. Thus for any @ € R+ and € € R+

(a=D)Iap;W)+1p:W)  (ate—1)laidpiW)—(a—1)lap;W)

= 7(z) for all

by [20, Proposition 6.3.2]. Taking the limits as ¢ | 0 and invoking (46) we get
a—1)1,(p; Io(p; a,p
(O-DLEITIEI < 1, W) + 2 Du(Wier | W] p).

Thus (35) implies
Io(p; W) < Lip; W) .

On the other hand for all a € (0, 1) the non-negativity of the Rényi divergence and (35) implies
Lp; Wiler) < La(p; W) .

Hence limaw L (p; Wo?a’p) = ]0([); W), ie. limaw L (p; Wo?a’p) = limaw Ia(p; W)
O

Proof of Lemma 18. Lemma 18 is nothing but Lemma 33 for the case when A is a vector of zeros. Thus we do not present
a separate proof for Lemma 18, see the proof of Lemma 33. O

C. Augustin’s Proof of Lemma 13-(c)

We have employed the relative compactness in the total variation topology for proving Lemma 13-(c) because we wanted to
assert (o p ~ q1,p, the convergence described in (31), and the inequality given in (32). Establishing the existence of a unique
Augustin mean together with the fixed point property described in (30) is considerably easier. It can be done using the concept
of relative compactness in the topology of setwise convergence, as demonstrated by Augustin in [6, §34]. Augustin claims to
establish other assertions of Lemma 13-(c), as well. In the following, we discuss why we think there are caveats in Augustin’s
argument in [6, §34].

Note that f(s2) > S=22 f(s1) + 251 f(sg) implies L2)=flo)  [(sg) /(o)

53 —581 53 —581 53 —82
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Let us first establish the existence of a unique Augustin mean. First, we establish (B.4) as we have done in the current proof.
Then we consider the set ' 2 {g € P(Y) : Da(W| ¢ p) < Da(W| ¢3,,|p)} Note that I, (p; W) = infyer_ oy Da(W|| g| p)
because of the definition of Q' and (B.4). Furthermore for all ¢ € Q" and € € ),

Tup (&) = 32, pla)et-PW @l [ (Ao da)ioe(ay)

(1—0) Da(W (@)l 4d,p )
<e  MMep@>o0 Z p(x) / (dW(I))”‘(Q)lf‘ly(dy) by the definition of Q" and Lemma 2
e e

=~ dv dv
(A=) Da(W()lad.p|r) d d
— e i, ()50 /( lsi,p)a(d_g)l—ay(dy) by (26)
&
(A=) Da(W()l9d.p|r) 1
< T g (€)] a(€)] by Holder's incquality
<o Tamso [t (€)]° because ¢(&) <1

Thus T, , (Q)<""¢g , and T, , (Q’) has compact closure in the topology of setwise convergence by a version of Dunford-
Pettis theorem [21, 4.7.25]. On the other hand, D, (W]|| ¢| p) is lower-semicontinuous in ¢ for the topology of setwise conver-
gence because Do (W ()| ¢) is, by Lemma 3. Then there exists a g, in the closure of T, , (Q) for the topology of setwise
convergence such that Do (W{| ga,p| p) = inf,epy) Da(W| | p) by the extreme value theorem for lower semicontinuous
functions [32, Ch3§12.2]. The uniqueness of ¢,,, follows from the strict convexity of the Rényi divergence in its second
argument described in Lemma 5.

This construction establishes certain additional properties of the Augustin mean, as well. Note that ¢, ,<¢1,, because g, ,
is in the closure of T, , (Q’) for the topology of setwise convergence. In addition, T,, , (¢a,p) = ¢a,p because of Lemma 2
and (B.4). Furthermore, any ¢ satisfying T, , (¢) = q and ¢1,,<q is equal to ¢, , because of the argument presented in step
(c-1) of the proof of Lemma 13-(c). These observations, with minor differences, exist in Augustin’s proof of [6, Lemma 34.2].

Above discussion establishes Lemma 13-(c) except for the following three assertions:

(1) ql,p'<Qa,p»

(ii) the identity given in (31),
(iii) the inequality given in (32).

Note that Tajp (9)=<""qg , and {T}, , (¢5.,) hez, C T,y (Q). Then by [21, Thm. 4.7.25], {T¢, , (4¢3 ,) hez, has a subse-
J

quence {Tza(,p (4%,)}sez, convergingto a g € c1({T,,, (¢%.,)}.cz, ) where both the convergence and the closure are for the

topology of setwise convergence. Furthermore, ¢ ~ ¢;,, because of the arguments used in step (c-iv) of the proof of Lemma

13-(c). There are two ways one can prove remaining assertions of Lemma 13-(c) without using the totally boundedness of

{T4., (qg”))}»zez+ established in step (c-iii) of the proof of Lemma 13-(c):

an)(a,)
d

o If one can show that converges to ddq—q in measure ¢ ,, then because of the Lebesgue-Vitali convergence

1,p P

T&(,J;Z (qu,p) - QH = 0, established step (c-iv). Thus one can skip steps (c-iii)

theorem [21, 4.5.4] one would have 1im]_>ool
the proof.

and (c-iv) and proceed with the step (c-v) o

. . dr@) (g8 . .
o If one can show that the limit point ¢ of the subsequence W is a fixed point of T, , (+), then one would have

a statement equivalent to step (c-vi). Thus one can skip steps (c-ifi), (c-iv), and (c-vi) and proceed with the step (c-vii)
after deriving (c-v).
We proved Lemma 13-(c) using the concept of totally boundedness because we could not find an easy way to establish either
the convergence in measure property or the fixed point property mentioned in the preceding discussion. However, we do know
that both properties hold. The convergence in measure holds because of the only if part of the Lebesgue-Vitali convergence
theorem [21, 4.5.4]. The fixed point property holds because {T;m (qg¢717)}lez+ has a unique limit point both in total variation
topology and in topology of setwise convergence by (31).
While proving [6, Lemma 34.2], after establishing the weak convergence of {T;(J,g (q1,p)}sez, to ¢, Augustin asserts that

lim, ‘ Tfl(f[), (q1,p) — qH = 0. This is the first one of our two major reservations for Augustin’s proof of [6, Lemma 34.2].
Note that convergence in the topology of setwise convergence and weak convergence are one and the same thing for sequences
of measures by [21, Corollary 4.7.26]. But convergence in the topology of setwise convergence does not imply convergence
in total variation topology.® Thus we don’t know how one can justify such an assertion.

In order to prove [6, Lemma 34.2], Augustin establishes the totally boundedness of {Tla,p (q1,p) }1ez,. for the total variation
metric. In that proof Augustin asserts that Ty, , (q1 ) is in B,, defined in equation (B.5), for some j € Z+. We don’t know
whether such an assertion is correct or not. But we know that Ty, , (qg,p) is in B,. Thus one can fix this problem easily.

30Consider, for example, the sequence of measure on the unit interval whose Radon-Nikodym derivatives with respect to the Lebesgue measure is given
by {(1 + cos(m3z))},ez, - This set of probability measures converges to the Lebesgue measure on every measurable set, but not in total variation.
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A more important problem stems from Augustin’s obliviousness about the infiniteness of the set of positive integers. Either
in his discussion or in his equations there is no evidence suggesting that he makes a distinction of cases for approximating

{1, (¢5.,)}t<, and {T}, , (qgé_’p)}bz. This is our other major reservation for Augustin’s proof of [6, Lemma 34.2].

D. Proofs of Lemmas on the Augustin Capacity
Proof of Lemma 19.
(i) Ya € R+3p € P(X) s.t. I(p; W) = Cow,a: Since h(p) < In|X| for all p € P(X), (44) and Lemma 13-(a) imply that

lalpai W) = Lolpus W)] < h( 15221 ) 4 Lesgeel o, @-

Hence, I, (p; W) is continuous in p on P(X). On the other hand, P(X) is compact because X is a finite set. Then A is
compact because any closed subset of a compact set is compact, [39, Thm. 26.2]. Then there exists a p € A such that
I,(p; W) = SUp,c 4 I,(p; W) by the extreme value theorem,?' [39, 27.4].

(i) If a € Ry and I,(p; W) = Cow.a, then Do(W| ¢o3|p) < Caw.a for all p € A: Let p be any member of A and p®
be %}5 + % p for v € Z+. Then p() € A because A is convex. Furthermore, by Lemma 13-(b,c,d) we have

Lo (P25 W) = 52D (W 0| ) +2 D (W 00| #)
> % {Ia@;W) + Da/\1<qa,ﬁ|\ qu(l))] +%DQ<W|\ Go,p®

USing Ioz (P(l); W) S Ooz,W,.A» Ia@; W) = Ca,W,A: and Doz/\l (Q(l.ﬁH qa7p(1)) Z 0 we get

p) Vi € Z+.

Cown > Da(W|| Gy p) Vi € Zs. (D.2)
On the other hand, using I, (p(z);W) < Cow.as In@; W) = Co w4, and Da<WH Qa,p® p) > 0 we get
1Cawa > =L Don (‘Ioz,ﬁH qa,pm) Vi€ Zy.
Then using Lemma 2 we get
\V ar1 g Caw,a > ‘ Qo5 — Qo p® Vi € Z+.

Thus ¢, ,@) converges to g, 5 in the total variation topology and hence in the topology of setwise convergence. Since
the Rényi divergence is lower semicontinuous in the topology of setwise convergence by Lemma 3, we have

P) = Da(Wl| daslp) (D3)

Then the inequality Do (W || go.5| p) < Ca,w,a follows from (D.2) and (D.3).
(iil) If o € R+, then g, w.a € P(Y) satisfying (61) such that qo,p = Go,w,a for all p € A satisfying I,(p; W) = Cow,a:
If I,(p; W) = Cow.a for a p € A, then Lemma 13-(b,c,d) and Lemma 2 imply

Da(W| da,5|9) 2 Cawr + %5 | dap — ol (D4

Since we have already established that Do (W || ¢o,5|p) < Ca,w,a for all p € A, (D.4) implies that ¢, , = ¢o for any
p € A satisfying I,(p; W) = Co.w,a.

lim inf, o Dy (Wll Qo p

O

Proof of Theorem 1. The right hand side of (59) is an upper bound on the left hand side because of the max-min inequality.
Furthermore, the left hand side of (59) is equal to C, w,4 by (58). Thus when C, w 4 is infinite, (59) holds trivially. When
Co,w,A 1is finite, (59) follows from (60) and the max-min inequality. Thus we can assume C, w, 4 to be finite and prove the
claims about g, w,4 in order to prove the theorem.
) If Cowa € Rxo and lim,_, o I, (p(z);W) = Caw.a fora {p(z)}zez+ C A, then {qy, o hez, is a Cauchy sequence in
P(Y) for the total variation metric: For any sequence of members of A satisfying lim, oo Io (pV; W) = Ca w4, let
{A(Z)}ZGZ . be a nested sequence of closed, convex, subsets of A defined as follows,

AW £ en(Uj_ {p}).

31we do not need to establish the continuity of I (p; W) in p; the upper semicontinuity is sufficient as a result of [32, Ch3§12.2]. Note that I, (p; W) is
upper semicontinuous in p because it is the infimum of a family of linear functions.
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Furthermore, each A(*) can be interpreted as a constraint set for a W) with a finite input set X(*) defined as follows,
X2 {zeX:3e{l,...,1} such that pV(z) > 0}.

With a slight abuse of notation we use the symbol A not only for a subset of P(X) but also for the corresponding
subset of P(X®)). For any 1 € Z+, there exists a unique Qo w4 satisfying inequality (61) by Lemma 19. Furthermore,

AW < A® for any 1, ) € Z+ such that 3 <. In order to bound an7p<:> = o, p® ’
the triangle inequality for Qo p@ s Qo p®s and Qoo W), A

Let us proceed with bounding ‘

for positive integers 7 < 17, we use

Qa,p» — Qa,p® Qoo,p@ — Ga,w, A0 Qoo,p® — Ga,w®, A ||- (D.5)

<|

|

Qo,p — Qo,w®,AM from above.

(%) \/ﬁDaAl (qa,pm
(%) \/%\/Da(WH Gawo.am|pD) — Lo (pO; W)
© V21 Coweor o — I o5 W)

22 Cown — 16D W)

where (a) follows from Lemma 2, (b) follows from Lemma 13-(b,c,d), (¢) follows from Lemma 19 because p(J) cA®  and
(d) follows from the identities C,, ) 4 = Co w4 < Caw,a and I, (p(ﬂ); W(Z)) =1, (p(J); W). We can obtain a similar

bound on ’

Go,p) = o, W (), AC)

and ‘

Qoo,p@ — QoW A0 qa,wm,ml))

(Ioz,p(l) - (Ioz,WULAU)

. Then {q, p(l)} is a Cauchy sequence by (D.5) because lim Ia(p(ﬁ; W) =Cow,A-
’ J—00

(i) If Cowa € Rxo, then 3gawa € P(Y) satisfying lim,_ o =0 for all {p(l)}zez+ C A such that

lim, o0 1o (pV; W) = Caw,a: Note that M(Y) is a complete metric space for the total variation metric, i.e. every
Cauchy sequence has a unique limit point in M ()), because M (D)) is a Banach space for the total variation topology
[21, Thm. 4.6.1]. Then {q, ,o) }.ez, has a unique limit point g, - in M(Y). Since P(Y) is a closed set for the total
variation topology and U,ez. q, ,» C P(Y), then g, ,« € P(Y) by [39, Thm. 2.1.3].
We have established the existence of a unique limit point g, -, for any {p},cz, C A satisfying lim, o Lo (p(; W) =
Ca,w,. This, however, implies lim, o ||¢o 50 — Ga,p~ || = 0 for any {p} ez, C A satisfying lim, o0 I, (p; W) =
Ca,w,a because we can interleave the elements of {p(V},ez, and {pV},cz, to obtain a new sequence {pV},cz, C A
satisfying lim, o Io (p0"); W) = Ca,w,a for which {q, 5} is a Cauchy sequence. Then ¢o, w .4 = Ga,p+-

(iii) go,w,a satisfies the equality given in (60): For any p € A, let us consider any sequence {p(l)}zez . C A satisfying
pM) = p and lim, o Lo (p”; W) = Ca,w,a. Then p € A® for all » € Z-. Using Lemma 19 we get

o, W, A — Qo p(»)

DQ(WH Qoo (), A p) < Cayw(l)dq(l) Vi € Z+ . (D.6)

Since W has a finite input set, 3p(") € A® satisfying I, p; W) = C, ) 4w and la5 = Qaw®.a0 by
Lemma 19. Then 1, @(Z);W(l)) > Ia(p(l);W(z)) and consequently lim, . I, (ﬁ(l);W) = Co,w,a. We have already
established that for such a sequence Qa3 = Ga,W,A in the total variation topology, and hence in the topology of
setwise convergence. Then the lower semicontinuity of the Rényi divergence in its arguments for the topology of setwise
convergence, i.e. Lemma 3, the identity Ca,WU),AU) = CQVWA(Z) < Co,w, 4, and (D.6) imply

Do (W || qoz,W,A| p) < Caw,.A Vp € A.
On the other hand Do (W || go,w,a| p) > La(p; W) and sup,c 4 In(p; W) = Ca,w,a by definition. Thus (60) holds.

Proof of Lemma 20. Lemma 13-(b,c,d) and the hypothesis given in (62) imply

Ca,W,A - Ia(p; W) > Da/\l(quPH (Ia,W,A) VP cA.

Then as a result of Lemma 2,

2(Cq —Iu(p;
% > | Ga,p — Gaw,all P EA.

Thus { Qoo p™ ez , 1s a Cauchy sequence with the limit point ¢.,w,4 for any sequence of input distributions {p(l)}zez L CA
satisfying lim, o0 Io (p; W) = Co w1 O
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Proof of Lemma 21. As a result of Lemma 13-(b,c,d) we have

supzea Da(W qlp) = Da(W| | p) Vp € A
> In(; W) 4 Dan1(apll ) Vp € A. (D.7)
Let {p®},ez, C A be a sequence such that lim, o0 Io (p; W) = Caw.a. Then {g, ,»} — Ga,w,a in total variation

topology and hence in the topology of set wise convergence by Lemma 20. On the other hand, the Rényi divergence is lower
semicontinuous in its arguments for the topology of setwise convergence by Lemma 3. Then

lim infz%oo |:Ia (p(z),W) + Da/\l (qa,pm q):| Z Ca,W,.A + Da/\l(Qa,W,.AH Q) . (Dg)

(63) follows from (D.7) and (D.8). O

Proof of Lemma 22. Note that as a result of (64) and the max-min inequality we have
Cow,a <infyepyx)suPpeq 725 D1(VI| Wi p) + Lip; V). (D.9)

Hence, (65) holds trivially whenever C, w,4 = oo and (66) implies (65) whenever C, w4 € R>o.
In order to establish (66) assuming Cy w4 € Rso, first note that whenever Cy, w4 € R>o there exists a unique ¢, w4
satisfying (62) by Lemma 20. Then as a result of Definitions 1, 2, 3, 4 and Lemma 10 we have

Do(W|| gaw.al p) = 12 Dy (Wa™"" || W|p) + Dy (W™ || ga,w.al| p) -

Then using Lemma 13-(b) and Lemma 2, we get

Da(W| qaw.al p) = 725 Dy (Wa™™ || W|p) + L (p; W) + Dy (ZI p(z) W= (I)’ qa.,W,A)
> 125 Dy (Was" | W p) + L (ps Wa™ ") Vp € A.
Thus (62) and Lemma 20 implies that
Caw.n = SuPyeq 7% DL (Wa™" || W|p) + L (p; Wa™"") (D.10)
> infy sup,eq t25 D1(VI Wip) + Lp; V). (D.11)

Note that (65) follows from (D.9) and (D.11). On the other hand, using the Csiszar’s form for the Augustin information, given
in (36), we get

T2 Dy (W™ || W p) + Li(p; Wae ™) > infy 125 Di(V]| Wp) + Lip; V)
=I.(p:W) Vp € P(X).
Then (66) follows from the definition of C, w, 4 and (D.10). [l

Proof of Lemma 23.

(23-a) Cow.a is nondecreasing and lower semicontinuous because it is the pointwise supremum of I, (p; W) for p € A and
I, (p; W) is nondecreasing and continuous in « by Lemma 17-(c).
(23-b) %Ia@; W) is nonincreasing and continuous in « on R+ for all p € P(X) by Lemma 17-(b). Furthermore,

128 Cowa = SWpen 52 La(p; W) Va € (0,1).

Then 1?7‘3‘ Cu,w.a is nonincreasing and lower semicontinuous in « on (0, 1) because the pointwise supremum of a family

of nonincreasing (lower semicontinuous) functions is nonincreasing (lower semicontinuous). Thus 1o Cow,a and Cy A

(o7
are both continuous from the right on (0, 1). On the other hand C, w4 and 1?Ta Ca,w.4 are both continuous from the
left on (0,1) because C, 4 is nondecreasing and lower semicontinuous on (0, 1) by part (a). Consequently, Co w4
and 1?7(1 Co w4 are both continuous on (0,1).

(23-¢) (a — 1)I,(p; W) is convex in v on R+ by Lemma 17-(a). Furthermore,

(@ =1)Caw,a =sup,eq(a— 1)1 (p; W) Va € (1,00).

Then (a—1)Cy w4 is convex in o because the pointwise supremum of a family of convex functions is convex.

(23-d) Cy,w,a is continuous in « on (0, 1) by part (b). Furthermore, C,, v, 4 is continuous from the left because it is nondecreasing
and lower semicontinuous. Thus C, w, 4 is continuous in « on (0, 1]. If x4 = 1 we are done.
If xw.a > 1, then (o« —1)Co,w 4 is finite and convex in v on [1, x w 4) by part (¢) and the definition of x 1 4. Then
(o = 1)Cq w4 is continuous in v on (1, xw a) by [20, Thm. 6.3.3]. The continuity of (o« — 1)Cy w.a on (1, xw.4)
implies the continuity of Cy w4 on (1,xw 4). Furthermore, C, w4 is continuous from the left because Co w4 is
nondecreasing and lower semicontinuous. Hence, C, w4 is continuous in « on (1, xw 4], as well.
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(23-e) As a result of part (d), we only need to prove the continuity of C, w, 4 from the right at « =1 when yw 4 > 1. As a
result of [13, (30)] we have

Loy W) < I (s W) + 242D 7 1) Ve € (0,2=1),a € [1, (1 — o).
On the other hand I (p; W) = I{ (p; W) and I, (p; W) < IS (p; W) for o > 1. Then,
Ooz,W,.A S CI,W,A + 8(:2(;21)677771 SPpes Iﬁ(p;VV) VG € (Oa 77771)5 [eS [17 (1 - 6)77]

Thus Co,w,4 is continuous at & = 1 from the right because Co w4 > Ciw,A.
O

Proof of Lemma 24. Note that C, w4 is finite for all o € (0,7n] by Lemma 23. Then there exists a unique order ov Augustin
center, o, w4, for all a € (0,7] by Theorem 1. We apply Lemma 21 for ¢ = g4, w 4 to get

sup,ea Do (Wl gp,w .4l p) > Cowa + Dant(Gaw,all 4o, w.4) - (D.12)
Note that Do (W || ¢4, w,a| p) is nondecreasing in « for all p € A, because Do (W ()| g4, w.4) is, by Lemma 8. Then,
Dy(W |l g6, w.alp) = Da(W| 4o, w .4l p) Vp €A, ¢ € [a,n). (D.13)
On the other hand, by (60) of Theorem 1 we have
sup,en Ds(W gp,w,al p) = Co,w.a V¢ € (0,n]. (D.14)

(67) follows from (D.12), (D.13), and (D.14).
Using Lemma 2 together with (67) we get

||q¢>,W,A — qa,W7A|| < \/%(O@W,A — OQ,W,A) Va,¢ such that 0 < o < ¢ < 1. (D.15)
Then the continuity ¢, w4 in « for the total variation topology on P () follows from the continuity C, w4 in « on Z. [

Proof of Lemma 25. We analyze the upper bound on C, w, 4 and the lower bound on C, w4 separately.
o sup,cq Oy waw < Caw,a: Note that G, 40 < Co,w,a by definition because A® < A. Thus Ca,w,4 is bounded
from below by sup,cq C, w4, as well.
- If C,waew = Cawa < 00, then gow.a = Go w4 because using Theorem 1 for (a), Lemma 21 for (b) and
Lemma 2 for (c¢) we get
(@)
Cow,a = 8Dy a) Da(W qaw,alp)
b
(>_) Cowa® + Dant (¢aw.a
(c) 2
> Cowaw + % tawaw — awall

Qa,W,A)

If Cowoaw = Cowa and g, w ac) = Gaw,A» then sup,,c 4 Do (W gowao|p) < Cowoaew by Theorem 1.
= If sup,c 4 Da(Wl @u a0 |P) < Cowoaw then Cow.a < Coac by (58) and Theorem 1. On the other hand,
Cow.a > Caw’ﬁ(l) because A" C A. Hence, Cowna = Caw’ﬁ(l) < 0.

e Cowa<ln Zzeffeca,w,ﬂ(”: If T is an infinite set, then the inequality holds trivially because In Zzeqecawﬂ“) = o0.
Thus we assume T to be a finite set for the rest of the proof. Let y be pn = \/,.+ eCawa® Qo.w.A( - Then as a result of
Lemma 1 we have

subyeacs Do (Wl 7| p) = subyeais Dol Wl 1l p) + nlu]
p) = Cawae + 1l Vaed.

< SUP,ecam Do (W qowam

Since sup, e 40 Do (Wl ¢aw.aw | P) = Cow.aw by hypothesis, we have
SUP,c 4 () DQ(WH WM&H‘ p) <lIn ||l Vi e 7.
Then using (58) and Theorem 1 we get
Cawn < supye Do (Wl iy 2)

= SUP, g SUP, e A Da<WH W%H’ p)
< In |

<In E eCawa
- €T
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- If g, w4 and g, w, 4(» are not singular for some 2 # 7, then ||| < 37, eCama® Thus Cowa <In} o eCama®
Consequently, if Cp w4 =In ZZeTeCa’W’A(”, then g, w .o L gow.aw forall o # ).

- If o waw L quwawm forall 2 # ), then any s € P()) can be written as s = g‘fl s, where s,’s are finite

measures such that s,<q, w4 for+ € T and sj3141 L (30,cq daw.aw) by the Lebesgue decomposition theorem

[20, 5.5.3]. Using Lemmas 1, 2, and 21 we get

)

1) —In s

lls.l

sup,c 4 Da(W| s|p) > Cow.aw + Dant (daw.ae

= Cowam + Da/\l(qmw,ﬂ(l)

> Cowoam — s

sup,c 4 Da(W|| 5| p) = max,eq sup,c 4 Do (W || 3| p) because Do (W | s| p) is linear in p and A = ch(U,eq AM).

Then using ST [1s,[| < [ls] = 1 we get,

c
a,w,A)

l[s. |l

> lnz G‘TecavaA“) Vs e P(Y).

SUPpea Do (W] s|p) > max,eq In ©

Then Cow,a >1In) ) o eCawa® by (58) and Theorem 1. Since we have already established the reverse inequality,
we have Cp w4 =In ZZeTeCa’W’A(”.
We have proved that if ¢, w40 L ¢, waw forall 2 # ), then Cow oa = ZZG‘T@C&,W,A“). One can confirm by
substitution that sup,,c 4 Do (W || 5| p) < Co, w4 forallz € Tfors =3 o e~ CawatCywam Gow.at - On the other
hand, sup,c 4 Do(W{| 5| p) = max,eg sup,c g4 Da(W| 5| p) because Do (W || s|p) is linear in p. Then s is the unique
order av Augustin center by Theorem 1.

O

Proof of Lemma 26. Let o be any fixed positive real order. Then as a result of Lemma 14 we have

Co Wiy A7 = thl Co, Wi A, - (D.16)

On the other hand, Cow;, ;41 < Caw, 4 because A7 C A. Then

n
Y., Cawia, < Cawp - (D.17)
We proceed to prove Co w4 < D4y Co,w, A, If there exists a t € {1,...,n} such that Cy w, 4, = oo, then the
inequality holds trivially. Else Cy w, 4, is finite for all ¢ € {1,...,n} and by Lemma 20 there exists a unique ¢, w, 4, for
each t € {1,...,n} such that
Do (Will ga, wi .| Pt) < Cowia, Vpi € Ay

Since the conditional Rényi divergence Do (Wi o, w,.4,| P¢) is linear in the input distribution p;, this implies

Do(Wi|l ga,w, 4,1 Pt) < Co,w, A, Vp; € chA,. (D.18)
Let ¢ be ¢ = ®?:1 do, W, A,- Then as a result of Tonelli-Fubini theorem [20, 4.4.5] we have
Da(Wia,ny(a)| @) = ijl Do (Wi(ze)| go,wi,.) Vo € X7
Hence,
Do Wit 4 2) =D Dal Wil gowin| p1) Vp € P(XD),

where p; € P(X;) is the X; marginal of p for each ¢ € {1,...,n}. Note that p; € chA; for all ¢t € {1,...,n} by the
definition constraint set A. Thus (D.18) implies

Do Wil alp) <D Camea, Vp € A (D.19)
On the other hand Dy (Wjy, || ¢| p) > Lo (p; Wi1,n7) by definition. Thus (D.17) and (D.19) imply Cow, ;.4 = Yo1—1 Ca,w;.4,
and go,w;, .4 = ¢- Then gow,, .47 = q by Lemma 25, as well, because AT C A and Co,w, 47 = Caw;, A O
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E. Proofs of Lemmas on the Cost Constrained Problem
Proof of Lemma 27.

(27-a)

(27-b)

(27-¢)

If 01 < 02, then Cp wp, < Cow,e, because A(p1) C A(o2). Thus Cq w,, is nondecreasing in g.

Let 05 = Bo1 + (1 — B)oo; then (Bp1 + (1 — B)po) € A(op) for any p1 € A(o1) and py € A(oo). Hence, using the
concavity of the Augustin information in its input distribution established in Lemma 15 we get

Ca,W,05 = SUPp, € A(01),poeA(00) LaBP1 + (1 — B)po; W)
> SUD,,, e (01),po€A(00) Bla 1 W) + (1 = B)La(po; W)
= ﬂCa,W,gl + (1 - ﬂ) Ca,W,go-

Thus C,,w,e is concave in .

Now let us proceed by proving that if C, w,,, = oo for a gg € intl),; then Cy w,, = oo for all ¢ € intl),. Note that
any point ¢ in intl, can be written as ¢ = So1 + (1 — 3)go for some 5 € (0,1) and ¢; € intI, because intl), is a
convex open subset R¢. Then C, w,, = 0o follows from the concavity of Cp w,,-

If Cow,o is finite on intl,, then C,w,, is continuous on int/’, by [20, Thm. 6.3.4] because int/l), is a convex open
subset R and (—C,,w,,) is a convex function of ¢ on int/l,.

Let us extend the definition of C, w,, from R, to R by setting Cp,w,, to —oc for all p € R\ RY,. Then (—Cy ) is a
proper convex function, i.e. (—Cy w,,) : R — (—00, o] is a convex function and Jp such that (—C,, 1, ,) < co. Furthermore,
intl, is also the interior of the effective domain of the extended function. Hence the sub-differential (— Cy w,,) is non-
empty and compact by [41, Proposition 4.4.2]. Then (69) follows from the fact that the epigraph of a convex function lies
above the tangent planes drawn at any point. The non-negativity of the components of A\, w,, follows from the monotonicity
of Coaw,e in .

If Caw,; =00 foraa e (0,1) and p € intl, then C,w,; = oo for all @ € (0,1) by Lemma 23-(a,b). Therefore,
Ca,w,o = 00 for all a € (0,1) and ¢ € intI, by part (a).

In order to prove the continuity when C, v, is finite, note that as a result of the triangle inequality we have

|COL17W-,91 - CDL27W-,Q2| < |COL17W-,91 - CDL17W-,Q2| + |Ca1-,W792 - Caz-,W792|'

The first term converges to zero as g2 — @1 as a result of the continuity of the Augustin capacity in the constraint
established in part (a). The second term converges to zero as ag — 1 because of (E.1) established in the following. Thus
Co,w,o s continuous in the pair («, o).

Using the monotonicity of Cy w,, and 1TT”‘ Ca,w,, established in Lemma 23-(a) and Lemma 23-(b) we get

oo —an|
| Car W02 — Coswiee| < (a1 Aoz (1—ag Vaz) Cos W02

Thus using (69) to bound Cy, w,,, We get

|z —a |

+
| Coy W05 — Caz, 02| < W(Cahmm + [ Aoy woor - (02 — 01)7)- (E.1)
In order to prove the continuity of the Augustin center, note that by the triangle inequality we have

quth@l - qaLW,L)zH < ||q0417Wa91 = oy W, 02 H + anhW7Q2 - qa27W,92H' (E.2)

Using first Lemmas 2 and 24, and then (E.1) we get

2| Cay ,W,09 = Cag,w,
HQOth,Qz - qa2,W7Q2|| < \/ | : Wo?f/\ocz : W92|
2 _ +
< (Oz1/\a2|3122(1f;‘1Va2) (COtLW-,Ql + |)‘061-,W791 ’ (92 - Ql)| ) (E.3)

In order to bound ||¢a, w01 — oy, W0, ||, We use triangle inequality once more

anl-,W7@1 - qa17W=Q2H < ||q0417W-,L71 - qal-,W-,QvH + ”qal-,W-,Qv - qﬂé17W7L72||

where gy = 01 V 02, i.e. o, = 0} V o} for each v € {1,...,(}.
On the other hand by Lemma 21 we have

SUPpeA(or) Dcn(WH Gai, W0y | p) = Coar W01 + Dina, (qahW,L)l H qahW,Qv) :

Since A(p1) C A(pv), using Theorem 1 and Lemma 2 we get,

2
o
00417W7Qv - OahW,Lh > THq‘llaW7QI - qalaW7Q\/H .
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Repeating the same analysis for ||¢a, w.0o — oy, W0, || @nd bounding Cy, w ., using (69) we get

||q0¢17W-,Ql - qal-,W7@2|| < \/ o% (\/Cal-,W791 = Gy W2 + Ay Wi - (Q\/ - Ql) + \/Aal-,Wygl ’ (QV - Ql)) (E4)

The continuity of ¢.,w,, for the total variation topology on P(Y) follows from (E.2), (E.3), (E.4) and the continuity of
Augustin capacity as a function of the constraint established in part (a).

(I
Proof of Lemma 28. Let B(p) be
B(o) £ {(91,---7071) : thl 0t < 0,0t € Fp,}-
Note that if B(g) = 0, then ¢ ¢ I, , and Ca w, ,, = —00. On the other hand, }°;' | Cow, ,, is minus infinity for
(01,--.,0n)’s that are outside B(p) by the convention stated in the lemma. Thus (70) holds for o € R4\ I’ p.y case and the
constraints o; € Rgo can be replaced by o; € I'), for o € Fp[l’n] case in (70).
Furthermore, as a result of Lemma 26 for any (o1, ..., 0,) € B(p) we have

C%W[l,n],)(::lﬂz(gt) = Zt:l CO‘than'
On the other hand (X}_, A¢(0:)) C A(p) for any (o1, ..., 0n) € B(o). Thus as a result of Lemma 25 we have

n n
Ca,W[ly,,],g > sup {thl Ca.,Wt,gt : Zt:l Ot < 0, 0t € Fpt} .

For deriving the reverse inequality, first recall that Lemma 14 implies o, (p; Wi1 ) < D01 Lo (pe; W) for all p € P(XT) where
pt € P(X) is the Xy marginal of p. On the other hand, E, [p;1 ] = > 7 Ep,[p¢] and E,, [p¢] € T, Hence,

Supp:Ep[p[ly,,]]gg IO‘ (p7 W[l,n]) S SupPl-,---ypn:E;,lzl Epz,[ﬂt]SQ Zt:l Io‘ (pt; Wt)

n n
= Sup{ztzl Ooz,W,,,gt . Zt:l Ot < 0, 0t € sz} .

Thus (70) holds. In addition, A () can be interpreted as the union of (X}, A.(0¢)) and A(o) \ (X}_, A:(0¢)). Therefore,

. . n n

if there exists a (g1,...,0,) such that Co Wi 0 = > i1 Cawi,o, and Co Wiy .0 < 00, then gaw;, 10 = Qi1 dowio
because Co,wy,,e = Oath,n]-,Xf:lA:(@t) and Co,wiy .0 < 00 IMPLY Go,Wp e = o, Wiy, X, Ar(e,) DY Lemma 25 and
qa-,W[1,n]-,X::1 Ai(or) = ®t:1 Qo W01 by Lemma 26. O

Proof of Lemma 29.

(@) C) y is convex, nonincreasing, and lower semicontinuous in A because C. y, is the pointwise supremum of such functions
as a result of (76). '
Since C y, is convex it is continuous on the interior of {\ € R, : €2y, < oo} by [20, Thm. 6.3.4]. The interior of
{AeRL, : Oy < oo} is {AeRE,: e >0 s.t. Co:\,_vf/ﬂ < oo} because €y is nonincreasing in \.

(b) Note that Cp, i, = SUPpcp(x) &a,p(0) as a result of (68) and (73). Then as a result of (72), we have

CoW,0 = SUPpep(x) nfrzo 12 (p; W) + X - 0 Vo € RE,. (E.5)
If X is finite, then P(X) is compact. Furthermore, using (D.1) together with triangle inequality we get
1225 W) — 1 pu; W)| < (A2l ) o Leaeeling oy - 2ol e, e 3 - p(a). (E.6)

Then I (p; W) + X - o is continuous in p on P(X). On the other hand, I} (p; W) + A - ¢ is concave in p by Lemma 15
and convex and continuous in A\. Thus we can change the order of the infimum and supremum in (E.5) —using the Sion’s
minimax theorem, [42], [43]— and C, w,, = infi>o C&\,W + Ao by (75).
(c) If o € intl, and Cy w,, is infinite, then C, w,, = infa>g C&W + A - o follows from (77) trivially.
If o € intl, and C,w,, is finite, then there exists a non-empty, convex, and compact set of A w,,’s satisfying (69) by
Lemma 27-(b). Furthermore, (76) implies for any A, w,, satisfying (69) the following identity
Ca/}yal)[l;vwg = supézo Ca,W,@ - )\a,W.,g ' @

Co,W,0 = Aa,w,o - 0

Then Cu,w,, = infr>o CQ"W + Ao by (77).
(d) Note that I} (p; W) < Cc/v\,W by definition. Hence limsup,_, ., I} (p™; W) < Co/lw. Furthermore,

Lp:;W) > Lp;W) — Ao Vp € A(o).
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Thus iminf, oo I} (p@; W) > Cowpo —A-0= C> ,, as well. Thus lim, o I (p™; W) = C> ..
«@ = W,e a, W « a, W
O

Proof of Lemma 30.
(i) Yo € R+3p € P(X) such that I3 [p; W) = C2 - Note that 12 (p; W) is continuous in p on P(X) by (E.6). On the other

(ii)

(iii)

hand, P(X) is compact because X is a finite set. Then there exists a p € P(X) such that I} (p; W) = SUP,ep(x) Lp; W)
by the extreme value theorem, [39, 27.4].

If o € Ry and 12 (p; W) = C2 . then Do(W || qo3| p) — A~ Eplp] < C2 yy for all p € P(X): Let p be any member of
P(X) and p be =Lp + Lp for + € Z+. Then by Lemma 13

R (5 W) =2 [Da (W oy | ) = A Eplol| 41 [Da (W g o
> =L [RGW) + Dant (405 o p ) |42 | Do (W oo

Then using I (p(l);W) < C&\,W’ Lp;W) = C(;\’W, and DaM(qa,ﬁH qa7p<1)) >0 we get

P) = A Byl
p) =N Bl vieZ.

Cow = Da(Wll gy | p) = A~ Byl (E.7)
On the other hand, using I} (p(; W) < Clw» I20;W) = C y and Da<WH Qo p(® p) >0 we get
C2 w+AE, —
M > TlDa/\l (%,5” qa7p(w)) Vi€ Z+.
Then using, Lemma 2 we get
/ C2 wH+AEy
ﬁ ,Wz—l [p] 2 ’ qOé,’ﬁ - (Ioz,p(l) VZ S Z+.

Thus ¢, ,@) converges to g, 5 in the total variation topology and hence in the topology of setwise convergence. Since
the Rényi divergence is lower semicontinuous in the topology of setwise convergence by Lemma 3, we have

P) = Da(W| dasl p)- (ES$)

Then the inequality Do(W|| go3lp) — X - Ey[p] < C2 y follows from (E.7) and (E.8).
If a € Ry, then 3!q) y € P(Y) satisfying (83) such that qu.p, = q) v for all p € P(X) satisfying I (p; W) = C3 y: If
Lp; W)= Cé"W for a p € P(X), then Lemma 13-(b,c,d) and Lemma 2 imply

liminf,— o0 Dy (WH Ao, p)

o 2
Da(W| galp) = X Eylo] > C2w+ 8 dap — 0zl (E.9)

Since we have already established that Do (W|| ga5|p) — A - Eplo] < Clyy for any p € P(X), (E.9) implies that
Go,p = Qo5 for any p € P(X) satisfying I} (p; W) = Cc/v\,W‘
O

Proof of Theorem 2. First note that (79) implies (80) and (81) implies (82). Furthermore, the left hand side of (79) is equal to
C&\, w by (78). Thus when C(;\ w 1s infinite, (79) holds trivially by the max-min inequality. When C&\, w 18 finite, (79) follows
from (81) and the max-min inequality. Thus we can assume C;W to be finite and prove the claims about qé,w’ in order to
prove the theorem.

@

If Co):,W < oo and lim, ;o I} (p(z); W) = Coi w» then {4, ,o hez, is a Cauchy sequence in P(Y) for the total variation

metric: For any sequence {p},cz, C P(X) satisfying lim, o I (p"); W) = C2 ;. let us consider a sequence of

channels { W(®)},c7, whose input sets {X("},cz, form a nested sequence of finite subsets of X defined as follows,
XW & {zeX:3ye{l,...,1} such that piV) (z) > 0}.

Then for any » € Z+, there exists a unique qé w satisfying (83) by Lemma 30. Furthermore, P(XD)) € P(X®) for any

1,7 € Z+ such that 3 < 2. In order to bound ’qayp(]) — Gqa,pw || Tor positive integers j < ¢ we use the triangle inequality

A
for ¢4 p»s Ga,pw. and g7 )

A A
Qor,p@ — o, p® Qo,p@ — o W Qop® — Gy ww || (E.10)

<|

|
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and ‘

Let us proceed with bounding ‘

A A
Qo,p@ ~ Doy, o Jo,p® — Qo wo

(a)
S \/%Da/\l (qOL_’p(J) qiw(z))
() 2 A
< ’/m D, W|| qoz,W(Z)‘p(])) — ]a(p(J);W(z))
(c)
\/ a/\l a W(w) - ]o)z\ (p(J); W(Z))
(d) X N ()
<\ Chw — 205 W)

where (a) follows from Lemma 2, (b) follows from Lemma 13-(b,c,d), (c) follows from Lemma 30 because p?) € P(X®),
and (d) follows from the identities 12 (p?); W) = I (p); W) and C < G . We can obtain a similar bound

n ’ . Then {q,_, } is a Cauchy sequence as a result of (E.10) because lim, n (p(J); W) = Ca)"W

i) If C W < o0, then ﬂ'qa w € P(Y) satisfying liml_,oo‘ = 0 for all {pW}.cz, C P(X) such that

lim, o I} (p(z ; ) = Coiw. Note that M () is a complete metric space for the total variation metric because M ())
is a Banach space for the total variation topology [21, Thm. 4.6.1]. Then {qmp(l) ez . has a unique limit point gq,p~
in M(Y). Since P(J) is a closed set for the total variation topology and U,cz, ¢, ,» C P(Y), then go p« € P(Y), by
[39, Thm. 2.1.3].
We have established the existence of a unique limit point g, ,«, for any sequence {p(z)}zez . C P(X) satisfying
lim, o0 I} (p(z ) = C/\7 This, however, implies lim, ., an 50 — Go,px H = 0 for any {5( hez, satisfying
lim, oo IA (p(z ) CA because we can interleave the elements of {p )}zem and {p )}zem to obtain a new se-
quence {p(l)}zez+ satlsfylng lim, o0 I (p(z) W) C’\ - for which {Gap } is a Cauchy sequence Then q(l w = Ga,p

(iii) qu satisfies the equality given in (81): For any p € fP(DC) let us consider any sequence {p},cz, satlsfylng pM =p
and lim, o I} (p; W) = C2 - Then p € P(X™) for all ¢ € Z+. Using Lemma 30 we get

Do (Wl go,wer | P) = A-Eyplp] < C2 oy Vi € Zy. (E.11)

Since X is a finite set, Ip) € P(X™) satisfying I} (p; W) = C e and g, 50) = a;. » e by Lemma 30. Then
Iof‘ @(1); W(Z)) > IaA (p(z) ; W(Z)) and consequently lim,_, o, IaA (}3(1) ; W) = C&\, w- We have already established that for such
a sequence ¢, 3o — q;W in the total variation topology, and hence in the topology of setwise convergence. Then the

lower semicontinuity of the Rényi divergence in its arguments for the topology of setwise convergence, i.e. Lemma 3,
the identity C ) < C2 ;. and (E.11) imply that

Do (Wl g2 w|p) =X Eplp) < Cl Vp € P(X).

On the other hand D, (W || q27w}p) —A-Eplp] > 2 p;W) and Ca)"W = SUPpep(x) I} (p; W) by the definitions of
Io(p; W), I3 (p; W), and C ;. Thus (81) holds.

A
Go,p» — o, w®

W@

A
qoz p(l) - qa W (2)

A
qa, w QQ,p(”

O

Proof of Lemma 31. Let {p“},cz, C A(o) be such that lim, o I (p); W) = Caw,e. Then {q, ,o }iez, is a Cauchy
sequence with the limit point ¢, 1., by Theorem 1. On the other hand, lim,, 12 (pV; W) = C2 };, by Lemma 29-(d). Then
{40 p }iez, is a Cauchy sequence with the limit point ) .w by Theorem 2. Hence go,w,, = qé W O

Proof of Lemma 32. As a result of (86) we have
sup,ep(xy) 10 (0: Witn) = SUDp, co(xy)....ope2(x,) thl 12 (pes W)

Thus (85) holds. In order to establish ¢}y, = ®i_, 42w, one can confirm by substitution that @}, ¢3 y, satisfies
(82). ’ O

Proof of Lemma 33.
(a) Note that as a result of Lemma 13-(c,d) and the definition of [, /\(p' W) given in (71) we have

Dy (p” u&p) (o — 1)]/\ (p; W) + lnz (1 @) Da(W (2)| g, p) +(=1)A-p(z) (E.12)
On the other hand as a result of (38), (88), and (92)

)\ o e
IagA( aP’W) = ﬁln/ (Zm uéyp(x)e(lfa))\-P(Z)(%lS)) ) v(dy)

_ ﬁm/dgw Y (@)l P @l el
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Then (95) follows from (E.12)
e In order to prove (96) for o € (0,1) case, we prove the following inequality

I W) + =L Di(pll u) < 12 W) Vu € P(X).

Preceding inequality together with (95) imply (96) for a € (0, 1). Note that the inequality holds trivially when pAu
because D;(pl| u) is infinite in that case. Thus we are left with p<u case. On the other hand, any u € P(X) can be
written as u = Uq + us Where u,.<p and us L p. Then

(1) 1—a
I W) < Do (us WeT*PH 0 oy )

D (3, thela)ele DRV @l 002

a—1
(i47) Uge (T a— N ) dap —o)Neo(a
= ;5 {Z p(I)TED)’e( 1) Do W ()| o)+ (1 =) A+ )}
(i’U) U x o— z e Neo(x
< o [Zzp(fc)ln%i)’é 1) Dol W () 190 ) + (1) Aop( )}

— a—1

(v)

= Io/z\(p;W) - ﬁDl(pH uac)
(vi)

= I2p;W) = 5 Di(pll w).

where (i) follows from (87), (i7) follows from (8) and the monotonicity of the natural logarithm function, (ziz) follows
from wu,. ~ p which holds because p<u, (iv) follows from the Jensen’s inequality and the concavity of the natural
logarithm function, (v) follows from Lemma 13-(c) and the definition of I (p; W) given in (71).

o In order to prove (96) for o € (1,00) case, we prove the following inequality

1w W) + 5 Di(pl| w) > I3 (s W) Vu € P(X).

Preceding inequality together with (95) imply (96) for o € (1, 00). Note that the inequality holds trivially when pAu
because D;(pl|| u) is infinite in that case. Thus we are left with p<u case. On the other hand, any u € P(X) can be
written as 4 = g + us wWhere u,.<p and us L p. Then

Iay)‘(u; W) @ D, (u@ We%A'p" U ® qogﬁu)

(i) g
> L.In [Zz uac(x)em—l)Da(W(z)Hqa?u)+<1—a>xp<z>}

(@) Lin [Z p(x)L@)emflwa(W<z>||qzz)+<1fa>xp<z>}

p(z)

Ugc|\T a— o x >‘ —a)A-p(x
> 1 [pr(x)lnwg))g 1) Da( W ()] g8%, ) +(1 =) A-p( >}

(v)

> fa(P;W) + Dy (Qa,pH qgt:\u) A EP[P] - a£1D1(p|| Uge)
(vi)

=" I} (p; W) — =25 D1 (pl| w).

where (7) follows from (91), (4¢) follows from (8) and the monotonicity of the natural logarithm function, (i) follows
from u,. ~ p which holds because p<u, (iv) follows from the Jensen’s inequality and the concavity of the natural
logarithm function, (v) follows from Lemma 13-(d), (vi) follows from Lemma 2 and the definition of I.}(p; W) given
in (71).
(b) Note that the order o R-G mean for the input distribution p and the Lagrange multiplier A is a fixed point of the order
« Augustin operator for the input distribution aé_’p, ie.
dTa,aé » (qg?\p)

. _ Z o p(aj)(dW(z) )a(dgz?p )1—ae(1fa)Da(W(z)||q§?p)

dv

_ 1 (1—a)X-p(z) (AW (z) \a dqg,)\p 1—o

= o > bla)e )" (=%)
fiqgX :

— %o,

- dvp'
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Consequently I, (a) ,; W) = Do (W ¢2%,| a2 ,,) by Lemma 13-(c,d). Then

(a=1)Da W (@) 147 ) +(1—a)A-p(x)
Dy (a3 ][ p) = Zz a) () In -2k (weiads) ’ 1

o,p s, p(~) (@—1)Da( W@ 1482 ) +(1—axp@) P()
= (=112 (a0 ;W 1nz Je(@=DDa( W@IaZ, ) +(1=a)\p()
(o =D)L (a2 ;W) — 13 (p; W)).

Thus (97) holds.

e In order to prove (98) for o € (0,1) case, we prove the following inequality
2@ W) = s Dilall p) = 157 (3 W) Va € P(X),

Preceding inequality together with (97) imply (98) for a € (0, 1). Note that the inequality holds trivially when a4p
because D;(al| p) is infinite in that case. Thus we are left with a<p case. On the other hand, for any a € P(X), p
can be written as p = p,. + ps Where p,.<a and ps 1 a. Then

R@W) - 25 Dia] ) 2 (W] qcva|a') =X Eqlp] = 55 Di(al pac)

(44) ac(®) (a—1) Do W ()] gor,a)+(1—a) A-p(z
_alz [p<)< ) Dol W ()| ga,a)+( >p<>}

> 1 Zz Pac(2)e (@ DDaW () l140.0)+(1=0) - p(a)

where () follows from (8), (71), and Lemma 13-(c), (4¢) follows from p,. ~ a which holds because a<p, (iii) follows

from the Jensen’s inequality and the concavity of the natural logarithm function, (iv) follows from the monotonicity
of the natural logarithm function, (v) follows from (8) and (87).

o In order to prove (98) for o € (1,00) case, we prove the following inequality
1@ W) = 5 Di(all p) < I W) Va € P(X).

Preceding inequality together with (97) imply (98) for « € (1, c0). Note that the inequality holds trivially when a4p
because Dj(al| p) is infinite in that case. Thus we are left with a<p case. On the other hand, for any a € P(X), p
can be written as p = p,. + ps Where p,.<a and ps 1 a. Then

()
I3@;W) = 755 Diall p) < Do (W 62 \a — A Eglp] = 525 Di(al| pac)
@) 1 [pacw):) (a=1)Da (W<z>||qz?p)+<1—a>xp<z>}

a—1
(#47)

< L Zz pac(x)emfl)Da(W(z)Hqg?p)+<1fa>xp<z>

Y1 Da( W (242, ) +(1-0)A-p(a)

o—

w féA(P;W) :

where (i) follows from (8), (23), and (71), (i7) follows from p,. ~ a which holds because a<p, (iii) follows from

the Jensen’s inequality and the concavity of the natural logarithm function, (iv) follows from the monotonicity of the
natural logarithm function, (v) follows from (8) and (91).

(c) (99) follows from (38) by substitution. On the other hand, (92) and (96) imply
Q=LA p; W) < In ||, || + 22l Vu € P(X). (E.13)

For any f satisfying f : E,[f] =0, let uy € P(X) be us(z) £ % for all z € X. Thus as a result of (E.13)

and (88) we have

ay /o
anljoi\(p; W) <InE, [(Zm p(a;)e(l—a)(f(z)—kk»p(z)) {dvg—y)} ) ] Vf - Ep[f] = 0.
Then (100) follows from (99).
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Proof of Lemma 34.

@

(ii)

(iii)

3p € P(X) such that 1$*(p; W) = Cg)‘ - Note that P(X) is compact because X is a finite set. If I9*(p; W) is continuous
in p, then the existence of p follows from the extreme value theorem, [39, 27.4]. Thus we are left with establishing the
continuity of I2*(p; W) in p.

Note that for any p; and po there exist probability mass functions s1, s, and s, satisfying sy L s1, p1 = (1 —39)ss +ds1,
and pop = (1 — d)sp + dsp where 6 = le;onH' Then applying first (90) and (91) we get

I W) = = Tn [(1 — §)e @ DILEWDa(az o [|0250)] | gel@= DU W+ Da(ad oy |92 )1] (E.14)

Note that 12 (p; W) < I2(p; W) and I2(p; W) < Do(p@ W | p ® q1,,) for all p € P(X) by definition where u is the
uniform distribution on X. Furthermore, Do(p@W| p ® q1,4) = =25 In S, plz)ele=DPa(W@llar.) < In|X| for all
p € P(X) by Lemma 1. Thus 7¢*(sx; W) < In|X| and using Lemma 2 to bound the expression in (E.14) we get

I W) = 122 6ps W) + 27 In (1= 8) + et X1] (E.15)

1

On the other hand (1 — &)« ,, < pl,, and 64}, < pd . by (88). Then using (89) and Lemma 1 we get
Dot s, || 40 5,) < 575 = 22T 60 W) = 12 (1 W),
Da(Ga s, || 00p,) < 505 = 25U 13 W) = 12 (p1: W),
Since I9*(s1; W) < I2(s1; W) < In |X| using (E.14) and we get
I W) < I W)+ 525 In (1= 8)F 4 55" ] (E.16)
Using (E.15) and (E.16) we get
I ;W) — 12 (p2; W)| < =25 In [(1 —§)% 4w T lnlx\] ~ LI [(1 — §) + det=) qu .

Then I2*(p; W) is continuous in p.
If 1@ W) = Cay)‘W, then D, (p@ We's" /\’JHp(X) qg)‘) Cy)‘W for all p € P(X): Let p € P(X) be such that
IAp; W) = C; w» p be any member of P(X) and p(®) be =25 + Lp for + € Z+. Then

B0 W) = 2 1n[1 (a=) (122G a4 ap|\qa P<”>>+1 (a=1) (1226W)+ D (a2 42 ()))]

Then using 12* (p(; W) < Cg)‘ AP W) = Cag,)\W’ and Dq (qgtA5

i ) >0 we get

a7p(1)
o) + Do (a2, 420 ) < G2 Vi€ Z. (E.17)
On the other hand using I3* (p); W) < C;’\W, Ap; W) = C;AW, “AMp; W) >0, and D, (qa ol qa e )) >0, we get
g\ g\ 1 l_e(l"")ci,)\w
Da (qaf" qa,p(l)) < a—1 In 1—1 Vi € Z+.
Thus Lemma 2 implies
limsup,_, q;A-ﬁ - i)‘p(l) <0.

Then q () converges to q = in the total variation topology and hence in the topology of setwise convergence. Since
the Renyl divergence is lower semicontinuous in the topology of setwise convergence by Lemma 3, we have

Do (a2 02’5 ) < iminosco Do (a2 02,00 ) (E.18)

Equations (90), (91), (E.17), (E.18) imply that D,, (p@ We%A'p" PR q9>‘ ) < Cg)‘ for all p € P(X).

E!qgj‘w € P(Y) satisfying (106) such that ¢2, = qg/\W for all p with I$*(p; W) = CéAW If I\ (p; W) = C;’?‘W for a
p € P(X), then as a result of (90), (91), and Lemma 2 we have

2
A
g

QO¢7p - qa7’13

Da(poWe 50| pe gy) = €2y + 242 (E.19)

Since we have already established that D, (p@ We "> f’H P ®q ) < Cagf‘w for any p € P(X), (E.19) implies that

qa,p = gA for any p € P(X) satisfying 13> (p; W) = Cay)‘W
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O

Proof of Theorem 3. Note that (102) implies (103) and (104) implies (105). Furthermore, the left hand side of (102) is equal
to Cay)‘W by (101). Thus when C'gA is infinite, (102) holds trivially by the max-min inequality. When C'gA is finite, (102)
follows from (104) and the max-min inequality. Thus we can assume Cg "W to be finite and prove the clalms about qa W in
order to prove the theorem.

©)

(ii)

(iii)

If CQ W <00 and lim, o0 I (p(z) W) = Cag)‘W, then {q <1)}16Z+ is a Cauchy sequence in P()) for the total variation

metric: For any sequence {p},cz, C P(X) satlsfymg hmz_mo 1AW W) = C;,AW, let us consider a sequence of
channels {W(z)}lez+ whose input sets {DC(Z)}ZeZ+ form a nested sequence of finite subsets of X defined as follows,

XM 2 {zeX:3e{l,...,1} such that p(z) > 0}.

Then for any ¢ € Z+, there exists a unique ¢ AW(” satisfying (106) by Lemma 34. Furthermore, CP(DC(J)) C fP(DC(l))
for any 4,y € Z+ such that 3 < 2. In order to bound Hq

g\ .. . .

"p — 45y || for positive integers 7 < 2, we use the triangle
oA P

inequality for q P qa,ph) and qa_’W(I)

g

gA g\ g g\
‘ q, 0 qa,p(l) < ‘ q, 0 qa,W@ + ‘ q, P T qa’W(I) . (E.20)
Let us proceed with bounding Hq o qi)\ww and ‘ @0 q;/\wm

g

(a)
g\ 2 g\ g\
Yop ~ Yo, w® <1/ ariDa (qa »0 || 4o, Wm)

@/ M\/ PDeW e " ApHpo) ® qifmw) — I (pW; W)

(C) Sy AT \/C;kw<z> I pW); W)
< JE P - 2 posm

where (a) follows from Lemma 2, (b) follows from (90) and (91), (c) follows Lemma 34 because p?) € P(X()), and (d)
follows from Ig)‘(p(J)'W(Z) QA@(J) W) and C o < qi?‘p(l) —qé’fw(l) .
Then {q e )} is a Cauchy sequence as a result of (E.20) because hmzﬁmlgA (p(z ) C;?‘W.

qa’W - Z?pm = 0 for all {pW},ez, C P(X) such
that lim,_, IoégA (p(z ; ) = C;:\W: Note that M()) is a complete metric space for the total variation metric. Then
{qa @
UZ€Z+ q

< Cg’\W We can obtain a similar bound on ‘

If Cg “w < oo, then ﬂ'q W € P(Y) satisfying hml_,oo‘

}zez , has a unique limit point q(i:\W in M(Y). Since P()) is a closed set for the total variation topology and
o CPQ), then g3, € P(), by [39, Thm. 2.1.3].
We have established the existence of a unique limit point qa w for any sequence {p(z)}zez . C P(X) satisfying

lim, o0 I3 (p); W) = C'gA This, however, implies hmz_mo‘

lim, o I} (p(z ) Cg)‘ because we can interleave the elements of {p )}z€Z+ and {p )}zem to obtaln a new se-

= 0 for any {pW},ez, satisfying

a V10 - QGc p*’

quence {pV},ez, satlsfymg lim, o0 2 W) = C‘gA for which { ¢ “ } is a Cauchy sequence. Then qCY W=
qgt:\W satisfies the equality given in (104): For any p € ZP(DC) let us consider any sequence {p(},cz, satisfying p() = p
and lim, o 13" (p; W) = CQ’\ Then p € P(X®) for all 2 € Z+. Using Lemma 34 we get

Da(peWe' =¥ po g2y, ) < C2) Vi€ Z. (E21)

o, W)
Since X is a finite set, 3p*) € P(X") satisfying [9* @(1); W(z) = Cag,)\W(Z) and qi%(z) = qa w by Lemma 34. Then
I @(1); W(Z)) > I (p(z);W(z)) and consequently lim, ., 19} @(1); W) = Cayf‘w. We have already established that for
such a sequence qgﬁm — quW in the total variation topology, and hence in the topology of setwise convergence. Then

the lower semicontinuity of the Rényi divergence (i.e. Lemma 3) and the identity C’g < C "y imply that

W
Dq, (10® WeliTa/\'pH P& qu?\w) < Cag,)\w Vp € P(X).

On the other hand D, (p@ We' s> f’Hp ® qg)‘W) > Is*p; W) and Cayf‘w = SUP,ep(x) I:* (p; W) by definitions of
Is* (p; W) and Cag w- Thus (104) holds.
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Proof of Lemma 35. Let us first consider the case o € R+ \ {1}. As a result of (90) and (91) we have,
supgex Da(W (@) 0) = A+ p() = sup,exe Do (W (w)e =) g)

D,, (p@ WeI?TaA'pH PR q)

> I W) + Da (42 ]| 9) Vp € P(X). (E.22)

Let {p(z hez, be a sequence of elements of P(X) such that lim,_, o, 19* (p(z ; ) C")‘ Then the sequence {qa e » hezy

Y]

is a Cauchy sequence with the unique limit point ¢ W by Theorem 3. Since {q ()} — q W in total variation topology,
same convergence holds in the topology of setwise convergence. On the other hand the order o Rényi divergence is lower
semicontinuous for the topology of setwise convergence by Lemma 3. Thus we have

)} > 0Ny + Da (qa WH q) (E.23)

(E.22) and (E.23) imply (109) for a € R+\ {1} because Cé, = O&\ w by (107) and qCY W= qa w by (108).
For ao =1 case, as a result of Lemma 13-(b) and the definition of A-L information given in (71) we have,

supeoc D1(W ()] ¢) = X~ p(z) > I p; W) + Di(ar | 9) Vp € P(X). (E.24)

Repeating the argument leading to (E.23) and invoking Theorem 2, rather than Theorem 3, we get
liminf, o0 |1 (pO3 W) + D1 (a10]| 0) | = Gy + Di(adw 0) - (E25)
(E.24) and (E.25) imply (109) for o = 1 case. [l

liminf, oo [12* (593 W) + Da (20,

Proof of Lemma 36. Since C&\,W is nonincreasing in A by Lemma 29-(a), C;‘fW < C;‘,IW < C;‘,OW < 00. We apply Lemma
35for A\ =Xg and ¢ = qé}w and use the fact that 0 < p(z) for all € X to obtain

Do | diw ) + Cl < subsex Da( W@ ) = Az - (o)

< sup,cxe Da (W@ 2 ) = M - pl).
Then (110) follows from (82) of Theorem 2.
For any two point Ay and Ay in {\: Je > 0 s.t. Cof}f,]l < oo}, not necessarily satisfying A1 < Ag, let Ay be A V Ao, ie.
AL =X VL forall 2 € {1,...,¢}. Then as a result of the triangle inequality we have

‘ QQ,IW - QfWH < qg,lw - SVWH + QQ,VW - QZWH (E.26)
On the other hand, as a result of Lemma 2 and (110) we have,
|2 = | = VaZry O — i (E27)
/ Az Ay
‘ q04 w th WH - oc/\l Coz w Coz w: (E28)
Then continuity of qéyw in Aon {\:3Je>0 s.t. Cg}};ﬂ < oo} for the total variation topology on P()) follows from (E.26),
(E.27), (E.28), and the continuity of Cé"W in Aon {\:3Je>0 s.t. C&\}f,ﬂ < oo} established in Lemma 29-(a). |
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