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Abstract

For any channel, the existence of a unique Augustin mean is established for any positive order and probability mass function
on the input set. The Augustin mean is shown to be the unique fixed point of an operator defined in terms of the order and the
input distribution. The Augustin information is shown to be continuously differentiable in the order. For any channel and convex
constraint set with finite Augustin capacity, the existence of a unique Augustin center and the associated van Erven-Harremoës
bound are established. The Augustin-Legendre (A-L) information, capacity, center, and radius are introduced and the latter three
are proved to be equal to the corresponding Rényi-Gallager quantities. The equality of the A-L capacity to the A-L radius for
arbitrary channels and the existence of a unique A-L center for channels with finite A-L capacity are established. For all interior
points of the feasible set of cost constraints, the cost constrained Augustin capacity and center are expressed in terms of the A-L
capacity and center. Certain shift invariant families of probabilities and certain Gaussian channels are analyzed as examples.

CONTENTS

1 Introduction 2

1.1 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Previous Work and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 6
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1. INTRODUCTION

The mutual information, which is sometimes called the Shannon information, is a pivotal quantity in the analysis of various

information transmission problems. It is defined without referring to an optimization problem, but it satisfies the following two

identities given in terms of the Kullback-Leibler divergence

I(p;W) = infq∈P(Y) D(p⊛W ‖ p ⊗ q) (1)

= infq∈P(Y)

∑
x
p(x )D(W (x )‖ q) (2)

where P(Y) is the set of all probability measures on the output space (Y,Y), p is a probability mass function that is positive

only on a finite subset of the input set X, and W is a function of the form W : X → P(Y). Either of the expressions on

the right hand side can be taken as the definition of the mutual information. One can define the order α Rényi information

via these expressions by replacing the Kullback-Leibler divergence with the order α Rényi divergence. Since the order one

Rényi divergence is the Kullback-Leibler divergence, the order one Rényi information is equal to the mutual information for

both definitions. For other orders, however, these two definitions are not equivalent to the definition of the mutual information

or to one another, as pointed out by Csiszár [2]. The generalization associated with the expression in (1) is called the order

α Rényi information and denoted by I g
α(p;W). The generalization associated with the expression in (2) is called the order α

Augustin information and denoted by Iα(p;W). Following the convention for the constrained Shannon capacity, the order α
Augustin capacity for the constraint set A is defined as supp∈A Iα(p;W).

For constant composition codes on the memoryless classical-quantum channels, the Augustin information for orders less

than one arises in the expression for the sphere packing exponent and the Augustin information for orders greater than one

arises in the expression for the strong converse exponent, as recently pointed out by Dalai [3] and by Mosonyi and Ogawa

[4], respectively. For the constant composition codes on the discrete stationary product channels, these observations were

made implicitly by Csiszár and Körner in [5, p. 172] and by Csiszár in [2]. For the cost constrained codes on (possibly

non-stationary) product channels with additive cost functions, the cost constrained Augustin capacity plays an analogous role

in the expressions for the sphere packing exponent and the strong converse exponent. The observations about the sphere

packing exponent were also reported by Augustin in [6, Remark 36.7-(i) and §36] for quite general channel models. Therefore

Augustin’s information measures do have operational significance, at the very least for the channel coding problem. Our main

aim in the current manuscript, however, is to analyze the Augustin information and capacity as measure theoretic concepts.

Throughout the manuscript, we will refrain from referring to the channel coding problem or the operational significance of

Augustin’s information measures because we believe the Augustin information and capacity can and should be understood

as measure theoretic concepts first. The operational significance of the Augustin information and capacity can be established

afterward using information theoretic techniques together with the results of the measure theoretic analysis, as we do in [7].

All of the previous works on the Augustin information or capacity, except Augustin’s [6], assume the output set Y of the

channel W to be a finite set [2], [3], [8]–[11]. This, however, is a major drawback because the finite output set assumption

is violated by certain analytically interesting models that are also important because of their prominence in engineering

applications, such as the Gaussian and Poisson channel models. We pursue our analysis on a more general model and assume1

the output space (Y,Y) to be a measurable space composed of an output set Y and a σ-algebra of its subsets Y . Our analysis

of the Augustin information and capacity in this general framework is built around two fundamental concepts: the Augustin

mean and the Augustin center.

Recall that the mutual information is defined as I(p;W) ,
∑

x p(x )D(W (x )‖ q1,p) where q1,p =
∑

x p(x )W (x ). Hence

the infimum in (2) is achieved by q1,p . Furthermore, one can confirm by substitution that
∑

x
p(x )D(W (x )‖ q) = I(p;W) +D(q1,p‖ q) ∀q ∈ P(Y).

Thus q1,p is the only probability measure achieving the infimum in (2) because the Kullback-Leibler divergence is positive

for distinct probability measures. A similar relation holds for other orders, as well: for any α in R+ there exists a unique

probability measure qα,p satisfying Iα(p;W) =
∑

x p(x )Dα(W (x )‖ qα,p). We call the probability measure qα,p , the order α
Augustin mean. In [6, Lemma 34.2], Augustin established the existence of a unique qα,p for α’s in (0, 1] and derived certain

important characteristics of qα,p that are the corner stones of the analysis of the Augustin information and capacity. We establish

analogous relations for orders greater than one in §3, see Lemma 13-(d).

In [12], Kemperman proved the equality of the (unconstrained) Shannon capacity to the Shannon radius2 for any channel

of the form W : X → P(Y) and the existence a unique Shannon center for channels with finite Shannon capacity. Using

ideas that are already present in Kemperman’s proof, one can establish a similar result for the constrained Shannon capacity

provided that the constrained set is convex, see [13, Thm. 2]: For any channel W of the form W : X → P(Y) and convex

constraint set A,

supp∈A I(p;W) = infq∈P(Y) supp∈A

∑
x
p(x )D(W (x )‖ q) . (3)

1We have additional hypotheses in §5.4, but those assumptions are satisfied by essentially all models of interest, as well.
2Shannon radius is defined as infq∈P(Y) supx∈X D(W (x)‖ q).
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Considering (2), one can interpret (3) as a minimax theorem. Furthermore, if the Shannon capacity for the constraint set A is

finite, then there exists a unique probability measure q1,W ,A, called the Shannon center for the constraint set A, such that

supp∈A I(p;W) = supp∈A

∑
x
p(x )D(W (x )‖ q1,W ,A) .

The name center is reminiscent of the name of the corresponding quantity in the unconstrained case, which is discussed in

[12]. Augustin proved an analogous result for Iα(p;W) assuming α to be an order in (0, 1] and A to be a constraint set

determined by cost constraints, see [6, Lemma 34.7]. We prove an analogous proposition for Iα(p;W) for any α in R+ and

convex constraint set A in §4, see Theorem 1. We call the corresponding probability measure qα,W ,A the order α Augustin

center for the constraint set A.

Constraint sets determined by cost constraints are frequently encountered while employing the Augustin capacity to analyze

channel coding problems. One can apply the convex conjugation techniques to provide an alternative characterization of the

cost constrained Augustin capacity and center. Augustin did so in [6, §35], relying on a quantity that was previously employed

in discrete channels by Gallager [14, pp. 13-15], [15, §7.3] and in various Gaussian channel models3 by Gallager [14, pp.

15,16], [15, §§7.4,7.5], Ebert [16], and Richters [17]. We call this quantity the Rényi-Gallager information and analyze it in

§5.3. Compared to the application of convex conjugation techniques to the cost constrained Shannon capacity provided by

Csiszár and Körner in [5, Ch. 8], Augustin’s analysis in [6, §35] relying on the Rényi-Gallager information is rather convoluted.

In §5.2, we adhere to a more standard approach and provide an analysis, which can be seen as a generalization of [5, Ch. 8],

relying on a new quantity, which we call the Augustin-Legendre information. We show the equivalence of these two approaches

using minimax theorems similar to the one described above for the constrained Augustin capacity.

Some of the most important observations we present in this paper have already been derived previously in [6, §§33-35],

[10], [18], [19]. In order to delineate our main contributions in the context of these works, we provide a tally in §1.3. Before

doing that, we describe our notational conventions in §1.1 and our model in §1.2.

1.1. Notational Conventions

The inner product of any two vectors µ and q in Rℓ, i.e.
∑ℓ

ı=1 µ
ıqı, is denoted by µ · q . The ℓ dimensional vector whose

all entries are one is denoted by 1 for any ℓ ∈ Z+ , the dimension ℓ will be clear from the context. We denote the closure,

interior, and convex hull of a set S by clS, intS, and chS, respectively; the relevant topology or vector space structure will

be evident from the context.

For any set Y, we denote the set of all subsets of Y —i.e. the power set of Y— by 2Y, the set of all probability measures

on finite subsets of Y by P(Y), and the set of all non-zero finite measures with the same property by M
+

(Y). For any p in

M
+

(Y), we call the set of all y’s satisfying p(y) > 0 the support of p and denote it by supp(p).
On a measurable space (Y,Y), we denote the set of all finite signed measures by M(Y), the set of all finite measures by

M+

0(Y), the set of all non-zero finite measures by M+

(Y), and the set of all probability measures by P(Y). Let µ and q be

two measures on the measurable space (Y,Y). Then µ is absolutely continuous with respect to q , i.e. µ≺q , iff µ(E) = 0 for

any E ∈ Y such that q(E) = 0; µ and q are equivalent, i.e. µ ∼ q , iff µ≺q and q≺µ; µ and q are singular, i.e. µ ⊥ q , iff

∃E ∈ Y such that µ(E) = q(Y \ E) = 0. Furthermore, a set of measures W on (Y,Y) is absolutely continuous with respect to

q , i.e. W≺q , iff w≺q for all w ∈ W and uniformly absolutely continuous with respect to q , i.e. W≺uniq , iff for every ǫ > 0
there exists a δ > 0 such that w(E) < ǫ for all w ∈ W provided that q(E) < δ.

We denote the integral of a measurable function f with respect to the measure µ by
∫
f µ(dy) or

∫
f (y)µ(dy). If the integral

is on the real line and if it is with respect to the Lebesgue measure, we denote it by
∫
f dy or

∫
f (y)dy , as well. If µ is a

probability measure, then we also call the integral of f with respect µ the expectation of f or the expected value of f and

denote it by Eµ[f ] or Eµ[f (Y)].
Our notation will be overloaded for certain symbols; however, the relations represented by these symbols will be clear from

the context. We use ℏ(·) to denote both the Shannon entropy and the binary entropy: ℏ(p) ,
∑

y p(y) ln
1

p(y) for all p ∈ P(Y)

and ℏ(z ) , z ln 1
z
+(1− z ) ln 1

1−z
for all z ∈ [0, 1]. We denote the product of topologies [20, p. 38], σ-algebras [20, p. 118],

and measures [20, Thm. 4.4.4] by ⊗. We denote the Cartesian product of sets [20, p. 38] by ×. We use the short hand Xn
1

for the Cartesian product of sets X1, . . . ,Xn and Yn
1 for the product of the σ-algebras Y1, . . . ,Yn . We use |·| to denote the

absolute value of real numbers and the size of sets. The sign ≤ stands for the usual less than or equal to relation for real

numbers and the corresponding point-wise inequity for functions and vectors. For two measures µ and q on the measurable

space (Y,Y), µ ≤ q iff µ(E) ≤ q(E) for all E ∈ Y .

For a, b ∈ R , a ∧ b is the minimum of a and b. For f : Y → R and g : Y → R , the function f ∧ g is the pointwise

minimum of f and g . For µ, q ∈ M(Y), µ ∧ q is the unique measure satisfying dµ∧q
dν = dµ

dν ∧ dq
dν ν-a.e. for any ν satisfying

µ≺ν and q≺ν. For a collection F of real valued functions ∧f ∈Ff is the pointwise infimum of f ’s in F, which is an extended

real valued function. For a collection of measures U ⊂ M(Y) satisfying w ≤ u for all u ∈ U for some w ∈ P(Y), ∧u∈Uu

3Augustin assumed neither a specific noise model nor the finiteness of the output set. Nevertheless, Gaussian channels are not subsumed by Augustin’s
model in [6, §35] because Augustin assumed a bounded cost function.
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is the infimum of U with respect to the partial order ≤. There exists a unique infimum measure by [21, Thm. 4.7.5]. We use

the symbol ∨ analogously to ∧ but we represent maxima and suprema with it, rather than minima and infima.

1.2. Channel Model

A channel W is a function from the input set X to the set of all probability measures on the output space (Y,Y):
W : X → P(Y). (4)

Y is called the output set and Y is called the σ-algebra of the output events. We denote the set of all channels from the input

set X to the output space (Y,Y) by P(Y|X). For any p ∈ P(X) and W ∈ P(Y|X), the probability measure whose marginal

on X is p and whose conditional distribution given x is W (x ) is denoted by p⊛W . Until §5.4, we confine our discussion to

the input distributions in P(X) and avoid the subtleties related to measurability. The more general case of input distributions

in P(X ) is considered4 in §5.4.

A channel W is called a discrete channel if both X and Y are finite sets. For any n ∈ Z+ and channels Wt :Xt →P(Yt )
for t ∈ {1, . . . , n}, the length n product channel W[1,n] :X

n
1 →P(Yn

1 ) is defined via the following relation:

W[1,n](x
n
1 ) =

⊗n

t=1
Wt(xt ) ∀xn

1 ∈ Xn
1 .

A product channel is stationary iff Wt =W for all t∈{1, . . . , n} for some W :X→P(Y).
For any ℓ ∈ Z+ , an ℓ dimensional cost function ρ is a function from the input set to Rℓ that is bounded from below, i.e.

that is of the form ρ : X → Rℓ
≥z for some z ∈ R . We assume without loss of generality that5

infx∈X ρı(x ) ≥ 0 ∀ı ∈ {1, . . . , ℓ}.
We denote the set of all cost constraints that can be satisfied by some member of X by Γ ex

ρ and the set of all cost constraints

that can be satisfied by some member of P(X) by Γρ:

Γ ex

ρ , {̺ ∈ Rℓ
≥0 : ∃x ∈ X s.t. ρ(x ) ≤ ̺} (5)

Γρ , {̺ ∈ Rℓ
≥0 : ∃p ∈ P(X) s.t.

∑
x
p(x )ρ(x ) ≤ ̺}. (6)

Then both Γ ex
ρ and Γρ have non-empty interiors and Γρ is the convex hull of Γ ex

ρ , i.e. Γρ = chΓ ex
ρ .

A cost function on a product channel is said to be additive iff it can be written as the sum of cost functions defined on

the component channels. Given Wt :Xt →P(Yt) and ρt :Xt →Rℓ
≥0 for t ∈{1, . . . , n}, we denote the resulting additive cost

function on Xn
1 for the channel W[1,n] by ρ[1,n], i.e. [22]–[43]

ρ[1,n](x
n
1 ) =

∑n

t=1
ρt(xt ) ∀xn

1 ∈ Xn
1 .

1.3. Previous Work and Main Contributions

The following is a list of our contributions that are important for a thorough understanding of the Augustin information

measures and related results that have been reported before.

I. For all α in (0, 1), [6, Lemma 34.2] of Augustin asserts the existence of a unique probability measure qα,p satisfying

Iα(p;W) = Dα(W ‖ qα,p | p) and characterizes qα,p in terms of the operator6 Tα,p (·) as follows:

• Tα,p (qα,p) = qα,p and qα,p ∼ q1,p .

• If q1,p≺q and Tα,p (q) = q , then qα,p = q .

• lim→∞
∥∥qα,p− Tα,p (q1,p)

∥∥ = 0.

• Dα(W ‖ q| p) ≥ Iα(p;W) +Dα(qα,p‖ q) for7 all q ∈ P(Y).
We can not verify the correctness of the proof of [6, Lemma 34.2]; we discuss our reservations in Appendix C.

Lemma 13-(c) is proved8 relying on the ideas employed in Augustin’s proof of [6, Lemma 34.2]. Lemma 13-(c)

implies all assertions of [6, Lemma 34.2] except for lim→∞
∥∥qα,p− Tα,p (q1,p)

∥∥ = 0; Lemma 13-(c) establishes

lim→∞
∥∥qα,p− Tα,p

(
qg
α,p

)∥∥ = 0 instead —see (37) and Remark 6. Unlike [6, Lemma 34.2], Lemma 13-(c) also bounds

4The structure described in (4) is not sufficient on its own to ensure the existence of a unique p⊛W with the desired properties for all p in P(X ). The
existence of such a unique p⊛W is guaranteed for all p in P(X ), if W is a transition probability from (X,X ) to (Y,Y), i.e. a member of P(Y|X ) rather
than P(Y|X).

5Augustin [6, §33] has an additional hypothesis,
∨

x∈X ρ(x) ≤ 1. This hypothesis, however, excludes certain important cases, such as the Gaussian
channels.

6The operator Tα,p (·), defined in (28), is determined uniquely by α and p and well-defined for all q with finite Dα(W ‖ q | p).
7To be precise [6, Lemma 34.2] asserts the inequality Dα(W ‖ q | p) ≥ Iα(p;W) + α

2
‖qα,p − q‖2 rather than the one given above. But Augustin proves

the inequality given above first and then uses Pinsker’s inequality to establish the one given in [6, Lemma 34.2].
8One can prove Lemma 13-(c) using the ideas employed in the proof of Lemma 13-(d), as well.
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Dα(W ‖ q| p) from above. This bound is new to the best of our knowledge. The following inequality summarizes the

upper and lower bounds on Dα(W ‖ q| p) established in Lemma 13-(c,d):

D1∨α(qα,p‖ q) ≥ Dα(W ‖ q| p)− Iα(p;W) ≥ D1∧α(qα,p‖ q) ∀q ∈ P(Y). (7)

For finite Y case, the existence of a q in P(Y) satisfying both q ∼ q1,p and Tα,p (q) = q has been discussed by other

authors. We make a brief digression to point out the discussion of the aforementioned existence result in these works.

• While deriving the sphere packing bound for the constant composition codes on discrete stationary product channels,

Fano implicitly asserts the existence of a fixed point that is equivalent to q1,p for each α in (0, 1), see [22, §9.2,

(9.24) & p. 292]. Fano, however, does not explain why such a fixed point must exist and does not elaborate on its

uniqueness or on its relation to qα,p in [22, §9.2].

• While establishing the equivalence of his expression for the sphere packing exponent in finite Y case to the one

provided by Fano in [22], Haroutunian proved the existence of a fixed point that is equivalent to q1,p for each α in

(0, 1), see [18, (16)-(19)].

• While discussing the random coding bounds for discrete stationary product channels, Poltyrev makes an observation

that is equivalent to asserting for each α in [1/2, 1) the existence of a fixed point that is equivalent to q1,p , see [19,

(3.15), (3.16) and Thm. 3.2]. Poltyrev, however, does not formulate his observations as a fixed point property.

In our understanding, the main conceptual contribution of [6, Lemma 34.2] is the characterization of the Augustin mean

as a fixed point of Tα,p (·) that is equivalent to q1,p . Bounds such as the one given in (7) follow from this observation

via Jensen’s inequality.

II. For α ∈ (1,∞), Lemma 13-(d) establishes the existence of a unique Augustin mean qα,p and proves that it satisfies (7)

as well as the following two assertions:

• Tα,p (qα,p) = qα,p and qα,p ∼ q1,p .

• If Tα,p (q) = q , then qα,p = q .

Lemma 13-(d) is new to the best of our knowledge. For α ∈ (1,∞) case, neither the characterization of qα,p in terms

of Tα,p (·), nor the inequalities given in (7) have been reported before, even for finite Y case.

III. Iα(p;W) is a continuously differentiable function of α from R+ to [0, ℏ(p)] by Lemma 17-(e).

IV. The following minimax identity is established in Theorem 1 for any convex constraint set A

supp∈A infq∈P(Y)Dα(W ‖ q| p) = infq∈P(Y) supp∈A Dα(W ‖ q| p) .
Theorem 1 establishes the existence of a unique Augustin center, qα,W ,A, for any convex A with finite Augustin

capacity and the convergence of {qα,p(ı)}ı∈Z+ to qα,W ,A in total variation topology for any {p(ı)}ı∈Z+ ⊂ A satisfying

limı→∞ Iα
(
p(ı);W

)
= Cα,W ,A. Augustin proved this result only for α’s in (0, 1] and the constraint sets determined by

cost constraints, see [6, Lemma 34.7]. For A = P(X) case similar results were proved by Csiszár [2, Proposition 1]

assuming both X and Y are finite sets and by van Erven and Harremoës [8, Thm. 34] assuming Y is a finite set.

V. The following bound in terms of the Augustin capacity and center established in Lemma 21 is new to the best of our

knowledge

supp∈A Dα(W ‖ q| p) ≥ Cα,W,A +Dα∧1(qα,W,A‖ q) ∀q ∈ P(Y).
A similar bound has been conjectured by van Erven and Harremoës in [8]. For the Rényi capacity and center, we have

proved that conjecture and extended it to the constrained case elsewhere, see [13, Lemmas 19 & 25].

VI. The Augustin-Legendre information I λα (p;W), defined as Iα(p;W) − λ · Ep [ρ], as well as the resulting capacity, center,

and radius are new concepts that have not been studied before, except for α = 1 case. Thus, formally speaking, all

of the propositions in §5.2 are new. The analysis presented in §5.2 is a standard application of the convex conjugation

techniques to characterize the cost constrained Augustin capacity and center. A similar analysis for α = 1 case is provided

by Csiszár and Körner in [5, Ch. 8] for discrete channels with a single cost constraint. The most important conclusions

of the analysis presented in §5.2 are the followings:

• Cλ
α,W , defined as supp∈P(X) I

λ
α (p;W), satisfies Cλ

α,W = sup̺≥0 Cα,W ,̺ − λ · ̺ for all λ ∈ Rℓ
≥0 by (76).

• Cα,W,̺ = infλ≥0 C
λ
α,W +λ ·̺ for all ̺ ∈ intΓρ and the set of λ’s achieving this infimum form a non-empty convex

compact set whenever Cα,W,̺ is finite by Lemma 29.

• Cλ
α,W = Sλ

α,W where Sλ
α,W is defined as infq∈P(Y) supx∈XDα(W (x )‖ q)− λ · ρ(x ) by Theorem 2.

• If Cλ
α,W < ∞, then there exists a unique A-L center qλα,W satisfying Cλ

α,W = supx∈XDα

(
W (x )‖ qλα,W

)
−λ ·ρ(x ).

Furthermore, limı→∞
∥∥qα,p − qλα,W

∥∥ = 0 for all {p(ı)}ı∈Z+ ⊂ P(X) satisfying limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W by

Theorem 2.

• If Cα,W,̺ = Cλ
α,W + λ · ̺ < ∞ for a λ ∈ Rℓ

≥0 , then qα,W,̺ = qλα,W by Lemma 31.

• If W[1,n] is a product channel with an additive cost function, then Cλ
α,W[1,n]

=
∑n

t=1 C
λ
α,Wt

for all λ ∈ Rℓ
≥0 , α ∈ R+

and whenever either of them exists qλα,W[1,n]
is equal to

⊗n

t=1 q
λ
α,Wt

by Lemma 32.
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VII. The Rényi-Gallager information I gλ
α (p;W) is a generalization of the Rényi information I g

α(p;W) with a Lagrange multiplier

because I g0
α (p;W) = I g

α(p;W). This quantity was first employed by Gallager in [14] by a different parametrization and

scaling; later considered by Arimoto [23, §IV], Augustin [6], Ebert [16], Richters [17], Oohama [24], [25], and Vazquez-

Vilar, Martinez, and Fàbregas [26] with various parametrizations, scalings, and names. We chose the scaling and the

parametrization so as to be compatible with the ones for Augustin-Legendre information. The most important conclusions

of our analysis in §5.3 are the followings:

• C gλ
α,W = Sλ

α,W by Theorem 3, where C gλ
α,W is defined as supp∈P(X) I

gλ
α (p;W).

• If Cλ
α,W < ∞ and limı→∞ I g

α

(
p(ı);W

)
= Cλ

α,W , then limı→∞
∥∥qgλ

α,p − qλα,W
∥∥ = 0 by Theorem 3.

• supx∈XDα(W (x )‖ q) − λ · ρ(x ) ≥ Cλ
α,W +Dα

(
qλα,W

∥∥ q
)

for all q ∈ P(Y) by Lemma 35.

Lemma 35 is new to the best of our knowledge. For the case when both α ∈ (0, 1) and ∨x∈Xρ(x ) ≤ 1, Theorem 3 is

implied by [6, Lemma 35.2].

While pursuing a similar analysis in [6, §35], Augustin assumed the cost function to be bounded. This hypothesis,

however, excludes certain important and interesting cases such as the Gaussian channels. The issue here is not a matter

of rescaling: certain conclusions of Augustin’s analysis, e.g. [6, Lemma 35.3-(a)], are not correct when the cost function

is unbounded. We do not assume the cost function to be bounded. Thus our model subsumes not only Augustin’s model

in [6, §35] but also other previously considered models, which were either discrete [14, pp. 13-15], [15, §7.3], [23, §IV],

[25], [26] or Gaussian [14, pp. 15,16], [15, §§7.4,7.5], [16], [17], [24].

VIII. For channels with uncountable input sets the Shannon information and capacity is often defined via the probability

measures on the input space (X,X ), rather than the probability mass functions on the input set X. In §5.4, we discuss

how and under which conditions one can make such a generalization for Augustin’s information measures. The most

important conclusions of our analysis are the followings:

• If W is a transition probability (X,X ) to (Y,Y) —i.e. W ∈ P(Y|X )— and Y is countably generated, then

– Iα(p;W) is well defined for all α ∈ R+ and p ∈ P(X ) by (112), (113), and Lemma 37

– I λα (p;W) is well defined for all α ∈ R+ , p ∈ P(X ), and λ ∈ Rℓ
≥0 by (114) provided that ρ is X -measurable.

• If W ∈ P(Y|X ), X is countably separated, Y is countably generated, and ρ is X -measurable, then

– Cλ
α,W = supp∈Aλ I λα (p;W) for all λ in Rℓ

≥0 by Theorem 4 where Aλ is defined as {p ∈ P(X ) : λ ·Ep [ρ] < ∞}.

– If Cλ
α,W < ∞ for a λ in Rℓ

≥0 , then Cλ
α,W = supp∈Aλ Dα

(
W ‖ qλα,W

∣∣ p
)
− λ · Ep [ρ] by Theorem 4.

– Cα,W ,̺ = supp∈A(̺) Iα(p;W) for all ̺ in intΓρ by Theorem 5 where A(̺) is defined as {p∈P(X ) : Ep [ρ] ≤ ̺}.

– If Cα,W ,̺ < ∞ for a ̺ in intΓρ, then Cα,W ,̺ = supp∈A(̺) Dα(W ‖ qα,W ,̺| p) by Theorem 5.

Thus the A-L capacity and center as well as the cost constrained Augustin capacity and center defined via probability

mass functions are equal to the corresponding quantities that might be defined via probability measures on (X,X ),
provided that X is countably separated and Y is countably generated.

2. PRELIMINARIES

2.1. The Rényi Divergence

Definition 1. For any α ∈ R+ and w , q ∈ M+

(Y) the order α Rényi divergence between w and q is

Dα(w‖ q) ,
{

1
α−1 ln

∫
(dwdν )

α(dqdν )
1−αν(dy) α 6= 1

∫
dw
dν

[
ln dw

dν − ln dq
dν

]
ν(dy) α = 1

(8)

where ν is any measure satisfying w≺ν and q≺ν.

Customarily, the Rényi divergence is defined for pairs of probability measures —see [8] and [27] for example— rather than

pairs of non-zero finite measures. We adopt this slightly more general definition because it allows us to use the Rényi divergence

to express certain observations more succinctly, see Lemma 1 in the following and §5.3. For pairs of probability measures

Definition 1 is equivalent to usual definition employed in [8] by [8, Thm. 5].

Lemma 1 ([13, Lemma 8]). Let α be a positive real number and w , q , v be non-zero finite measures on (Y,Y).
• If v ≤ q , then Dα(w‖ q) ≤ Dα(w‖ v).
• If q = γv for some γ ∈ R+ and either w is a probability measure or α 6= 1, then Dα(w‖ q) = Dα(w‖ v)− ln γ.

If both arguments of the Rényi divergence are probability measures, then it is positive unless the arguments are equal to

one another by Lemma 2.

Lemma 2 ([8, Thm. 3, Thm. 31]). For any α ∈ R+ , probability measure w and q on (Y,Y)
Dα(w‖ q) ≥ 1∧α

2 ‖w − q‖2.
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For orders in (0, 1] this inequality is called the Pinsker’s inequality, [28], [29]. For orders in (0, 1) it is possible to bound

the Rényi divergence from above in terms of the total variation distance. For α = 1/2 case [30, eq. (21), p. 364] asserts

D1/2(w‖ q) ≤ 2 ln 2
2−‖w−q‖ . (9)

As a function of its arguments, the order α Rényi divergence is continuous for the total variation topology provided that

α ∈ (0, 1). For arbitrary orders we only have lower semicontinuity, but that holds even for the topology of setwise convergence.

Lemma 3 ([8, Thm. 15]). For any α ∈ R+ , Dα(w‖ q) is a lower semicontinuous function of the pair of probability measures

(w , q) in the topology of setwise convergence.

Lemma 4 ([8, Thm. 17]). For any α ∈ (0, 1), Dα(w‖ q) is a uniformly continuous function of the pair of probability measures

(w , q) in the total variation topology.

The Rényi divergence is convex in its second argument for all positive orders, jointly convex in its arguments for positive

orders that are not greater than one, and jointly quasi-convex in its arguments for all positive orders.

Lemma 5 ([8, Thm. 12]). For all α ∈ R+ , w , q0, q1 ∈ P(Y), β ∈ (0, 1), and ν satisfying (q0 + q1)≺ν,

Dα(w‖ βq1 + (1− β)q0) ≤ βDα(w‖ q1) + (1− β)Dα(w‖ q0) .
Furthermore, the equality holds iff dq1

dν = dq0
dν w -almost surely.

Lemma 6 ([8, Thm. 11]). For all α ∈ (0, 1], w0,w1, q0, q1 ∈ P(Y), β ∈ (0, 1), and ν satisfying (w0 + w1 + q0 + q1)≺ν,

Dα(βw1 + (1− β)w0‖βq1 + (1− β)q0) ≤ βDα(w1‖ q1) + (1− β)Dα(w0‖ q0) . (10)

Furthermore, for α = 1 the equality holds iff dw0

dν
dq1
dν = dw1

dν
dq0
dν and for α ∈ (0, 1) the equality holds iff dw0

dν
dq1
dν = dw1

dν
dq0
dν

and Dα(w1‖ q1) = Dα(w0‖ q0).
Lemma 7 ([8, Thm. 13]). For all α ∈ R+ , w0,w1, q0, q1 ∈ P(Y), and β ∈ (0, 1)

Dα(βw1 + (1− β)w0‖βq1 + (1 − β)q0) ≤ Dα(w1‖ q1) ∨Dα(w0‖ q0) .
Lemma 8 ([8, Thm. 3, Thm. 7]). For all w , q ∈ P(Y), Dα(w‖ q) is a nondecreasing and lower semicontinuous function of

α on R+ that is continuous on (0, (1 ∨ χw,q)] where χw,q , sup{α : Dα(w‖ q) < ∞}.

Since Dα(w‖ q) = α
1−αD1−α(q‖w) for all α ∈ (0, 1), Lemma 8 and (9) imply

Dα(w‖ q) ≤
{
D1/2(w‖ q) if α ∈ (0, 1/2]
α

1−αD1/2(w‖ q) if α ∈ (1/2, 1)

≤ 2
1−α ln 2

2−‖w−q‖ ∀α ∈ (0, 1). (11)

For a slightly tighter bound, see [30, eq. (24), p. 365].

If G is a sub-σ-algebra of Y , then for any w and q in P(Y) the identities w|G(E)=w(E) for all E∈G and q|G(E)= q(E)
for all E∈G uniquely define probability measures w|G and q|G on (Y,G). We denote Dα

(
w|G
∥∥ q|G

)
by DG

α (w‖ q).
Lemma 9 ([8, Thm. 21]). Let Y1 ⊂ Y2 ⊂ · · · ⊂ Y be an increasing family of σ-algebras, and let Y∞ = σ(∪∞

ı=1Yı) be the

smallest σ-algebra containing them. Then for any order α ∈ R+

limı→∞ DYı
α (w‖ q) = DY∞

α (w‖ q) .

2.2. Tilted Probability Measure

Definition 2. For any α ∈ R+ and w , q ∈ P(Y) satisfying Dα(w‖ q) < ∞, the order α tilted probability measure wq
α is

dwq
α

dν , e(1−α)Dα(w‖q)(dwdν )
α(dqdν )

1−α.

Note that w
q
1 = w for any q satisfying D1(w‖ q) < ∞. For other orders one can confirm the following identity by

substitution: if Dα(w‖ q) < ∞, then for any v ∈ P(Y) satisfying both D1(v‖w) < ∞ and D1(v‖ q) < ∞ also satisfies

1
1−αD1(v‖wq

α) +Dα(w‖ q) = α
1−αD1(v‖w) +D1(v‖ q) .

This identity is used to derive the following variational characterization of the Rényi divergence for orders other than one.

Lemma 10 ([8, Thm. 30]). For any w , q ∈ P(Y)

Dα(w‖ q) =
{
infv∈P(Y)

α
1−αD1(v‖w) +D1(v‖ q) α ∈ (0, 1)

supv∈P(Y)
α

1−αD1(v‖w) +D1(v‖ q) α ∈ (1,∞)
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where α
1−αD1(v‖w)+D1(v‖ q) stands for −∞ when α ∈ (1,∞) and D1(v‖w) = D1(v‖ q) = ∞. Furthermore, if Dα(w‖ q)

is finite and either α ∈ (0, 1) or D1(w
q
α‖w) < ∞, then

Dα(w‖ q) = α
1−αD1(w

q
α‖w) +D1(w

q
α‖ q) . (12)

We have observed in Lemma 8 that Dα(w‖ q) is continuous in α on the closure of the interval that it is finite. Lemma 11,

in the following, establishes the analyticity of Dα(w‖ q) in α on the interior of the interval that Dα(w‖ q) is finite. Lemma 11

also establishes the analyticity —and hence the finiteness— of D1(w
q
α‖w) and D1(w

q
α‖ q) on the same interval. This allows

us to assert the validity of (12) on the same interval:

Dα(w‖ q) = α
1−αD1(w

q
α‖w) +D1(w

q
α‖ q) ∀α ∈ (0, χw,q).

Lemma 11. For any w , q ∈ P(Y) satisfying χw,q > 0, for χw,q , sup{α : Dα(w‖ q) < ∞}, Dα(w‖ q), D1(w
q
α‖w), and

D1(w
q
α‖ q) are analytic functions of α on (0, χw,q). Furthermore,

∂κDα(w‖q)
∂ακ

∣∣∣
α=φ

=




κ!

κ∑
t=0

(−1)κ−t

(φ−1)κ−t+1G
t
w,q (φ) φ 6= 1

κ!Gκ+1
w,q (1) φ = 1

(13)

where Gt
w,q(φ) is defined in terms of the set Jt as follows

Jt , {(1, 2, . . . , t ) : ı ∈ Z≥0 ∀ı and 11 + 22 + . . .+ tt = t}, (14)

Gt
w,q(φ) ,




(φ − 1)Dφ(w‖ q) t = 0
∑

Jt

−(1+2+···+t−1)!
1!2!...t !

∏t

ı=1

(
(−1)
ı! Ew

q

φ

[(
ln dw

dν − ln dq
dν

)ı])ı
t ∈ Z+

. (15)

Lemma 11 is new to the best of our knowledge; it is proved in Appendix A using standard results on the continuity and

differentiability of parametric integrals and Faà di Bruno formula for derivatives of compositions of smooth functions.

Note that J1 = {(1)}, J2 = {(2, 0), (0, 1)}, and J3 = {(3, 0, 0), (1, 1, 0), (0, 0, 1)}. Thus one can confirm using (15) by

substitution that

G1
w,q(φ) = Ew

q

φ
[ξ]

G2
w,q(φ) =

1
2

(
Ew

q

φ

[
ξ2
]
−Ew

q

φ
[ξ]2
)

= 1
2Ew

q

φ

[(
ξ − Ew

q

φ
[ξ]
)2]

G3
w,q(φ) =

1
3!Ew

q

φ

[
ξ3
]
− 1

2Ew
q

φ

[
ξ2
]
Ew

q

φ
[ξ] + 1

3Ew
q

φ
[ξ]3 = 1

3!Ew
q

φ

[(
ξ −Ew

q

φ
[ξ]
)3]

where ξ = ln dw
dν − ln dq

dν . If we substitute these expressions for G1
w,q (φ), G

2
w,q(φ), and G3

w,q(φ) in (13) and use the identity

ξ = 1
φ−1

(
ln

dwq

φ

dw +G0
w,q(φ)

)
which holds w

q
φ -almost surely for φ ∈ (0, χw,q) \ {1}, we get the following more succinct

expressions for the first two derivatives of Dα(w‖ q) with respect to α:

∂
∂αDα(w‖ q)

∣∣
α=φ

=





1
(φ−1)2D1

(
w

q
φ

∥∥∥w
)

φ 6= 1

1
2Ew

[(
ln dw

dq −D1(w‖ q)
)2]

φ = 1
, (16)

∂2

∂α2Dα(w‖ q)
∣∣∣
α=φ

=





1
(φ−1)3

(
Ew

q

φ

[(
ln

dwq

φ

dw

)2]
− 2D1

(
w

q
φ

∥∥∥w
)
−
[
D1

(
w

q
φ

∥∥∥w
)]2)

φ 6= 1

1
3Ew

[(
ln dw

dq −D1(w‖ q)
)3]

φ = 1
. (17)

Analyticity of Dα(w‖ q) on (0, χw,q) implies that for any φ ∈ (0, χw,q) there exists an open interval containing φ on which

Dα(w‖ q) is equal to the power series determined by the derivatives of Dα(w‖ q) at α = φ. If we have a finite collection

of pairs of probability measures {(wı, qı)}ı∈I, then for any φ that is in (0, χwı,qı) for all ı ∈ I there exists an open interval

containing φ on which each Dα(wı‖ qı) is equal to the power series determined by the derivatives of Dα(wı‖ qı) at α = φ.

When the collection of pairs of probability measures is infinite, then there might not be an open interval containing φ that

is contained in all (0, χwı,qı)’s. Lemma 12, in the following, asserts the existence of such an interval when Dβ(wı‖ qı) is

uniformly bounded for a β > φ for all ı ∈ I. In addition, Lemma 12 asserts uniform approximation error terms, over all ı ∈ I,

for the power series on that interval.
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Lemma 12. For any γ, φ, β ∈ R+ satisfying φ ∈ (0, β) and w , q ∈ P(Y) satisfying Dβ(w‖ q) ≤ γ,

∣∣∣∣
∂κDα(w‖q)

∂ακ

∣∣∣
α=φ

∣∣∣∣ ≤
{
κ!τκ+1κ φ 6= 1

κ!τκ+1 φ = 1
(18)

∣∣∣∣Dη(w‖ q)−
∑κ−1

ı=0

(η−φ)ı

ı!
∂ıDα(w‖q)

∂αı

∣∣∣
α=φ

∣∣∣∣ ≤





τκ+1|η−φ|κ
1−|η−φ|τ

[
κ− 1 + 1

1−|η−φ|τ

]
φ 6= 1

τκ+1|η−φ|κ
1−|η−φ|τ φ = 1

∀η : |η − φ| ≤ 1
τ (19)

where

τ ,





1
|φ−1| ∨

[
1+e(1∨β)γ

φ∧(β−φ) + γ
]

φ 6= 1

1+eβγ

1∧(β−1) φ = 1
. (20)

Lemma 12 is new to the best of our knowledge; it is proved in Appendix A using (13) together with the elementary properties

of the real analytic functions and power series.

2.3. The Conditional Rényi Divergence and Tilted Channel

The conditional Rényi divergence and the tilted channel allows us to write certain frequently used expressions more succinctly.

Definition 3. For any α ∈ R+ , W : X → P(Y), Q : X → P(Y), and p ∈ P(X) the order α conditional Rényi divergence for

the input distribution p is

Dα(W ‖Q | p) ,
∑

x∈X
p(x )Dα(W (x )‖Q(x )) . (21)

If ∃q ∈ P(Y) such that Q(x ) = q for all x ∈ X, then we denote Dα(W ‖Q | p) by Dα(W ‖ q| p).
Remark 1. In [11] and [31], Dα(W ‖Q | p) stands for Dα(p⊛W ‖ p⊛Q). For α = 1 case the convention used in [11] and [31]

is equivalent to ours; for α 6= 1 case, however, it is not. If either α = 1 or Dα(W (x )‖Q(x )) has the same value for all x ’s with

positive p(x ), then Dα(p⊛W ‖ p⊛Q) =
∑

x p(x )Dα(W (x )‖Q(x )), else Dα(p⊛W ‖ p⊛Q) <
∑

x p(x )Dα(W (x )‖Q(x )) for

α ∈ (0, 1) and Dα(p⊛W ‖ p⊛Q) >
∑

x p(x )Dα(W (x )‖Q(x )) for α ∈ (1,∞). The inequalities follow from the Jensen’s

inequality and the strict concavity of the natural logarithm function.

Definition 4. For any α ∈ R+ , W : X → P(Y) and Q : X → P(Y), the order α tilted channel WQ
α is a function from

{x : Dα(W (x )‖Q(x )) < ∞} to P(Y) given by

dWQ
α (x)
dν , e(1−α)Dα(W (x)‖Q(x))

[
dW (x)

dν

]α [
dQ(x)
dν

]1−α

. (22)

If ∃q ∈ P(Y) such that Q(x ) = q for all x ∈ X, then we denote WQ
α by W q

α .

3. THE AUGUSTIN INFORMATION

The main aim of this section is to introduce the concepts of Augustin information and mean. We define the order α Augustin

information for the input distribution p and establish the existence of a unique Augustin mean for any input distribution p and

positive finite order α in §3.1. After that we analyze the Augustin information, first as a function of the input distribution for

a given order in §3.2 and then as a function of the order for a given input distribution in §3.3. We conclude our discussion

by comparing the Augustin information with the Rényi information and characterizing each quantity in terms of the other in

§3.4. Some of the most important observations about the Augustin information and mean were first reported by Augustin in

[6, §34] for orders not exceeding one. This is why we suggest naming these concepts after him. Proof of the lemmas presented

in this section are presented in Appendix B.

3.1. Existence of a Unique Augustin Mean

Definition 5. For any α ∈ R+ , W : X→P(Y), and p ∈ P(X) the order α Augustin information for the input distribution p is

Iα(p;W) , infq∈P(Y)Dα(W ‖ q| p) . (23)

One can confirm by substitution that

D1(W ‖ q| p) = D1(W ‖ q1,p | p) +D1(q1,p‖ q) ∀q ∈ P(Y) (24)

where

q1,p ,
∑

x
p(x )W (x ). (25)
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Then Lemma 2 and (23) imply

I1(p;W) = D1(W ‖ q1,p | p) .
Thus the order one Augustin information has a closed form expression, which is equal to the mutual information. For other

orders, however, Augustin information does not have a closed form expression. Nonetheless, Lemma 13, presented in the

following, establishes the existence of a unique probability measure qα,p satisfying Iα(p;W) = Dα(W ‖ qα,p | p) for9 any

positive order α and input distribution p. Furthermore, parts (c) and (d) of Lemma 13 present an alternative characterization

of qα,p by showing that qα,p is the unique fixed point of the operator Tα,p (·) satisfying q1,p≺qα,p . Lemma 13-(e) provides

an alternative characterization of the Augustin information for orders other than one.10

Definition 6. Let α be a positive real number and W be a channel of the form W : X → P(Y).
• For any p ∈ M

+

(X), the order α mean measure for the input distribution p is given by

dµα,p

dν ,
[∑

x
p(x )

(
dW (x)

dν

)α] 1
α

(26)

where ν is any measure for which (
∑

x p(x )W (x ))≺ν.

• For any p ∈ P(X), the order α Rényi mean for the input distribution p is given by

qg

α,p ,
µα,p

‖µα,p‖ . (27)

• For any p ∈ P(X), the order α Augustin operator for the input distribution p, i.e. Tα,p (·) : Qα,p → P(Y), is given by

Tα,p (q) ,
∑

x
p(x )W q

α (x ) ∀q ∈ Qα,p (28)

where Qα,p , {q ∈ P(Y) : Dα(W ‖ q| p) < ∞} and the tilted channel W q
α is defined in (22). Furthermore, T0α,p (q) = q

and Tı+1
α,p (q) , Tα,p

(
Tıα,p (q)

)
for any non-negative integer ı.

Lemma 13. Let W be a channel of the form W : X → P(Y) and p be an input distribution in P(X).

(a) Iα(p;W) ≤ Dα(W ‖ q1,p | p) ≤ ℏ(p) < ∞ for all α ∈ R+ where q1,p is defined in (25).

(b) I1(p;W) = D1(W ‖ q1,p | p). Furthermore,

D1(W ‖ q| p) − I1(p;W) = D1(q1,p‖ q) ∀q ∈ P(Y). (29)

(c) If α ∈ (0, 1), then ∃!qα,p such that Iα(p;W) = Dα(W ‖ qα,p | p). Furthermore,

Tα,p (qα,p) = qα,p , (30)

lim
→∞

∥∥qα,p− T

α,p

(
qg

α,p

)∥∥ = 0, (31)

D1(qα,p‖ q) ≥ Dα(W ‖ q| p)− Iα(p;W) ≥ Dα(qα,p‖ q) ∀q ∈ P(Y), (32)

and qα,p ∼ q1,p . In addition,11 if q1,p≺q and Tα,p (q) = q , then qα,p = q .

(d) If α ∈ (1,∞), then ∃!qα,p such that Iα(p;W) = Dα(W ‖ qα,p | p). Furthermore,

Tα,p (qα,p) = qα,p , (33)

Dα(qα,p‖ q) ≥ Dα(W ‖ q| p)− Iα(p;W) ≥ D1(qα,p‖ q) ∀q ∈ P(Y), (34)

and qα,p ∼ q1,p . In addition, if Tα,p (q) = q , then qα,p = q .

(e) If α ∈ R+ \ {1}, then

Iα(p;W) = α
1−αD1(W

qα,p
α ‖W | p) + I1(p;W

qα,p
α ) (35)

=

{
infV∈P(Y|X)

α
1−αD1(V ‖W | p) + I1(p;V) α ∈ (0, 1)

supV∈P(Y|X)
α

1−αD1(V ‖W | p) + I1(p;V) α ∈ (1,∞)
(36)

= α
1−α infV∈P(Y|X)

(
D1(V ‖W | p) + 1−α

α I1(p;V)
)
.

9This is rather easy to prove when Y is a finite set. The uniqueness of qα,p follows from the strict convexity of the Rényi divergence in its second argument
described in Lemma 5. If Y is finite, then P(Y) is compact and the existence of qα,p follows from the lower semicontinuity of the Rényi divergence in its
second argument —which follows from Lemma 3— and the extreme value theorem for the lower semicontinuous functions [32, Ch3§12.2]. For channels with
arbitrary output spaces, however, P(Y) is not compact; thus we can not invoke the extreme value theorem to establish the existence of qα,p .

10This alternative characterization is employed to prove the equivalence of two definitions of the sphere packing exponent and the strong converse exponent.
11Note that Tα,p (q) = q , on its own, does not imply qα,p = q for α’s in (0, 1). Consider for example a binary symmetric channel and let q be the

probability measure that puts all of its probability to one of the output letters. Then Tα,p (q) = q , but qα,p 6= q , for all p ∈ P(X) and α ∈ (0, 1).
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The convergence described in (31) holds not just for the Rényi mean qg
α,p but also for certain other probability measures,

as well. Remark 6 in Appendix B describes how one can establish the following more general convergence result for any

α ∈ (0, 1) and p ∈ P(X):

lim→∞
∥∥qα,p− T


α,p (q)

∥∥ = 0 if q ∼ q1,p and ess supq1,p

∣∣∣ln dq
dq1,p

∣∣∣ < ∞. (37)

Part (a) is proved using Lemma 1; Iα(p;W) ≤ ℏ(p) was proved by Csiszár through a different argument in [2, (24)]. Part (b),

which is well known, is proved by substitution. Part (c) is due to12 Augustin [6, Lemma 34.2]. Part (d) is new to the best our

knowledge. Part (e) was proved for the finite Y case by Csiszár [2, (A24), (A27)].

Definition 7. For any α ∈ R+ , W : X → P(Y), p ∈ P(X) the unique probability measure qα,p on (Y,Y) satisfying

Iα(p;W) = Dα(W ‖ qα,p | p) is called the order α Augustin mean for the input distribution p.

Lemma 2 and (29), (32), (34), imply the following bound, which is analogous to [33, Thm. 3.1] of Csiszár:
√
2Dα(W ‖q|p)−Iα(p;W)

α∧1 ≥ ‖qα,p − q‖ ∀q ∈ P(Y), ∀α ∈ R+ .

The Augustin information and mean have closed form expressions only for α = 1; for other orders they do not have closed

form expressions. However, the fixed point property Tα,p (qα,p) = qα,p established in Lemma 13-(c,d) and the definition of

Tα,p (·) given in (28) imply the following identity for the Augustin mean:

dqα,p

dν =
[∑

x
p(x )

(
dW (x)

dν

)α
e(1−α)Dα(W (x)‖qα,p)

] 1
α ∀ν : q1,p≺ν. (38)

In §3.3, we use this identity in lieu of a closed form expression while analyzing Iα(p;W) and qα,p as a function of α.

Lemma 14. For any length n product channel W[1,n] : X
n
1 → P(Yn

1 ) and input distribution p ∈ P(Xn
1 ) we have

Iα
(
p;W[1,n]

)
≤
∑n

t=1
Iα(pt ;Wt) (39)

for all α ∈ R+ where pt ∈ P(Xt ) is the marginal of p on Xt . Furthermore, the inequality in (39) is an equality for an α ∈ R+

iff qα,p satisfies

qα,p =
⊗n

t=1
qα,pt

. (40)

If p =
⊗n

t=1 pt , then (40) holds for all α ∈ R+ and consequently (39) holds as an equality for all α ∈ R+ .

3.2. Augustin Information as a Function of the Input Distribution

The order α Augustin information for the input distribution p is defined as the infimum of a family of conditional

Rényi divergences, which are linear in p. Then the Augustin information is concave in p, because pointwise infimum of

a family of concave functions is concave. Lemma 15 strengthens this observation using Lemma 13.

Lemma 15. For any α ∈ R+ and W : X → P(Y), Iα(p;W) is a concave function of p satisfying

Iα(pβ ;W) ≥ βIα(p1;W) + (1− β)Iα(p0;W) + βDα∧1

(
qα,p1‖ qα,pβ

)
+ (1− β)Dα∧1

(
qα,p0‖ qα,pβ

)
(41)

Iα(pβ ;W) ≤ βIα(p1;W) + (1− β)Iα(p0;W) + βDα∨1

(
qα,p1‖ qα,pβ

)
+ (1− β)Dα∨1

(
qα,p0‖ qα,pβ

)
(42)

Iα(pβ ;W) ≤ βIα(p1;W) + (1− β)Iα(p0;W) + ℏ(β) −Dα∧1

(
qα,pβ

∥∥βqα,p1 + (1 − β)qα,p0

)
(43)

where pβ = βp1 + (1− β)p0 for all p0, p1 ∈ P(X) and β ∈ [0, 1].

Lemma 15 implies that for any positive order α and channel W , the order α Augustin information Iα(p;W) is a continuous

function of the input distribution p iff supp∈P(X) Iα(p;W) is finite.13 Furthermore, if supp∈P(X) Iη(p;W) is finite for an η ∈ R+

then {Iα(p;W)}α∈(0,η] is uniformly equicontinuous in p on P(X).
In order to see why the finiteness of supp∈P(X) Iα(p;W) is necessary for the continuity, note that the non-negativity of the

Rényi divergence for probability measures and (41) imply that

Iα(pβ ;W) − Iα(p0;W) ≥ β(Iα(p1;W)− Iα(p0;W)) + βDα∧1

(
qα,p1‖ qα,pβ

)
+ (1− β)Dα∧1

(
qα,p0‖ qα,pβ

)

≥ β(Iα(p1;W)− Iα(p0;W)).

12To be precise [6, Lemma 34.2] does not include the assertion D1(qα,p‖ q) ≥ Dα(W ‖ q | p) − Iα(p;W) and claims (31) for q1,p instead of q
g
α,p . We

cannot verify the correctness of Augustin’s proof of [6, Lemma 34.2], see Appendix C for a more detailed discussion.
13The Rényi information, discussed in §3.4, has already shown to satisfy analogous relations, see [13, Lemma 16-(d,e)]. The only substantial subtlety

is that for orders in (0, 1) the Rényi information is a continuous function of p even when the corresponding capacity expression is infinite because the
Rényi information is quasi-concave rather than concave in p for orders in (0, 1), see [13, Lemma 6-(a)].
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On the other hand ‖pβ − p0‖ ≤ 2β. Thus if there exists a {pı}ı∈Z+ ⊂ P(X) such that limı↑∞ Iα(pı;W) = ∞ then Iα(p;W) is

discontinuous at every p in P(X).
The converse statement, i.e. the sufficiency, can be established together with the equicontinuity. For any p0, p1 ∈ P(X) such

that p0 6= p1 let s∧, s1, and s0 be

s∧ = p1∧p0

‖p1∧p0‖ ,

s1 = p1−p1∧p0

1−‖p1∧p0‖ ,

s0 = p0−p1∧p0

1−‖p1∧p0‖ .

Then s∧, s1, s0 ∈ P(X) and s1 ⊥ s0. On the other hand ‖p1 − p0‖ = 2− 2‖p1 ∧ p0‖. Therefore,

p1 = (2−‖p1−p0‖
2 )s∧ + ‖p1−p0‖

2 s1,

p0 = (2−‖p1−p0‖
2 )s∧ + ‖p1−p0‖

2 s0.

Thus as a result of Lemmas 2 and 15 we have

Iα(p0;W)−Iα(p1;W)≤ℏ
(

‖p1−p0‖
2

)
+ ‖p1−p0‖

2 (Iα(s0;W)− Iα(s1;W))

≤ℏ
(

‖p1−p0‖
2

)
+ ‖p1−p0‖

2 Iα(s0;W) ∀p1, p0 ∈ P(X), α ∈ R+ . (44)

Thus

|Iα(p0;W)−Iα(p1;W)|≤ℏ
(

‖p1−p0‖
2

)
+ ‖p1−p0‖

2 supp∈P(X) Iη(p;W) ∀p1, p0 ∈ P(X), α ∈ (0, η].

3.3. Augustin Information as a Function of the Order

The main goal of this subsection is to characterize the behavior of the Augustin information as a function of the order for

a given input distribution. Lemma 16 presents preliminary observations that facilitate the analysis of Augustin information as

a function of the order; results of this analysis are presented in Lemma 17.

Lemma 16. For any channel W of the form W : X → P(Y) and input distribution p ∈ P(X),

(a) Dα(W (x )‖ qα,p) ≤ ln 1
p(x) ,

(b) [p(x )]
1

α∧1W (x ) ≤ qα,p ,

(c)

∣∣∣ln dqα,p

dq1,p

∣∣∣ ≤ |α−1|
α ln 1

minx :p(x)>0 p(x) .

Bounds given in Lemma 16 follow from (38) via elementary manipulations.

Lemma 17. For any channel W of the form W : X → P(Y) and input distribution p ∈ P(X),

(a) Either (α− 1)Iα(p;W) is a strictly convex function of α from R+ to [−ℏ(p) ,∞) or Iα(p;W) =
∑

x p(x ) ln γ(x ) for some

γ : X → [1,∞) satisfying
dW (x)
dq1,p

= γ(x ) W (x )-a.s. for all x ∈ supp(p) and qα,p = q1,p for all α ∈ R+ .

(b) 1−α
α Iα(p;W) is a nonincreasing and continuous function of α from R+ to R .

(c) Iα(p;W) is a nondecreasing and continuous function of α from R+ to [0, ℏ(p)].
(d) {ln dqα,p

dq1,p
}y∈Y is an equicontinuous family of functions of α on R+ .

(e) Iα(p;W) is a continuously differentiable function of α from R+ to [0, ℏ(p)] such that

∂
∂α Iα(p;W)

∣∣
α=φ

= ∂
∂αDα(W ‖ qφ,p | p)

∣∣
α=φ

(45)

=





1
(φ−1)2D1

(
W

qφ,p

φ

∥∥∥W
∣∣∣ p
)

φ 6= 1

∑
x

p(x)
2 EW (x)

[(
ln dW (x)

dq1,p
−D1(W (x )‖ q1,p)

)2]
φ = 1

. (46)

(f) If (α − 1)Iα(p;W) is strictly convex in α, then I1
(
p;W

qα,p
α

)
—i.e. D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p
)
— is a monotonically increasing

continuous function of α on R+ ; else I1
(
p;W

qα,p
α

)
=
∑

x p(x ) ln γ(x ) —i.e. D1

(
W

qα,p
α

∥∥ qα,p
∣∣ p
)
=
∑

x p(x ) ln γ(x )— for

some γ : X → [1,∞) satisfying
dW (x)
dq1,p

= γ(x ) W (x )-a.s. for all x ∈ supp(p) and qα,p = q1,p for all α ∈ R+ .

(g) limα↓0 I1
(
p;W

qα,p
α

)
= limα↓0 Iα(p;W).

The (strict) convexity of (α − 1)Iα(p;W) in α on R+ is equivalent to the (strict) concavity of the function sI 1
1+s

(p;W) in

s on (−1,∞), see the proof of part (f) for a proof. The concavity of the function sI 1
1+s

(p;W) in s on (−1,∞) and parts (b)

and (c) of Lemma 17 have been reported by Augustin in [6, Lemma 34.3] for orders between zero and one. Parts (a), (d), (e),

(f), and (g) of Lemma 17 are new to the best of our knowledge. Lemma 17 is primarily about the Augustin information as a

function of the order for a given input distribution. Part (d), i.e. the equicontinuity of {ln dqα,p

dq1,p
}y∈Y as a family of functions

of the order α, is derived as a necessary tool for establishing the continuity of the derivative of the Augustin information, i.e.

part (e). Note that Lemma 16-(c) has already established this equicontinuity at α = 1.
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3.4. Augustin Information vs Rényi Information

The Augustin information is not the only information that has been defined in terms of the Rényi divergence; there are

others. The Rényi information, defined first by Gallager14 [14] and then by Sibson [34], is arguably the most prominent one

among them because of its operational significance established by Gallager [14].

Definition 8. For any α ∈ R+ , W : X → P(Y), and p ∈ P(X) the order α Rényi information for the input distribution p is

I g

α(p;W) , infq∈P(Y)Dα(p⊛W ‖ p ⊗ q) . (47)

As noted by Sibson [34], one can confirm by substitution that

Dα(p⊛W ‖ p ⊗ q) = Dα

(
p⊛W ‖ p ⊗ qg

α,p

)
+Dα

(
qg

α,p

∥∥ q
)

∀p ∈ P(X), q ∈ P(Y), α ∈ R+

where qg
α,p is the Rényi mean defined in (27). Then using Lemma 2 we can conclude that

I g

α(p;W) = Dα

(
p⊛W ‖ p ⊗ qg

α,p

)
∀p ∈ P(X), α ∈ R+ , (48)

Dα(p⊛W ‖ p ⊗ q) = I g

α(p;W) +Dα

(
qg

α,p

∥∥ q
)

∀p ∈ P(X), q ∈ P(Y), α ∈ R+ . (49)

For orders other than one the closed form expression given in (48) is equal to the following expression, which is sometimes

taken as the definition of the Rényi information,

I g

α(p;W) = α
α−1 ln ‖µα,p‖. α ∈ R+ \ {1}.

Note that unlike the order α Augustin mean, the order α Rényi mean has a closed form expression for orders other than one,

as well. Furthermore, the inequalities given in equations (29), (32), (34) of Lemma 13 are replaced by the equality given in

(49). A discussion of the Rényi information similar to the one we have presented in this section for the Augustin information

can be found in [13].

The order one Rényi information is equal to the order one Augustin information for all input distributions. For other

orders such an equality does not hold for arbitrary input distributions. However, it is possible to characterize the Augustin

information and the Rényi information in terms of one another through appropriate variational forms. Characterizing the

Augustin information in a variational form in terms of the Rényi information is especially useful, because the Augustin

information does not have a closed form expression whereas the Rényi information does. This characterization also implies

another variational characterization of the Augustin information.

Lemma 18. Let W be a channel of the form W : X → P(Y) and p be an input distribution in P(X).

(a) Let uα,p ∈ P(X) be uα,p(x ) =
p(x)e(1−α)Dα(W (x)‖qα,p)

∑
x̃
p(x̃)e(1−α)Dα(W (x̃)‖qα,p)

for all x ; then

Iα(p;W) = I g

α(uα,p ;W) + 1
α−1D1(p‖ uα,p) (50)

=

{
supu∈P(X) I

g
α(u;W) + 1

α−1D1(p‖ u) α ∈ (0, 1)

infu∈P(X) I
g
α(u;W) + 1

α−1D1(p‖ u) α ∈ (1,∞)
. (51)

(b) Let aα,p ∈ P(X) be aα,p(x ) =
p(x)e(α−1)Dα(W (x)‖q

g
α,p)

∑
x̃ p(x̃)e(α−1)Dα(W (x̃)‖q

g
α,p)

for all x ; then

I g

α(p;W) = Iα(aα,p ;W) − 1
α−1D1(aα,p‖ p) (52)

=

{
infa∈P(X) Iα(a;W) − 1

α−1D1(a‖ p) α ∈ (0, 1)

supa∈P(X) Iα(a;W) − 1
α−1D1(a‖ p) α ∈ (1,∞)

. (53)

(c) Let fα,p : X → R be fα,p(x ) = [Dα(W (x )‖ qα,p)− Iα(p;W)]1{p(x)>0} for all x ; then

Iα(p;W) = α
α−1 lnEν

[(∑
x
p(x )e(1−α)fα,p (x)

[
dW (x)

dν

]α)1/α
]

(54)

= α
α−1 ln inf f :Ep[f ]=0 Eν

[(∑
x
p(x )e(1−α)f (x)

[
dW (x)

dν

]α)1/α
]
. (55)

Lemma 18-(a) was first proved by Poltyrev, [19, Thm. 3.4], in a slightly different form for α ∈ [1/2, 1) case assuming that

Y is finite. Equation (53) of Lemma 18-(b) was first proved by Shayevitz, [10, Thm. 1], for finite Y case. Shayevitz, however,

neither gave the expression for the optimal aα,p , nor asserted its existence in [10]. Lemma 18-(c) was first proved by Augustin,

[6, Lemma 35.7] for orders less than one.15

14Gallager uses a different parametrization and confines his discussion to α ∈ (0, 1) case.
15 [6, Lemma 35.7-(d)] is implied by the stronger inequalities established using (32) and Lemma 18-(c).
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The following inequalities are implied by both u = p point in the variational characterization given in Lemma 18-(a) and

a = p point in the variational characterization given in Lemma 18-(b). These inequalities can also be obtained using the

Jensen’s inequality and the concavity of the natural logarithm function.

Iα(p;W) ≥ I g

α(p;W) α ∈ (0, 1] (56)

Iα(p;W) ≤ I g

α(p;W) α ∈ [1,∞) (57)

4. THE AUGUSTIN CAPACITY

In the previous section we have defined and analyzed the Augustin information and mean; our main aim in this section is

doing the same for the Augustin capacity and center. In §4.1, we establish the existence of a unique Augustin center for all

convex constraint sets with finite Augustin capacity and investigate the implications of the existence of an Augustin center for

a given order and constraint set. In §4.2, we analyze the Augustin capacity and center as a function of the order for a given

constraint set. In §4.3, we bound the Augustin capacity of the convex hull of a collection of constraint sets on a given channel

in terms of the Augustin capacities of individual constraint sets and determine the Augustin capacity of products of constraint

sets on the product channels. Proofs of the propositions presented in this section can be found in Appendix D.

Augustin provided a presentation similar to the current section in [6, §§33,34] and derived many of the key results —such

as the existence of unique Augustin center and its continuity as a function of order, see [6, Lemmas 34.6, 34.7, 34.8]— for

orders not exceeding one. Augustin, however, defines capacity and center only for the subsets of P(X) defined through cost

constraints. We investigate that important special case more closely in §5.

4.1. Existence of a Unique Augustin Center

Definition 9. For any α∈R+ , W :X→P(Y), and A⊂P(X), the order α Augustin capacity of W for constraint set A is

Cα,W,A , supp∈A Iα(p;W) .

When the constraint set A is the whole P(X), we denote the order α Augustin capacity by Cα,W , i.e. Cα,W , Cα,W,P(X).

Using the definition of the Augustin information Iα(p;W) given in (23) we get the following expression for Cα,W,A

Cα,W,A = supp∈A infq∈P(Y) Dα(W ‖ q| p) . (58)

Theorem 1 in the following demonstrates that at least for convex A’s one can exchange the order of the supremum and infimum

without changing the value in the above expression.

Theorem 1. For any order α ∈ R+ , channel W of the form W : X → P(Y), and convex constraint set A ⊂ P(X)

supp∈A infq∈P(Y)Dα(W ‖ q| p) = infq∈P(Y) supp∈A Dα(W ‖ q| p) . (59)

If the expression on the left hand side of (59) is finite, i.e. if Cα,W ,A∈R≥0 , then ∃!qα,W,A∈P(Y), called the order α Augustin

center of W for the constraint set A, satisfying

Cα,W,A = supp∈A Dα(W ‖ qα,W,A| p) . (60)

Furthermore, for every sequence of input distributions {p(ı)}ı∈Z+ ⊂ A satisfying limı→∞ Iα
(
p(ı);W

)
= Cα,W,A, the corre-

sponding sequence of order α Augustin means {qα,p(ı)}ı∈Z+ is a Cauchy sequence for the total variation metric on P(Y) and

qα,W,A is the unique limit point of that Cauchy sequence.

In order to prove Theorem 1, we follow the program put forward by Kemperman [12] for establishing a similar result for

α = 1 and A = P(X) case. We first state and prove Theorem 1 assuming that the input set is finite. Then we generalize the

result to the case with arbitrary input sets. In the case when X is a finite set, we can also assert the existence of an optimal

input distribution for which the Augustin information is equal to the Augustin capacity.

Lemma 19. For any order α ∈ R+ , channel W of the form W : X → P(Y) with a finite input set X, and closed convex

constraint set A ⊂ P(X), there exists p̃ ∈ A such that Iα (̃p;W) = Cα,W,A and ∃!qα,W,A ∈ P(Y) satisfying

Dα(W ‖ qα,W,A| p) ≤ Cα,W,A ∀p ∈ A. (61)

Furthermore, qα,p̃ = qα,W,A for all p̃ ∈ A such that Iα (̃p;W) = Cα,W,A.

If A is P(X), then the expression on the right hand side of (60), is equal to the Rényi radius Sα,W defined in the following.

Thus Theorem 1 implies Cα,W = Sα,W .

Definition 10. For any α ∈ R+ and W : X → P(Y), the order α Rényi radius of W is

Sα,W , infq∈P(Y) supx∈XDα(W (x )‖ q) .
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Theorem 1 asserts the existence of a unique order α Augustin center for convex constraint sets with finite Augustin capacity.

However, a probability measure qα,W,A satisfying (60), i.e. an order α Augustin center, can in principle exist even for non-

convex constraint sets.

Definition 11. A constraint set A for the channel W : X → P(Y) has an order α Augustin center iff ∃q ∈ P(Y) such that

supp∈A Dα(W ‖ q| p) = Cα,W,A. (62)

If Cα,W,A is infinite, then all probability measures on the output space satisfy (62) as a result of (58) and the max-min

inequality. Thus for constraint sets with infinite order α Augustin capacity all probability measures on the output space are

order α Augustin centers. On the other hand, some constraint sets do not have any order α Augustin center. Consider for

example p1 and p2 satisfying qα,p1 6= qα,p2 and Iα(p1;W) = Iα(p2;W). Then (62) is not satisfied by any probability measure

for A = {p1, p2} and A does not have an order α Augustin center. Lemma 20 asserts that if Augustin center exists for a

constraint set with finite Augustin capacity, then the Augustin center is unique.

Lemma 20. Let A ⊂ P(X) be a constraint set satisfying Cα,W,A ∈ R≥0 , and qα,W,A be a probability measure satisfying (62).

Then for every {p(ı)}ı∈Z+ ⊂ A satisfying limı→∞ Iα
(
p(ı);W

)
= Cα,W,A the sequence of order α Augustin means {qα,p(ı)}ı∈Z+

is a Cauchy sequence with the limit point qα,W,A and the order α Augustin center qα,W,A is unique.

For any A that has an order α Augustin center and a finite Cα,W,A, Lemma 13-(b,c,d) and Lemma 20 imply that

Cα,W,A − Iα(p;W) ≥ Dα∧1(qα,p‖ qα,W,A) ∀p ∈ A.

Lemma 13-(b,c,d) and Lemma 20 can also be used establish a lower bound on supp∈A Dα(W ‖ q| p) in terms of the Augustin

capacity and center.

Lemma 21. For any constraint set A that has an order α Augustin center and a finite Cα,W,A we have

supp∈A Dα(W ‖ q| p) ≥ Cα,W,A +Dα∧1(qα,W,A‖ q) ∀q ∈ P(Y). (63)

Note that the form of the lower bound given in (63) is, in a sense, analogous to the ones given in (29), (32), (34). The bound

given in (63) is a van Erven-Harremoës bound16 for α ∈ (0, 1], but it is not a van Erven-Harremoës bound for α ∈ (1,∞)
because we have a D1(qα,W,A‖ q) term rather than a Dα(qα,W,A‖ q) term for α ∈ (1,∞).

For orders other than one, using Csiszár’s form for the Augustin information given in (36) and the definition of the Augustin

capacity, we obtain the following expressions:

Cα,W,A =

{
supp∈A infV∈P(Y|X)

α
1−αD1(V ‖W | p) + I1(p;V) α ∈ (0, 1)

supp∈A supV∈P(Y|X)
α

1−αD1(V ‖W | p) + I1(p;V) α ∈ (1,∞)
. (64)

Then

Cα,W,A = supV∈P(Y|X) supp∈A
α

1−αD1(V ‖W | p) + I1(p;V) ∀α ∈ (1,∞).

For α ∈ (0, 1), if the constraint set A has an order α Augustin center, e.g. when A is convex, then one can exchange the

order of the supremum and the infimum and replace the infimum with a minimum whenever the Augustin capacity is finite

by Lemma 22, given in the following.

Lemma 22. For any α ∈ (0, 1), if the constraint set A for the channel W : X → P(Y) has an order α Augustin center, then

Cα,W,A = infV∈P(Y|X) supp∈A
α

1−αD1(V ‖W | p) + I1(p;V) . (65)

If Cα,W,A is finite, then W
qα,W,A
α satisfies

Cα,W,A = supp∈A
α

1−αD1

(
W

qα,W,A
α

∥∥W
∣∣ p
)
+ I1

(
p;W

qα,W,A
α

)
. (66)

Lemma 22 is proved using Csiszár’s form for the Augustin information, given in Lemma 13-(e), and Lemma 20. In [35],

Blahut proved a similar result assuming both X and Y are finite sets and A = P(X). Even under those assumptions Blahut’s

result [35, Thm. 16] imply (65) and (66) for all orders in (0, 1) only when Cα,W is a differentiable function of the order α.

Blahut was motivated by the expression for the sphere packing exponent; consequently, [35, Thm. 16] is stated in terms of an

optimal input distribution at a given rate R ∈ (C0,W ,C1,W ) and the corresponding optimal order α∗(R).

16In [8] van Erven and Harremoës have conjectured that the inequality supx∈X Dα(W (x)‖ q) ≥ Cα,W + Dα

(

qα,W

∥

∥ q
)

holds for all q ∈ P(Y).
Van Erven and Harremoës have also proved the bound for the case when α = ∞, assuming that Y is countable [8, Thm. 37]. We have confirmed van
Erven-Harremoës conjecture in [13, Lemma 19] and generalized it to the convex constrained case for the Rényi capacity and center in [13, Lemma 25]. See
§4.4 for a brief discussion of the Rényi capacity and center; a more comprehensive discussion can be found in [13].
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4.2. Augustin Capacity and Center as a Function of the Order

Lemma 23. For any channel W of the form W : X → P(Y) and constraint set A ⊂ P(X),

(a) Cα,W,A is a nondecreasing and lower semicontinuous function of α on R+ .

(b) 1−α
α Cα,W,A is a nonincreasing and continuous function of α on17 (0, 1).

(c) (α− 1)Cα,W,A is a convex function of α on (1,∞).
(d) Cα,W,A is nondecreasing and continuous in α on (0, 1] and (1, χW ,A] where χW ,A , sup{φ : Cφ,W,A ∈ R≥0}.

(e) If supp∈A I g

φ(p;W) ∈ R≥0 for a φ > 1, then Cα,W,A is nondecreasing and continuous in α on (0, (1 ∨ χW ,A)].

The continuity results presented in parts (d) and (e) are somewhat unsatisfactory. One would like to either establish the

continuity of Cα,W,A from the right at α = 1 whenever Cφ,W,A is finite for a φ > 1 or provide a channel W and a constraint

set A for which Cφ,W,A is finite for a φ > 1 and limα↓1 Cα,W,A > C1,W,A. We could not do either. Instead we establish the

continuity of Cα,W,A from the right at α = 1 assuming that supp∈A I g

φ(p;W) is finite for a φ > 1.

Since Cφ,W = Sφ,W by Theorem 1 and I g

φ(p;W) ≤ Sφ,W for all p ∈ P(X) by (47), supp∈A I g

φ(p;W) is finite for all A ⊂ P(X)
whenever Cφ,W is finite. Thus Cα,W,A is nondecreasing and continuous in α on (0, χW ,A] for all A ⊂ P(X), provided that

Cφ,W is finite for a φ > 1.

Lemma 21 allows us to use the continuity of Cα,W,A in α and Lemma 2 to establish the continuity of qα,W,A in α for the

total variation topology on P(Y).
Lemma 24. For any η ∈ R+ , W : X → P(Y), and convex A ⊂ P(X) such that Cη,W,A ∈ R+ ,

Dα∧1(qα,W,A‖ qφ,W ,A) ≤ Cφ,W ,A − Cα,W,A ∀α, φ such that 0 < α < φ ≤ η. (67)

Consequently, if Cα,W,A is continuous in α on I for some I ⊂ (0, η], then qα,W,A : I → P(Y) is continuous in α on I for

the total variation topology on P(Y).

4.3. Convex Hulls of Constraints and Product Constraints

In the following we consider two kinds of frequently encountered constraint sets that are described in terms of simpler

constraint sets. Lemma 25 considers convex hull of a family constraint sets and bounds the Augustin capacity for the convex

hull in terms of the Augustin capacities of the individual constraint sets. Lemma 26 considers a product channel for the

constraint set that is the product of convex hulls of the constraint sets on the component channels that have Augustin centers

and shows that Augustin capacity has an additive form and Augustin center has a product form.

Lemma 25. Let α be a positive real, W be a channel of the form W : X → P(Y), and A(ı) be a constraint set that has an

order α Augustin center and a finite Cα,W ,A(ı) for all ı ∈ T. Then

supı∈T Cα,W,A(ı) ≤ Cα,W,A ≤ ln
∑

ı∈T
e
C

α,W,A(ı)

where A is the convex hull of the union, i.e. A = ch(∪ı∈TA
(ı)). Furthermore,

• Cα,W,A(ı) = Cα,W,A < ∞ ⇔ supp∈A Dα

(
W ‖ qα,W,A(ı)

∣∣ p
)
≤ Cα,W,A(ı) ⇒ qα,W,A = qα,W,A(ı) .

• Cα,W,A = ln
∑

ı∈T
e
C

α,W,A(ı) < ∞ ⇔ qα,W,A(ı) ⊥ qα,W,A() ∀ı 6=  and |T| < ∞ ⇒ qα,W,A =
∑

ı∈T
e
C
α,W,A(ı)

eCα,W,A
qα,W,A(ı) .

Note that if A(ı) is convex and Cα,W ,A(ı) is finite, then A(ı) has a unique order α Augustin center by Theorem 1.

Lemma 26. For any α ∈ R+ , length n product channel W[1,n] : X
n
1 → P(Yn

1 ), and constraint sets At ⊂ P(Xt) that have

order α Augustin centers

Cα,W[1,n],A = Cα,W[1,n],A
n
1
=
∑n

t=1
Cα,Wt ,At

where A={p∈P(Xn
1 ) : pt ∈chAt ∀t ∈ {1, . . . , n}}, i.e. a p ∈ P(Xn

1 ) is in A iff for all t ∈ {1, . . . , n} its Xt marginal pt is in

the convex hull of At . Furthermore, if Cα,Wt ,At
is finite for all t ∈ {1, . . . , n}, then qα,W[1,n],A = qα,W[1,n],A

n
1
=
⊗n

t=1 qα,Wt ,At
.

Remark 2. Note that the convex hull of any subset of A is a subset of A because A is convex by definition. In particular,

An
1 ⊂chAn

1 ⊂A. Then Cα,W[1,n],chA
n
1
=
∑n

t=1 Cα,Wt ,At
by Lemma 26. Furthermore, if Cα,Wt ,At

is finite for all t ∈ {1, . . . , n},

then qα,W[1,n],chA
n
1
=
⊗n

t=1 qα,Wt ,At
by Lemma 25.

Remark 3. The constraint set An
1 described in Lemma 26 may not be convex, yet An

1 is guaranteed to have an order α
Augustin center.

17We exclude α = 1 case because we do not want to assume C1,W,A to be finite.
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4.4. Augustin Capacity vs Rényi Capacity

Using the Rényi information instead of the Augustin information, one can define the Rényi capacity, as follows.

Definition 12. For any α ∈ R+ , W : X → P(Y), and A ⊂ P(X) the order α Rényi capacity of W for constraint set A is

C g

α,W,A , supp∈A I g

α(p;W) .

When the constraint set A is the whole P(X), we denote the order α Rényi capacity by C g

α,W , i.e. C g

α,W , C g

α,W,P(X).

Since I1(p;W)=I g

1 (p;W), C g

1,W ,A=C1,W ,A by definition. We cannot say the same for other orders; by (56), (57) we have

C g

α,W ,A ≤ Cα,W,A α ∈ (0, 1],

C g

α,W ,A ≥ Cα,W,A α ∈ [1,∞).

As a result of definitions of the Rényi information and capacity we have

C g

α,W,A = supp∈A infq∈P(Y)Dα(p⊛W ‖ p ⊗ q) .

The Rényi capacity satisfies a minimax theorem, [13, Thm. 2], similar to Theorem 1: For any convex constraint set A ⊂ P(X)

supp∈A infq∈P(Y)Dα(p⊛W ‖ p ⊗ q) = infq∈P(Y) supp∈A Dα(p⊛W ‖ p ⊗ q) .

If C g

α,W ,A is finite, then ∃!qg

α,W ,A ∈ P(Y), the order α Rényi center W for the constraint set A, satisfying

C g

α,W,A = supp∈A Dα

(
p⊛W ‖ p ⊗ qg

α,W ,A

)
.

Consequently, the Rényi capacity equals to the Rényi radius provided that A=P(X). Hence C g

α,W=Cα,W and qg

α,W = qα,W
by Theorem 1. The other observations presented in this section have their counter parts for the Rényi capacity and center;

compare for example Lemma 21 and [13, Lemma 25].

5. THE COST CONSTRAINED PROBLEM

In the previous section, we have defined the Augustin capacity for arbitrary constraint sets and proved the existence of a

unique Augustin center for any convex constraint set with finite Augustin capacity. The convex constraint sets of interest are

often defined via the cost constraints; the main aim of this section is to investigate this important special case more closely. In

§5.1 we investigate the immediate consequences of the definition of the cost constrained Augustin capacity and ramifications

of the analysis presented in the previous section. In §5.2 we define and analyze the Augustin-Legendre (A-L) information,

capacity, radius, and center. The discussion in §5.2 is a generalization of certain parts of the analysis presented by Csiszár and

Körner in [5, Ch. 8] for the supremum of the mutual information for discrete channels with single cost constraint, i.e. α = 1,

|X| < ∞, |Y| < ∞, ℓ = 1 case. In §5.3 we define and analyze the Rényi-Gallager (R-G) information, mean, capacity, radius,

and center. The most important conclusion of our analysis in §5.3 is the equality of the A-L capacity and center to the R-G

capacity and center. In §5.4, we demonstrate how the results presented in §5.1, §5.2, and §5.3 can be used to determine the

Augustin capacity and center of a transition probability with cost constraints. Proofs of the propositions presented in §5.1,

§5.2, and §5.3 can be found is Appendix E.

Augustin presented a discussion of the cost constrained capacity Cα,W,̺ in [6, §34] for the case when the cost function ρ
is a bounded function of the form ρ : X → [0, 1]ℓ and the order α is in (0, 1]. In [6, §35], Augustin also analyzed quantities

closely related to the R-G information and capacity. The quantities analyzed by Augustin in [6, §35] have first appeared in

Gallager’s error exponents analysis for cost constrained channels [14, §6], [15, §7.3,§7.4,§7.5]. Unlike Augustin, Gallager did

not assume ρ to be bounded; but Gallager confined his analysis to the case when there is a single cost constraint, i.e. ℓ = 1
case, and refrained from defining the R-G capacity as a quantity that is of interest on its own right. Other authors studying

cost constrained problems, [23, §IV], [24]–[26], have considered the R-G information and capacity, as well. Yet to the best of

our knowledge for orders other than one the A-L information measures, which are obtained through a more direct application

of convex conjugation, have not been studied before.

5.1. The Cost Constrained Augustin Capacity and Center

We denote the set of all probability mass functions satisfying a cost constraint ̺ by A(̺), i.e.

A(̺) , {p ∈ P(X) : Ep [ρ] ≤ ̺}.
A(̺) 6= ∅ iff ̺ ∈ Γρ where Γρ is defined in (6) as the set of all feasible cost constraints for the cost function ρ. A(̺) is

nondecreasing in ̺, i.e. ̺1≤̺2 implies A(̺1)⊂A(̺2). We define the order α Augustin capacity of W for the cost constraint

̺ as

Cα,W,̺ ,

{
supp∈A(̺) Iα(p;W) if ̺ ∈ Γρ

−∞ if ̺ ∈ Rℓ
≥0 \ Γρ

∀α ∈ R+ . (68)
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We defined Cα,W,̺ for ̺’s that are not feasible in order to be able to use standard results without modifications. Since A(̺) is

a convex set, Theorem 1 holds for A(̺). We denote18 the order α Augustin center of W for the cost constraint ̺ by qα,W,̺.

For a given order α, the Augustin capacity Cα,W,̺ is a concave function of the cost constraint ̺. Hence, if it is finite at an

interior point of Γρ, then it is a continuous function of the cost constraint ̺ that lies below its tangent planes drawn at interior

points of Γ̺. Lemma 27, in the following, summarizes these observations.

Lemma 27. Let W be a channel of the form W : X → P(Y) with the cost function ρ of the form ρ : X → Rℓ
≥0 .

(a) For any α ∈ R+ , Cα,W,̺ is a nondecreasing and concave function of ̺ on Rℓ
≥0 , which is either infinite on every point in

intΓρ or finite and continuous on intΓρ.

(b) If Cα,W,̺ is finite on intΓρ for an α ∈ R+ , then for every ̺ ∈ intΓρ there exists a λα,W,̺ ∈ Rℓ
≥0 such that

Cα,W,̺ + λα,W,̺ · (˜̺− ̺) ≥ Cα,W, ˜̺ ∀ ˜̺∈ Rℓ
≥0 (69)

Furthermore, the set of all such λα,W,̺’s is convex and compact.

(c) Either Cα,W,̺=∞ for all (α, ̺)∈(0, 1)×intΓρ or Cα,W,̺ and qα,W,̺ are continuous in (α, ̺) on (0, 1)×intΓρ for the

total variation topology on P(Y).
If the cost function for a product channel is additive, then the cost constrained Agustin capacity of the product channel is

equal to the supremum of the sum of the cost constrained Augustin capacities of the component channels over all feasible

cost allocations. Furthermore, if there exists an optimal cost allocation, then the Augustin center of the product channel is a

product measure. Lemma 28, given in the following, states these observations formally.

Lemma 28. For any length n product channel W[1,n] : X
n
1 → P(Yn

1 ) and additive cost function ρ[1,n] : X
n
1 → Rℓ

≥0 we have19

Cα,W[1,n],̺ = sup
{∑n

t=1
Cα,Wt ,̺t

:
∑n

t=1
̺t ≤ ̺, ̺t ∈ Rℓ

≥0

}
∀̺ ∈ Rℓ

≥0 , α ∈ R+ . (70)

If Cα,W[1,n],̺ ∈ R≥0 for an α ∈ R+ and ∃(̺1, . . . , ̺n) such that Cα,W[1,n],̺ =
∑n

t=1 Cα,Wt ,̺t
, then qα,W[1,n],̺ =

⊗n

t=1 qα,Wt ,̺t
.

Since the Augustin capacity is concave in the cost constraint by Lemma 27-(a), Cα,W[1,n],̺ =
∑n

t=1 Cα,Wt ,
̺
n

whenever W[1,n]

is stationary and ρt = ρ1 for all t ∈ {1, . . . , n}. Alternatively, if Γρt
’s are closed and Cα,Wt ,̺’s are upper semicontinuous

functions of ̺ on Γρt
’s, then we can use the extreme value theorem20 for the upper semicontinuous functions to establish

the existence of a (̺1, . . . , ̺n) satisfying both Cα,W[1,n],̺ =
∑n

t=1 Cα,Wt ,̺t
and

∑n

t=1 ̺t ≤ ̺. However, such an existence

assertion does not hold in general, see Example 3.

5.2. The Augustin-Legendre Information Measures

The cost constrained Augustin capacity Cα,W,̺ and center qα,W,̺ can be characterized using convex conjugation, as well.

In this part of the paper, we introduce and analyze the concepts of the Augustin-Legendre information, capacity, center, and

radius in order to obtain a more complete understanding of this characterization. The current method seems to us to be the

standard application of the convex conjugation technique to characterize the cost constrained Augustin capacity. Yet, it is not

the customary method. Starting with the seminal work of Gallager [14], a more ad hoc method based on the Rényi information

became the customary way to apply Lagrange multipliers techniques to characterize the Augustin capacity, see [6, §35], [24],

[25]. We discuss that approach in §5.3. Theorem 2 presented in the following and Theorem 3 presented in §5.3 establish

the equivalence of these two approaches by establishing the equality of the Augustin-Legendre capacity and center to the

Rényi-Gallager capacity and center.

Definition 13. For any α ∈ R+ , channel W of the form W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , p ∈ P(X), and

λ ∈ Rℓ
≥0 , the order α Augustin-Legendre information for the input distribution p and the Lagrange multiplier λ is

I λα (p;W) , Iα(p;W) − λ ·Ep [ρ] . (71)

Note that as an immediate consequence of the definition of the A-L information we have

infλ≥0 I
λ
α (p;W) + λ · ̺ = ξα,p(̺) (72)

where ξα,p(·) : Rℓ
≥0 → [−∞,∞) is defined as

ξα,p(̺) ,

{
Iα(p;W) ̺ ≥ Ep [ρ]

−∞ else
. (73)

18This slight abuse of notation —which can be avoided by using Cα,W,A(̺) and qα,W,A(̺) instead of Cα,W,̺ and qα,W,̺— provides brevity without
leading to any notational ambiguity.

19If Cα,Wt ,̺t = −∞ for any t ∈ {1, . . . ,n}, then
∑n

t=1 Cα,Wt ,̺t stands for −∞; even if one or more of other Cα,Wt ,̺t ’s are equal to ∞.
20Consider the function f (̺1, . . . , ̺n) which is equal to

∑n
t=1 Cα,Wt ,̺t if

∑n
t=1 ̺t ≤ ̺ and ̺t ∈ Γρt for all t ∈ {1, . . . , n} and which is equal to

−∞ otherwise. We choose a large enough but bounded set using the vector ̺ to obtain a compact set for the supremum.
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Then the Augustin-Legendre information I λα (p;W) can also be expressed as

I λα (p;W) = sup̺≥0 ξα,p(̺)− λ · ̺ (74)

Remark 4. Note that if f : Rℓ
≥0 → (−∞,∞] and f ∗ : (−∞, 0]ℓ → R are defined as f (̺) , −ξα,p(̺) and f ∗(γ) , I−γ

α (p;W),
then f ∗ is the convex conjugate, i.e. Legendre transform, of the convex function f . This is why we call I λα (p;W) the Augustin-

Legendre information.

Definition 14. For any α ∈ R+ , channel W of the form W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and λ ∈ Rℓ

≥0 the

order α Augustin-Legendre (A-L) capacity for the Lagrange multiplier λ is

Cλ
α,W , supp∈P(X) I

λ
α (p;W) . (75)

Then as a result of (73) and (74) we have

Cλ
α,W = sup̺≥0 Cα,W ,̺ − λ · ̺ ∀λ ∈ Rℓ

≥0 . (76)

Hence, using the max-min inequality we can conclude that

Cα,W,̺ ≤ infλ≥0 C
λ
α,W + λ · ̺ ∀̺ ∈ Rℓ

≥0 . (77)

Then Cα,W,̺ < ∞ for all ̺ ∈ Rℓ
≥0 provided that Cλ

α,W < ∞ for a λ ∈ R≥0 . But Cλ
α,W = ∞ might hold for λ small enough

even when Cα,W,̺ < ∞ for all ̺ ∈ Rℓ
≥0 , see Example 1.

Remark 5. In [6, §33-§35], Augustin considered the case when the cost function ρ is a bounded function of the form

ρ : X → [0, 1]ℓ. In that case Cλ
α,W < ∞ for all λ ∈ Rℓ

≥0 provided that Cα,W,̺ < ∞ for a ̺ ∈ intΓρ because Cα,W ,1 < ∞
by Lemma 27-(b) and Cα,W ,1 = Cα,W and Cλ

α,W ≤ C 0
α,W = Cα,W for all λ ∈ Rℓ

≥0 by definition.

The inequality given in (77) is an equality for many cases of interest as demonstrated by the following lemma. However,

the inequality given in (77) is not an equality in general, see Example 2.

Lemma 29. Let α ∈ R+ and W be a channel of the form W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 . Then

(a) Cλ
α,W is convex, nonincreasing, and lower semicontinuous in λ on Rℓ

≥0 and continuous in λ on {λ : ∃ǫ > 0 s.t. Cλ−ǫ1
α,W <∞}.

(b) If X is a finite set, then Cα,W,̺ = infλ≥0 C
λ
α,W + λ · ̺.

(c) If ̺ ∈ intΓρ, then Cα,W,̺ = infλ≥0 C
λ
α,W + λ · ̺. If in addition Cα,W,̺ < ∞, then there exists a non-empty convex,

compact set of λα,W,̺’s satisfying both (69) and Cα,W,̺ = C
λα,W,̺

α,W + λα,W,̺ · ̺.

(d) If Cα,W,̺ is finite and Cα,W,̺ = Cλ
α,W + λ · ̺ for some ̺ ∈ Γρ and λ ∈ Rℓ

≥0 , then limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W for all

{p(ı)}ı∈Z+ ∈ A(̺) s.t. limı→∞ Iα
(
p(ı);W

)
= Cα,W,̺.

Using the definitions of Iα(p;W), I λα (p;W), and Cλ
α,W given in (23), (71), (75) we get the following expression for Cλ

α,W .

Cλ
α,W = supp∈P(X) infq∈P(Y) Dα(W ‖ q| p) − λ · Ep [ρ] . (78)

The A-L capacity satisfies a minimax theorem similar to the one satisfied by the Augustin capacity, which allows us to

assert the existence of a unique A-L center whenever the A-L capacity is finite.

Theorem 2. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and Lagrange multiplier λ ∈ Rℓ

≥0

supp∈P(X) infq∈P(Y)Dα(W ‖ q| p)− λ · Ep [ρ] = infq∈P(Y) supp∈P(X) Dα(W ‖ q| p) − λ ·Ep [ρ] (79)

= infq∈P(Y) supx∈XDα(W (x )‖ q)− λ · ρ(x ). (80)

If the expression on the left hand side of (79) is finite, i.e. if Cλ
α,W < ∞, then ∃!qλα,W ∈P(Y), called the order α Augustin-

Legendre center of W for the Lagrange multiplier λ, satisfying

Cλ
α,W = supp∈P(X)Dα

(
W ‖ qλα,W

∣∣ p
)
− λ · Ep [ρ] (81)

= supx∈XDα

(
W (x )‖ qλα,W

)
− λ · ρ(x ). (82)

Furthermore, for every sequence of input distributions {p(ı)}ı∈Z+ ⊂ P(X) such that limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W , the

corresponding sequence of order α Augustin means {qα,p(ı)}ı∈Z+ is a Cauchy sequence for the total variation metric on

P(Y) and qλα,W is the unique limit point of that Cauchy sequence.

Note that Theorem 2 for λ = 0 is nothing but Theorem 1 for A = P(X). The proof of Theorem 2 is very similar to that of

Theorem 1, as well; it employs Lemma 30, presented in the following, instead of Lemma 19. Note that, Lemma 30 for λ = 0
is nothing but Lemma 19 for A = P(X), as well.
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Lemma 30. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 for a finite input set X, and

Lagrange multiplier λ ∈ Rℓ
≥0 , there exists a p̃ ∈ P(X) such that I λα (̃p;W) = Cλ

α,W and ∃!qλα,W ∈ P(Y) satisfying

Dα

(
W ‖ qλα,W

∣∣ p
)
− λ · Ep [ρ] ≤ Cλ

α,W ∀p ∈ P(X). (83)

Furthermore, qα,p̃ = qλα,W for all p̃ ∈ P(X) such that I λα (̃p;W) = Cλ
α,W .

Note that the expression on the left hand side of equation (79) is nothing but the A-L capacity. Thus Theorem 2 is establishes

the equality of the A-L capacity to the A-L radius defined in the following.

Definition 15. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and λ ∈ Rℓ

≥0 , the order α
Augustin-Legendre radius of W for the Lagrange multiplier λ is

Sλ
α,W , infq∈P(Y) supx∈XDα(W (x )‖ q)− λ · ρ(x ). (84)

If Cλ
α,W is finite, then Lemma 13-(b,c,d), Theorem 2, and the definition of I λα (p;W) given in (71) imply that

Cλ
α,W − I λα (p;W) ≥ Dα∧1

(
qα,p‖ qλα,W

)
∀p ∈ P(X).

Using Lemma 13 and Theorem 2 one can also establish a bound similar to the one given in Lemma 21. However, we will not

do so here because one can obtain a slightly stronger results, using the characterization of the A-L capacity and center via

R-G capacity and center presented in §5.3, see Lemma 35 and the ensuing discussion.

As a result of Lemma 29-(c), we know that if Cα,W ,̺ is finite for a ̺ ∈ intΓρ, then there exists at least one λα,W ,̺ for

which Cα,W ,̺ = C
λα,W ,̺

α,W +λα,W ,̺ · ̺ holds. Lemma 31, given in the following, asserts that for any such Lagrange multiplier

the corresponding order α A-L center should be equal to the order α Augustin center for the cost constraint ̺. Thus if there

are multiple λα,W ,̺’s satisfying Cα,W ,̺ = C
λα,W ,̺

α,W + λα,W ,̺ · ̺, then they all have the same order α A-L center.

Lemma 31. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and a cost constraint ̺ ∈ Γρ such

that Cα,W,̺ < ∞, if Cα,W,̺ = Cλ
α,W + λ · ̺ for a λ ∈ Rℓ

≥0 , then qα,W,̺ = qλα,W .

For product constraints on product channels, the Augustin capacity has an additive form and the Augustin center has

a multiplicative form —whenever it exists— by Lemma 26. The cost constraints for additive cost functions, however, are

not product constraints. In order to calculate the cost constrained Augustin capacity for product channels with additive cost

functions, we need to optimize over the feasible allocations of the cost over the component channels by Lemma 28. In addition,

we can express the cost constrained Augustin center of the product channel as the product of the cost constrained Augustin

centers of the components channels —using Lemma 28— only when there exists a feasible allocation of the cost that achieves

the optimum value. For the A-L capacity and center, on the other hand, we have a considerably neater picture: For product

channels with additive cost functions the A-L capacity is additive and the A-L center is multiplicative, whenever it exists.

Lemma 32. For any length n product channel W[1,n] : X
n
1 → P(Yn

1 ) and additive cost function ρ[1,n] : X
n
1 → Rℓ

≥0 we have

Cλ
α,W[1,n]

=
∑n

t=1
Cλ

α,Wt
∀λ ∈ Rℓ

≥0 , α ∈ R+ . (85)

Furthermore, if Cλ
α,W[1,n]

< ∞, then qλα,W[1,n]
=
⊗n

t=1 q
λ
α,Wt

.

The additivity of the cost function ρ[1,n] implies for any p in P(Xn
1 )

Ep

[
ρ[1,n]

]
=
∑n

t=1
Ept

[ρt ]

where pt ∈ P(Xt) is the Xt marginal of p. Thus Lemma 14 and the definition of the A-L information imply

I λα
(
p;W[1,n]

)
≤ I λα

(
p1 ⊗ · · · ⊗ pn ;W[1,n]

)

=
∑n

t=1
I λα (pt ;Wt) . (86)

Lemma 32 is proved using (86) together with Theorem 2.

5.3. The Rényi-Gallager Information Measures

In §5.2, we have characterized the cost constrained Augustin capacity and center in terms of the A-L capacity and center.

The A-L capacity is defined as the supremum of the A-L information. Gallager —implicitly— proposed another information

with a Lagrange multiplier in [14, (103) and (116)]. Augustin characterized the cost constrained Augustin capacity in terms of

the supremum of this information, assuming that the cost function is bounded, in [6, Lemmas 35.4-(b) and 35.8-(b)]. We call

this supremum the R-G capacity. The main aim of this subsection is establishing the equality of the A-L capacity and center

to the R-G capacity and center. We will also derive a van Erven-Harremoës bound for the A-L capacity and center and use it

to derive the continuity of the A-L center as a function of the Lagrange multiplier λ.
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Definition 16. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , p ∈ P(X), and λ ∈ Rℓ

≥0 the

order α Rényi-Gallager (R-G) information for the input distribution p and the Lagrange multiplier λ is

I gλ
α (p;W) ,

{
infq∈P(Y) Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)

α ∈ R+ \ {1}
infq∈P(Y) D1(p⊛W ‖ p ⊗ q)− λ ·Ep [ρ] α = 1

. (87)

If λ is a vector of zeros, then the R-G information is the Rényi information. Similar to the Rényi information, the R-G

information has a closed form expression, described in terms of the probability measure achieving the infimum in its definition.

Definition 17. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , p ∈ P(X), and λ ∈ Rℓ

≥0 , the

order α mean measure for the input distribution p and the Lagrange multiplier λ is

dµλ
α,p

dν ,
[∑

x
p(x )e(1−α)λ·ρ(x)

(
dW (x)

dν

)α] 1
α

. (88)

The order α Rényi-Gallager (R-G) mean for the input distribution p and the Lagrange multiplier λ is

qgλ
α,p ,

µλ
α,p

‖µλ
α,p‖ . (89)

Both µλ
α,p and qgλ

α,p depend on the Lagrange multiplier λ for α∈R+\{1}. Furthermore, one can confirm by substitution that

Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)
= Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,p

)
+Dα

(
qgλ
α,p

∥∥ q
)

α ∈ R+ \ {1}. (90)

Then as a result of Lemma 2, we have

I gλ
α (p;W) = Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,p

)
(91)

= α
α−1 ln

∥∥µλ
α,p

∥∥ α ∈ R+ \{1}. (92)

Neither µλ
1,p , nor qgλ

1,p depends on the Lagrange multiplier λ. In addition, one can confirm by substitution that

D1(p⊛W ‖ p ⊗ q)− λ · Ep [ρ] = D1

(
p⊛W ‖ p ⊗ qgλ

1,p

)
− λ · Ep [ρ] +D1

(
qgλ
1,p

∥∥∥ q
)
. (93)

Then as a result of Lemma 2, we have

I gλ
1 (p;W) = D1

(
p⊛W ‖ p ⊗ qgλ

1,p

)
− λ ·Ep [ρ] . (94)

Using the definitions of the A-L information and the R-G information given in (71) and (87) together with the Jensen’s

inequality and the concavity of the natural logarithm function we get

I λα (p;W) ≥ I gλ
α (p;W) α ∈ (0, 1]

I λα (p;W) ≤ I gλ
α (p;W) α ∈ [1,∞).

It is possible to strengthen these relations by expressing the A-L information and the R-G information in terms of one another

as follows.

Lemma 33. Let W be a channel of the form W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , p be an input distribution

in P(X) and λ be a Lagrange multiplier in Rℓ
≥0 .

(a) Let uλ
α,p ∈ P(X) be uλ

α,p(x ) =
p(x)e(1−α)Dα(W (x)‖qα,p)+(α−1)λ·ρ(x)

∑
x̃ p(x̃)e(1−α)Dα(W (x̃)‖qα,p)+(α−1)λ·ρ(x)

for all x ; then

I λα (p;W) = I gλ
α (uα,p ;W) + 1

α−1D1(p‖ uα,p) (95)

=

{
supu∈P(X) I

gλ
α (u;W) + 1

α−1D1(p‖ u) α ∈ (0, 1)

infu∈P(X) I
gλ
α (u;W) + 1

α−1D1(p‖ u) α ∈ (1,∞)
. (96)

(b) Let aλ
α,p ∈ P(X) be aλ

α,p(x ) =
p(x)e

(α−1)Dα(W (x)‖q
gλ
α,p)+(1−α)λ·ρ(x)

∑
x̃ p(x̃)e

(α−1)Dα(W (x̃)‖q
gλ
α,p)+(1−α)λ·ρ(x)

for all x ; then

I gλ
α (p;W) = I λα

(
aλ
α,p ;W

)
− 1

α−1D1

(
aλ
α,p

∥∥ p
)

(97)

=

{
infa∈P(X) I

λ
α (a;W) − 1

α−1D1(a‖ p) α ∈ (0, 1)

supa∈P(X) I
λ
α (a;W) − 1

α−1D1(a‖ p) α ∈ (1,∞)
. (98)

21



(c) Let f λα,p : X → R be f λα,p(x ) = [Dα(W (x )‖ qα,p)− λ · ρ(x )− I λα (p;W)]1{p(x)>0} for all x ; then

I λα (p;W) = α
α−1 lnEν

[(∑
x
p(x )e(1−α)(f λ

α,p(x)+λ·ρ(x))
[
dW (x)

dν

]α)1/α
]

(99)

= α
α−1 ln inf f :Ep[f ]=0 Eν

[(∑
x
p(x )e(1−α)(f (x)+λ·ρ(x))

[
dW (x)

dν

]α)1/α
]
. (100)

Lemma 33 for λ = 0 is Lemma 18, which was previously discussed by Poltyrev [19], Shayevitz [10], and Augustin [6].

Definition 18. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and λ ∈ Rℓ

≥0 , the order α
Rényi-Gallager (R-G) capacity for the Lagrange multiplier λ is

C gλ
α,W , supp∈P(X) I

gλ
α (p;W) .

Using the definition of I gλ
α (p;W), given in (87), we get the following expression for C gλ

α,W .

C gλ
α,W =

{
supp∈P(X) infq∈P(Y)Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)

α ∈ R+ \ {1}
supp∈P(X) infq∈P(Y)Dα(p⊛W ‖ p ⊗ q)− λ ·Ep [ρ] α = 1

(101)

The R-G capacity satisfies a minimax theorem similar to the one satisfied by the A-L capacity, i.e. Theorem 2. Since both the

statement and the proof of the minimax theorems are identical for the order one A-L capacity and the order one R-G capacity,

we state the minimax theorem for the R-G capacity only for finite positive orders other than one.

Theorem 3. For any α∈R+\{1}, channel W :X → P(Y) with a cost function ρ :X → Rℓ
≥0 , and Lagrange multiplier λ∈Rℓ

≥0

supp∈P(X) infq∈P(Y)Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)
= infq∈P(Y) supp∈P(X) Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)

(102)

= infq∈P(Y) supx∈XDα(W (x )‖ q)− λ · ρ(x ). (103)

If the expression on the left hand side of (102) is finite, i.e. if C gλ
α,W < ∞, then ∃!qgλ

α,W ∈ P(Y), called the order α
Rényi-Gallager center of W for the Lagrange multiplier λ, satisfying

C gλ
α,W = supp∈P(X) Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,W

)
(104)

= supx∈XDα

(
W (x )‖ qgλ

α,W

)
− λ · ρ(x ). (105)

Furthermore, for every sequence of input distributions {p(ı)}ı∈Z+ ⊂ P(X) such that limı→∞ I gλ
α

(
p(ı);W

)
= C gλ

α,W , corre-

sponding sequence of the order α Rényi-Gallager means {qgλ
α,p(ı)}ı∈Z+ is a Cauchy sequence for the total variation metric on

P(Y) and qgλ
α,W is the unique limit point of that Cauchy sequence.

Proof of Theorem 3 is very similar to the proofs of Theorem 1 and Theorem 2. It relies on Lemma 34, given in the following,

instead of Lemma 19 or Lemma 30.

Lemma 34. For any α ∈ R+ \ {1}, channel W : X → P(Y) with cost function ρ : X → Rℓ
≥0 for a finite input set X, and

Lagrange multiplier λ ∈ Rℓ
≥0 , there exists a p̃ ∈ P(X) such that I λα (̃p;W) = Cλ

α,W and ∃!qλα,W ∈ P(Y) satisfying

Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,W

)
≤ C gλ

α,W ∀p ∈ P(X). (106)

Furthermore, qgλ
α,p̃ = qgλ

α,W for all p̃ ∈ P(X) such that I gλ
α (̃p;W) = C gλ

α,W .

The expression on the left hand side of (102) is the R-G capacity, whereas the expression in (103) is the A-L radius defined

in (84). Thus Theorems 2 and 3 imply that

Cλ
α,W = Sλ

α,W = C gλ
α,W ∀α ∈ R+ , λ ∈ Rℓ

≥0 . (107)

Furthermore, whenever Cλ
α,W is finite the unique A-L center described in (82) is equal to the unique R-G center described in

(105) by Theorems 2 and 3, as well.

qλα,W = qgλ
α,W ∀α ∈ R+ , λ ∈ Rℓ

≥0 s.t. Cλ
α,W < ∞. (108)

In order to avoid using multiple names for the same quantity, we will state our propositions in terms of the A-L capacity and

center in the rest of the paper.

If Cλ
α,W is finite, then (90), (91), and Theorem 3 for α∈R+\{1} and (93), (94) and Theorem 2 for α = 1 imply that

Cλ
α,W − I gλ

α (p;W) ≥ Dα

(
qgλ
α,p

∥∥ qλα,W
)

∀p ∈ P(X).
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Using the same observations, we can prove a van Erven-Harremoës bound for the A-L capacity, as well.

Lemma 35. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and Lagrange multiplier λ ∈ Rℓ

≥0

satisfying Cλ
α,W < ∞

supx∈XDα(W (x )‖ q) − λ · ρ(x ) ≥ Cλ
α,W +Dα

(
qλα,W

∥∥ q
)

∀q ∈ P(Y). (109)

One can prove a similar, but weaker, result using Lemma 13 and Theorem 2. The right most term of the resulting bound is

Dα∧1

(
qλα,W

∥∥ q
)

rather than Dα

(
qλα,W

∥∥ q
)
.

Lemma 35 and the continuity of the A-L capacity Cλ
α,W as a function of λ, established in Lemma 29-(a), imply the continuity

of the A-L center qλα,W in λ for the total variation topology on P(Y) via Lemma 2.

Lemma 36. For any α ∈ R+ , channel W : X → P(Y) with a cost function ρ : X → Rℓ
≥0 , and Lagrange multiplier λ0 ∈ Rℓ

≥0

satisfying Cλ0

α,W < ∞,

Dα

(
qλ2

α,W

∥∥∥ qλ1

α,W

)
≤ Cλ1

α,W − Cλ2

α,W ∀λ1, λ2 ∈ Rℓ
≥0 such that λ0 ≤ λ1 ≤ λ2. (110)

Furthermore qλα,W is continuous in λ on {λ : ∃ǫ > 0 s.t. Cλ−ǫ1
α,W <∞} for the total variation topology on P(Y).

5.4. Information Measures for Transition Probabilities

We have defined the conditional Rényi divergence, the Augustin information, the A-L information, and the R-G information,

only for input distributions in P(X), i.e. for probability mass functions that are zero in all but finite number of elements of

X. In many practically relevant and analytically interesting models, however, the input set X is an uncountably infinite set

equipped with a σ-algebra X . The Gaussian channels —possibly with multiple input and output antennas and fading— and the

Poisson channels are among the most prominent examples of such models. For such models, it is often desirable to extend the

definitions of the Augustin information and the A-L information from P(X) to P(X ). For instance, in the additive Gaussian

channels described in Examples 4 and 5, the equality Iα(p;W) = Cα,W ,̺ is not satisfied by any probability mass function p

satisfying the cost constraint; but it is satisfied by the zero mean Gaussian distribution with variance ̺.

In the following, we will first show that if Y is a countably generated σ-algebra, then one can generalize the definitions of

the conditional Rényi divergence, the Augustin information, and the A-L information from P(X) to P(X ) provided that W

and Q are not only functions from X to P(Y), but also transition probabilities from (X,X ) to (Y,Y). After that we will show

that if in addition X is countably separated, then the supremum of A-L information I λα (p;W) over P(X ) is equal to the A-L

radius Sλ
α,W , see Theorem 4. This will imply that the cost constrained Augustin capacity Cα,W ,̺ —defined in (68)— is equal

to the supremum of the Augustin information Iα(p;W) over members of P(X ) satisfying Ep [ρ] ≤ ̺, as well, at least for the

cost constraints that are in the interior of the set of all feasible constraints, see Theorem 5.

Let us first recall the definition of transition probability. We adopt the definition provided by Bogachev [21, 10.7.1] with a

minor modification: we use W (E|x ) instead of W (x |E).
Definition 19. Let (X,X ) and (Y,Y) be measurable spaces. Then a function W : Y × X → [0, 1] is called a transition

probability (a stochastic kernel / a Markov kernel) from (X,X ) to (Y,Y) if it satisfies the following two conditions.

(i) For all x ∈ X, the function W (·|x ) : Y → [0, 1] is a probability measure on (Y,Y).
(ii) For all E ∈ Y , the function W (E|·) : X → [0, 1] is a (X ,B([0, 1]))-measurable function.

We denote the set of all transition probabilities from (X,X ) to (Y,Y) by P(Y|X ) with the tacit understanding that X and

Y will be clear from the context. If W satisfies (i), then W : X → P(Y) is a channel, i.e. W is a member of P(Y|X), even if

W does not satisfy (ii). Hence P(Y|X ) ⊂ P(Y|X). Inspired by this observation, we denote the probability measure W (·|x )
by W (x ) whenever it is notationally convenient and unambiguous.

In order to extend the definition of the conditional Rényi divergence from P(X) to P(X ), we ensure the X -measurability of

Dα(W (x )‖Q(x )) on X and replace the sum in (21) with an integral. If (X, τ) is a topological space and X is the associated

Borel σ-algebra, then one can establish the measurability by first establishing the continuity. Such a continuity result holds if

both
dW (x)

dν and
dQ(x)
dν are continuous in x for ν-almost every y for some probability measure ν for which (W (x )+Q(x ))≺ν

for all x ∈ X. At times this hypothesis on W and Q might not be easy to confirm. If, on the other hand, W and Q are

transition probabilities from (X,X ) to (Y,Y) for a countably generated Y , then the desired measurability follows from the

elementary properties of the measurable functions and Lemma 9, as we demonstrate in the following.

Lemma 37. For any α ∈ R+ , countable generated σ-algebra Y of subsets of Y, and W ,Q ∈ P(Y|X ) the function

Dα(W (·)‖Q(·)) : X → [0,∞] is X -measurable.

Proof of Lemma 37. There exists {Eı}ı∈Z+ ⊂ Y such that Y = σ({Eı : ı ∈ Z+}) because Y is countably generated σ-algebra.

Let Yı be

Yı , σ({E1, . . . ,Eı}) ı ∈ Z+ .
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Then Y1 ⊂ Y2 ⊂ · · · ⊂ Y , Y = σ(∪∞
ı=1Yı), and Lemma 9 implies that

Dα(W (x )‖Q(x )) = limı→∞ DYı
α (W (x )‖Q(x )) ∀x ∈ X. (111)

On the other hand Yı is finite set for all ı ∈ Z+ . Thus for all ı ∈ Z+ there exists a Yı-measurable finite partition Eı of Y. Thus

as a result of the definition of the Rényi divergence given in (8) we have

DYı
α (W (x )‖Q(x )) =

{
1

α−1 ln
∑

E∈Eı
(W (E|x ))α (Q(E|x ))1−α

α ∈ R+ \ {1}∑
E∈Eı

W (E|x ) ln W (E|x)
Q(E|x) α = 1

.

Then DYı
α (W (x )‖Q(x )) is a X -measurable function for any ı ∈ Z+ by [21, Thm. 2.1.5-(i-iv)] and [21, Remark 2.1.6] because

W (E|x ) and Q(E|x ) are X -measurable for all E ∈ Eı by the hypothesis of the lemma. Then Dα(W (x )‖Q(x )) is X -measurable

as a result of (111) by [21, Thm. 2.1.5-(v)] and [21, Remark 2.1.6].

Definition 20. For any α ∈ R+ , countable generated σ-algebra Y of subsets of Y, W ∈ P(Y|X ), and p ∈ P(X ) the order α
conditional Rényi divergence for the input distribution p is

Dα(W ‖Q | p) ,
∫

Dα(W (x )‖Q(x )) p(dx ). (112)

If ∃q ∈ P(Y) such that Q(x ) = q for p-a.s., then we denote Dα(W ‖Q | p) by Dα(W ‖ q| p).
Then one can define the Augustin information and the A-L information for all p in P(X ), provided that W is in P(Y|X )

for a countably generated Y and ρ is a X -measurable function.

Definition 21. For any α ∈ R+ , countable generated σ-algebra Y of subsets of Y, W ∈ P(Y|X ), and p ∈ P(X ) the order α
Augustin information for the input distribution p is

Iα(p;W) , infq∈P(Y)Dα(W ‖ q| p) . (113)

Furthermore, for any X -measurable cost function ρ : X → Rℓ
≥0 and λ ∈ Rℓ

≥0 the order α Augustin-Legendre information for

the input distribution p and the Lagrange multiplier λ is defined as

I λα (p;W) , Iα(p;W) − λ ·Ep [ρ] (114)

with the understanding that if λ · Ep [ρ] = ∞, then I λα (p;W) = −∞.

Although we have included λ ·Ep [ρ] = ∞ case in the formal definition of the A-L information, we will only be interested

in p’s for which λ ·Ep [ρ] is finite. We define Aλ to be the set of all such p’s:

Aλ , {p ∈ P(X ) : λ · Ep [ρ] < ∞}. (115)

For an arbitrary σ-algebra X , the singletons (i.e. sets with only one element) are not necessarily measurable sets; thus P(X)
is not necessarily a subset of Aλ. If X is countably separated, then the singletons are in X by [21, Thm. 6.5.7], P(X) ⊂ Aλ

and supp∈Aλ I λα (p;W) ≥ Cλ
α,W . The reverse inequality follows from Theorem 2 and we have supp∈Aλ I λα (p;W) = Cλ

α,W .

Theorem 4 states these observations formally together with the ones about the A-L center through a minimax theorem.

Theorem 4. Let X be a countably separated σ-algebra, Y be a countably generated σ-algebra, W be a transition probability

from (X,X ) to (Y,Y), ρ : X → Rℓ
≥0 be a X -measurable cost function, and α ∈ R+ . Then for all λ ∈ Rℓ

≥0 we have

supp∈Aλ infq∈P(Y)Dα(W ‖ q| p)− λ · Ep [ρ] = infq∈P(Y) supp∈Aλ Dα(W ‖ q| p) − λ · Ep [ρ] (116)

= infq∈P(Y) supx∈XDα(W (x )‖ q)− λ · ρ(x ) (117)

= Cλ
α,W (118)

where Aλ is defined in (115). If Cλ
α,W is finite, then ∃!qλα,W ∈P(Y), called the order α Augustin-Legendre center of W for

the Lagrange multiplier λ, satisfying

Cλ
α,W = supp∈Aλ Dα

(
W ‖ qλα,W

∣∣ p
)
− λ ·Ep [ρ] (119)

= supx∈XDα

(
W (x )‖ qλα,W

)
− λ · ρ(x ). (120)

Proof of Theorem 4. Since P(X) ⊂ Aλ, the max-min inequality implies

supp∈P(X) infq∈P(Y) Dα(W ‖ q| p) − λ ·Ep [ρ] ≤ supp∈Aλ infq∈P(Y)Dα(W ‖ q| p)− λ · Ep [ρ]

≤ infq∈P(Y) supp∈Aλ Dα(W ‖ q| p)− λ · Ep [ρ]

= infq∈P(Y) supx∈XDα(W (x )‖ q)− λ · ρ(x ).
Thus (116) and (117) hold as a result of (79) and (80) of Theorem 2 and (118) follows by (80) of Theorem 2 and (78).
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If Cλ
α,W is finite, then as a result of Theorem 2 there exist a unique qλα,W ∈ P(Y) satisfying

supx∈XDα

(
W (x )‖ qλα,W

)
− λ · ρ(x ) = Cλ

α,W .

Then (119) and (120) hold because supp∈Aλ Dα(W ‖ q| p)−λ·Ep [ρ] = supx∈XDα(W (x )‖ q)−λ·ρ(x ) for any q ∈ P(Y).
Let A(̺) be the subset P(X ) composed of the probability measures satisfying the cost constraint ̺,

A(̺) , {p ∈ P(X ) : Ep [ρ] ≤ ̺}.
Then A(̺) ⊂ A(̺) and supp∈A(̺) Iα(p;W) ≥ Cα,W ,̺ whenever X is countably separated. For the cost constraints in intΓρ

reverse inequality holds as a result of Lemma 29-(c) and Theorem 4 and we have supp∈A(̺) Iα(p;W) = Cα,W ,̺. Theorem 5

states these observations formally together with the ones about the Augustin center through a minimax theorem.

Theorem 5. Let X be a countably separated σ-algebra, Y be a countably generated σ-algebra, W be a transition probability

from (X,X ) to (Y,Y), ρ : X → Rℓ
≥0 be a X -measurable cost function, and α ∈ R+ . For any ̺ ∈ intΓρ we have

supp∈A(̺) infq∈P(Y) Dα(W ‖ q| p) = infq∈P(Y) supp∈A(̺) Dα(W ‖ q| p) (121)

= Cα,W ,̺ (122)

where Cα,W ,̺ is defined in (68). If Cα,W ,̺ ∈R≥0 , then ∃!qα,W ,̺ ∈P(Y), called the order α Augustin center of W for the

cost constraint ̺, satisfying

Cα,W ,̺ = supp∈A(̺) Dα(W ‖ qα,W ,̺| p) (123)

= supp∈A(̺) Dα(W ‖ qα,W ,̺| p) . (124)

Furthermore, qα,W ,̺ = qλα,W for all λ ∈ Rℓ
≥0 satisfying Cα,W ,̺ = Cλ

α,W + λ · ̺.

Proof of Theorem 5. Since A(̺) ⊂ A(̺), the max-min inequality implies

supp∈A(̺) infq∈P(Y)Dα(W ‖ q| p) ≤ supp∈A(̺) infq∈P(Y)Dα(W ‖ q| p)
≤ infq∈P(Y) supp∈A(̺) Dα(W ‖ q| p) .

Thus both (121) and (122) hold whenever Cα,W ,̺ = ∞ by (58). On the other hand, as a result of Theorem 4 for any λ with

finite Cλ
α,W there exists a unique qλα,W satisfying (120). Thus we have,

infq∈P(Y) supp∈A(̺) Dα(W ‖ q| p) ≤ supp∈A(̺) Dα

(
W ‖ qλα,W

∣∣ p
)

≤ supp∈A(̺) Dα

(
W ‖ qλα,W

∣∣ p
)
− λ ·Ep [ρ] + λ · ̺

≤ Cλ
α,W + λ · ̺.

Furthermore, if Cα,W ,̺ ∈ R , then there exists at least one λ ∈ Rℓ
≥0 satisfying Cα,W ,̺ = Cλ

α,W + λ · ̺ by Lemma 29-(c).

Then (121) and (122) hold when Cα,W ,̺ ∈ R and (123) holds for qα,W ,̺ = qλα,W provided that Cα,W ,̺ = Cλ
α,W + λ · ̺.

On the other hand qα,W ,̺ is a probability measure satisfying (124) by Theorem 1 and qα,W ,̺ = qλα,W for all λ satisfying

Cα,W ,̺ = Cλ
α,W + λ · ̺ by Lemma 31.

The countable separability of X and countable generatedness of Y are fairly mild assumptions satisfied by most transition

probabilities considered in practice. Hence, Theorems 4 and 5 provide further justification for studying the relatively simple

case of probability mass functions, first.

The existence of an input distribution p satisfying both Ep [ρ] ≤ ̺ and Iα(p;W) = Cα,W ,̺ is immaterial to the existence

of a unique qα,W ,̺ or its characterization through qλα,W for λ’s satisfying Cα,W ,̺ = Cλ
α,W + λ · ̺ by Lemma 29-(c,d) and

Theorem 5. Although one can prove the existence of such a p for certain special cases such an input distribution does not exist

in general. Thus, we believe, it is preferable to separate the issue of the existence of an optimal input distribution from the

discussion of Cα,W ,̺ and qα,W ,̺ and their characterization via Cλ
α,W and qλα,W . That, however, is not the standard practice,

[36, Thm. 1].

We have assumed Y to be countably generated in order to ensure that the conditional Rényi divergence used in (113) is

well-defined. In order to define the Rényi information, however, we do not need to assume Y to be countably generated;

the transition probability structure is sufficient. Recall that if W ∈ P(Y|X ), then for any p ∈ P(X ) there exists a unique

probability measure p⊛W on (X× Y,X ⊗ Y) such that

p⊛W (Ex × Ey ) =

∫

Ex

W (Ey |x )p(dx ). ∀Ex ∈ X ,Ey ∈ Y

by [21, Thm. 10.7.2.]. Thus I g
α(p;W) is well defined for any W ∈ P(Y|X ) and p ∈ P(X ).
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Unfortunately, the situation is not nearly as simple for the R-G information. In order to define the R-G information using

a similar approach one first shows that W e
1−α
α λ·ρ is a transition kernel —rather than a transition probability (i.e. Markov

kernel)— and then proceeds with establishing the existence a unique measure p⊛W e
1−α
α λ·ρ for all p in P(Y). For orders

greater than one, resulting measure is a sub-probability measure and one can use (87) as the definition of the R-G information.

For orders between zero and one, on the other hand, p⊛W e
1−α
α λ·ρ is a σ-finite measure for all p’s in P(X ), but it is not

necessarily a finite measure for all p’s in P(X ). Thus for orders between zero and one, one can use (87) as the definition of

the R-G information, only after extending the definition of the Rényi divergence to σ-finite measures.

6. EXAMPLES

In this section, we will first demonstrate certain subtleties that we have pointed out in the earlier sections. After that we

will study Gaussian channels and obtain closed form expressions for their Augustin capacity and center.

6.1. Shift Invariant Families

Example 1 (A Channel with an Affine Capacity). Let the channel W : R≥0 → P(B([0, 1))) and the associated cost function

ρ : R≥0 → R≥0 be

dW (x)
dν = f⌊x⌋(y − x − ⌊y − x⌋),
ρ(x ) = ⌊x⌋

where ν is the Lebesgue measure on [0, 1) and fı’s are given by

fı(y) = eı+1
1{y∈[0,e−ı−1)} ∀ı ∈ Z≥0 .

Let uı be uniform distribution on [ı, ı+1); then one can confirm by substitution that Tα,uı
(u0) = u0. Then using the Jensen’s

inequality together with the fixed point property we get21

Dα(W‖ q| uı) ≥ Dα(W‖ u0| uı) +Dα∧1(u0‖ q) .
Thus u0 is the unique order α Augustin mean for the input distribution uı, i.e. qα,uı = u0, and Iα(uı;W) = Dα(W‖ u0| uı)
—and hence Iα(uı;W) = ı+ 1— for all ı ∈ Z+ and α ∈ R+ . Then using Euı [ρ] = ı, we can conclude that Cα,W,̺ ≥ (̺+ 1)
not only for ̺ ∈ Z≥0 but also for ̺ ∈ R≥0 because Cα,W,̺ is concave in ̺ by Lemma 27-(a). One the other hand, one can

confirm by substitution that

Dα(W‖ u0| p) = Ep [ρ] + 1. (125)

Thus Iα(p;W) ≤ (̺+ 1) for any p satisfying the cost constraint ̺. Hence,

Cα,W,̺ = ̺+ 1,

qα,W,̺ = u0.

Then as a result of (76) we have

Cλ
α,W =

{
∞ λ ∈ [0, 1)

1 λ ∈ [1,∞)
.

Then using (125) and Theorem 4, we can conclude that qλα,W = u0 for all λ ∈ [1,∞).

Example 2 (A Channel with a Non-Upper Semicontinuous Capacity). Let the channel W : R → P(B([0, 1))) and the

associated cost function ρ : R → R≥0 be

dW (x)
dν = f⌊x⌋(y − x − ⌊y − x⌋)

ρ(x ) =

{
⌊x⌋ x ≥ 0

2⌊x⌋ x < 0
.

where ν is the Lebesgue measure on [0, 1) and fı :∈ [0, 1) → R≥0 are given by

fı(y) =





2ı+1
1{y∈[0,2−ı−1)} ı > 0

3/21{y∈[0,2/3)} ı = 0

21{y∈[0,1/2)} ı < 0

.

21See the derivation of (32) and (34) of Lemma 13-(c,d) given in Appendix B.
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Following an analysis similar to the one described above we can conclude that

Cα,W,̺ =

{
(̺+ 1) ln 2 ̺ > 0

ln 3/2 ̺ = 0
,

Cλ
α,W =

{
∞ λ ∈ [0, ln 2)

ln 2 λ ∈ [ln 2,∞)
.

Hence Cα,W,̺ 6= infλ≥0 C
λ
α,W + λ · ̺ for ̺ = 0.

Example 3 (A Product Channel without an Optimal Cost Allocation). Let W1 and W2 be the channels described in Examples

1 and 2 and ρ1 and ρ2 be the associated cost functions. Let W[1,2] be the product of these two channels with the additive cost

function ̺[1,2], i.e.

W[1,2](x1, x2) = W1(x1)⊗W2(x2),

ρ[1,2](x1, x2) = ρ1(x1) + ρ2(x2).

Then Lemma 28 implies

Cα,W[1,2],̺ =

{
̺+ 1 + ln 2 ̺ > 0

1 + ln 3
2 ̺ = 0

.

Note that for positive values of ̺ there does not exist any (̺1, ̺2) pair satisfying both Cα,W[1,2],̺ = Cα,W1,̺1 +Cα,W2,̺2 and

the cost constraint ̺1 + ̺2 ≤ ̺ at the same time.

6.2. Gaussian Channels

In the following, we denote the zero mean Gaussian probability measure on B(R) with variance σ2 by ϕσ2 . With a slight

abuse of notation, we denote the corresponding probability density function by the same symbol:

ϕσ2(x ) = 1√
2πσ

e−
x2

2σ2 ∀x ∈ R .

We use the Gaussian channels and the corresponding transition probabilities interchangeably; they have the same cost constrained

Augustin capacity and center by Theorems 4 and 5.

Example 4 (Scalar Gaussian Channel). Let W be the scalar Gaussian channel with noise variance σ2 and the associated cost

function ρ be the quadratic one, i.e.

W (E|x ) =
∫

E

ϕσ2 (y − x )dy ∀E ∈ B(R),

ρ(x ) = x 2 ∀x ∈ R .

The Augustin capacity and center of this channel are given by the following expressions:

Cα,W,̺ =





α̺
2(αθα,σ,̺+(1−α)σ2) +

1
α−1 ln

(θα,σ,̺)
α/2σ(1−α)√

αθα,σ,̺+(1−α)σ2
α ∈ R+ \ {1}

1
2 ln

(
1 + ̺

σ2

)
α = 1

, (126)

qα,W,̺ = ϕθα,σ,̺ , (127)

θα,σ,̺ , σ2 + ̺
2 − σ2

2α +

√
(̺2 − σ2

2α )
2 + ̺σ2. (128)

Furthermore, Cα,W,̺ is continuously differentiable in ̺ and its derivative is a continuous, decreasing, and bijective function of

̺ from R+ to [0, α/2σ2) given by

d
d̺Cα,W,̺ = α

2(αθα,σ,̺+(1−α)σ2) (129)

= α

α̺+σ2+
√

(α̺−σ2)2+4̺α2σ2
. (130)

In order to prove these, we first demonstrate that the Augustin mean for the zero mean Gaussian distribution with variance ̺ is the

zero mean Gaussian distribution with variance θα,σ,̺, i.e. qα,ϕ̺ = ϕθα,σ,̺ . This will imply Iα(ϕ̺;W) = Dα

(
W‖ϕθα,σ,̺

∣∣ϕ̺

)
.

Dα

(
W‖ϕθα,σ,̺

∣∣ϕ̺

)
is equal to the expression on the right hand side of (126). In order to establish (126) and (127), we

demonstrate that this value is the greatest value for the Augustin information among all input distributions satisfying the cost

constraint ̺. Consequently, we have Cα,W,̺ = Iα(ϕ̺;W) and qα,W,̺ = qα,ϕ̺ . Then we confirm (129) using an identity, i.e.

(133), obtained while establishing qα,ϕ̺ = ϕθα,σ,̺ .
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One can confirm by substitution that

Dα(W (x )‖ϕθ) =





αx2

2(αθ+(1−α)σ2) +
1

α−1 ln
θα/2σ(1−α)√
αθ+(1−α)σ2

α ∈ R+ \ {1}
σ2+x2−θ

2θ + 1
2 ln

θ
σ2 α = 1

. (131)

Then the order α tilted channel W ϕθ
α , defined in (22), is a Gaussian channel as well:

W ϕθ
α (E|x ) =

∫

E

ϕ σ2θ
αθ+(1−α)σ2

(
y − αθ

αθ+(1−α)σ2 x
)
dy .

Then Tα,p (q) is a zero mean Gaussian probability measure whenever both p and q are so. In particular,

Tα,ϕ̺
(ϕθ) = ϕ

(
αθ

αθ+(1−α)σ2 )2̺+
σ2θ

αθ+(1−α)σ2

. (132)

Consequently, if ϕθ is a fixed point of Tα,ϕ̺
(·), then θ satisfies the following equality

θ
[
θ2 − θ

(
̺+

(
2− 1

α

)
σ2
)
+
(
1− 1

α

)
σ4
]
= 0. (133)

θα,σ,̺, defined in (128), is the only root of the equality given in (133) that is greater than σ2 for α’s in R+ ; it is the only

positive root for α’s in (0, 1), as well. Furthermore, using (132) one can confirm that Tα,ϕ̺

(
ϕθ2

α,σ,̺

)
= ϕθα,σ,̺ , i.e. ϕθα,σ,̺

is a fixed point of Tα,ϕ̺
(·). Then using the Jensen’s inequality together with this fixed point property we get22

Dα(W‖ q|ϕ̺) ≥ Dα

(
W‖ϕθα,σ,̺

∣∣ϕ̺

)
+ D1∧α

(
ϕθα,σ,̺

∥∥ q
)

∀q ∈ P(B(R)).

Thus ϕθα,σ,̺ is the order α Augustin mean for the input distribution ϕ̺, i.e. qα,ϕ̺ = ϕθα,σ,̺ and Iα(ϕ̺;W) = Dα

(
W‖ϕθα,σ,̺

∣∣ϕ̺

)
.

On the other hand, (131) implies

Dα

(
W‖ϕθα,σ,̺

∣∣ p
)
=

α(Ep[ρ]−̺)
2(αθα,σ,̺+(1−α)σ2) + Iα(ϕ̺;W) ∀p ∈ P(B(R)). (134)

Then Iα(p;W) ≤ Iα(ϕ̺;W) for all p satisfying Ep [ρ] ≤ ̺. Consequently, Cα,W,̺ = Iα(ϕ̺;W) and qα,W,̺ = qα,ϕ̺ .

For α = 1 case (129) is evident. In order to establish (129) for α ∈ R+\{1} case, note that

d
d̺Cα,W,̺ = α

2(αθα,σ,̺+(1−α)σ2) +
[

−α2̺
2(αθα,σ,̺+(1−α)σ2)2 +

α(θα,σ,̺−σ2)
2(αθα,σ,̺+(1−α)σ2)θα,σ,̺

]
d
d̺θα,σ,̺

= α
2(αθα,σ,̺+(1−α)σ2) +

α2

2(αθα,σ,̺+(1−α)σ2)2θα,σ,̺

[
θ2α,σ,̺ − θα,σ,̺

(
̺+ (2− 1

α )σ
2
)
+ (1− 1

α )σ
4
]

d
d̺θα,σ,̺.

Then (129) holds for α ∈ R+\{1} because θα,σ,̺ is a root of the equality in (133).

The A-L capacity and center of this channel are given by the following expressions:

Cλ
α,W =





(
α

α−1 ln
√

1
α + α−1

α
2σ2λ
α − ln

√
2σ2λ
α

)
1{λ∈(0, α

2σ2 )} α ∈ R+ \ {1}
(
σ2λ− ln

√
2eσ2λ

)
1{λ∈(0,

1
2σ2 )} α = 1

(135)

qλα,W = ϕθλ
α,σ

(136)

θλα,σ , σ2 +
∣∣∣ 1
2λ − σ2

α

∣∣∣
+

(137)

Then Cλ
α,W is a continuously differentiable function of λ and its derivative is a continuous, increasing, and bijective function

of λ from R+ to (−∞, 0] given by

d
dλC

λ
α,W = − α−2σ2λ

2λ(α+(α−1)2σ2λ)1{λ≤ α
2σ2 }. (138)

The expressions for the A-L capacity and center given in (135) and (136) are derived using the expressions for Augustin

capacity and center, (76), (129), (130), (131), and Lemma 31.

• If λ ∈ (0, α/2σ2), then there exists a unique ̺λα,W satisfying d
d̺Cα,W ,̺|̺=̺λ

α,W
=λ by (130). Furthermore, ̺λα,W satisfies

Cλ
α,W=Cα,W,̺λ

α,W
−λ̺λα,W by (76) because d

d̺Cα,W ,̺ is decreasing in ̺. Then (135) follows from (126) and (129). On

the other hand qλα,W = qα,W ,̺λ
α,W

by Lemma 31 because Cα,W,̺λ
α,W

=Cλ
α,W+λ̺λα,W . Then (136) follows from (127),

(128), (129), and (137). In addition one can confirm that ̺λα,W = − d
dλC

λ
α,W by solving d

d̺Cα,W ,̺|̺=̺λ
α,W

= λ explicitly

for ̺λα,W . We, however, do not need to obtain that explicit solution to confirm (135) and (136).

• If λ ∈ [α/2σ2,∞), then Dα(W ‖ϕσ2 | p)− λEp [̺] ≤ 0 by (131). On the other hand, Cλ
α,W ≥ 0 because A-L information

is zero for the probability measure that puts all its probability mass to x = 0. Hence Cλ
α,W = 0 and qλα,W = ϕσ2 . Thus,

both (135) and (136) hold.

22Derivation of this inequality is analogous to the derivation of (32) and (34) of Lemma 13-(c,d), presented in Appendix B.
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Example 5 (Parallel Gaussian Channels). Let W[1,n] be the product of scalar Gaussian channels Wı with noise variance σı

for ı ∈ {1, . . . , n} and ρ[1,n] be the additive cost function, i.e.

W[1,n](E|xn
1 ) =

∫

E

[∏n

ı=1
ϕσ2

ı
(yı − xı)

]
dyn

1 ∀E ∈ B(Rn),

ρ[1,n](x
n
1 ) =

∑n

ı=1
x 2
ı ∀xn

1 ∈ Rn .

As a result of Lemma 28, the cost constrained Augustin capacity of W[1,n] satisfies

Cα,W[1,n],̺ = sup̺1,...,̺n :
∑

ı ̺ı≤̺Cα,Wı,̺ı .

Since Cα,Wı,̺ı’s are continuous, strictly concave, and increasing in ̺ı the supremum is achieved at a unique (̺α,1, . . . , ̺α,n).
Then qα,W[1,n],̺ = qα,W1,̺α,1 ⊗ · · · ⊗ qα,Wn ,̺α,n by Lemma 28. Furthermore, since Cα,Wı,̺ı’s are continuously differentiable

in ̺ı, the unique point (̺α,1, . . . , ̺α,n) can be determined via the derivative test: d
d̺ı

Cα,Wı,̺ı |̺ı=̺α,ı =λα for all ı’s with a

positive ̺α,ı and d
d̺ı

Cα,Wı,̺ı |̺ı=̺α,ı ≤λα for all ı’s with a zero ̺α,ı for some λα ∈ R+ . Thus using (130), we can conclude

that the optimal cost allocation, i.e.(̺α,1, . . . , ̺α,n), satisfies

̺α,ı =
|α−2σ2

ı λα|+
2λα(α+2(α−1)σ2

ı λα) (139)

for some λα that is uniquely determined by constraint
∑n

ı=1 ̺α,ı = ̺ because the expression on the right hand side of (139)

is nonincreasing in λα for each ı. Consequently,

Cα,W[1,n],̺ =
∑n

ı=1
Cα,Wı,̺α,ı (140)

qα,W[1,n],̺ =
⊗n

ı=1
ϕθα,σı,̺α,ı

(141)

where θα,σ,̺ is defined in (128). Using the constraints for the optimality of a cost allocation we obtained via the derivative

test, i.e. d
d̺ı

Cα,Wı,̺ı |̺ı=̺α,ı = λα for all ı’s with a positive ̺α,ı and d
d̺ı

Cα,Wı,̺ı |̺ı=̺α,ı ≤ λα for all ı’s with a zero ̺α,ı,
together with (129) —instead of (130)— we obtain the following alternative characterization of θα,σı,̺α,ı in terms of σı and

λα that does not depend on ̺α,ı’s explicitly

θα,σı,̺α,ı = σ2
ı +

∣∣∣ 1
2λα

− σ2
ı

α

∣∣∣
+

. (142)

The A-L capacity and center of W[1,n] can be written in terms of the corresponding quantities for the component channels

using Lemma 32 as follows:

Cλ
α,W[1,n]

=
∑n

ı=1
Cλ

α,Wı
,

qλα,W[1,n]
=
⊗n

ı=1
qλα,Wı

.

The cost constrained Augustin capacity and center and A-L capacity and center of vector Gaussian channels with multiple

input and output antennas can be analyzed with a similar approach with the help of singular value decomposition.

7. DISCUSSION

Similar to the Rényi information, the Augustin information is a generalization of the mutual information defined in terms of

the Rényi divergence. Unlike the order α Rényi information, however, the order α Augustin information does not have a closed

form expression, except for the order one case. This makes it harder to prove certain properties of the Augustin information

such as its continuous differentiability as a function of the order α, the existence of a unique order α Augustin mean qα,p , or

the bounds given in (7). However, once these fundamental properties of the Augustin information are established, the analysis

of the Augustin capacity is rather straightforward and very similar to the analogous analysis for the Rényi capacity, presented

in [13].

Previously, the convex conjugation techniques have been applied to the calculation of the cost constrained Augustin capacity

through the quantity I gλ
α (p;W), which we have called the R-G information. Although such an approach can successfully

characterize the cost constrained Augustin capacity via the R-G capacity; it is non-standard and somewhat convoluted. A more

standard approach, based on the concept of A-L information I λα (p;W), is presented in §5.2. The A-L information has not been

used or studied before to the best of our knowledge; nevertheless the resulting capacity is identical to the one associated with

the R-G information. The optimality of the approach based on the R-G information seems more intuitive, in the light of this

observation.

Our analysis of the Augustin information and capacity was primarily motivated by their operational significance in the

channel coding problem, [6]. We investigate that operational significance more closely and derive sphere packing bounds

with polynomial prefactors for two families of memoryless channels —composition constrained and cost constrained— in [7].

Broadly speaking, the derivation of the sphere packing bound for memoryless channels in [7] is similar to the derivation of

the sphere packing bound for product channels in [37], except for the use of the Augustin capacity and center instead of the

Rényi capacity and center.
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APPENDIX

A. Proofs of Lemmas on the Analyticity of the Rényi Divergence

Proof of Lemma 11. Let g(α) and f (α, y) be

g(α) ,

∫ (
dw
dν

)α (dq
dν

)1−α

ν(dy), (A.1)

f (α, y) ,
(
dw
dν

)α (dq
dν

)1−α

(A.2)

where ν is any reference measure satisfying w≺ν and q≺ν. Note that

Dα(w‖ q) = 1
α−1 ln g(α) α ∈ R+ \ {1}. (A.3)

Furthermore g(α) does not depend on the choice of ν, but f (α, y) does.

∂κ

∂ακ f (α, y) =
(
ln dw

dν − ln dq
dν

)κ
f (α, y) ∀κ ∈ Z≥0 . (A.4)

Then using the inequality z ln z ≥ −1/e we get

∣∣ ∂κ

∂ακ f (α, y)
∣∣ ≤

(
κ
αe

)κ dq
dν1{dw

dν ≤ dq
dν } +

(
κ

(φ−α)e

)κ
f (φ, y)1{ dw

dν > dq
dν } ∀κ ∈ Z≥0 , φ ∈ (α,∞).

Invoking the Stirling’s approximation for the factorial function, i.e.
√
2πκ(κ/e)κ ≤ κ! ≤ e

√
κ(κ/e)κ, we get

∣∣ ∂κ

∂ακ f (α, y)
∣∣ ≤ κ!√

2πκ

(
1
ακ

dq
dν1{dw

dν ≤ dq
dν } +

f (φ,y)
(φ−α)κ1{dw

dν > dq
dν }

)
∀κ ∈ Z≥0 , φ ∈ (α,∞). (A.5)

On the other hand
∫
f (φ, y)ν(dy ) = e(φ−1)Dφ(w‖q) and for all α in (0, χw,q) there exists a φ in (α, χw,q) with finite Dφ(w‖ q).

Then as a result of [21, Corollary 2.8.7-(ii)], g(α) is an infinitely differentiable function of α on (0, χw,q) such that

∂κ

∂ακ g(α) =

∫ [
∂κ

∂ακ f (α, y)
]
ν(dy) ∀κ ∈ Z≥0 . (A.6)

Consequently, if χw,q > 1, then

D1(w‖ q) = ∂
∂α ln g(α)

∣∣
α=1

. (A.7)

Using (A.5) and (A.6) we get

∣∣ ∂κ

∂ακ g(α)
∣∣ ≤ κ!√

2πκ

(
1
ακ + g(φ)

(φ−α)κ

)
∀κ ∈ Z+ , φ ∈ (α, χw,q). (A.8)

Thus g(α) is not only infinitely differentiable but also analytic in α on (0, χw,q) by [38, Proposition 1.2.12]. On the other

hand g(α) ∈ R+ for all α ∈ (0, χw,q) because g(α) = e(α−1)Dα(w‖q) by (A.3) and Dα(w‖ q) ∈ R≥0 by Lemmas 2 and 8 and

the definition of χw,q . Thus ln g(α) is analytic in α on (0, χw,q) because composition of analytic functions is analytic by [38,

Proposition 1.4.2]. Then Dα(w‖ q) is analytic in α on (0, χw,q) \ {1} because the quotient of analytic functions is analytic at

points with open neighborhoods on which the function in the denominator is non-zero by [38, Proposition 1.1.12].

Now we proceed with establishing the analyticity of Dα(w‖ q) at α = 1 for χw,q > 1 case. Since ln g(α) is analytic in α
on (0, χw,q) we can write ln g(α) as a convergent power series around any point in (0, χw,q) for some neighborhood. Thus,

there exists a δ > 0 for which the following two identities hold for all η ∈ (1− δ, 1 + δ)
∑∞

ı=0

|η−1|ı
ı!

∣∣ ∂ı

∂αı ln g(α)
∣∣
α=1

∣∣ < ∞,
∑∞

ı=0

(η−1)ı

ı!
∂ı

∂αı ln g(α)
∣∣
α=1

= ln g(η).

Then using ln g(1) = 0 together with (A.3) and (A.7) we get

Dη(w‖ q) = D1(w‖ q) +
∑∞

ı=2

(η−1)ı−1

ı!
∂ı

∂αı ln g(α)
∣∣
α=1

∀η ∈ (1− δ, 1 + δ). (A.9)

Then Dη(w‖ q) is analytic on (1− δ, 1+ δ) by [38, Corollary 1.2.4] because it is equal to a function defined by a convergent

power series.

The convergent power series given in (A.9) determines the derivatives of Dα(w‖ q) at α = 1 by [38, Corollary 1.1.16]:

∂κ

∂ακDα(w‖ q)
∣∣
α=1

= 1
κ+1

∂κ+1

∂ακ+1 ln g(α)
∣∣∣
α=1

κ ∈ Z+ . (A.10)
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Using (A.3) together with the elementary rules of differentiation we can express the derivatives of Dα(w‖ q) in terms of the

derivatives of ln g(α) for other orders in (0, χw,q), as well

∂κ

∂ακDα(w‖ q)
∣∣
α=φ

=
∑κ

t=0

κ!
t!(κ−t)!

(
∂κ−t

∂ακ−t
1

α−1

∣∣∣
α=φ

)(
∂t

∂αt ln g(α)
∣∣∣
α=φ

)

=
∑κ

t=0

κ!
t!

(−1)κ−t

(φ−1)κ−t+1
∂t

∂αt ln g(α)
∣∣∣
α=φ

κ ∈ Z+ , φ ∈ (0, χw,q) \ {1}. (A.11)

On the other hand by Faà di Bruno formula for derivatives of the composition of smooth functions [38, Thm. 1.3.2] we have

∂t

∂αt ln g(α) =
∑

Jt

t!
1!2!...t !

(
∂1+2+···+t

∂τ 1+2+···+t
ln τ
∣∣∣
τ=g(α)

)(
1
1!

∂1

∂α1 g(α)
)1 (

1
2!

∂2

∂α2 g(α)
)2

· · ·
(

1
t!

∂t

∂αt g(α)
)t

=
∑

Jt

t!
1!2!...t !

(−1)(1+2+···+t−1)!
(−g(α))1+2+···+t

(
1
1!

∂1

∂α1 g(α)
)1 (

1
2!

∂2

∂α2 g(α)
)2

· · ·
(

1
t!

∂t

∂αt g(α)
)t

∀t ∈ Z+ .

Then using (A.1), (A.2), (A.4), and (A.6) we get

∂t

∂αt ln g(α) = t !
∑

Jt

(−1)(1+2+···+t−1)!
1!2!...t !

∏t

ı=1

(
(−1)
ı! Ew

q
α

[(
ln dw

dν − ln dq
dν

)ı])ı
∀t ∈ Z+ . (A.12)

The expression given in (13) for κth derivative of Dα(w‖ q) with respect to α follows from the identity ln g(1) = 0 and

equations (A.3), (A.10), (A.11), and (A.12).

In order to prove the analyticity of D1(w
q
α‖w) and D1(w

q
α‖ q), first note that as a result of (16), which follows from (13),

we have

D1

(
w

q
φ

∥∥∥w
)
= (φ− 1)2 ∂

∂αDα(w‖ q)
∣∣
α=φ

∀φ ∈ (0, χw,q). (A.13)

Since Dα(w‖ q) is analytic in α on (0, χw,q), so is ∂
∂αDα(w‖ q). Hence, D1(w

q
α‖w) is analytic in α on (0, χw,q). Since

D1

(
w

q
φ

∥∥∥w
)

is analytic in φ on (0, χw,q), it is finite on (0, χw,q). Thus (12) holds for all α in (0, χw,q) and (A.13) implies

D1

(
w

q
φ

∥∥∥ q
)
= Dφ(w‖ q) − φ(1− φ) ∂

∂αDα(w‖ q)
∣∣
α=φ

∀φ ∈ (0, χw,q).

Thus D1(w
q
α‖ q) is an analytic function of α on (0, χw,q), as well.

Proof of Lemma 12. As results of (A.2), (A.4), (A.5), and Definition 2 we have

Ew
q
α

[∣∣∣ln dw
dν − ln dq

dν

∣∣∣
ı]

≤ e(1−α)Dα(w‖q)ı!√
2πı

(
1
αı +

e(β−1)Dβ(w‖q)

(β−α)ı

)
∀ı ∈ Z+ .

Then using Dβ(w‖ q) ≤ γ together with Lemma 8 we get

Ew
q
α

[∣∣∣ln dw
dν − ln dq

dν

∣∣∣
ı]

≤ ı!√
ı

e(1∨β)γ

(α∧(β−α))ı ∀ı ∈ Z+ .

Then using (13) and (15) we get,

∣∣∣∣
∂κDα(w‖q)

∂ακ

∣∣∣
α=φ

∣∣∣∣ ≤




κ! γ

|φ−1|κ + κ!
κ∑

t=1

1
|φ−1|κ−t+1

1
(φ∧(β−φ))t

∑
Jt

(1+2+···+t−1)!
1!2!...t !

(
e(1∨β)γ

)1+2+···+t
φ 6= 1

κ! 1
(1∧(β−1))κ+1

∑
Jκ+1

(1+2+···+κ+1−1)!
1!2!...κ+1!

(
e(1∨β)γ

)1+2+···+κ+1
φ = 1

.

On the other hand
∑

Jt

(1+2+···+t)!
1!2!...t !

ξ1+2+···+t = ξ(1 + ξ)t−1 by [38, Thm. 1.4.1]. Thus we get the following inequality,

which implies (18) for the τ defined in (20).

∣∣∣∣
∂κDα(w‖q)

∂ακ

∣∣∣
α=φ

∣∣∣∣ ≤





κ!
κ∑

t=1

1
|φ−1|κ−t+1

(
1+e(1∨β)γ

φ∧(β−φ) + γ1{t=1}
)t

φ 6= 1

κ!
(

1+eβγ

1∧(β−1)

)κ+1

φ = 1

.

As a result of [38, Corollaries 1.2.4 and 1.2.5] the following equality holds on the open interval in which the power series on

the right hand side is convergent,

Dη(w‖ q) =
∑∞

=0

(η−φ)

!
∂

∂αDα(w‖ q)
∣∣
α=φ

. (A.14)

Note that as a result of (18) we have

lim supκ→∞
κ

√
1
κ!

∣∣∣ ∂κ

∂ακDα(w‖ q)
∣∣
α=φ

∣∣∣ ≤ τ.
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Thus radius of convergence of the power series on the right hand side of (A.14) is at least 1
τ by [38, Lemma 1.1.8], i.e. by

Hadamard formula. Thus for all η ∈ (φ− 1
τ , φ+ 1

τ ) using (18) and (A.14) we get
∣∣∣∣Dη(w‖ q) −

∑κ−1

ı=0

(η−φ)ı

ı!
∂ıDα(w‖q)

∂αı

∣∣∣
α=φ

∣∣∣∣ ≤
∑∞

ı=κ
|η − φ|ıτ ı+1

(
1{φ=1} + ı1{φ 6=1}

)
.

Using identities
∑∞

ı=0 z
ı = 1

1−z
and

∑∞
ı=0(ı+ 1)z ı = 1

(1−z)2 for |z | < 1 we get,
∣∣∣∣Dη(w‖ q)−

∑κ−1

ı=0

(η−φ)ı

ı!
∂ıDα(w‖q)

∂αı

∣∣∣
α=φ

∣∣∣∣ ≤
τκ+1|η−φ|κ
1−|η−φ|τ

[
1{φ=1} +

(
κ− 1 + 1

1−|η−φ|τ

)
1{φ 6=1}

]
.

B. Proofs of Lemmas on the Augustin Information

Proof of Lemma 13.

(13-a) Iα(p;W) ≤ Dα(W ‖ q| p) for all q ∈ P(Y) by definition. On the other hand, Dα(W (x )‖ q1,p) ≤ − ln p(x ) for all x with

positive p(x ) by Lemma 1 because p(x )W (x ) ≤ q1,p . Hence, Iα(p;W) ≤ −∑x p(x ) ln p(x ).
(13-b) Note that as a result of Lemma 2 and (24),

D1(W ‖ q| p) ≥ D1(W ‖ q1,p | p) + 1
2‖q1,p − q‖2 ∀q ∈ P(Y).

Then q1,p is the unique probability measure satisfying I1(p;W) = D1(W ‖ q1,p | p). Then (29) follows from (24).

(13-c) Let S and ς be

ς , minx :p(x)>0 p(x ),

S ,
{
s ∈ M

+

(X) : ς1{p(x)>0} ≤ s(x ) ≤
(
e

1−α
ς Dα(W ‖qg

α,p |p)
)
1{p(x)>0} ∀x ∈ X

}
.

The statements proved in (c-i), (c-iv), (c-vi), and (c-vii) collectively imply part (c).

(c-i) If q1,p≺u and Tα,p (u) = u , then Dα(W ‖ u| p) = Iα(p;W), (30) and (32) hold for qα,p = u , and qα,p is unique:

Note that Tα,p (u) = u and q1,p≺u imply

du
dν =

[∑
x
p(x )

(
dW (x)

dν

)α
e(1−α)Dα(W (x)‖u)

] 1
α ∀ν : q1,p≺ν.

Then one can confirm by substitution that

Dα(u‖ q) = 1
α−1 ln

∑
x
p(x )e(α−1)(Dα(W (x)‖q)−Dα(W (x)‖u)) ∀q ∈ P(Y).

Then Jensen’s inequality and convexity of the exponential function imply

Dα(u‖ q) ≤ Dα(W ‖ q| p)−Dα(W ‖ u| p) ∀q ∈ P(Y). (B.1)

Then u is the unique probability measure satisfying Iα(p;W) = Dα(W ‖ u| p) by Lemma 2. Consequently (30) and

the lower bound given in (32) hold.

In order to establish the upper bound given in (32) for q ∈ Qα,p , first note that W (x )≺u for all x with a positive

p(x ) because q1,p≺u . Thus for all x with positive p(x ) we have

Dα(W (x )‖ q) −Dα(W (x )‖ u) = 1
α−1

[
ln

∫
(dW (x)

du )α(dq∼du )1−αu(dy)− (α− 1)Dα(W (x )‖ u)
]

= 1
α−1 ln

∫
(dq∼du )1−α(dW (x)

du )αe(1−α)Dα(W (x)‖u)u(dy)

= 1
α−1 ln

∫
(dq∼du )1−α dW u

α(x)
du u(dy)

= 1
α−1 ln

∫
(dq∼du )1−αW u

α (x )(dy) ∀q ∈ Qα,p

where q∼ is the component of q that is absolutely continuous in u . Consequently,

Dα(W ‖ q| p) −Dα(W ‖ u| p) = 1
α−1

∑
x
p(x ) ln

∫
(dq∼du )1−αW u

α (x )(dy) ∀q ∈ Qα,p . (B.2)

On the other hand using the Jensen’s inequality and concavity of the natural logarithm function we get

1
α−1

∑
x
p(x ) ln

∫
(dq∼du )1−αW u

α (x )(dy) ≤ 1
α−1

∑
x
p(x )

∫ [
ln(dq∼du )1−α

]
W u

α (x )(dy)

=

∫ [
ln( du

dq∼
)
]
Tα,p (u)(dy). (B.3)
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Since Tα,p (u) = u by the hypothesis, using (B.2) and (B.3) we get

D1(u‖ q) ≥ Dα(W ‖ q| p)−Dα(W ‖ u| p) ∀q ∈ Qα,p .

In order to establish the upper bound given in (32) for q /∈ Qα,p we need to make the following additional

observation. If q /∈ Qα,p , then there exists an x for which p(x ) > 0 and W (x ) ⊥ q because Dα(W (x )‖ q) = ∞
implies W (x ) ⊥ q by (11). As a result there exists an event E ∈ Y such that such that u(E) > 0 and q(E) = 0
because W (x )≺q1,p and q1,p≺u . Consequently D1(u‖ q) = ∞ and the upper bound in equation (32) holds for

q /∈ Qα,p , as well.

(c-ii) Dα(W ‖ q| p)−Dα

(
W ‖ Tα,p (q)

∣∣ p
)
≥D1

(
Tα,p (q)

∥∥ q
)

for all q ∈ Qα,p: Note that Tα,p (q)≺q for all q ∈ Qα,p by

definition. Then

Dα(W ‖ q| p)−Dα

(
W ‖ Tα,p (q)

∣∣ p
)
= 1

1−α

∑
x
p(x ) ln

∫ (
dTα,p(q)

dq

)1−α

W q
α (x )(dy)

≥ 1
1−α

∑
x
p(x )

∫ [
ln
(

dTα,p(q)

dq

)1−α
]
W q

α (x )(dy)

= D1

(
Tα,p (q)

∥∥ q
)
. (B.4)

The inequality follows from the Jensen’s inequality and the concavity of the natural logarithm function.

(c-iii) {Tıα,p
(
qg
α,p

)
}ı∈Z+ is totally bounded for total variation metric on M+

(Y): For any q ∈ Qα,p , as a result of

definitions of Tα,p (·) and µα,p we have

dTα,p(q)

dν = (
dµα,s

dν )α(dqdν )
1−α

where s(x ) = p(x )e(1−α)Dα(W (x)‖q). Furthermore, if Dα(W ‖ q| p) ≤ Dα

(
W ‖ qg

α,p

∣∣ p
)
, then s ∈ S.

In addition qg
α,p is equal to µα,s for an s ∈ S. In particular

qg

α,p = µα,s0

where s0 = ‖µα,p‖−α
p. One can confirm by substitution that ‖µα,p‖−α

= e(1−α)Dα(p⊛W ‖p⊗qg
α,p). Furthermore,

Dα

(
p⊛W ‖ p ⊗ qg

α,p

)
≥ 0 by Lemma 2 and Dα

(
p⊛W ‖ p ⊗ qg

α,p

)
≤ Dα

(
W ‖ qg

α,p

∣∣ p
)

by the Jensen’s inequality

and the concavity of the natural logarithm function. Thus s0 ∈ S.

On the other hand, Dα

(
W ‖ Tıα,p

(
qg
α,p

)∣∣ p
)
≤ Dα

(
W ‖ qg

α,p

∣∣ p
)

for all ı ≥ Z+ . Thus we can write Tıα,p

(
qg
α,p

)
in

terms of the elements of µα,S as follows:

dTıα,p(q
g
α,p)

dν = (
dµα,s0

dν )(1−α)ı
∏ı

=1
(
dµα,s

dν )α(1−α)ı−

where s(x ) = p(x )e(1−α)Dα(W (x)‖T−1
α,p (q

g
α,p)).

In order to prove that {Tıα,p
(
qg
α,p

)
}ı∈Z+ is totally bounded, we prove that a superset of it, i.e. B defined in the

following, is totally bounded.

Bı ,
{
b ∈ M+

(Y) : db
dν = (

dµα,s0

dν )(1−α)ı
∏ı

=1
(
dµα,s

dν )α(1−α)ı−

for some s ∈ S

}
(B.5)

B , ∪ı∈Z+ Bı. (B.6)

Let us denote the number of x ’s with p(x ) > 0 by κ. Then S is isometric to a cube in23 Rκ. We divide each side of

the cube into n equal length intervals. Thus S is composed of nκ sub-cubes. Furthermore, µα,s ≤ µα,s̃ whenever

s ≤ s̃ by definition. Thus, for any s ∈ S we have

µα,⌊s⌋n ≤ µα,s ≤
[
1 + e

1−α
ς

Dα(W‖q
g
α,p |p)−ς

ςn

] 1
α

µα,⌊s⌋n

where ⌊s⌋n is the corner point that satisfies ⌊s⌋n ≤ s̃ for all s̃ in the sub-cube for the sub-cube that s is in.

In order to approximate members of Bı one can use the preceding discretization on each s given in definition Bı.

Thus we have n(ı+1)κ point set Kı,n such that:

∀b ∈ Bı ∃µ ∈ Kı,n such that µ ≤ b ≤
[
1 + e

1−α
ς

Dα(W‖q
g
α,p |p)−ς

ςn

] 1
α

µ.

23We assume Rκ has the metric d : Rκ × Rκ → R≥0 given by d(z , z̃ ) =
∑κ

t=1 |zt − z̃t | for all z , z̃ ∈ Rκ.
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One can use the points of Kı,n to approximate the points in ∪t>ıBt , as well. We apply the approximation with

the sub-cubes described above for the last ı components of b, i.e. for ı s’s with the largest indices. The remaining

component of µ is set to the minimum element of24 µα,S. Then

∀b∈∪t>ıBt ∃µ∈Kı,n such that µ≤b≤
[
1 + e

1−α
ς

Dα(W‖q
g
α,p |p)−ς

ςn

] 1−(1−α)ı

α
[
e
1−α

ς
Dα(W‖q

g
α,p |p)

ς

] (1−α)ı

α

µ.

Let Kn be Kn = ∪∈{0,...,n}K,n . Then

∀b∈B ∃µ∈Kn such that ‖b−µ‖≤



[
1 + e

1−α
ς

Dα(W‖q
g
α,p |p)−ς

ςn

] 1
α
[
e
1−α

ς
Dα(W‖q

g
α,p |p)

ς

] (1−α)n

α

−1


sups∈S ‖µα,s‖.

Note that sups∈S ‖µα,s‖ is finite and its coefficient converges to zero as n diverges. Furthermore, Kn is a finite

set for any n . Thus B is totally bounded. As a result every subset of B, and hence {Tıα,p
(
qg
α,p

)
}ı∈Z+ , is totally

bounded.

(c-iv) {Tıα,p
(
qg
α,p

)
}ı∈Z+ has a subsequence {Tı()α,p

(
qg
α,p

)
}∈Z+ satisfying lim→∞

∥∥∥Tı()α,p

(
qg
α,p

)
−u

∥∥∥=0 for a u ∼ q1,p:

The existence of a limit point u and convergent subsequence follow from the compactness of the completion of

{Tıα,p
(
qg
α,p

)
}ı∈Z+ . The completion is compact by [39, Thm. 45.1] because {Tıα,p

(
qg
α,p

)
}ı∈Z+ is totally bounded.

Note that Tıα,p
(
qg
α,p

)
≺q1,p because qg

α,p ∼ q1,p . Then u≺q1,p because any probability measure that is not absolute

continuous in q1,p is outside the closure of {Tıα,p
(
qg
α,p

)
}ı∈Z+ .

On the other hand, µα,p ≤ qg
α,p by definition because ‖µα,p‖ ≤ 1. Furthermore, for any q ∈ Qα,p we have

dTα,p(q)

dν ≥
∑

x
p(x )(dW (x)

dν )α(dqdν )
1−α

= (
dµα,p

dν )α(dqdν )
1−α.

Hence, if µα,p ≤ q , then µα,p ≤ Tα,p (q). Consequently, µα,p ≤ Tıα,p

(
qg
α,p

)
for all ı ∈ Z+ . Hence µα,p ≤ u ,

because otherwise u can not be in the closure of {Tıα,p
(
qg
α,p

)
}ı∈Z+ . Then q1,p≺u because q1,p ∼ µα,p .

(c-v) Tα,p (·) : Qα,p → P(Y) is continuous if both Qα,p and P(Y) have the total variation topology: First, note that

(z + t)1−α − z 1−α is a monotonically decreasing function of z on R≥0 for fixed t ∈ R≥0 and α ∈ (0, 1). Then for

any x with positive p(x ) and q1, q2 ∈ Qα,p as a result of Holder’s inequality we have
∫ ∣∣∣∣
(

dW (x)
dν

)α (
dq1
dν

)1−α

−
(

dW (x)
dν

)α (
dq2
dν

)1−α
∣∣∣∣ν(dy) ≤

∫ (
dW (x)

dν

)α ∣∣∣dq1dν − dq2
dν

∣∣∣
1−α

ν(dy)

≤ ‖q1 − q2‖1−α
.

Hence e(α−1)Dα(W (x)‖q)W q
α (x ) is a continuous function of q from Qα,p to M+

(Y) for the total variation topology.

Then W q
α (x ) is a continuous function of q for the total variation topology, as well, because Dα(W (x )‖ q) is

continuous in q for the total variation topology by Lemma 4. Thus Tα,p (·) : Qα,p → P(Y) is continuous.

(c-vi) The limit point of the convergent subsequence {Tı()α,p

(
qg
α,p

)
}∈Z+ is a fixed point of Tα,p (·), i.e. Tα,p (u)=u: Using

the non-negativity of the Rényi divergence for probability measures and (B.4) we get

Dα

(
W ‖ qg

α,p

∣∣ p
)
≥
∑

ı∈Z≥0

Dα

(
W ‖ Tıα,p

(
qg

α,p

)∣∣ p
)
−Dα

(
W ‖ Tα,p

(
Tıα,p

(
qg

α,p

))∣∣ p
)

≥
∑

ı∈Z≥0

D1

(
Tα,p

(
Tıα,p

(
qg

α,p

))∥∥ Tıα,p
(
qg

α,p

))
.

Then limı→∞ D1

(
Tα,p

(
Tıα,p

(
qg
α,p

))∥∥ Tıα,p
(
qg
α,p

))
= 0. Hence lim→∞ D1

(
Tα,p

(
T
ı()
α,p

(
qg
α,p

))∥∥∥ Tı()α,p

(
qg
α,p

))
= 0.

On the other hand, D1

(
Tα,p (q)

∥∥ q
)

is lower semicontinuous in q for the total variation topology because the

Rényi divergence is lower semicontinuous in its arguments for the topology of setwise convergence —and hence

to the total variation topology— by Lemma 3 and Tα,p (·) is continuous in the total variation topology. Then

D1

(
Tα,p (u)

∥∥ u
)
= 0 because T

ı()
α,p

(
qg
α,p

)
converges to u in total variation topology as  diverges. Thus Tα,p (u) = u

as a result of Lemma 2.

(c-vii) qα,p satisfies (31): Recall that Dα(w‖ q) is continuous in q for the total variation topology by Lemma 4. Furthermore,

lim→∞
∥∥∥Tı()α,p

(
qg
α,p

)
−qα,p

∥∥∥=0, and Dα(W ‖ qα,p | p)=Iα(p;W). Then

lim→∞ Dα

(
W ‖ Tı()α,p

(
qg

α,p

)∣∣∣ p
)
= Iα(p;W) .

24Such a minimum element might not exist for an arbitrary set of measures, but for the image of S it exists: the minimum element is the image of the
minimum point of S.
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On the other hand Dα

(
W ‖ Tıα,p

(
qg
α,p

)∣∣ p
)
≥ Dα

(
W ‖ Tı+t

α,p

(
qg
α,p

)∣∣ p
)
≥ Iα(p;W) for all t ∈ Z+ by (B.4) and the

definition of the Augustin information. Thus

limı→∞ Dα

(
W ‖ Tıα,p

(
qg

α,p

)∣∣ p
)
= Iα(p;W) .

Then as a result of (32), which is implied by the assertions we have already established, we have

limı→∞ Dα

(
qα,p‖ Tıα,p

(
qg

α,p

))
= 0.

Then limı→∞
∥∥qα,p − Tıα,p

(
qg
α,p

)∥∥ = 0 as a result of Lemma 2.

Remark 6. For any q satisfying q ∼ µα,p with a finite ess supµα,p

∣∣∣ln dq
dµα,p

∣∣∣, we can define the sets S and Bı as follows

S ,
{
s ∈ M

+

(X) : ς1{p(x)>0} ≤ s(x ) ≤
(
e

1−α
ς Dα(W ‖q|p)

)
1{p(x)>0} ∀x ∈ X

}
,

Bı ,
{
b ∈ M+

(Y) : db
dν = (eγ dq

dν )
(1−α)ı

∏ı

=1
(
dµα,s

dν )α(1−α)ı−

for some γ ∈ {−Γ, 0,Γ} and s ∈ S

}
,

where Γ = (1−α)Dα(W ‖q|p)
ς − ln ς

α + ess supµα,p

∣∣∣ln dq
dµα,p

∣∣∣. Then one can confirm that e−Γq ≤ µα,s ≤ eΓq for all s ∈ S.

Using this property, we can repeat the rest of the analysis with appropriate modifications to establish the following:

lim→∞
∥∥qα,p− Tα,p (q)

∥∥ = 0 if q ∼ µα,p and ess supµα,p

∣∣∣ln dq
dµα,p

∣∣∣ < ∞, (B.7)

On the other hand, q1,p ∼ µα,p by [13, Lemma 1-(a)] and

∣∣∣ln dq1,p
dµα,p

∣∣∣ ≤ |α−1|
α ln 1

ς holds q1,p-a.s. by [13, Lemma 2-(a)].

Thus q1,p satisfies the condition given in (B.7) and the convergence described in (B.7) is equivalent to the one in (37).

(13-d) Let the function f (·) and the set of channels U be

f (V ) , α
1−αD1(V ‖W | p) + I1(p;V) ∀V ∈ U,

U , {V ∈ P(Y|supp(p)) : D1(V ‖W | p) < ∞}.
The statements proved in (d-i), (d-iv), (d-v), and (d-vi) collectively imply part (d).

(d-i) If Tα,p (u) = u , then Dα(W ‖ u| p) = Iα(p;W), (33) and (34) hold for qα,p = u , qα,p is unique and qα,p ∼ q1,p:

Dα(W ‖ q| p) −Dα(W ‖ u| p) = 1
α−1

∑
x
p(x ) ln

∫
(dq∼du )1−αW u

α (x )(dy) ∀q ∈ Qα,p (B.8)

where q∼ is the component of q that is absolutely continuous in u .

On the other hand using the Jensen’s inequality and concavity of the natural logarithm function we get

1
α−1

∑
x
p(x ) ln

∫
(dq∼du )1−αW u

α (x )(dy) ≥ 1
α−1

∑
x
p(x )

∫ [
ln(dq∼du )1−α

]
W u

α (x )(dy)

=

∫ [
ln( du

dq∼
)
]
Tα,p (u)(dy). (B.9)

Since Tα,p (u) = u by the hypothesis, using (B.8) and (B.9) we get

Dα(W ‖ q| p)−Dα(W ‖ u| p) ≥ D1(u‖ q) ∀q ∈ Qα,p . (B.10)

D1(u‖ q) > 0 for all q ∈ P(Y) \ {u} by Lemma 2 and Dα(W ‖ q| p) = ∞ for q /∈ Qα,p by definition. Then u

is the unique probability measure satisfying Iα(p;W) = Dα(W ‖ u| p) and (33) holds. In addition q1,p≺u because

otherwise Dα(W ‖ u| p) would have been infinite. Furthermore, u≺q1,p because D1(u‖ q1,p) is finite by (B.10) and

part (a).

The lower bound given in (34) holds for q ∈ Qα,p by (B.10) and for q /∈ Qα,p by definition. In order to establish

the upper bound given in (32), note that Tα,p (u) = u implies

du
dν =

[∑
x
p(x )

(
dW (x)

dν

)α
e(1−α)Dα(W (x)‖u)

] 1
α ∀ν : q1,p≺ν.

Then one can confirm by substitution that

Dα(u‖ q) = 1
α−1 ln

∑
x
p(x )e(α−1)(Dα(W (x)‖q)−Dα(W (x)‖u)) ∀q ∈ P(Y).

Then Jensen’s inequality and convexity of the exponential function imply

Dα(u‖ q) ≥ Dα(W ‖ q| p) −Dα(W ‖ u| p) ∀q ∈ P(Y).
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(d-ii) f (·) : U → R is concave and upper semicontinuous on U for the topology of setwise convergence:25 Using the

definition of the tilted channel given in (22), the identity given in (29), and the joint convexity of the order one

Rényi divergence in its arguments, i.e. Lemma 6, we can write f (V ) as the sum of three finite terms as follows

for all V ∈ U:

f (V ) = 1
1−αD1(V ‖W q1,p

α | p)−D1

(∑
x
p(x )V (x )

∥∥∥ q1,p
)
+Dα(W ‖ q1,p | p) . (B.11)

Then f (·) is a concave because the order one Rényi divergence is convex in its first argument by Lemma 6.

Similarly, f (·) is upper semicontinuity for the topology of setwise convergence, because Rényi divergence is lower

semicontinuous in its first argument for the topology of setwise convergence by Lemma 3.

(d-iii) U′ , {V ∈ U : maxx :p(x)>0p(x )D1(V (x )‖W (x )) ≤ α−1
α ℏ(p)} is compact for the topology of setwise conver-

gence: For any v ∈ P(Y) and w ∈ P(Y), the identity z ln z ≥ − 1/e implies that
∫ ∣∣ dv

dw ln dv
dw

∣∣+w(dy) ≤ D1(v‖w) + 1/e.

Then for any γ ∈ R+ and w ∈ P(Y), the set of Radon-Nikodym derivatives { dv
dw }v :D1(v‖w)≤γ is uniformly

integrable because it satisfies the necessary and sufficient condition for the uniform integrability given by de la

Vallee Poussin [21, Thm. 4.5.9]. Hence, {v ∈ P(Y) : D1(v‖w) ≤ γ}≺uniw . Then26 {v ∈ P(Y) : D1(v‖w) ≤ γ}
has compact closure in the topology of setwise convergence by [21, Thm. 4.7.25]. On the other hand the set {v ∈
P(Y) : D1(v‖w) ≤ γ} is closed, i.e. it is equal to its closure, because Rényi divergence is lower semicontinuous in

its arguments for the topology of setwise convergence by Lemma 3. Hence {v ∈ P(Y) : D1(v‖w) ≤ γ} is compact

in the topology of setwise convergence for any γ ∈ R+ and w ∈ P(Y). Then U′ is compact in the topology of

setwise convergence because product of finite number of compact sets is compact by [39, Thm. 26.7].

(d-iv) ∃U∗ ∈ U′ s.t. f (U∗) = supV∈U f (V ): Note that W ∈ U and f (W ) = I1(p;W). Furthermore, I1(p;W) ≥ 0 by

Lemma 2 and part (b). On the other hand, if p(x )D1(V (x )‖W (x )) > α−1
α ℏ(p) for an x , then f (V ) < 0 because

D1(V (x )‖W (x )) ≥ 0 by Lemma 2 and I1(p;V) ≤ ℏ(p) by part (a). Thus,

supV∈U f (V ) = supV∈U′ f (V ).

On the other hand, ∃U∗ such that f (U∗) = supV∈U′ f (V ) by the extreme value theorem for the upper semicontin-

uous functions [32, Ch3§12.2] because U′ is compact and f (·) is upper semicontinuous for the topology of setwise

convergence.

(d-v) f (U∗) = Dα(W ‖ u∗| p) where u∗ ,
∑

x p(x )U∗(x ): As a result of Lemma 10 we have

Dα(W ‖ u∗| p) = supV∈U
α

1−αD1(V ‖W | p) +D1(V ‖ u∗| p) . (B.12)

On the other hand α
1−αD1(U∗‖W | p) + D1(U∗‖ u∗| p) = f (U∗) because I1(p;U∗) = D1(U∗‖ u∗| p) by part (b).

Then Dα(W ‖ u∗| p) ≥ f (U∗) is evident by (B.12).

In order to prove Dα(W ‖ u∗| p) ≤ f (U∗), let us consider a V ∈ U and define V (ı) and q(ı) for each ı ∈ Z+ as

V (ı) , ı−1
ı U∗ +

1
ıV ,

q(ı) , ı−1
ı u∗ +

1
ı

∑
x
p(x )V (x ).

As a result of the decomposition given in (B.11) we have

f (V (ı)) = 1
1−αD1

(
V (ı)

∥∥∥W q1,p
α

∣∣∣ p
)
−D1

(
q(ı)
∥∥∥ q1,p

)
+Dα(W ‖ q1,p | p) .

Then using the Jensen’s inequality and convexity of the order one Rényi divergence in its first argument established

in Lemma 6 we get

f (V (ı)) ≥ 1
1−α

[
ı−1
ı D1(U∗‖W q1,p

α | p) + 1
ıD1(V ‖W q1,p

α | p)
]
−D1

(
q(ı)
∥∥∥ q1,p

)
+Dα(W ‖ q1,p | p)

= ı−1
ı [f (U∗) +D1(u∗‖ q1,p)] + 1

ı

[
α

1−αD1(V ‖W | p) +D1(V ‖ q1,p | p)
]
−D1

(
q(ı)
∥∥∥ q1,p

)

= ı−1
ı

[
f (U∗) +D1

(
u∗‖ q(ı)

)]
+ 1

ı

[
α

1−αD1(V ‖W | p) +D1

(
V ‖ q(ı)

∣∣∣ p
)]

.

Then using f (U∗) = supV∈U f (V ) ≥ f (V (ı)) and D1

(
u∗‖ q(ı)

)
≥ 0 we get

f (U∗) ≥ α
1−αD1(V ‖W | p) +D1

(
V ‖ q(ı)

∣∣∣ p
)

∀ı ∈ Z+ .

25The set U is a subset of the Cartesian product of a finite number of copies of P(Y). What we mean by the topology of setwise convergence on U is
the product topology obtained by assuming topology of setwise convergence on each component of the Cartesian product. We employ this terminology in the
rest of the proof without explicitly mentioning it.

26Note that {v ∈ P(Y) : D1(v‖w) ≤ γ} is bounded in variation norm by definition.
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On the other hand, limı→∞ D1

(
V ‖ q(ı)

∣∣ p
)
≥ D1(V ‖ u∗| p) because limı→∞

∥∥q(ı) − u∗
∥∥ = 0 by construction and

the Rényi divergence is lower semicontinuous in its second argument for the topology of setwise convergence by

Lemma 3. Then

f (U∗) ≥ α
1−αD1(V ‖W | p) +D1(V ‖ u∗| p) ∀V ∈ U.

Hence, f (U∗) ≥ Dα(W ‖ u∗| p) by (B.12).

(d-vi) Tα,p (u∗) = u∗ and U∗(x ) = W u∗
α (x ) for all x such that p(x ) > 0: Note that Dα(W ‖ u∗| p) < ∞ by part (d-v)

because f (U∗) ≤ ℏ(p) < ∞ by definition. Consequently, we can define the tilted probability measure W u∗
α (x )

for each x such that p(x ) > 0. Using the definitions of f (·) and the tilted channel W q
α together with the identity

I1(p;U∗) = D1(U∗‖ u∗| p), which follows from part (b), we get

f (U∗) = Dα(W ‖ u∗| p) + 1
1−αD1(U∗‖W u∗

α | p) .
Since f (U∗) = Dα(W ‖ u∗| p) by part (d-v) we get D1(U∗‖W u∗

α | p) = 0. Hence U∗(x ) = W u∗
α (x ) for all

x such that p(x ) > 0 by Lemma 2. As a result Tα,p (u∗) = u∗ because Tα,p (u∗) =
∑

x p(x )W
u∗
α (x ) and

u∗ =
∑

x p(x )U∗(x ) by definition.

(13-e) We prove the statement for α ∈ (0, 1) and α ∈ (1,∞) cases separately,

• Recall that
∑

x p(x )W
qα,p
α (x ) = qα,p by parts (c). Then as a result of (29) we have

I1(p;W
qα,p
α ) = D1(W

qα,p
α ‖ qα,p | p) . (B.13)

Then (35) follows from Lemma 10 and Iα(p;W) = Dα(W ‖ qα,p | p) for α ∈ (0, 1).
On the other hand as a result the definition of the Augustin information, and Lemma 10 we have

Iα(p;W) = infq∈P(Y) infV∈P(Y|X)
α

1−αD1(V ‖W | p) +D1(V ‖ q| p)
= infV∈P(Y|X) infq∈P(Y)

α
1−αD1(V ‖W | p) +D1(V ‖ q| p) .

Then (36) follows from the definition of the order one Augustin information.

• Note that for α ∈ (1,∞) identity given in (35) is nothing but f (W
qα,p
α ) = Iα(p;W) which is already established in

the proof of part (d). Similarly (36) is equivalent to supV∈P(Y|X) f (V ) = Iα(p;W) which is established in the proof

of part (d).

Proof of Lemma 14. The following identity can be confirmed by substitution

Dα

(
W[1,n]

∥∥⊗n

t=1
qα,pt

∣∣∣ p
)
=
∑n

t=1
Dα(Wt‖ qα,pt

| pt ) .

Then using (29), (32), (34) we get
∑n

t=1
Iα(pt ;Wt)−D1∧α

(
qα,p‖

⊗n

t=1
qα,pt

)
≥ Iα

(
p;W[1,n]

)
≥
∑n

t=1
Iα(pt ;Wt)−Dα∨1

(
qα,p‖

⊗n

t=1
qα,pt

)
.

Thus (39) holds for all p ∈ P(Xn
1 ) because Rényi divergence between probability measures is non-negative. Furthermore,

(39) holds as an equality iff for an α ∈ R+ iff qα,p satisfies (40) because the Rényi divergence between distinct probability

measures is positive.

If p=
⊗n

t=1 pt , then one can confirm (40) for α=1 case by substitution. In addition for any α∈R+\{1} one can show by

substitution that the probability measure q =
⊗n

t=1 qα,pt
is a fixed point of Tα,p (·), i.e. Tα,p (q) = q . Furthermore, q1,p≺q

because q1,pt
≺qα,pt

for each t ∈ {1, . . . , n}. Thus for α∈R+ \{1} the identity in (40) follows from Lemma 13-(c,d).

Proof of Lemma 15. Note that Dα(W ‖ q| p) is linear and hence concave in p for any q by definition. Then Iα(p;W) is concave

in p because pointwise infimum of a family of concave functions is concave. Furthermore by Lemma 13-(b,c,d), ∃!qα,pβ
such

that Dα

(
W ‖ qα,pβ

∣∣ pβ
)
= Iα(pβ ;W). In addition,

Dα

(
W ‖ qα,pβ

∣∣ pβ
)
= βDα

(
W ‖ qα,pβ

∣∣ p1
)
+ (1− β)Dα

(
W ‖ qα,pβ

∣∣ p0
)
.

Then equation (41) and (42) are obtained by bounding Dα

(
W ‖ qα,pβ

∣∣ p1
)

and Dα

(
W ‖ qα,pβ

∣∣ p0
)

using Lemma 13-(b,c,d).

On the other hand, Lemma 1 implies

Dα(W ‖βqα,p1 + (1− β)qα,p0 | pβ) = βDα(W ‖βqα,p1 + (1 − β)qα,p0 | p1) + (1 − β)Dα(W ‖βqα,p1 + (1− β)qα,p0 | p0)
≤ βDα(W ‖ qα,p1 | p1)− β lnβ + (1− β)Dα(W ‖ qα,p0 | p0)− (1− β) ln(1− β)

= βIα(p1;W) + (1− β)Iα(p0;W) + ℏ(β) .

Then (43) follows from the lower bound on Dα(W ‖ q| p) given in Lemma 13-(b,c,d).
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Proof of Lemma 16. Note that as result of (38) we have,

[p(x )]
1
α e

1−α
α Dα(W (x)‖qα,p)W (x ) ≤ qα,p ∀x ∈ X. (B.14)

(16-a) Using Lemma 1 and (B.14) we get

Dα(W (x )‖ qα,p) ≤ Dα

(
W (x )‖ [p(x )] 1

α e
1−α
α Dα(W (x)‖qα,p)W (x )

)

= 1
α ln 1

p(x) +
α−1
α Dα(W (x )‖ qα,p) .

(16-b) We employ (B.14) together with Dα(W (x )‖ qα,p) > 0 for α∈(0, 1] case and together with part (a) for α∈(1,∞) case.

(16-c) We prove α ∈ (0, 1) case and α ∈ (1,∞) case separately.

• α ∈ (0, 1): First use Jensen’s inequality, i.e. E[ξα] ≤ E[ξ]
α

, in (38); then invoke Dα(W (x )‖ qα,p) ≤ ln 1
p(x) :

dqα,p

dq1,p
≤
∑

x
p(x )dW (x)

dq1,p
e

1−α
α Dα(W (x)‖qα,p)

≤ (minx :p(x)>0 p(x ))
α−1
α .

Recall that if ξ(x ) ≥ 0 for all x , then
∑

x [ξ(x )]
α ≥ [

∑
x ξ(x )]

α. Using Dα(W (x )‖ qα,p) ≥ 0 we get

dqα,p

dq1,p
≥
∑

x
(p(x ))

1
α dW (x)

dq1,p
e(

1−α
α )Dα(W (x)‖qα,p)

≥ (minx :p(x)>0 p(x ))
1−α
α .

• α ∈ (1,∞): First use Jensen’s inequality, i.e. E[ξα] ≥ E[ξ]α, in (38), then invoke Dα(W (x )‖ qα,p) ≤ ln 1
p(x) :

dqα,p

dq1,p
≥
∑

x
p(x )dW (x)

dq1,p
e

1−α
α Dα(W (x)‖qα,p)

≥ (minx :p(x)>0 p(x ))
α−1
α .

Recall that if ξ(x ) ≥ 0 for all x , then
∑

x [ξ(x )]
α ≤ [

∑
x ξ(x )]

α. Using Dα(W (x )‖ qα,p) ≥ 0 we get

dqα,p

dq1,p
≤
∑

x
(p(x ))

1
α dW (x)

dq1,p
e(

1−α
α )Dα(W (x)‖qα,p)

≤ (minx :p(x)>0 p(x ))
1−α
α .

Proof of Lemma 17.

(17-a) For brevity, let us denote (α − 1)Iα(p;W) by g(α) in this part of the proof. We first prove the dichotomy about g(·) on

(0, 1) and on (1,∞). Then we extend this dichotomy to R+ assuming that g(·) is convex on R+ . After that we establish

the assumed convexity of g(·) on R+ .

Let αβ = βα1 + (1− β)α0 for any α0, α1 ∈ (0, 1) and β ∈ (0, 1). Then for any α0, α1 ∈ (0, 1) and β ∈ (0, 1) we have

βg(α1) + (1− β)g(α0) ≥ β(α1 − 1)Dα1

(
W ‖ qαβ ,p

∣∣ p
)
+ (1− β)(α0 − 1)Dα0

(
W ‖ qαβ ,p

∣∣ p
)

=
∑

x
p(x ) ln

(
Eqαβ,p

[
(dW (x)
dqαβ,p

)α1

])β (
Eqαβ,p

[
(dW (x)
dqαβ,p

)α0

])1−β

≥
∑

x
p(x ) lnEqαβ,p

[
(dW (x)
dqαβ,p

)αβ

]

= g(αβ)

where the first inequality follows from the definition of the Augustin information and the second inequality follows from

the Hölder’s inequality. Furthemore, the first inequality is an equality iff qα0,p = qαβ ,p = qα1,p by Lemma 13-(c) and the

second inequality is an equality iff
dW (x)
dqαβ,p

= γ(x ) holds W (x )-a.s. for all x ∈ supp(p). On the other hand, if
dW (x)
dqα,p

= γ(x )

holds W (x )-a.s., then W
qα,p
α (x ) = W (x ). Consequently, if

dW (x)
dqα,p

= γ(x ) holds W (x )-a.s. for all x ∈ supp(p) then

qα,p = q1,p by Lemma 13-(c) because Tα,p (qα,p) = q1,p . Thus either g(·) is strictly convex on (0, 1) or
dW (x)
dq1,p

= γ(x )

W (x )-a.s. for all x ∈ supp(p) and Iα(p;W) =
∑

x p(x ) ln γ(x ) for all α ∈ R+ .

Let αβ = βα1 + (1− β)α0 and dµ
dq1,p

= (
dqα1,p

dq1,p
)

(α1−1)β
αβ−1 (

dqα0,p

dq1,p
)

(α0−1)(1−β)
αβ−1 for any α0, α1 ∈ (1,∞) and β ∈ (0, 1). Then

βg(α1) + (1− β)g(α0) =
∑

x
p(x ) ln

(
Eq1,p

[
(dW (x)

dq1,p
)α1(

dqα1,p

dq1,p
)1−α1

])β (
Eq1,p

[
(dW (x)

dq1,p
)α0(

dqα0,p

dq1,p
)1−α0

])1−β

≥
∑

x
p(x ) lnEq1,p

[
(dW (x)

dq1,p
)αβ (

dqα1,p

dq1,p
)β(1−α1)(

dqα0,p

dq1,p
)(1−β)(1−α0)

]

= (αβ − 1)Dαβ

(
W ‖ µ

‖µ‖

∣∣∣ p
)
− (αβ − 1) ln ‖µ‖

≥ g(αβ)
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where the first inequality follows from the Hölder’s inequality and the second inequality follows from the definition of

Augustin information and the fact that ‖µ‖ ≤ 1, which is consequence of the Hölder’s inequality. Furthermore, the first

inequality is an equality iff
dW (x)
dq1,p

(
dqα1,p

dq1,p
)

1−α1
α1−α0 (

dqα0,p

dq1,p
)

α0−1
α1−α0 = γ(x ) holds W (x )-a.s. for all x ∈ supp(p) and the

second inequality is an equality iff µ = qαβ ,p by Lemma 13-(d) because ‖µ‖ ≤ 1 by the Hölder’s inequality. On the

other hand, ‖µ‖ = 1 iff qα0,p = qα1,p as a result of the Hölder’s inequality. Thus the second inequality is an equality iff

qα0,p = qα1,p = qαβ ,p . Hence both inequalities are equalities, i.e. βg(α1)+(1−β)g(α0) = g(αβ), iff qα0,p = qαβ ,p = qα1,p

and
dW (x)
dqαβ,p

= γ(x ) holds W (x )-a.s. for all x ∈ supp(p). Following a reasoning similar to the one for α0, α1 ∈ (0, 1)

case and invoking Lemma 13-(d) instead of Lemma 13-(c), we conclude that either g(·) is strictly convex on (1,∞) or
dW (x)
dq1,p

= γ(x ) W (x )-a.s. for all x ∈ supp(p) and Iα(p;W) =
∑

x p(x ) ln γ(x ) for all α ∈ R+ .

We assume the convexity of g(·) on R+ , in order to establish the strict convexity of g(·) on R+ using the strict convexity

on (0, 1) and (1,∞). Note that if α0 ∈ (0, 1], α1 ∈ (1,∞) and αβ ∈ (1,∞), then there exists an ǫ ∈ (0, β) such that

αβ−ǫ ∈ (1,∞). Thus

βg(α1) + (1− β)g(α0) =
ǫ

1−β+ǫg(α1) +
1−β

1−β+ǫ [(β − ǫ)g(α1) + (1 − β + ǫ)g(α0)]

≥ ǫ
1−β+ǫg(α1) +

1−β
1−β+ǫg(αβ−ǫ)

> g( ǫ
1−β+ǫα1 +

1−β
1−β+ǫαβ−ǫ)

= g(αβ).

Similar manipulations can be used to prove the strict inequality for α0 ∈ (0, 1), α1 ∈ [1,∞),αβ ∈ (0, 1) case and

α0 ∈ (0, 1), α1 ∈ (1,∞), αβ = 1 case.

Now we are left with establishing the convexity of g(·) on R+ that we have assumed. Invoking Lemma 13-(e) for

α ∈ R+ \ {1} case and using D1(W ‖W | p)=0 for α=1 case we get

g(α) = supV∈P(Y|X)(α− 1)I1(p;V) − αD1(V ‖W | p) .
Then g(α) is convex in α because pointwise supremum of a family of linear/convex functions is convex.

On the other hand, using V = W we can deduce that, g(α) ≥ (α−1)I1(p;W). and I1(p;W) ∈ [0, ℏ(p)] by Lemma 13-(a).

Thus g(α) ≥ −ℏ(p).
(17-b) Since (α− 1)Iα(p;W) is finite and convex in α on R+ , it is continuous on R+ by [20, Thm. 6.3.3]. Then 1−α

α Iα(p;W) is

continuous in α on R+ , as well. Furthermore,

1−α
α Iα(p;W) = infV∈P(Y|X)

1−α
α I1(p;V) +D1(V ‖W | p)

by Lemma 13-(a,e) and D1(W ‖W | p) = 0. Then 1−α
α Iα(p;W) is nonincreasing in α because infimum of a family of

nonincreasing functions is nonincreasing. Note that 1−α
α I1(p;V) +D1(V ‖W | p) is nonincreasing in α because I1(p;V) is

nonnegative.

(17-c) Iα(p;W) is nondecreasing in α because the pointwise infimum of a family of nondecreasing functions is nondecreasing

and the Rényi divergence is nondecreasing in its order by Lemma 8.

Since (α − 1)Iα(p;W) is finite and convex in α on R+ , it is continuous on R+ by [20, Thm. 6.3.3]. Then Iα(p;W) is

continuous on (0, 1) and (1,∞). In order to extend the continuity to R+ we need to prove that Iα(p;W) is continuous

at α = 1. Note that as a result of the definition of the Augustin information we have Iα(p;W) ≤ Dα(W ‖ q1,p | p) for all

α ∈ R+ . Since Iα(p;W) is nondecreasing in α we have

I1(p;W) ≤ Iα(p;W) ≤ Dα(W ‖ q1,p | p) ∀α ∈ (1,∞). (B.15)

Since qα,p ≤ (minx :p(x)>0 p(x ))
− |1−α|

α q1,p by Lemma 16-(c), using Lemma 1 we get

Dα(W ‖ qα,p | p) ≥ Dα(W ‖ q1,p | p) + 1−α
α ln(minx :p(x)>0 p(x )) ∀α ∈ (0, 1).

Recall that Dα(W ‖ qα,p | p) = Iα(p;W) by Lemma 13-(c) and Iα(p;W) is nondecreasing in α. Thus we have

Dα(W ‖ q1,p | p) + 1−α
α ln(minx :p(x)>0 p(x )) ≤ Iα(p;W) ≤ I1(p;W) ∀α ∈ (0, 1). (B.16)

On the other hand, Dφ(W ‖ q1,p | p) ≤ ℏ(p) < ∞ for any φ ∈ R+ by Lemma 13-(a). Then Dα(W ‖ q1,p | p) is continuous

in α by Lemma 8. Furthermore, D1(W ‖ q1,p | p) = I1(p;W) by Lemma 13-(b). Then

limα→1 Dα(W ‖ q1,p | p) = I1(p;W) .

Then the continuity of Iα(p;W) at α = 1 follows from (B.15) and (B.16).

(17-d) Let τx (α) be τx (α) ,
α−1
α Dα(W (x )‖ qα,p). Then we can rewrite (38) as follows:

ln
dqη,p

dq1,p
= 1

η ln
∑

x
p(x )

((
dW (x)
dq1,p

)φ
e(1−φ)Dφ(W (x)‖qφ,p)

) η
φ

eη(τx (φ)−τx (η)).
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Let us assume without loss of generality that φ > η. Then using the Jensen’s inequality we get

ln
dqη,p

dq1,p
≤ ln

dqφ,p

dq1,p
+maxx :p(x)>0(τx (φ)− τx (η)). (B.17)

On the other hand, using the fact that
∑

x [ξ(x )]
η
φ ≥ [

∑
x ξ(x )]

η
φ for non-negative ξ(x ) we get

ln
dqη,p

dq1,p
≥ ln

dqφ,p

dq1,p
+ (1 − η

φ ) ln(minx :p(x)>0 p(x )) + minx :p(x)>0(τx (φ) − τx (η)). (B.18)

If {τx (α)}x :p(x)>0 is equicontinuous in α, then {ln dqα,p

dq1,p
}y∈Y is equicontinuous in α by (B.17) and (B.18). On the

other hand, there are only finitely many x ’s with positive p(x ). Thus {τx (α)}x :p(x)>0 is equicontinuous if each τx (α) is

continuous. We are left with establishing the continuity of τx (α).
Let gx (·) : [η, φ] → R+ , fx (·, ·) : [η, φ]× Y → R≥0 , and s· : [η, φ] → P(Y) be

gx (α) ,

∫
fx (α, y)ν(dy ),

fx (α, y) ,
(

dW (x)
dν

)α (
dsα
dν

)1−α
,

sα , φ−α
φ−η qη,p + α−η

φ−η qφ,p .

Then fx (α, y) is differentiable in α and its derivative can be bounded using Lemma 16-(b) and the identity τ ln 1
τ ≤ 1

e :

∂
∂α fx (α, y) =

(
dW (x)

dν

)α (
dsα
dν

)1−α
ln dW (x)

dsα
+
(

dW (x)
dν

)α (
dsα
dν

)−α 1−α
φ−η

[
dqφ,p

dν − dqη,p

dν

]

∣∣∣ ∂
∂α fx (α, y)

∣∣
α=β

∣∣∣ ≤ dsβ
dν

[
1
βe + ( 1

p(x)
1

η∧1
)β ln 1

p(x)
1

η∧1

]
+ ( 1

p(x)
1

η∧1
)β |1−β|

φ−η

[
dqφ,p

dν +
dqη,p

dν

]

≤
(

dqφ,p

dν +
dqη,p

dν

) [
1
ηe + ( 1

p(x)
1

η∧1
)φ
(
ln 1

p(x)
1

η∧1
+ 1+φ

φ−η

)]
∀β ∈ [η, φ].

The expression on the right hand side is ν−integrable. Thus as a result of [21, Corollary 2.8.7] we have

∂
∂αgx (α) =

∫
∂
∂α fx (α, y)ν(dy ).

Furthermore, ∂
∂αgx (α) is continuous by [21, Corollary 2.8.7] because ∂

∂α fx (α, y) is continuous in α. Then
ln gx (α)

α is a

continuous function on [η, φ] that is continuously differentiable on (η, φ). Then, as a result of mean value theorem [40,

Thm. 5.10] we have
∣∣∣ ln gx (φ)

φ − ln gx (η)
η

∣∣∣ ≤ (φ − η) supβ∈(η,φ)

∣∣∣∣
∂
∂α

ln gx (α)
α

∣∣∣
α=β

∣∣∣∣. (B.19)

Using Lemma 16-(b) and the identity τ ln 1
τ ≤ 1

e we get
∣∣∣∣

∂
∂α

ln gx (α)
α

∣∣∣
α=β

∣∣∣∣ =
∣∣∣∣
− ln gx (β)

β2 + 1
βgx (β)

∫
∂
∂α fx (α, y)

∣∣
α=β

ν(dy)

∣∣∣∣

≤
∣∣∣ ln gx (β)

β2

∣∣∣+ 1
αgx (β)

[
1
βe + ( 1

p(x)
1

η∧1
)β
(
ln 1

p(x)
1

η∧1
+ |1−β|

φ−η ‖qφ,p − qη,p‖
)]

. (B.20)

We bound ln gx (β) using the definition of gx (β) together with Lemmas 16-(b) and 1:

|ln gx (β)| = |β − 1|Dβ

(
W (x )‖ φ−β

φ−η qη,p + β−η
φ−η qφ,p

)

≤ |β − 1|Dβ

(
W (x )‖

[
φ−β
φ−η [p(x )]

1
1∧η + β−η

φ−η [p(x )]
1

1∧φ

]
W (x )

)

≤ (β ∨ 1)Dβ

(
W (x )‖ [p(x )] 1

1∧η W (x )
)

≤ φ∨1
η∧1 ln

1
p(x) ∀β ∈ [η, φ]. (B.21)

The Augustin information is nondecreasing in its order by part (c). Thus Lemmas 2 and 13 imply that

‖qφ,p − qη,p‖ ≤
√

2
η∧1 (Iφ(p;W) − Iη(p;W)). (B.22)

On the other hand, one can confirm by substitution that

τx (φ)− τx (η) =
ln gx (φ)

φ − ln gx (η)
η . (B.23)

Then the continuity of τx (α) in α is implied by (B.19), (B.20), (B.21), (B.22), (B.23) and the continuity of the Augustin

information in the order established in part (c).
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(17-e) Dη(W ‖ qφ,p | p) ≥ Iη(p;W) for any φ ∈ R+ and η ∈ R+ by the definition of the Augustin information. Then the

differentiability of Dα(W ‖ q| p) in α established in Lemma 11 implies that

limη↓φ
Iη(p;W)−Iφ(p;W)

η−φ ≤ limη↓φ
Dη(W ‖qφ,p |p)−Dφ(W ‖qφ,p |p)

η−φ

= ∂
∂αDα(W ‖ qφ,p | p)

∣∣
α=φ

(B.24)

limη↑φ
Iη(p;W)−Iφ(p;W)

η−φ ≥ limη↓φ
Dη(W ‖qφ,p |p)−Dφ(W ‖qφ,p |p)

η−φ

= ∂
∂αDα(W ‖ qφ,p | p)

∣∣
α=φ

. (B.25)

Similarly,27 Dφ(W ‖ qη,p | p) ≥ Iφ(p;W) for any φ ∈ R+ and η ∈ R+ by the definition of the Augustin information. Hence,

limη↓φ
Iη(p;W)−Iφ(p;W)

η−φ ≥ limη↓φ
Dη(W ‖qη,p |p)−Dφ(W ‖qη,p |p)

η−φ (B.26)

limη↑φ
Iη(p;W)−Iφ(p;W)

η−φ ≤ limη↑φ
Dη(W ‖qη,p |p)−Dφ(W ‖qη,p |p)

η−φ . (B.27)

For any δ ∈ (0, φ) by Lemma 16-(b) and Lemma 1 we have

Dα(W (x )‖ qη,p) ≤ 1
(φ−δ)∧1 ln

1
p(x) ∀η : |η − φ| < δ, α ∈ R+ . (B.28)

Then as a result of Lemma 12, there exists28 a Kφ,p > 0 such that for η close enough to φ we have
∣∣∣Dη(W ‖ qη,p | p)−Dφ(W ‖ qη,p | p)− (η − φ) ∂

∂αDα(W ‖ qη,p | p)
∣∣
α=φ

∣∣∣ ≤ Kφ,p |η − φ|2. (B.29)

We show in the following that ∂
∂αDα(W ‖ qη,p | p)

∣∣
α=φ

is a continuous function of η, i.e.

limη→β
∂
∂αDα(W ‖ qη,p | p)

∣∣
α=φ

= ∂
∂αDα(W ‖ qβ,p | p)

∣∣
α=φ

∀φ, β ∈ R+ . (B.30)

Using (B.29) and (B.30) we get

limη→φ
Dη(W ‖qη,p |p)−Dφ(W ‖qη,p |p)

η−φ = ∂
∂αDα(W ‖ qφ,p | p)

∣∣
α=φ

. (B.31)

Differentiability of the Augustin information and (45) follow from (B.24), (B.25), (B.26), (B.27), and (B.31).

In order to establish the continuity of ∂
∂αDα(W ‖ qη,p | p)

∣∣
α=φ

in η, i.e. (B.30), let us first recall that the expression for

the derivative of the Rényi divergence given in (16):

∂
∂αDα(W ‖ qη,p | p)

∣∣
α=φ

=





1
(φ−1)2

∑
x p(x )

∫ dW
qη,p
φ (x)

dq1,p

(
ln

dW
qη,p
φ (x)

dW (x)

)
q1,p(dy) φ 6= 1

∑
x

p(x)
2

(∫ dW (x)
dq1,p

(
ln dW (x)

dqη,p

)2
q1,p(dy)− [D1(W (x )‖ qη,p)]2

)
φ = 1

.

Recall that,

Dφ(W (x )‖ qη,p) =





1
φ−1 ln

∫ (dW (x)
dq1,p

)φ (
dqη,p

dq1,p

)1−φ

q1,p(dy) φ 6= 1
∫ dW (x)

dq1,p

(
ln dW (x)

dq1,p
− ln

dqη,p

dq1,p

)
q1,p(dy) φ = 1

.

Then Dφ(W (x )‖ qη,p) is continuous in η for any φ ∈ R+ by [21, Corollary 2.8.7-(i)] because {ln dqη,p

dq1,p
}y∈Y is equicon-

tinuous function of η by part (d) and

∣∣∣ln dqη,p

dq1,p

∣∣∣ ≤ |η−1|
η ln 1

minx :p(x)>0 p(x) by Lemma 16-(c). On the other hand,

ln
dW

qη,p
φ (x)

dq1,p
= φ ln dW (x)

dq1,p
+ (1− φ) ln

dqη,p

dq1,p
+ (1 − φ)Dφ(W (x )‖ qη,p) .

Thus {dW
qη,p
φ (x)

dq1,p
}y∈Y is equicontinuous in η because {ln dqη,p

dq1,p
}y∈Y is equicontinuous and Dφ(W (x )‖ qη,p) is continuous

in η. Furthermore, using Lemma 1, Lemma 16-(b), and the identity τ ln 1
τ ≤ 1

e we obtain the following bounds

dW
qη,p
φ (x)

dq1,p

∣∣∣∣ln
dW

qη,p
φ (x)

dW (x)

∣∣∣∣ ≤
dW (x)
dq1,p

(
1
{

dW
qη,p
φ

(x)

dW (x)
≤1}

1
e + 1

{
dW

qη,p
φ

(x)

dW (x)
>1}

[
1

p(x)

]φ−1
η∧1

ln
[

1
p(x)

]φ−1
η∧1

)
if φ ∈ [1,∞), (B.32)

dW
qη,p
φ (x)

dq1,p

∣∣∣∣ln
dW

qη,p
φ (x)

dW (x)

∣∣∣∣ ≤
dW (x)
dq1,p

1
{

dW
qη,p
φ

(x)

dW (x)
≤1}

1
e +

dqη,p

dq1,p
1
{

dW
qη,p
φ

(x)

dW (x)
>1}

1−φ
φe

[
1

p(x)

] 1
η∧1

if φ ∈ (0, 1). (B.33)

27For φ ∈ (1,∞), we can also use (36) of Lemma 13-(e) to establish reverse inequalities for (B.24) and (B.25).
28Note that, this is not just the Taylor expansion of Dα(w‖ q) around α = φ for a given (w , q) pair. Lemma 11 allows us to apply the Taylor expansion

for a family of (w , q) pairs around α = φ simultaneously if we can bound Dβ(w‖ q) uniformly for all (w , q)’s for some β > φ.
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Using

∣∣∣ln dqη,p

dq1,p

∣∣∣ ≤ |η−1|
η ln 1

minx :p(x)>0 p(x) —i.e. Lemma 16-(c)— in (B.33), we get

dW
qη,p
φ (x)

dq1,p

∣∣∣∣ln
dW

qη,p
φ (x)

dW (x)

∣∣∣∣ ≤
dW (x)
dq1,p

1
e +

[
min

x :p(x)>0
p(x )

]−|η−1|
η

1
φe

[
1

p(x)

] 1
η∧1

if φ ∈ (0, 1). (B.34)

Using (B.32) and (B.34), we get the following bound for all φ ∈ R+ and η ∈ [a, b]

dW
qη,p
φ (x)

dq1,p

∣∣∣∣ln
dW

qη,p
φ (x)

dW (x)

∣∣∣∣ ≤
dW (x)
dq1,p

(
1
e +

[
1

p(x)

] φ
a∧1

ln
[

1
p(x)

] φ
a∧1

)
+

[
min

x :p(x)>0
p(x )

]−1− 1
a

1
φe

[
1

p(x)

] 1
η∧1

.

Then

{
dW

qη,p
φ (x)

dq1,p

∣∣∣∣ln
dW

qη,p
φ (x)

dW (x)

∣∣∣∣
}

η∈[a,b]

is bounded from above by a q1,p-integrable function for any closed interval

[a, b] ⊂ R+ . Thus D1

(
W

qη,p

φ

∥∥∥W
∣∣∣ p
)

is a continuous function of η by [21, Corollary 2.8.7-(i)] for all φ ∈ R+ . Then
∂
∂αDα(W ‖ qη,p | p)

∣∣
α=φ

is continuous in η for φ ∈ R+ \ 1. The continuity of ∂
∂αDα(W ‖ qη,p | p)

∣∣
α=1

in η follows from

the continuity of D1(W (x )‖ qη,p) and [21, Corollary 2.8.7-(i)] via the following bound, which can be established using

the identity τ(ln τ)21{τ∈(0,1]} ≤ 4
e2 and Lemma 16-(b),

dW (x)
dq1,p

(
ln dW (x)

dqη,p

)2
≤ dqη,p

dq1,p
4
e2 + dW (x)

dq1,p

(
ln p(x)
η∧1

)2
. (B.35)

Now we are left with establishing the continuity of the derivative of the Augustin information. Since {ln dqα,p

dq1,p
}y∈Y is

equicontinuous in α by part (d), for any ǫ > 0 there exists a δ such that

e−ǫqφ,p ≤ qη,p ≤ eǫqφ,p ∀η : |η − φ| < δ.

On the other hand (p(x ))
1

φ∧1W (x ) ≤ qφ,p by Lemma 16-(b). Then as a result of Lemma 1

Dα(W (x )‖ qη,p) ≤ 1
φ∧1 ln

1
p(x) + ǫ ∀η : |φ− η| < δ, ∀α ∈ R+ .

Hence, Lemma 12 implies the existence of a τ ∈ R+ that does not depend on η such that
∣∣∣∣
∂κDα(W ‖qη,p |p)

∂ακ

∣∣∣
α=φ

∣∣∣∣ ≤ κ!τκ+1κ ∀η : |φ− η| < δ. (B.36)

Then lim supκ→∞

∣∣∣ 1κ!
∂κ

∂ακ

(
∂
∂αDα(W ‖ qη,p | p)

)∣∣
α=φ

∣∣∣
1/κ

≤ τ . Thus the radius of convergence of the Taylor’s expansion of

∂Dα(W ‖qη,p |p)
∂α around α = φ is at least 1

τ for all η ∈ [φ−δ, φ+δ] by Hadamard’s formula [38, Lemma 1.1.8]. Furthermore,

we can use (B.36) to bound higher order derivatives:
∣∣∣∣
∂Dα(W ‖qη,p |p)

∂α

∣∣∣
α=β

− ∂Dα(W ‖qη,p |p)
∂α

∣∣∣
α=φ

∣∣∣∣ ≤
∑∞

ı=1

|β−φ|ı
ı!

∣∣∣∣
∂ı+1Dα(W ‖qη,p |p)

∂αı+1

∣∣∣
α=φ

∣∣∣∣

≤ τ2
∑∞

ı=1

(
ı2 + 2ı+ 1

)
|β − φ|ıτ ı ∀η : |η − φ| ≤ δ, ∀β : |β − φ| < 1

τ .

Using identities
∑∞

ı=1 ξ
ı ≤∑∞

ı=1 ıξ
ı ≤∑∞

ı=1 ı
2ξı for ξ ≥ 0 and

∑∞
ı=1 ı

2ξı = (1+ξ)ξ
(1−ξ)3 for |ξ| < 1 we get,

∣∣∣∣
∂Dα(W ‖qη,p |p)

∂α

∣∣∣
α=β

− ∂Dα(W ‖qη,p |p)
∂α

∣∣∣
α=φ

∣∣∣∣ ≤ 4τ3|β − φ| 1+τ |β−φ|
(1−τ |β−φ|)3 ∀η : |η − φ| ≤ δ, ∀β : |β − φ| < 1

τ .

Then using (45) we get
∣∣∣∣

∂
∂α Iα(p;W)

∣∣
α=η

− ∂Dα(W ‖qη,p |p)
∂α

∣∣∣
α=φ

∣∣∣∣ ≤ 4τ3|η − φ| 1+τ |η−φ|
(1−τ |η−φ|)3 ∀η : |η − φ| ≤ δ ∧ 1

τ .

Hence, limη→φ
∂
∂α Iα(p;W)

∣∣
α=η

= limη→φ
∂Dα(W ‖qη,p |p)

∂α

∣∣∣
α=φ

, if the latter limit exists. However, we have already es-

tablished the existence of that limit in order to calculate the derivative of the Augustin information: it is equal to
∂
∂α Iα(p;W)

∣∣
α=φ

. Thus the Augustin information is continuously differentiable in the order.

(17-f) Let us start with analyzing the case when (α− 1)Iα(p;W) is strictly convex in α. The chain rule for derivatives implies

∂
∂s sI 1

1+s
(p;W) = I 1

1+s
(p;W) + s

(−1)
(1+s)2

∂
∂α Iα(p;W)

∣∣
α= 1

1+s

.

Using (46), (B.35), and the fact that EW (x)

[(
ln dW (x)

dq1,p
−D1(W (x )‖ q1,p)

)2]
≤ EW (x)

[(
ln dW (x)

dq1,p

)2]
, we get

∂
∂s sI 1

1+s
(p;W)

∣∣∣
s=0

=




I1(p;W) s = 0

I 1
1+s

(p;W) − 1
s
D1

(
W

q 1
1+s

,p

1
1+s

∥∥∥∥W
∣∣∣∣ p
)

s ∈ (−1, 0) ∪ (0,∞)
.
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Then as a result of (35), we can assert the following expression for all s ∈ (−1,∞)

∂
∂s sI 1

1+s
(p;W) = I1

(
p;W

q 1
1+s

,p

1
1+s

)
. (B.37)

Then the continuous differentiability of Iα(p;W) in α on R+ , established in part (e), implies the continuity of I1
(
p;W

qα,p
α

)

in α on R+ .

In order to prove that I1
(
p;W

qα,p
α

)
is monotonically increasing in α on R+ , note that the strict convexity of (α−1)Iα(p;W)

in α on R+ is equivalent to the strict concavity of sI 1
1+s

(p;W) in s on (−1,∞) because the inequality

(αβ − 1)Iαβ
(p;W) < β(α1 − 1)Iα1(p;W) + (1− β)(α0 − 1)Iα0(p;W)

holds for α0, α1 ∈ R+ , β ∈ (0, 1), and αβ = βα1 + (1− β)α0 iff the inequality

sµI 1
1+sµ

(p;W) > µs1I 1
1+s1

(p;W) + (1− µ)s0I 1
1+s0

(p;W) .

holds for s0 = 1−α0

α0
, s1 = 1−α1

α1
sµ = µs1 + (1− µ)s0 and µ = βα1

αβ
.

On the other hand for any strictly concave function f (·) and s1, s2, s3, s4 satisfying s1 < s2 < s3 < s4 we have29

f (s2)−f (s1)
s2−s1

> f (s4)−f (s3)
s4−s3

.

Thus I1

(
p;W

q 1
1+s

,p

1
1+s

)
is a decreasing function of s on (−1,∞) by (B.37) and the definition of the derivative because

sI 1
1+s

(p;W) is strictly concave in s . Hence I1
(
p;W

qα,p
α

)
is an increasing function of α on R+ .

If (α − 1)Iα(p;W) is not strictly convex in α then there exists a γ : X → [1,∞) satisfying
dW (x)
dq1,p

= γ(x ) W (x )-a.s. for

all x ∈ supp(p) and qα,p = q1,p for all α ∈ R+ by part (a). Thus W
qα,p
α (x ) = W (x ) and

dW
qα,p
α (x)
dqα,p

= γ(x ) for all

x ∈ supp(p). Consequently I1
(
p;W

qα,p
α

)
=
∑

x p(x ) ln γ(x ).
(17-g) Let us define I0(p;W) to be limα↓0 Iα(p;W), such a limit exists because Iα(p;W) is non-decreasing function of α on R+ .

Then (α−1)Iα(p;W) is convex in α on [0,∞), as well. Thus for any α ∈ R+ and ǫ ∈ R+

(α−1)Iα(p;W)+I0(p;W)
α ≤ (α+ǫ−1)Iα+ǫ(p;W)−(α−1)Iα(p;W)

ǫ

by [20, Proposition 6.3.2]. Taking the limits as ǫ ↓ 0 and invoking (46) we get

(α−1)Iα(p;W)+I0(p;W)
α ≤ Iα(p;W) + 1

α−1D1(W
qα,p
α ‖W | p) .

Thus (35) implies

I0(p;W) ≤ I1(p;W
qα,p
α ) .

On the other hand for all α ∈ (0, 1) the non-negativity of the Rényi divergence and (35) implies

I1(p;W
qα,p
α ) ≤ Iα(p;W) .

Hence limα↓0 I1
(
p;W

qα,p
α

)
= I0(p;W), i.e. limα↓0 I1

(
p;W

qα,p
α

)
= limα↓0 Iα(p;W).

Proof of Lemma 18. Lemma 18 is nothing but Lemma 33 for the case when λ is a vector of zeros. Thus we do not present

a separate proof for Lemma 18, see the proof of Lemma 33.

C. Augustin’s Proof of Lemma 13-(c)

We have employed the relative compactness in the total variation topology for proving Lemma 13-(c) because we wanted to

assert qα,p ∼ q1,p , the convergence described in (31), and the inequality given in (32). Establishing the existence of a unique

Augustin mean together with the fixed point property described in (30) is considerably easier. It can be done using the concept

of relative compactness in the topology of setwise convergence, as demonstrated by Augustin in [6, §34]. Augustin claims to

establish other assertions of Lemma 13-(c), as well. In the following, we discuss why we think there are caveats in Augustin’s

argument in [6, §34].

29Note that f (s2) >
s3−s2
s3−s1

f (s1) +
s2−s1
s3−s1

f (s3) implies
f (s2)−f (s1)

s2−s1
>

f (s3)−f (s2)
s3−s2

.
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Let us first establish the existence of a unique Augustin mean. First, we establish (B.4) as we have done in the current proof.

Then we consider the set Q′ , {q ∈ P(Y) : Dα(W ‖ q| p) < Dα

(
W ‖ qg

α,p

∣∣ p
)
}. Note that Iα(p;W) = infq∈Tα,p(Q

′) Dα(W ‖ q| p)
because of the definition of Q′ and (B.4). Furthermore for all q ∈ Q′ and E ∈ Y ,

Tα,p (q)(E) =
∑

x
p(x )e(1−α)Dα(W (x)‖q)

∫

E

(dW (x)
dν )α(dqdν )

1−αν(dy)

≤ e
(1−α)Dα(W (x)‖q

g
α,p |p)

minx :p(x)>0

∑
x
p(x )

∫

E

(dW (x)
dν )α(dqdν )

1−αν(dy) by the definition of Q′ and Lemma 2

= e
(1−α)Dα(W (x)‖q

g
α,p |p)

minx :p(x)>0

∫

E

(
dµα,p

dν )α(dqdν )
1−αν(dy) by (26)

≤ e
(1−α)Dα(W (x)‖q

g
α,p |p)

minx :p(x)>0 [µα,p(E)]
α
[q(E)]

1−α
by Holder’s inequality

≤ e
(1−α)Dα(W (x)‖q

g
α,p |p)

minx :p(x)>0 [µα,p(E)]
α

because q(E) ≤ 1

Thus Tα,p (Q
′)≺uniqg

α,p and Tα,p (Q
′) has compact closure in the topology of setwise convergence by a version of Dunford-

Pettis theorem [21, 4.7.25]. On the other hand, Dα(W ‖ q| p) is lower-semicontinuous in q for the topology of setwise conver-

gence because Dα(W (x )‖ q) is, by Lemma 3. Then there exists a qα,p in the closure of Tα,p (Q
′) for the topology of setwise

convergence such that Dα(W ‖ qα,p | p) = infq∈P(Y) Dα(W ‖ q| p) by the extreme value theorem for lower semicontinuous

functions [32, Ch3§12.2]. The uniqueness of qα,p follows from the strict convexity of the Rényi divergence in its second

argument described in Lemma 5.

This construction establishes certain additional properties of the Augustin mean, as well. Note that qα,p≺q1,p because qα,p
is in the closure of Tα,p (Q

′) for the topology of setwise convergence. In addition, Tα,p (qα,p) = qα,p because of Lemma 2

and (B.4). Furthermore, any q satisfying Tα,p (q) = q and q1,p≺q is equal to qα,p because of the argument presented in step

(c-i) of the proof of Lemma 13-(c). These observations, with minor differences, exist in Augustin’s proof of [6, Lemma 34.2].

Above discussion establishes Lemma 13-(c) except for the following three assertions:

(i) q1,p≺qα,p ,

(ii) the identity given in (31),

(iii) the inequality given in (32).

Note that Tα,p (Q
′)≺uniqg

α,p and {Tıα,p
(
qg
α,p

)
}ı∈Z+ ⊂ Tα,p (Q

′). Then by [21, Thm. 4.7.25], {Tıα,p
(
qg
α,p

)
}ı∈Z+ has a subse-

quence {Tı()α,p

(
qg
α,p

)
}∈Z+ converging to a q ∈ cl({Tıα,p

(
qg
α,p

)
}ı∈Z+ ) where both the convergence and the closure are for the

topology of setwise convergence. Furthermore, q ∼ q1,p because of the arguments used in step (c-iv) of the proof of Lemma

13-(c). There are two ways one can prove remaining assertions of Lemma 13-(c) without using the totally boundedness of

{Tıα,p
(
qg
α,p

)
}ı∈Z+ established in step (c-iii) of the proof of Lemma 13-(c):

• If one can show that
dTı()α,p (q

g
α,p)

dq1,p
converges to dq

dq1,p
in measure q1,p , then because of the Lebesgue-Vitali convergence

theorem [21, 4.5.4] one would have lim→∞
∥∥∥Tı()α,p

(
qg
α,p

)
− q

∥∥∥ = 0, established step (c-iv). Thus one can skip steps (c-iii)

and (c-iv) and proceed with the step (c-v) of the proof.

• If one can show that the limit point q of the subsequence
dTı()α,p (q

g
α,p)

dq1,p
is a fixed point of Tα,p (·), then one would have

a statement equivalent to step (c-vi). Thus one can skip steps (c-iii), (c-iv), and (c-vi) and proceed with the step (c-vii)

after deriving (c-v).

We proved Lemma 13-(c) using the concept of totally boundedness because we could not find an easy way to establish either

the convergence in measure property or the fixed point property mentioned in the preceding discussion. However, we do know

that both properties hold. The convergence in measure holds because of the only if part of the Lebesgue-Vitali convergence

theorem [21, 4.5.4]. The fixed point property holds because {Tıα,p
(
qg
α,p

)
}ı∈Z+ has a unique limit point both in total variation

topology and in topology of setwise convergence by (31).

While proving [6, Lemma 34.2], after establishing the weak convergence of {Tı()α,p (q1,p)}∈Z+ to q , Augustin asserts that

lim→∞
∥∥∥Tı()α,p (q1,p)− q

∥∥∥ = 0. This is the first one of our two major reservations for Augustin’s proof of [6, Lemma 34.2].

Note that convergence in the topology of setwise convergence and weak convergence are one and the same thing for sequences

of measures by [21, Corollary 4.7.26]. But convergence in the topology of setwise convergence does not imply convergence

in total variation topology.30 Thus we don’t know how one can justify such an assertion.

In order to prove [6, Lemma 34.2], Augustin establishes the totally boundedness of {Tıα,p (q1,p)}ı∈Z+ for the total variation

metric. In that proof Augustin asserts that Tıα,p (q1,p) is in B, defined in equation (B.5), for some  ∈ Z+ . We don’t know

whether such an assertion is correct or not. But we know that Tıα,p
(
qg
α,p

)
is in Bı. Thus one can fix this problem easily.

30Consider, for example, the sequence of measure on the unit interval whose Radon-Nikodym derivatives with respect to the Lebesgue measure is given
by {(1 + cos(πz))}∈Z+

. This set of probability measures converges to the Lebesgue measure on every measurable set, but not in total variation.
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A more important problem stems from Augustin’s obliviousness about the infiniteness of the set of positive integers. Either

in his discussion or in his equations there is no evidence suggesting that he makes a distinction of cases for approximating

{Ttα,p
(
qg
α,p

)
}t≤ı and {Ttα,p

(
qg
α,p

)
}t>ı. This is our other major reservation for Augustin’s proof of [6, Lemma 34.2].

D. Proofs of Lemmas on the Augustin Capacity

Proof of Lemma 19.

(i) ∀α ∈ R+∃p̃ ∈ P(X) s.t. Iα(̃p;W) = Cα,W,A: Since ℏ(p) ≤ ln |X| for all p ∈ P(X), (44) and Lemma 13-(a) imply that

|Iα(p2;W)− Iα(p1;W)| ≤ ℏ
(

‖p1−p2‖
2

)
+ ‖p1−p2‖

2 ln |X|. (D.1)

Hence, Iα(p;W) is continuous in p on P(X). On the other hand, P(X) is compact because X is a finite set. Then A is

compact because any closed subset of a compact set is compact, [39, Thm. 26.2]. Then there exists a p̃ ∈ A such that

Iα(̃p;W) = supp∈A Iα(p;W) by the extreme value theorem,31 [39, 27.4].

(ii) If α ∈ R+ and Iα (̃p;W) = Cα,W,A, then Dα(W ‖ qα,p̃ | p) ≤ Cα,W,A for all p ∈ A: Let p be any member of A and p(ı)

be ı−1
ı p̃ + 1

ı p for ı ∈ Z+ . Then p(ı) ∈ A because A is convex. Furthermore, by Lemma 13-(b,c,d) we have

Iα

(
p(ı);W

)
= ı−1

ı Dα

(
W ‖ qα,p(ı)

∣∣∣ p̃
)
+ 1

ıDα

(
W ‖ qα,p(ı)

∣∣∣ p
)

≥ ı−1
ı

[
Iα(̃p;W) +Dα∧1

(
qα,p̃‖ qα,p(ı)

)]
+ 1

ıDα

(
W ‖ qα,p(ı)

∣∣∣ p
)

∀ı ∈ Z+ .

Using Iα
(
p(ı);W

)
≤ Cα,W,A, Iα (̃p;W) = Cα,W,A, and Dα∧1

(
qα,p̃‖ qα,p(ı)

)
≥ 0 we get

Cα,W,A ≥ Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)

∀ı ∈ Z+ . (D.2)

On the other hand, using Iα
(
p(ı);W

)
≤ Cα,W,A, Iα(̃p;W) = Cα,W,A, and Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
≥ 0 we get

1
ıCα,W,A ≥ ı−1

ı Dα∧1

(
qα,p̃‖ qα,p(ı)

)
∀ı ∈ Z+ .

Then using Lemma 2 we get
√

2
α∧1

1
ı−1Cα,W,A ≥

∥∥∥qα,p̃ − qα,p(ı)

∥∥∥ ∀ı ∈ Z+ .

Thus qα,p(ı) converges to qα,p̃ in the total variation topology and hence in the topology of setwise convergence. Since

the Rényi divergence is lower semicontinuous in the topology of setwise convergence by Lemma 3, we have

lim inf ı→∞ Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
≥ Dα(W ‖ qα,p̃ | p) (D.3)

Then the inequality Dα(W ‖ qα,p̃ | p) ≤ Cα,W,A follows from (D.2) and (D.3).

(iii) If α ∈ R+ , then ∃!qα,W,A ∈ P(Y) satisfying (61) such that qα,p = qα,W,A for all p ∈ A satisfying Iα(p;W) = Cα,W,A:

If Iα(p;W) = Cα,W,A for a p ∈ A, then Lemma 13-(b,c,d) and Lemma 2 imply

Dα(W ‖ qα,p̃ | p) ≥ Cα,W,A + α∧1
2 ‖qα,p − qα,p̃‖2. (D.4)

Since we have already established that Dα(W ‖ qα,p̃ | p) ≤ Cα,W,A for all p ∈ A, (D.4) implies that qα,p = qα,p̃ for any

p ∈ A satisfying Iα(p;W) = Cα,W,A.

Proof of Theorem 1. The right hand side of (59) is an upper bound on the left hand side because of the max-min inequality.

Furthermore, the left hand side of (59) is equal to Cα,W,A by (58). Thus when Cα,W,A is infinite, (59) holds trivially. When

Cα,W,A is finite, (59) follows from (60) and the max-min inequality. Thus we can assume Cα,W,A to be finite and prove the

claims about qα,W,A in order to prove the theorem.

(i) If Cα,W,A ∈ R≥0 and limı→∞Iα
(
p(ı);W

)
=Cα,W,A for a {p(ı)}ı∈Z+ ⊂ A, then {qα,p(ı)}ı∈Z+ is a Cauchy sequence in

P(Y) for the total variation metric: For any sequence of members of A satisfying limı→∞ Iα
(
p(ı);W

)
= Cα,W,A, let

{A(ı)}ı∈Z+ be a nested sequence of closed, convex, subsets of A defined as follows,

A(ı) , ch(∪ı
=1{p()}).

31We do not need to establish the continuity of Iα(p;W) in p; the upper semicontinuity is sufficient as a result of [32, Ch3§12.2]. Note that Iα(p;W) is
upper semicontinuous in p because it is the infimum of a family of linear functions.
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Furthermore, each A(ı) can be interpreted as a constraint set for a W (ı) with a finite input set X(ı) defined as follows,

X(ı) , {x ∈ X : ∃ ∈ {1, . . . , ı} such that p()(x ) > 0}.
With a slight abuse of notation we use the symbol A(ı) not only for a subset of P(X) but also for the corresponding

subset of P(X(ı)). For any ı ∈ Z+ , there exists a unique qα,W (ı),A(ı) satisfying inequality (61) by Lemma 19. Furthermore,

A() ⊂ A(ı) for any ı,  ∈ Z+ such that  ≤ ı. In order to bound

∥∥∥qα,p() − qα,p(ı)

∥∥∥ for positive integers  < ı, we use

the triangle inequality for qα,p() , qα,p(ı) , and qα,W (ı),A(ı)

∥∥∥qα,p() − qα,p(ı)

∥∥∥ ≤
∥∥∥qα,p() − qα,W (ı),A(ı)

∥∥∥+
∥∥∥qα,p(ı) − qα,W (ı),A(ı)

∥∥∥. (D.5)

Let us proceed with bounding

∥∥∥qα,p() − qα,W (ı),A(ı)

∥∥∥ and

∥∥∥qα,p(ı) − qα,W (ı),A(ı)

∥∥∥ from above.

∥∥∥qα,p() − qα,W (ı),A(ı)

∥∥∥
(a)

≤
√

2
α∧1Dα∧1

(
qα,p()

∥∥∥ qα,W (ı),A(ı)

)

(b)

≤
√

2
α∧1

√
Dα

(
W ‖ qα,W (ı),A(ı)

∣∣ p()
)
− Iα

(
p();W (ı)

)

(c)

≤
√

2
α∧1

√
Cα,W (ı),A(ı) − Iα

(
p();W (ı)

)

(d)

≤
√

2
α∧1

√
Cα,W,A − Iα

(
p();W

)

where (a) follows from Lemma 2, (b) follows from Lemma 13-(b,c,d), (c) follows from Lemma 19 because p()∈A(ı), and

(d) follows from the identities Cα,W (ı),A(ı) =Cα,W,A(ı) ≤Cα,W,A and Iα
(
p();W (ı)

)
=Iα

(
p();W

)
. We can obtain a similar

bound on

∥∥∥qα,p(ı) − qα,W (ı),A(ı)

∥∥∥. Then {qα,p(ı)} is a Cauchy sequence by (D.5) because lim
→∞

Iα
(
p();W

)
=Cα,W,A.

(ii) If Cα,W,A ∈ R≥0 , then ∃!qα,W,A ∈ P(Y) satisfying limı→∞
∥∥∥qα,W,A−qα,p(ı)

∥∥∥ = 0 for all {p(ı)}ı∈Z+ ⊂ A such that

limı→∞ Iα
(
p(ı);W

)
= Cα,W,A: Note that M(Y) is a complete metric space for the total variation metric, i.e. every

Cauchy sequence has a unique limit point in M(Y), because M(Y) is a Banach space for the total variation topology

[21, Thm. 4.6.1]. Then {qα,p(ı)}ı∈Z+ has a unique limit point qα,p∗ in M(Y). Since P(Y) is a closed set for the total

variation topology and ∪ı∈Z+ qα,p(ı) ⊂ P(Y), then qα,p∗ ∈ P(Y) by [39, Thm. 2.1.3].

We have established the existence of a unique limit point qα,p∗ , for any {p(ı)}ı∈Z+ ⊂ A satisfying limı→∞ Iα
(
p(ı);W

)
=

Cα,W,A. This, however, implies limı→∞
∥∥qα,p̃(ı) − qα,p∗

∥∥ = 0 for any {p̃(ı)}ı∈Z+ ⊂ A satisfying limı→∞ Iα
(
p̃(ı);W

)
=

Cα,W,A because we can interleave the elements of {p(ı)}ı∈Z+ and {p̃(ı)}ı∈Z+ to obtain a new sequence {p̂(ı)}ı∈Z+ ⊂ A

satisfying limı→∞ Iα
(
p̂(ı);W

)
= Cα,W,A for which {qα,p̂(ı)} is a Cauchy sequence. Then qα,W ,A = qα,p∗ .

(iii) qα,W,A satisfies the equality given in (60): For any p ∈ A, let us consider any sequence {p(ı)}ı∈Z+ ⊂ A satisfying

p(1) = p and limı→∞ Iα
(
p(ı);W

)
= Cα,W,A. Then p ∈ A(ı) for all ı ∈ Z+ . Using Lemma 19 we get

Dα

(
W ‖ qα,W (ı),A(ı)

∣∣ p
)
≤ Cα,W (ı),A(ı) ∀ı ∈ Z+ . (D.6)

Since W (ı) has a finite input set, ∃p̃(ı) ∈ A(ı) satisfying Iα
(
p̃(ı);W (ı)

)
= Cα,W (ı),A(ı) and qα,p̃(ı) = qα,W (ı),A(ı) by

Lemma 19. Then Iα
(
p̃(ı);W (ı)

)
≥ Iα

(
p(ı);W (ı)

)
and consequently limı→∞ Iα

(
p̃(ı);W

)
= Cα,W,A. We have already

established that for such a sequence qα,p̃(ı) → qα,W,A in the total variation topology, and hence in the topology of

setwise convergence. Then the lower semicontinuity of the Rényi divergence in its arguments for the topology of setwise

convergence, i.e. Lemma 3, the identity Cα,W (ı),A(ı) = Cα,W,A(ı) ≤ Cα,W,A, and (D.6) imply

Dα(W ‖ qα,W,A| p) ≤ Cα,W,A ∀p ∈ A.

On the other hand Dα(W ‖ qα,W,A| p) ≥ Iα(p;W) and supp∈A Iα(p;W) = Cα,W,A by definition. Thus (60) holds.

Proof of Lemma 20. Lemma 13-(b,c,d) and the hypothesis given in (62) imply

Cα,W,A − Iα(p;W) ≥ Dα∧1(qα,p‖ qα,W,A) ∀p ∈ A.

Then as a result of Lemma 2,
√

2(Cα,W,A−Iα(p;W))
α∧1 ≥ ‖qα,p − qα,W,A‖ ∀p ∈ A.

Thus {qα,p(ı)}ı∈Z+ is a Cauchy sequence with the limit point qα,W,A for any sequence of input distributions {p(ı)}ı∈Z+ ⊂A

satisfying limı→∞ Iα
(
p(ı);W

)
=Cα,W,A.
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Proof of Lemma 21. As a result of Lemma 13-(b,c,d) we have

supp̃∈A Dα(W ‖ q| p̃) ≥ Dα(W ‖ q| p) ∀p ∈ A

≥ Iα(p;W) +Dα∧1(qα,p‖ q) ∀p ∈ A. (D.7)

Let {p(ı)}ı∈Z+ ⊂ A be a sequence such that limı→∞ Iα
(
p(ı);W

)
= Cα,W,A. Then {qα,p(ı)} → qα,W,A in total variation

topology and hence in the topology of set wise convergence by Lemma 20. On the other hand, the Rényi divergence is lower

semicontinuous in its arguments for the topology of setwise convergence by Lemma 3. Then

lim infı→∞
[
Iα

(
p(ı);W

)
+Dα∧1

(
qα,p(ı)

∥∥∥ q
)]

≥ Cα,W,A +Dα∧1(qα,W,A‖ q) . (D.8)

(63) follows from (D.7) and (D.8).

Proof of Lemma 22. Note that as a result of (64) and the max-min inequality we have

Cα,W,A ≤ infV∈P(Y|X) supp∈A
α

1−αD1(V ‖W | p) + I1(p;V) . (D.9)

Hence, (65) holds trivially whenever Cα,W,A = ∞ and (66) implies (65) whenever Cα,W,A ∈ R≥0 .

In order to establish (66) assuming Cα,W,A ∈ R≥0 , first note that whenever Cα,W,A ∈ R≥0 there exists a unique qα,W ,A

satisfying (62) by Lemma 20. Then as a result of Definitions 1, 2, 3, 4 and Lemma 10 we have

Dα(W ‖ qα,W,A| p) = α
1−αD1

(
W

qα,W,A
α

∥∥W
∣∣ p
)
+D1

(
W

qα,W,A
α

∥∥ qα,W,A

∣∣ p
)
.

Then using Lemma 13-(b) and Lemma 2, we get

Dα(W ‖ qα,W,A| p) = α
1−αD1

(
W

qα,W,A
α

∥∥W
∣∣ p
)
+ I1

(
p;W

qα,W,A
α

)
+D1

(∑
x
p(x )W

qα,W,A
α (x )

∥∥∥ qα,W,A

)

≥ α
1−αD1

(
W

qα,W,A
α

∥∥W
∣∣ p
)
+ I1

(
p;W

qα,W,A
α

)
∀p ∈ A.

Thus (62) and Lemma 20 implies that

Cα,W,A ≥ supp∈A
α

1−αD1

(
W

qα,W,A
α

∥∥W
∣∣ p
)
+ I1

(
p;W

qα,W,A
α

)
(D.10)

≥ infV supp∈A
α

1−αD1(V ‖W | p) + I1(p;V) . (D.11)

Note that (65) follows from (D.9) and (D.11). On the other hand, using the Csiszár’s form for the Augustin information, given

in (36), we get

α
1−αD1

(
W

qα,W,A
α

∥∥W
∣∣ p
)
+ I1

(
p;W

qα,W,A
α

)
≥ infV

α
1−αD1(V ‖W | p) + I1(p;V)

= Iα(p;W) ∀p ∈ P(X).

Then (66) follows from the definition of Cα,W,A and (D.10).

Proof of Lemma 23.

(23-a) Cα,W,A is nondecreasing and lower semicontinuous because it is the pointwise supremum of Iα(p;W) for p ∈ A and

Iα(p;W) is nondecreasing and continuous in α by Lemma 17-(c).

(23-b) 1−α
α Iα(p;W) is nonincreasing and continuous in α on R+ for all p ∈ P(X) by Lemma 17-(b). Furthermore,

1−α
α Cα,W,A = supp∈A

1−α
α Iα(p;W) ∀α ∈ (0, 1).

Then 1−α
α Cα,W,A is nonincreasing and lower semicontinuous in α on (0, 1) because the pointwise supremum of a family

of nonincreasing (lower semicontinuous) functions is nonincreasing (lower semicontinuous). Thus 1−α
α Cα,W,A and Cα,W,A

are both continuous from the right on (0, 1). On the other hand Cα,W,A and 1−α
α Cα,W,A are both continuous from the

left on (0, 1) because Cα,W,A is nondecreasing and lower semicontinuous on (0, 1) by part (a). Consequently, Cα,W,A

and 1−α
α Cα,W,A are both continuous on (0, 1).

(23-c) (α − 1)Iα(p;W) is convex in α on R+ by Lemma 17-(a). Furthermore,

(α− 1)Cα,W,A = supp∈A(α− 1)Iα(p;W) ∀α ∈ (1,∞).

Then (α−1)Cα,W,A is convex in α because the pointwise supremum of a family of convex functions is convex.

(23-d) Cα,W,A is continuous in α on (0, 1) by part (b). Furthermore, Cα,W,A is continuous from the left because it is nondecreasing

and lower semicontinuous. Thus Cα,W,A is continuous in α on (0, 1]. If χW ,A = 1 we are done.

If χW ,A > 1, then (α − 1)Cα,W,A is finite and convex in α on [1, χW ,A) by part (c) and the definition of χW ,A. Then

(α − 1)Cα,W,A is continuous in α on (1, χW ,A) by [20, Thm. 6.3.3]. The continuity of (α − 1)Cα,W,A on (1, χW ,A)
implies the continuity of Cα,W,A on (1, χW ,A). Furthermore, Cα,W,A is continuous from the left because Cα,W,A is

nondecreasing and lower semicontinuous. Hence, Cα,W,A is continuous in α on (1, χW ,A], as well.
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(23-e) As a result of part (d), we only need to prove the continuity of Cα,W,A from the right at α = 1 when χW ,A > 1. As a

result of [13, (30)] we have

I g

α(p;W) ≤ I g

1 (p;W) + 8(α−1)
ǫ2e2 e

η−1
η Ig

η(p;W) ∀ǫ ∈ (0, η−1
η ), α ∈ [1, (1− ǫ)η].

On the other hand I1(p;W) = I g

1 (p;W) and Iα(p;W) ≤ I g
α(p;W) for α > 1. Then,

Cα,W,A ≤ C1,W,A + 8(α−1)
ǫ2e2 e

η−1
η supp∈A

Ig
η(p;W) ∀ǫ ∈ (0, η−1

η ), α ∈ [1, (1− ǫ)η].

Thus Cα,W,A is continuous at α = 1 from the right because Cα,W,A ≥ C1,W,A.

Proof of Lemma 24. Note that Cα,W,A is finite for all α ∈ (0, η] by Lemma 23. Then there exists a unique order α Augustin

center, qα,W,A, for all α ∈ (0, η] by Theorem 1. We apply Lemma 21 for q = qφ,W ,A to get

supp∈A Dα(W ‖ qφ,W ,A| p) ≥ Cα,W,A +Dα∧1(qα,W,A‖ qφ,W ,A) . (D.12)

Note that Dα(W ‖ qφ,W ,A| p) is nondecreasing in α for all p ∈ A, because Dα(W (x )‖ qφ,W ,A) is, by Lemma 8. Then,

Dφ(W ‖ qφ,W ,A| p) ≥ Dα(W ‖ qφ,W ,A| p) ∀p ∈ A, φ ∈ [α, η]. (D.13)

On the other hand, by (60) of Theorem 1 we have

supp∈A Dφ(W ‖ qφ,W ,A| p) = Cφ,W ,A ∀φ ∈ (0, η]. (D.14)

(67) follows from (D.12), (D.13), and (D.14).

Using Lemma 2 together with (67) we get

‖qφ,W ,A − qα,W,A‖ ≤
√

2
α∧1 (Cφ,W,A − Cα,W,A) ∀α, φ such that 0 < α < φ ≤ η. (D.15)

Then the continuity qα,W,A in α for the total variation topology on P(Y) follows from the continuity Cα,W,A in α on I.

Proof of Lemma 25. We analyze the upper bound on Cα,W,A and the lower bound on Cα,W,A separately.

• supı∈T Cα,W,A(ı) ≤ Cα,W,A: Note that Cα,W,A(ı) ≤ Cα,W,A by definition because A(ı) ⊂ A. Thus Cα,W,A is bounded

from below by supı∈T Cα,W,A(ı) , as well.

– If Cα,W,A(ı) = Cα,W,A < ∞, then qα,W,A = qα,W,A(ı) because using Theorem 1 for (a), Lemma 21 for (b) and

Lemma 2 for (c) we get

Cα,W,A

(a)

≥ supp∈A(ı) Dα(W ‖ qα,W,A| p)
(b)

≥ Cα,W,A(ı) +Dα∧1

(
qα,W,A(ı)

∥∥ qα,W,A

)

(c)

≥ Cα,W,A(ı) + α∧1
2

∥∥qα,W,A(ı) − qα,W,A

∥∥2.
If Cα,W,A(ı) = Cα,W,A and qα,W,A(ı) = qα,W,A, then supp∈A Dα

(
W ‖ qα,W,A(ı)

∣∣ p
)
≤ Cα,W,A(ı) by Theorem 1.

– If supp∈A Dα

(
W ‖ qα,A(ı)

∣∣ p
)
≤ Cα,W,A(ı) , then Cα,W,A ≤ Cα,W,A(ı) by (58) and Theorem 1. On the other hand,

Cα,W,A ≥ Cα,W,A(ı) because A(ı) ⊂ A. Hence, Cα,W,A = Cα,W,A(ı) < ∞.

• Cα,W,A ≤ ln
∑

ı∈T
e
C

α,W,A(ı) : If T is an infinite set, then the inequality holds trivially because ln
∑

ı∈T
e
C

α,W,A(ı) = ∞.

Thus we assume T to be a finite set for the rest of the proof. Let µ be µ =
∨

ı∈T
e
C

α,W,A(ı) qα,W,A(ı) . Then as a result of

Lemma 1 we have

supp∈A(ı) Dα

(
W ‖ µ

‖µ‖

∣∣∣ p
)
= supp∈A(ı) Dα(W ‖µ| p) + ln ‖µ‖
≤ supp∈A(ı) Dα

(
W ‖ qα,W,A(ı)

∣∣ p
)
− Cα,W,A(ı) + ln ‖µ‖ ∀ı ∈ T.

Since supp∈A(ı) Dα

(
W ‖ qα,W,A(ı)

∣∣ p
)
= Cα,W,A(ı) by hypothesis, we have

supp∈A(ı) Dα

(
W ‖ µ

‖µ‖

∣∣∣ p
)
≤ ln ‖µ‖ ∀ı ∈ T.

Then using (58) and Theorem 1 we get

Cα,W,A ≤ supp∈A Dα

(
W ‖ µ

‖µ‖

∣∣∣ p
)

= supı∈T supp∈A(ı) Dα

(
W ‖ µ

‖µ‖

∣∣∣ p
)

≤ ln ‖µ‖
≤ ln

∑
ı∈T

e
C

α,W,A(ı) .
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– If qα,W,A(ı) and qα,W,A() are not singular for some ı 6= , then ‖µ‖ <
∑

ı∈T
e
C

α,W,A(ı) . Thus Cα,W,A < ln
∑

ı∈T
e
C

α,W,A(ı) .

Consequently, if Cα,W,A = ln
∑

ı∈T
e
C

α,W,A(ı) , then qα,W,A(ı) ⊥ qα,W,A() for all ı 6= .

– If qα,W,A(ı) ⊥ qα,W,A() for all ı 6= , then any s ∈ P(Y) can be written as s =
∑|T|+1

ı=1 sı where sı’s are finite

measures such that sı≺qα,W,A(ı) for ı ∈ T and s|T|+1 ⊥ (
∑

ı∈T
qα,W,A(ı)) by the Lebesgue decomposition theorem

[20, 5.5.3]. Using Lemmas 1, 2, and 21 we get

supp∈A(ı)Dα(W ‖ s | p) ≥ Cα,W,A(ı) +Dα∧1

(
qα,W,A(ı)

∥∥ s
)

= Cα,W,A(ı) +Dα∧1

(
qα,W,A(ı)

∥∥ sı
‖sı‖

)
− ln ‖sı‖

≥ Cα,W,A(ı) − ln ‖sı‖.
supp∈A Dα(W ‖ s | p) = maxı∈T supp∈A(ı)Dα(W ‖ s | p) because Dα(W ‖ s | p) is linear in p and A = ch(∪ı∈TA

(ı)).

Then using
∑|T|

ı=1 ‖sı‖ ≤ ‖s‖ = 1 we get,

supp∈A Dα(W ‖ s | p) ≥ maxı∈T ln e
C
α,W,A(ı)

‖sı‖

≥ ln
∑

ı∈T
e
C

α,W,A(ı) ∀s ∈ P(Y).

Then Cα,W,A ≥ ln
∑

ı∈T
e
C

α,W,A(ı) by (58) and Theorem 1. Since we have already established the reverse inequality,

we have Cα,W,A = ln
∑

ı∈T
e
C

α,W,A(ı) .

We have proved that if qα,W,A(ı) ⊥ qα,W,A() for all ı 6= , then Cα,W ,A =
∑

ı∈T
e
C

α,W,A(ı) . One can confirm by

substitution that supp∈A(ı)Dα(W ‖ s | p) ≤ Cα,W ,A for all ı ∈ T for s =
∑

ı∈T
e
−Cα,W ,A+C

α,W,A(ı) qα,W,A(ı) . On the other

hand, supp∈A Dα(W ‖ s | p) = maxı∈T supp∈A(ı)Dα(W ‖ s | p) because Dα(W ‖ s | p) is linear in p. Then s is the unique

order α Augustin center by Theorem 1.

Proof of Lemma 26. Let α be any fixed positive real order. Then as a result of Lemma 14 we have

Cα,W[1,n],A
n
1
=
∑n

t=1
Cα,Wt ,At

. (D.16)

On the other hand, Cα,W[1,n],A
n
1
≤ Cα,W[1,n],A because An

1 ⊂ A. Then

∑n

t=1
Cα,Wt ,At

≤ Cα,W[1,n],A. (D.17)

We proceed to prove Cα,W[1,n],A ≤ ∑n

t=1 Cα,Wt ,At
. If there exists a t ∈ {1, . . . , n} such that Cα,Wt ,At

= ∞, then the

inequality holds trivially. Else Cα,Wt ,At
is finite for all t ∈ {1, . . . , n} and by Lemma 20 there exists a unique qα,Wt ,At

for

each t ∈ {1, . . . , n} such that

Dα(Wt‖ qα,Wt ,At
| p̃t ) ≤ Cα,Wt ,At

∀p̃t ∈ At .

Since the conditional Rényi divergence Dα(Wt‖ qα,Wt ,At
| p̃t ) is linear in the input distribution p̃t , this implies

Dα(Wt‖ qα,Wt ,At
| p̃t ) ≤ Cα,Wt ,At

∀p̃t ∈ chAt . (D.18)

Let q be q =
⊗n

t=1 qα,Wt ,At
. Then as a result of Tonelli-Fubini theorem [20, 4.4.5] we have

Dα

(
W[1,n](x

n
1 )
∥∥ q
)
=
∑n

t=1
Dα(Wt (xt )‖ qα,Wt ,At

) ∀xn
1 ∈ Xn

1 .

Hence,

Dα

(
W[1,n]

∥∥ q
∣∣ p
)
=
∑n

t=1
Dα(Wt‖ qα,Wt ,At

| pt ) ∀p ∈ P(Xn
1 ),

where pt ∈ P(Xt) is the Xt marginal of p for each t ∈ {1, . . . , n}. Note that pt ∈ chAt for all t ∈ {1, . . . , n} by the

definition constraint set A. Thus (D.18) implies

Dα

(
W[1,n]

∥∥ q
∣∣ p
)
≤
∑n

t=1
Cα,Wt ,At

∀p ∈ A. (D.19)

On the other hand Dα

(
W[1,n]

∥∥ q
∣∣ p
)
≥ Iα

(
p;W[1,n]

)
by definition. Thus (D.17) and (D.19) imply Cα,W[1,n],A =

∑n

t=1 Cα,Wt ,At

and qα,W[1,n],A = q . Then qα,W[1,n],A
n
1
= q by Lemma 25, as well, because An

1 ⊂ A and Cα,W[1,n],A
n
1
= Cα,W[1,n],A.
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E. Proofs of Lemmas on the Cost Constrained Problem

Proof of Lemma 27.

(27-a) If ̺1 ≤ ̺2, then Cα,W,̺1 ≤ Cα,W,̺2 because A(̺1) ⊂ A(̺2). Thus Cα,W,̺ is nondecreasing in ̺.

Let ̺β = β̺1 + (1 − β)̺0; then (βp1 + (1 − β)p0) ∈ A(̺β) for any p1 ∈ A(̺1) and p0 ∈ A(̺0). Hence, using the

concavity of the Augustin information in its input distribution established in Lemma 15 we get

Cα,W,̺β
≥ supp1∈A(̺1),p0∈A(̺0) Iα(βp1 + (1− β)p0;W)

≥ supp1∈A(̺1),p0∈A(̺0) βIα(p1;W) + (1− β)Iα(p0;W)

= βCα,W,̺1 + (1 − β)Cα,W,̺0 .

Thus Cα,W,̺ is concave in ̺.

Now let us proceed by proving that if Cα,W,̺0 = ∞ for a ̺0 ∈ intΓρ; then Cα,W,̺ = ∞ for all ̺ ∈ intΓρ. Note that

any point ̺ in intΓρ can be written as ̺ = β̺1 + (1 − β)̺0 for some β ∈ (0, 1) and ̺1 ∈ intΓρ because intΓρ is a

convex open subset Rℓ. Then Cα,W,̺ = ∞ follows from the concavity of Cα,W,̺.

If Cα,W,̺ is finite on intΓρ, then Cα,W,̺ is continuous on intΓρ by [20, Thm. 6.3.4] because intΓρ is a convex open

subset Rℓ and (−Cα,W,̺) is a convex function of ̺ on intΓρ.

(27-b) Let us extend the definition of Cα,W,̺ from Rℓ
≥0 to Rℓ by setting Cα,W,̺ to −∞ for all ̺ ∈ Rℓ \Rℓ

≥0 . Then (−Cα,W, )̺ is a

proper convex function, i.e. (−Cα,W, )̺ :R
ℓ→(−∞,∞] is a convex function and ∃̺ such that (−Cα,W, )̺<∞. Furthermore,

intΓρ is also the interior of the effective domain of the extended function. Hence the sub-differential ∂(−Cα,W,̺) is non-

empty and compact by [41, Proposition 4.4.2]. Then (69) follows from the fact that the epigraph of a convex function lies

above the tangent planes drawn at any point. The non-negativity of the components of λα,W,̺ follows from the monotonicity

of Cα,W,̺ in ̺.

(27-c) If Cα̃,W , ˜̺ = ∞ for a α̃ ∈ (0, 1) and ˜̺ ∈ intΓρ, then Cα,W, ˜̺ = ∞ for all α ∈ (0, 1) by Lemma 23-(a,b). Therefore,

Cα,W,̺ = ∞ for all α ∈ (0, 1) and ̺ ∈ intΓρ by part (a).

In order to prove the continuity when Cα,W,̺ is finite, note that as a result of the triangle inequality we have

|Cα1,W,̺1 − Cα2,W,̺2 | ≤ |Cα1,W,̺1 − Cα1,W,̺2 |+ |Cα1,W,̺2 − Cα2,W,̺2 |.
The first term converges to zero as ̺2 → ̺1 as a result of the continuity of the Augustin capacity in the constraint

established in part (a). The second term converges to zero as α2 → α1 because of (E.1) established in the following. Thus

Cα,W,̺ is continuous in the pair (α, ̺).
Using the monotonicity of Cα,W,̺ and 1−α

α Cα,W,̺ established in Lemma 23-(a) and Lemma 23-(b) we get

|Cα1,W,̺2 − Cα2,W,̺2 | ≤ |α2−α1|
(α1∧α2)(1−α1∨α2)

Cα1,W,̺2 .

Thus using (69) to bound Cα1,W,̺2 we get

|Cα1,W,̺2 − Cα2,W,̺2 | ≤ |α2−α1|
(α1∧α2)(1−α1∨α2)

(Cα1,W,̺1 + |λα1,W,̺1 · (̺2 − ̺1)|+). (E.1)

In order to prove the continuity of the Augustin center, note that by the triangle inequality we have

‖qα1,W,̺1 − qα2,W,̺2‖ ≤ ‖qα1,W,̺1 − qα1,W,̺2‖+ ‖qα1,W,̺2 − qα2,W,̺2‖. (E.2)

Using first Lemmas 2 and 24, and then (E.1) we get

‖qα1,W,̺2 − qα2,W,̺2‖ ≤
√

2|Cα1,W,̺2−Cα2,W,̺2 |
α1∧α2

≤
√

2|α2−α1|
(α1∧α2)2(1−α1∨α2)

(Cα1,W,̺1 + |λα1,W,̺1 · (̺2 − ̺1)|+). (E.3)

In order to bound ‖qα1,W,̺1 − qα1,W,̺2‖, we use triangle inequality once more

‖qα1,W,̺1 − qα1,W,̺2‖ ≤ ‖qα1,W,̺1 − qα1,W ,̺∨‖+ ‖qα1,W ,̺∨ − qα1,W,̺2‖
where ̺∨ = ̺1 ∨ ̺2, i.e. ̺ı∨ = ̺ı1 ∨ ̺ı2 for each ı ∈ {1, . . . , ℓ}.

On the other hand by Lemma 21 we have

supp∈A(̺1) Dα1(W ‖ qα1,W ,̺∨ | p) ≥ Cα1,W,̺1 +D1∧α1(qα1,W,̺1‖ qα1,W ,̺∨) .

Since A(̺1) ⊂ A(̺∨), using Theorem 1 and Lemma 2 we get,

Cα1,W ,̺∨ − Cα1,W,̺1 ≥ α1

2 ‖qα1,W,̺1 − qα1,W ,̺∨‖2.
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Repeating the same analysis for ‖qα1,W,̺2 − qα1,W ,̺∨‖ and bounding Cα1,W ,̺∨ using (69) we get

‖qα1,W,̺1 − qα1,W,̺2‖ ≤
√

2
α1

(√
Cα1,W,̺1 − Cα1,W,̺2 + λα1,W,̺1 · (̺∨ − ̺1) +

√
λα1,W,̺1 · (̺∨ − ̺1)

)
(E.4)

The continuity of qα,W,̺ for the total variation topology on P(Y) follows from (E.2), (E.3), (E.4) and the continuity of

Augustin capacity as a function of the constraint established in part (a).

Proof of Lemma 28. Let B(̺) be

B(̺) ,
{
(̺1, . . . , ̺n) :

∑n

t=1
̺t ≤ ̺, ̺t ∈ Γρt

}
.

Note that if B(̺) = ∅, then ̺ /∈ Γρ[1,n]
and Cα,W[1,n],̺ = −∞. On the other hand,

∑n

t=1 Cα,Wt ,̺t
is minus infinity for

(̺1, . . . , ̺n)’s that are outside B(̺) by the convention stated in the lemma. Thus (70) holds for ̺ ∈ Rℓ
≥0 \Γρ[1,n]

case and the

constraints ̺t ∈ Rℓ
≥0 can be replaced by ̺t ∈ Γρt

for ̺ ∈ Γρ[1,n]
case in (70).

Furthermore, as a result of Lemma 26 for any (̺1, . . . , ̺n) ∈ B(̺) we have

Cα,W[1,n],
n

t=1
At (̺t ) =

∑n

t=1
Cα,Wt ,̺t

.

On the other hand (
n

t=1 At (̺t)) ⊂ A(̺) for any (̺1, . . . , ̺n) ∈ B(̺). Thus as a result of Lemma 25 we have

Cα,W[1,n],̺ ≥ sup
{∑n

t=1
Cα,Wt ,̺t

:
∑n

t=1
̺t ≤ ̺, ̺t ∈ Γρt

}
.

For deriving the reverse inequality, first recall that Lemma 14 implies Iα
(
p;W[1,n]

)
≤∑n

t=1 Iα(pt ;Wt) for all p ∈ P(Xn
1 ) where

pt ∈ P(Xt) is the Xt marginal of p. On the other hand, Ep

[
ρ[1,n]

]
=
∑n

t=1 Ept
[ρt ] and Ept

[ρt ] ∈ Γρt
. Hence,

sup
p:Ep[ρ[1,n]]≤̺ Iα

(
p;W[1,n]

)
≤ supp1,...,pn :

∑
n
t=1 Ept

[ρt ]≤̺

∑n

t=1
Iα(pt ;Wt)

= sup
{∑n

t=1
Cα,Wt ,̺t

:
∑n

t=1
̺t ≤ ̺, ̺t ∈ Γρt

}
.

Thus (70) holds. In addition, A(̺) can be interpreted as the union of (
n

t=1 At(̺t )) and A(̺) \ ( n

t=1 At (̺t )). Therefore,

if there exists a (̺1, . . . , ̺n) such that Cα,W[1,n],̺ =
∑n

t=1 Cα,Wt ,̺t
and Cα,W[1,n],̺ < ∞, then qα,W[1,n],̺ =

⊗n

t=1 qα,Wt,̺t

because Cα,W[1,n],̺ = Cα,W[1,n],
n

t=1
At (̺t ) and Cα,W[1,n],̺ < ∞ imply qα,W[1,n],̺ = qα,W[1,n],

n

t=1
At (̺t) by Lemma 25 and

qα,W[1,n],
n

t=1
At (̺t ) =

⊗n

t=1 qα,Wt,̺t
by Lemma 26.

Proof of Lemma 29.

(a) Cλ
α,W is convex, nonincreasing, and lower semicontinuous in λ because Cλ

α,W is the pointwise supremum of such functions

as a result of (76).

Since Cλ
α,W is convex it is continuous on the interior of {λ ∈ Rℓ

≥0 : Cλ
α,W < ∞} by [20, Thm. 6.3.4]. The interior of

{λ ∈ Rℓ
≥0 : Cλ

α,W < ∞} is {λ∈ Rℓ
≥0 : ∃ǫ > 0 s.t. Cλ−ǫ1

α,W < ∞} because Cλ
α,W is nonincreasing in λ.

(b) Note that Cα,W,̺ = supp∈P(X) ξα,p(̺) as a result of (68) and (73). Then as a result of (72), we have

Cα,W,̺ = supp∈P(X) infλ≥0 I
λ
α (p;W) + λ · ̺ ∀̺ ∈ Rℓ

≥0 . (E.5)

If X is finite, then P(X) is compact. Furthermore, using (D.1) together with triangle inequality we get

∣∣I λα (p2;W)− I λα (p1;W)
∣∣ ≤ ℏ

(
‖p1−p2‖

2

)
+ ‖p1−p2‖

2 ln |X|+ ‖p1−p2‖
2 maxx∈X λ · ρ(x ). (E.6)

Then I λα (p;W) + λ · ̺ is continuous in p on P(X). On the other hand, I λα (p;W) + λ · ̺ is concave in p by Lemma 15

and convex and continuous in λ. Thus we can change the order of the infimum and supremum in (E.5) —using the Sion’s

minimax theorem, [42], [43]— and Cα,W,̺ = infλ≥0 C
λ
α,W + λ · ̺ by (75).

(c) If ̺ ∈ intΓρ and Cα,W,̺ is infinite, then Cα,W,̺ = infλ≥0 C
λ
α,W + λ · ̺ follows from (77) trivially.

If ̺ ∈ intΓρ and Cα,W,̺ is finite, then there exists a non-empty, convex, and compact set of λα,W,̺’s satisfying (69) by

Lemma 27-(b). Furthermore, (76) implies for any λα,W,̺ satisfying (69) the following identity

C
λα,W,̺

α,W = sup ˜̺≥0 Cα,W , ˜̺− λα,W,̺ · ˜̺
= Cα,W ,̺ − λα,W,̺ · ̺.

Then Cα,W ,̺ = infλ≥0 C
λ
α,W + λ · ̺ by (77).

(d) Note that I λα (p;W) ≤ Cλ
α,W by definition. Hence lim supı→∞ I λα

(
p(ı);W

)
≤ Cλ

α,W . Furthermore,

I λα (p;W) ≥ Iα(p;W) − λ · ̺ ∀p ∈ A(̺).
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Thus lim infı→∞ I λα
(
p(ı);W

)
≥ Cα,W,̺ − λ · ̺ = Cλ

α,W , as well. Thus limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W .

Proof of Lemma 30.

(i) ∀α ∈ R+∃p̃ ∈ P(X) such that I λα (̃p;W) = Cλ
α,W : Note that I λα (p;W) is continuous in p on P(X) by (E.6). On the other

hand, P(X) is compact because X is a finite set. Then there exists a p̃ ∈ P(X) such that I λα (̃p;W) = supp∈P(X) I
λ
α (p;W)

by the extreme value theorem, [39, 27.4].

(ii) If α ∈ R+ and I λα (̃p;W) = Cλ
α,W , then Dα(W ‖ qα,p̃ | p)− λ ·Ep [ρ] ≤ Cλ

α,W for all p ∈ P(X): Let p be any member of

P(X) and p(ı) be ı−1
ı p̃ + 1

ı p for ı ∈ Z+ . Then by Lemma 13

I λα

(
p(ı);W

)
= ı−1

ı

[
Dα

(
W ‖ qα,p(ı)

∣∣∣ p̃
)
− λ ·Ep̃ [ρ]

]
+ 1

ı

[
Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
− λ · Ep [ρ]

]

≥ ı−1
ı

[
I λα (̃p;W) +Dα∧1

(
qα,p̃‖ qα,p(ı)

)]
+ 1

ı

[
Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
− λ · Ep [ρ]

]
∀ı ∈ Z+ .

Then using I λα
(
p(ı);W

)
≤ Cλ

α,W , I λα (̃p;W) = Cλ
α,W , and Dα∧1

(
qα,p̃‖ qα,p(ı)

)
≥ 0 we get

Cλ
α,W ≥ Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
− λ ·Ep [ρ] . (E.7)

On the other hand, using I λα
(
p(ı);W

)
≤ Cλ

α,W , I λα (̃p;W) = Cλ
α,W and Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
≥ 0 we get

Cλ
α,W+λ·Ep[ρ]

ı ≥ ı−1
ı Dα∧1

(
qα,p̃‖ qα,p(ı)

)
∀ı ∈ Z+ .

Then using, Lemma 2 we get
√

2
α∧1

Cλ
α,W+λ·Ep[ρ]

ı−1 ≥
∥∥∥qα,p̃ − qα,p(ı)

∥∥∥ ∀ı ∈ Z+ .

Thus qα,p(ı) converges to qα,p̃ in the total variation topology and hence in the topology of setwise convergence. Since

the Rényi divergence is lower semicontinuous in the topology of setwise convergence by Lemma 3, we have

lim infı→∞ Dα

(
W ‖ qα,p(ı)

∣∣∣ p
)
≥ Dα(W ‖ qα,p̃ | p) . (E.8)

Then the inequality Dα(W ‖ qα,p̃ | p)− λ · Ep [ρ] ≤ Cλ
α,W follows from (E.7) and (E.8).

(iii) If α ∈ R+ , then ∃!qλα,W ∈P(Y) satisfying (83) such that qα,p = qλα,W for all p ∈ P(X) satisfying I λα (p;W)=Cλ
α,W : If

I λα (p;W)=Cλ
α,W for a p ∈ P(X), then Lemma 13-(b,c,d) and Lemma 2 imply

Dα(W ‖ qα,p̃ | p) − λ · Ep [̺] ≥ Cλ
α,W + α∧1

2 ‖qα,p − qα,p̃‖2. (E.9)

Since we have already established that Dα(W ‖ qα,p̃ | p) − λ · Ep [̺] ≤ Cλ
α,W for any p ∈ P(X), (E.9) implies that

qα,p = qα,p̃ for any p ∈ P(X) satisfying I λα (p;W) = Cλ
α,W.

Proof of Theorem 2. First note that (79) implies (80) and (81) implies (82). Furthermore, the left hand side of (79) is equal to

Cλ
α,W by (78). Thus when Cλ

α,W is infinite, (79) holds trivially by the max-min inequality. When Cλ
α,W is finite, (79) follows

from (81) and the max-min inequality. Thus we can assume Cλ
α,W to be finite and prove the claims about qλα,W , in order to

prove the theorem.

(i) If Cλ
α,W <∞ and limı→∞I λα

(
p(ı);W

)
=Cλ

α,W , then {qα,p(ı)}ı∈Z+ is a Cauchy sequence in P(Y) for the total variation

metric: For any sequence {p(ı)}ı∈Z+ ⊂ P(X) satisfying limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W , let us consider a sequence of

channels {W (ı)}ı∈Z+ whose input sets {X(ı)}ı∈Z+ form a nested sequence of finite subsets of X defined as follows,

X(ı) , {x ∈ X : ∃ ∈ {1, . . . , ı} such that p()(x ) > 0}.
Then for any ı ∈ Z+ , there exists a unique qλ

α,W (ı) satisfying (83) by Lemma 30. Furthermore, P(X()) ⊂ P(X(ı)) for any

ı,  ∈ Z+ such that  ≤ ı. In order to bound

∥∥∥qα,p() − qα,p(ı)

∥∥∥ for positive integers  < ı we use the triangle inequality

for qα,p() , qα,p(ı) , and qλ
α,W (ı)

∥∥∥qα,p() − qα,p(ı)

∥∥∥ ≤
∥∥∥qα,p() − qλα,W (ı)

∥∥∥+
∥∥∥qα,p(ı) − qλα,W (ı)

∥∥∥. (E.10)
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Let us proceed with bounding

∥∥∥qα,p() − qλ
α,W (ı)

∥∥∥ and

∥∥∥qα,p(ı) − qλ
α,W (ı)

∥∥∥ from above.

∥∥∥qα,p() − qλα,W (ı)

∥∥∥
(a)

≤
√

2
α∧1Dα∧1

(
qα,p()

∥∥∥ qλα,W (ı)

)

(b)

≤
√

2
α∧1

√
Dα

(
W ‖ qλ

α,W (ı)

∣∣∣ p()
)
− Iα

(
p();W (ı)

)

(c)

≤
√

2
α∧1

√
Cλ

α,W (ı) − I λα
(
p();W (ı)

)

(d)

≤
√

2
α∧1

√
Cλ

α,W − I λα
(
p();W

)

where (a) follows from Lemma 2, (b) follows from Lemma 13-(b,c,d), (c) follows from Lemma 30 because p() ∈ P(X(ı)),
and (d) follows from the identities I λα

(
p();W (ı)

)
= I λα

(
p();W

)
and Cλ

α,W (ı) ≤ Cλ
α,W . We can obtain a similar bound

on

∥∥∥qα,p(ı) − qλ
α,W (ı)

∥∥∥. Then {qα,p(ı)} is a Cauchy sequence as a result of (E.10) because lim→∞ I λα
(
p();W

)
= Cλ

α,W .

(ii) If Cλ
α,W < ∞, then ∃!qλα,W ∈ P(Y) satisfying limı→∞

∥∥∥qλα,W − qα,p(ı)

∥∥∥ = 0 for all {p(ı)}ı∈Z+ ⊂ P(X) such that

limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W : Note that M(Y) is a complete metric space for the total variation metric because M(Y)
is a Banach space for the total variation topology [21, Thm. 4.6.1]. Then {qα,p(ı)}ı∈Z+ has a unique limit point qα,p∗

in M(Y). Since P(Y) is a closed set for the total variation topology and ∪ı∈Z+ qα,p(ı) ⊂ P(Y), then qα,p∗ ∈ P(Y), by

[39, Thm. 2.1.3].

We have established the existence of a unique limit point qα,p∗, for any sequence {p(ı)}ı∈Z+ ⊂ P(X) satisfying

limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W . This, however, implies limı→∞
∥∥qα,p̃(ı) − qα,p∗

∥∥ = 0 for any {p̃(ı)}ı∈Z+ satisfying

limı→∞ I λα
(
p̃(ı);W

)
= Cλ

α,W because we can interleave the elements of {p(ı)}ı∈Z+ and {p̃(ı)}ı∈Z+ to obtain a new se-

quence {p̂(ı)}ı∈Z+ satisfying limı→∞ I λα
(
p̂(ı);W

)
= Cλ

α,W for which {qα,p̂(ı)} is a Cauchy sequence. Then qλα,W = qα,p∗

(iii) qλα,W satisfies the equality given in (81): For any p ∈ P(X), let us consider any sequence {p(ı)}ı∈Z+ satisfying p(1) = p

and limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W . Then p ∈ P(X(ı)) for all ı ∈ Z+ . Using Lemma 30 we get

Dα

(
W ‖ qα,W (ı)

∣∣ p
)
− λ · Ep [ρ] ≤ Cλ

α,W (ı) ∀ı ∈ Z+ . (E.11)

Since X(ı) is a finite set, ∃p̃(ı) ∈ P(X(ı)) satisfying I λα
(
p̃(ı);W (ı)

)
= Cλ

α,W (ı) and qα,p̃(ı) = qλ
α,W (ı) by Lemma 30. Then

I λα
(
p̃(ı);W (ı)

)
≥ I λα

(
p(ı);W (ı)

)
and consequently limı→∞ I λα

(
p̃(ı);W

)
= Cλ

α,W . We have already established that for such

a sequence qα,p̃(ı) → qλα,W in the total variation topology, and hence in the topology of setwise convergence. Then the

lower semicontinuity of the Rényi divergence in its arguments for the topology of setwise convergence, i.e. Lemma 3,

the identity Cλ
α,W (ı) ≤ Cλ

α,W , and (E.11) imply that

Dα

(
W ‖ qλα,W

∣∣ p
)
− λ · Ep [ρ] ≤ Cλ

α,W ∀p ∈ P(X).

On the other hand Dα

(
W ‖ qλα,W

∣∣ p
)
− λ · Ep [ρ] ≥ I λα (p;W) and Cλ

α,W = supp∈P(X) I
λ
α (p;W) by the definitions of

Iα(p;W), I λα (p;W), and Cλ
α,W . Thus (81) holds.

Proof of Lemma 31. Let {p(ı)}ı∈Z+ ⊂ A(̺) be such that limı→∞ Iα
(
p(ı);W

)
= Cα,W,̺. Then {qα,p(ı)}ı∈Z+ is a Cauchy

sequence with the limit point qα,W,̺ by Theorem 1. On the other hand, limı→∞ I λα
(
p(ı);W

)
= Cλ

α,W by Lemma 29-(d). Then

{qα,p(ı)}ı∈Z+ is a Cauchy sequence with the limit point qλα,W by Theorem 2. Hence qα,W,̺ = qλα,W .

Proof of Lemma 32. As a result of (86) we have

supp∈P(Xn
1)
I λα
(
p;W[1,n]

)
= supp1∈P(X1),...,pn∈P(Xn)

∑n

t=1
I λα (pt ;Wt) .

Thus (85) holds. In order to establish qλα,W[1,n]
=
⊗n

t=1 q
λ
α,Wt

, one can confirm by substitution that
⊗n

t=1 q
λ
α,Wt

satisfies

(82).

Proof of Lemma 33.

(a) Note that as a result of Lemma 13-(c,d) and the definition of I λα (p;W) given in (71) we have

D1

(
p‖ uλ

α,p

)
= (α− 1)I λα (p;W) + ln

∑
x̃
p(x̃ )e(1−α)Dα(W (x̃)‖qα,p)+(α−1)λ·ρ(x). (E.12)

On the other hand as a result of (38), (88), and (92)

I gλ
α

(
uλ
α,p ;W

)
= α

α−1 ln

∫ (∑
x
uλ
α,p(x )e

(1−α)λ·ρ(x)(dW (x)
dν )α

)1/α

ν(dy)

= α
α−1 ln

∫
dqα,p

dν ν(dy)− 1
α−1 ln

∑
x̃
p(x̃ )e(1−α)Dα(W (x̃)‖qα,p)+(α−1)λ·ρ(x).
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Then (95) follows from (E.12)

• In order to prove (96) for α ∈ (0, 1) case, we prove the following inequality

I gλ
α (u;W) + 1

α−1D1(p‖ u) ≤ I λα (p;W) ∀u ∈ P(X).

Preceding inequality together with (95) imply (96) for α ∈ (0, 1). Note that the inequality holds trivially when p⊀u

because D1(p‖ u) is infinite in that case. Thus we are left with p≺u case. On the other hand, any u ∈ P(X) can be

written as u = uac + us where uac≺p and us ⊥ p. Then

I gλ
α (u;W)

(i)

≤ Dα

(
u⊛W e

1−α
α λ·ρ

∥∥∥ u ⊗ qα,p

)

(ii)

≤ 1
α−1 ln

[∑
x
uac(x )e

(α−1)Dα(W (x)‖qα,p)+(1−α)λ·ρ(x)
]

(iii)
= 1

α−1 ln
[∑

x
p(x )uac(x)

p(x) e(α−1)Dα(W (x)‖qα,p)+(1−α)λ·ρ(x)
]

(iv)

≤ 1
α−1

[∑
x
p(x ) ln uac(x)

p(x) e(α−1)Dα(W (x)‖qα,p)+(1−α)λ·ρ(x)
]

(v)
= I λα (p;W)− 1

α−1D1(p‖ uac)
(vi)
= I λα (p;W) − 1

α−1D1(p‖ u) .
where (i) follows from (87), (ii) follows from (8) and the monotonicity of the natural logarithm function, (iii) follows

from uac ∼ p which holds because p≺u , (iv) follows from the Jensen’s inequality and the concavity of the natural

logarithm function, (v) follows from Lemma 13-(c) and the definition of I λα (p;W) given in (71).

• In order to prove (96) for α ∈ (1,∞) case, we prove the following inequality

I gλ
α (u;W) + 1

α−1D1(p‖ u) ≥ I λα (p;W) ∀u ∈ P(X).

Preceding inequality together with (95) imply (96) for α ∈ (1,∞). Note that the inequality holds trivially when p⊀u

because D1(p‖ u) is infinite in that case. Thus we are left with p≺u case. On the other hand, any u ∈ P(X) can be

written as u = uac + us where uac≺p and us ⊥ p. Then

I gλ
α (u;W)

(i)
= Dα

(
u⊛W e

1−α
α λ·ρ

∥∥∥ u ⊗ qgλ
α,u

)

(ii)

≥ 1
α−1 ln

[∑
x
uac(x )e

(α−1)Dα(W (x)‖qgλ
α,u)+(1−α)λ·ρ(x)

]

(iii)
= 1

α−1 ln
[∑

x
p(x )uac(x)

p(x) e(α−1)Dα(W (x)‖qgλ
α,u)+(1−α)λ·ρ(x)

]

(iv)

≥ 1
α−1

[∑
x
p(x ) ln uac(x)

p(x) e(α−1)Dα(W (x)‖qgλ
α,u)+(1−α)λ·ρ(x)

]

(v)

≥ Iα(p;W) +D1

(
qα,p‖ qgλ

α,u

)
− λ ·Ep [ρ]− 1

α−1D1(p‖ uac)
(vi)
= I λα (p;W) − 1

α−1D1(p‖ u) .
where (i) follows from (91), (ii) follows from (8) and the monotonicity of the natural logarithm function, (iii) follows

from uac ∼ p which holds because p≺u , (iv) follows from the Jensen’s inequality and the concavity of the natural

logarithm function, (v) follows from Lemma 13-(d), (vi) follows from Lemma 2 and the definition of I λα (p;W) given

in (71).

(b) Note that the order α R-G mean for the input distribution p and the Lagrange multiplier λ is a fixed point of the order

α Augustin operator for the input distribution aλ
α,p , i.e.

dT
α,aλα,p

(qgλ
α,p)

dν =
∑

x
aλ
α,p(x )(

dW (x)
dν )α(

dqgλ
α,p

dν )1−αe(1−α)Dα(W (x)‖qgλ
α,p)

= 1

e(α−1)I
gλ
α (p;W)

∑
x
p(x )e(1−α)λ·ρ(x)(dW (x)

dν )α(
dqgλ

α,p

dν )1−α

=
dqgλ

α,p

dν .
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Consequently Iα
(
aλ
α,p ;W

)
= Dα

(
W ‖ qgλ

α,p

∣∣ aλ
α,p

)
by Lemma 13-(c,d). Then

D1

(
aλ
α,p

∥∥ p
)
=
∑

x
aλ
α,p(x ) ln

p(x)e
(α−1)Dα(W (x)‖q

gλ
α,p)+(1−α)λ·ρ(x)

∑
x̃
p(x̃ )e

(α−1)Dα(W (x̃)‖q
gλ
α,p)+(1−α)λ·ρ(x̃)

1
p(x)

= (α− 1)I λα
(
aλ
α,p ;W

)
− ln

∑
x̃
p(x̃ )e(α−1)Dα(W (x̃)‖qgλ

α,p)+(1−α)λ·ρ(x)

= (α− 1)[I λα
(
aλ
α,p ;W

)
− I gλ

α (p;W)].

Thus (97) holds.

• In order to prove (98) for α ∈ (0, 1) case, we prove the following inequality

I λα (a;W) − 1
α−1D1(a‖ p) ≥ I gλ

α (p;W) ∀a ∈ P(X).

Preceding inequality together with (97) imply (98) for α ∈ (0, 1). Note that the inequality holds trivially when a⊀p

because D1(a‖ p) is infinite in that case. Thus we are left with a≺p case. On the other hand, for any a ∈ P(X), p
can be written as p = pac + ps where pac≺a and ps ⊥ a. Then

I λα (a;W) − 1
α−1D1(a‖ p)

(i)
= Dα(W ‖ qα,a | a) − λ ·Ea [ρ]− 1

α−1D1(a‖ pac)
(ii)
= 1

α−1

∑
x
a(x ) ln

[
pac(x)
a(x) e(α−1)Dα(W (x)‖qα,a )+(1−α)λ·ρ(x)

]

(iii)

≥ 1
α−1 ln

∑
x
pac(x )e

(α−1)Dα(W (x)‖qα,a )+(1−α)λ·ρ(x)

(iv)

≥ 1
α−1 ln

∑
x
p(x )e(α−1)Dα(W (x)‖qα,a)+(1−α)λ·ρ(x)

(v)

≥ I gλ
α (p;W) .

where (i) follows from (8), (71), and Lemma 13-(c), (ii) follows from pac ∼ a which holds because a≺p, (iii) follows

from the Jensen’s inequality and the concavity of the natural logarithm function, (iv) follows from the monotonicity

of the natural logarithm function, (v) follows from (8) and (87).

• In order to prove (98) for α ∈ (1,∞) case, we prove the following inequality

I λα (a;W) − 1
α−1D1(a‖ p) ≤ I gλ

α (p;W) ∀a ∈ P(X).

Preceding inequality together with (97) imply (98) for α ∈ (1,∞). Note that the inequality holds trivially when a⊀p

because D1(a‖ p) is infinite in that case. Thus we are left with a≺p case. On the other hand, for any a ∈ P(X), p
can be written as p = pac + ps where pac≺a and ps ⊥ a. Then

I λα (a;W) − 1
α−1D1(a‖ p)

(i)

≤Dα

(
W ‖ qgλ

α,p

∣∣ a
)
− λ ·Ea [ρ]− 1

α−1D1(a‖ pac)
(ii)
= 1

α−1

∑
x
a(x ) ln

[
pac(x)
a(x) e(α−1)Dα(W (x)‖qgλ

α,p)+(1−α)λ·ρ(x)
]

(iii)

≤ 1
α−1 ln

∑
x
pac(x )e

(α−1)Dα(W (x)‖qgλ
α,p)+(1−α)λ·ρ(x)

(iv)

≤ 1
α−1 ln

∑
x
p(x )e(α−1)Dα(W (x)‖qgλ

α,p)+(1−α)λ·ρ(x)

(v)
= I gλ

α (p;W) .

where (i) follows from (8), (23), and (71), (ii) follows from pac ∼ a which holds because a≺p, (iii) follows from

the Jensen’s inequality and the concavity of the natural logarithm function, (iv) follows from the monotonicity of the

natural logarithm function, (v) follows from (8) and (91).

(c) (99) follows from (38) by substitution. On the other hand, (92) and (96) imply

α−1
α I λα (p;W) ≤ ln

∥∥µλ
α,u

∥∥+ D1(p‖u)
α ∀u ∈ P(X). (E.13)

For any f satisfying f : Ep [f ] = 0, let uf ∈ P(X) be uf (x ) ,
p(x)e(1−α)f (x)

∑
z p(z)e

(1−α)f (z) for all x ∈ X. Thus as a result of (E.13)

and (88) we have

α−1
α I λα (p;W) ≤ lnEν

[(∑
x
p(x )e(1−α)(f (x)+λ·ρ(x))

[
dW (x)

dν

]α)1/α
]

∀f : Ep [f ] = 0.

Then (100) follows from (99).
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Proof of Lemma 34.

(i) ∃p̃ ∈ P(X) such that I gλ
α (̃p;W) = C gλ

α,W : Note that P(X) is compact because X is a finite set. If I gλ
α (p;W) is continuous

in p, then the existence of p̃ follows from the extreme value theorem, [39, 27.4]. Thus we are left with establishing the

continuity of I gλ
α (p;W) in p.

Note that for any p1 and p0 there exist probability mass functions s1, s0, and s∧ satisfying s0 ⊥ s1, p1 = (1− δ)s∧+ δs1,

and p0 = (1− δ)s∧ + δs0 where δ = ‖p1−p0‖
2 . Then applying first (90) and (91) we get

I gλ
α (p1;W) = 1

α−1 ln
[
(1 − δ)e(α−1)[Igλ

α (s∧;W)+Dα(qλ
α,s∧‖qλ

α,p1
)] + δe(α−1)[Igλ

α (s1;W)+Dα(qλ
α,s1

‖qλ
α,p1

)]
]
. (E.14)

Note that I gλ
α (p;W) ≤ I g

α(p;W) and I g
α(p;W) ≤ Dα(p⊛W ‖ p ⊗ q1,u) for all p ∈ P(X) by definition where u is the

uniform distribution on X. Furthermore, Dα(p⊛W ‖ p ⊗ q1,u) = 1
α−1 ln

∑
x p(x )e

(α−1)Dα(W (x)‖q1,u) ≤ ln |X| for all

p ∈ P(X) by Lemma 1. Thus I gλ
α (s∧;W) ≤ ln |X| and using Lemma 2 to bound the expression in (E.14) we get

I gλ
α (p1;W) ≥ I gλ

α (s∧;W) + 1
α−1 ln

[
(1− δ) + δe(1−α) ln |X|

]
. (E.15)

On the other hand (1− δ)
1
αµλ

α,s∧ ≤ µλ
α,p1

and δ
1
αµλ

α,s1 ≤ µλ
α,p1

by (88). Then using (89) and Lemma 1 we get

Dα

(
qλα,s∧

∥∥ qλα,p1

)
≤ 1

α ln 1
1−δ − α−1

α (I gλ
α (s∧;W)− I gλ

α (p1;W)),

Dα

(
qλα,s1

∥∥ qλα,p1

)
≤ 1

α ln 1
δ − α−1

α (I gλ
α (s1;W)− I gλ

α (p1;W)).

Since I gλ
α (s1;W) ≤ I g

α(s1;W) ≤ ln |X| using (E.14) and we get

I gλ
α (p1;W) ≤ I gλ

α (s∧;W) + α
α−1 ln

[
(1− δ)

1
α + δ

1
α e

α−1
α ln |X|

]
. (E.16)

Using (E.15) and (E.16) we get

∣∣I gλ
α (p1;W)− I gλ

α (p2;W)
∣∣ ≤ α

α−1 ln
[
(1 − δ)

1
α + δ

1
α e

α−1
α ln |X|

]
− 1

α−1 ln
[
(1 − δ) + δe(1−α) ln |X|

]
.

Then I gλ
α (p;W) is continuous in p.

(ii) If I gλ
α (̃p;W) = C gλ

α,W , then Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,p̃

)
≤ C gλ

α,W for all p ∈ P(X): Let p̃ ∈ P(X) be such that

I gλ
α (̃p;W) = C gλ

α,W , p be any member of P(X) and p(ı) be ı−1
ı p̃ + 1

ı p for ı ∈ Z+ . Then

I gλ
α

(
p(ı);W

)
= 1

α−1 ln

[
ı−1
ı e

(α−1)

(
Igλ
α (̃p;W)+Dα

(
q
gλ
α,p̃‖qgλ

α,p(ı)

))

+ 1
ı e

(α−1)

(
Igλ
α (p;W)+Dα

(
qgλ
α,p‖qgλ

α,p(ı)

))]
.

Then using I gλ
α

(
p(ı);W

)
≤ C gλ

α,W , I gλ
α (̃p;W) = C gλ

α,W , and Dα

(
qgλ
α,p̃

∥∥∥ qgλ
α,p(ı)

)
≥ 0 we get

I gλ
α (p;W) +Dα

(
qgλ
α,p

∥∥ qgλ
α,p(ı)

)
≤ C gλ

α,W ∀ı ∈ Z+ . (E.17)

On the other hand using I gλ
α

(
p(ı);W

)
≤ C gλ

α,W , I gλ
α (̃p;W) = C gλ

α,W , I gλ
α (p;W) ≥ 0, and Dα

(
qgλ
α,p

∥∥ qgλ
α,p(ı)

)
≥ 0, we get

Dα

(
qgλ
α,p̃

∥∥∥ qgλ
α,p(ı)

)
≤ 1

α−1 ln
ı−e

(1−α)C
gλ
α,W

ı−1 ∀ı ∈ Z+ .

Thus Lemma 2 implies

lim supı→∞

∥∥∥qgλ
α,p̃ − qgλ

α,p(ı)

∥∥∥ ≤ 0.

Then qgλ
α,p(ı) converges to qgλ

α,p̃ in the total variation topology and hence in the topology of setwise convergence. Since

the Rényi divergence is lower semicontinuous in the topology of setwise convergence by Lemma 3, we have

Dα

(
qgλ
α,p

∥∥ qgλ
α,p̃

)
≤ lim infı→∞ Dα

(
qgλ
α,p

∥∥ qgλ
α,p(ı)

)
. (E.18)

Equations (90), (91), (E.17), (E.18) imply that Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,p̃

)
≤ C gλ

α,W for all p ∈ P(X).

(iii) ∃!qgλ
α,W ∈ P(Y) satisfying (106) such that qgλ

α,p = qgλ
α,W for all p with I gλ

α (p;W) = C gλ
α,W : If I gλ

α (p;W) =C gλ
α,W for a

p ∈ P(X), then as a result of (90), (91), and Lemma 2 we have

Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,p̃

)
≥ C gλ

α,W + α∧1
2

∥∥∥qgλ
α,p − qgλ

α,p̃

∥∥∥
2

. (E.19)

Since we have already established that Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,p̃

)
≤ C gλ

α,W for any p ∈ P(X), (E.19) implies that

qgλ
α,p = qgλ

α,p̃ for any p ∈ P(X) satisfying I gλ
α (p;W) = C gλ

α,W .
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Proof of Theorem 3. Note that (102) implies (103) and (104) implies (105). Furthermore, the left hand side of (102) is equal

to C gλ
α,W by (101). Thus when C gλ

α,W is infinite, (102) holds trivially by the max-min inequality. When C gλ
α,W is finite, (102)

follows from (104) and the max-min inequality. Thus we can assume C gλ
α,W to be finite and prove the claims about qgλ

α,W , in

order to prove the theorem.

(i) If C gλ
α,W <∞ and limı→∞I gλ

α

(
p(ı);W

)
=C gλ

α,W , then {qgλ
α,p(ı)}ı∈Z+ is a Cauchy sequence in P(Y) for the total variation

metric: For any sequence {p(ı)}ı∈Z+ ⊂ P(X) satisfying limı→∞ I gλ
α

(
p(ı);W

)
= C gλ

α,W , let us consider a sequence of

channels {W (ı)}ı∈Z+ whose input sets {X(ı)}ı∈Z+ form a nested sequence of finite subsets of X defined as follows,

X(ı) , {x ∈ X : ∃ ∈ {1, . . . , ı} such that p()(x ) > 0}.

Then for any ı ∈ Z+ , there exists a unique qgλ
α,W (ı) satisfying (106) by Lemma 34. Furthermore, P(X()) ⊂ P(X(ı))

for any ı,  ∈ Z+ such that  ≤ ı. In order to bound

∥∥∥qgλ
α,p() − qgλ

α,p(ı)

∥∥∥ for positive integers  < ı, we use the triangle

inequality for qλ
α,p() , qgλ

α,p(ı) and qgλ
α,W (ı)

∥∥∥qgλ
α,p() − qgλ

α,p(ı)

∥∥∥ ≤
∥∥∥qgλ

α,p() − qgλ
α,W (ı)

∥∥∥+
∥∥∥qgλ

α,p(ı) − qgλ
α,W (ı)

∥∥∥. (E.20)

Let us proceed with bounding

∥∥∥qgλ
α,p() − qgλ

α,W (ı)

∥∥∥ and

∥∥∥qgλ
α,p(ı) − qgλ

α,W (ı)

∥∥∥.

∥∥∥qgλ
α,p() − qgλ

α,W (ı)

∥∥∥
(a)

≤
√

2
α∧1Dα

(
qgλ
α,p()

∥∥∥ qgλ
α,W (ı)

)

(b)

≤
√

2
α∧1

√
Dα

(
p()⊛W (ı)e

1−α
α λ·ρ

∥∥∥ p() ⊗ qgλ
α,W (ı)

)
− I gλ

α

(
p();W (ı)

)

(c)

≤
√

2
α∧1

√
C gλ

α,W (ı) − I gλ
α

(
p();W (ı)

)

(d)

≤
√

2
α∧1

√
C gλ

α,W − I gλ
α

(
p();W

)

where (a) follows from Lemma 2, (b) follows from (90) and (91), (c) follows Lemma 34 because p()∈P(X(ı)), and (d)

follows from I gλ
α

(
p();W (ı)

)
=I gλ

α

(
p();W

)
and C gλ

α,W (ı) ≤C gλ
α,W . We can obtain a similar bound on

∥∥∥qgλ
α,p(ı)−qgλ

α,W (ı)

∥∥∥.

Then {qgλ
α,p(ı)} is a Cauchy sequence as a result of (E.20) because limı→∞I gλ

α

(
p(ı);W

)
=C gλ

α,W .

(ii) If C gλ
α,W < ∞, then ∃!qgλ

α,W ∈ P(Y) satisfying limı→∞
∥∥∥qgλ

α,W − qgλ
α,p(ı)

∥∥∥ = 0 for all {p(ı)}ı∈Z+ ⊂ P(X) such

that limı→∞ I gλ
α

(
p(ı);W

)
= C gλ

α,W : Note that M(Y) is a complete metric space for the total variation metric. Then

{qgλ
α,p(ı)}ı∈Z+ has a unique limit point qgλ

α,W in M(Y). Since P(Y) is a closed set for the total variation topology and

∪ı∈Z+ q
gλ
α,p(ı) ⊂ P(Y), then qgλ

α,W ∈ P(Y), by [39, Thm. 2.1.3].

We have established the existence of a unique limit point qgλ
α,W , for any sequence {p(ı)}ı∈Z+ ⊂ P(X) satisfying

limı→∞ I gλ
α

(
p(ı);W

)
= C gλ

α,W . This, however, implies limı→∞
∥∥∥qgλ

α,p̃(ı) − qgλ
α,p∗

∥∥∥ = 0 for any {p̃(ı)}ı∈Z+ satisfying

limı→∞ I gλ
α

(
p̃(ı);W

)
= C gλ

α,W because we can interleave the elements of {p(ı)}ı∈Z+ and {p̃(ı)}ı∈Z+ to obtain a new se-

quence {p̂(ı)}ı∈Z+ satisfying limı→∞ I gλ
α

(
p̂(ı);W

)
= C gλ

α,W for which {qgλ
α,p̂(ı)} is a Cauchy sequence. Then qgλ

α,W = qgλ
α,p∗

(iii) qgλ
α,W satisfies the equality given in (104): For any p ∈ P(X), let us consider any sequence {p(ı)}ı∈Z+ satisfying p(1) = p

and limı→∞ I gλ
α

(
p(ı);W

)
= C gλ

α,W . Then p ∈ P(X(ı)) for all ı ∈ Z+ . Using Lemma 34 we get

Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,W (ı)

)
≤ C gλ

α,W (ı) ∀ı ∈ Z+ . (E.21)

Since X(ı) is a finite set, ∃p̃(ı) ∈ P(X(ı)) satisfying I gλ
α

(
p̃(ı);W (ı)

)
= C gλ

α,W (ı) and qgλ
α,p̃(ı) = qgλ

α,W (ı) by Lemma 34. Then

I gλ
α

(
p̃(ı);W (ı)

)
≥ I gλ

α

(
p(ı);W (ı)

)
and consequently limı→∞ I gλ

α

(
p̃(ı);W

)
= C gλ

α,W . We have already established that for

such a sequence qgλ
α,p̃(ı) → qgλ

α,W in the total variation topology, and hence in the topology of setwise convergence. Then

the lower semicontinuity of the Rényi divergence (i.e. Lemma 3) and the identity C gλ
α,W (ı) ≤ C gλ

α,W imply that

Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,W

)
≤ C gλ

α,W ∀p ∈ P(X).

On the other hand Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ qgλ
α,W

)
≥ I gλ

α (p;W) and C gλ
α,W = supp∈P(X) I

gλ
α (p;W) by definitions of

I gλ
α (p;W) and C gλ

α,W . Thus (104) holds.
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Proof of Lemma 35. Let us first consider the case α ∈ R+ \ {1}. As a result of (90) and (91) we have,

supx∈XDα(W (x )‖ q)− λ · ρ(x ) = supx∈X Dα

(
W (x )e

1−α
α λ·ρ(x)

∥∥∥ q
)

≥ Dα

(
p⊛W e

1−α
α λ·ρ

∥∥∥ p ⊗ q
)

≥ I gλ
α (p;W) +Dα

(
qgλ
α,p

∥∥ q
)

∀p ∈ P(X). (E.22)

Let {p(ı)}ı∈Z+ be a sequence of elements of P(X) such that limı→∞ I gλ
α

(
p(ı);W

)
= C gλ

α,W . Then the sequence {qgλ
α,p(ı)}ı∈Z+

is a Cauchy sequence with the unique limit point qgλ
α,W by Theorem 3. Since {qgλ

α,p(ı)} → qgλ
α,W in total variation topology,

same convergence holds in the topology of setwise convergence. On the other hand, the order α Rényi divergence is lower

semicontinuous for the topology of setwise convergence by Lemma 3. Thus we have

lim infı→∞
[
I gλ
α

(
p(ı);W

)
+ Dα

(
qgλ
α,p(ı)

∥∥∥ q
)]

≥ C gλ
α,W +Dα

(
qgλ
α,W

∥∥∥ q
)
. (E.23)

(E.22) and (E.23) imply (109) for α∈R+\{1} because C gλ
α,W =Cλ

α,W by (107) and qgλ
α,W =qλα,W by (108).

For α = 1 case, as a result of Lemma 13-(b) and the definition of A-L information given in (71) we have,

supx∈XD1(W (x )‖ q) − λ · ρ(x ) ≥ I λ1 (p;W) +D1(q1,p‖ q) ∀p ∈ P(X). (E.24)

Repeating the argument leading to (E.23) and invoking Theorem 2, rather than Theorem 3, we get

lim infı→∞
[
I λ1

(
p(ı);W

)
+D1

(
q1,p(ı)

∥∥∥ q
)]

≥ Cλ
1,W +D1

(
qλ1,W

∥∥ q
)
. (E.25)

(E.24) and (E.25) imply (109) for α = 1 case.

Proof of Lemma 36. Since Cλ
α,W is nonincreasing in λ by Lemma 29-(a), Cλ2

α,W ≤ Cλ1

α,W ≤ Cλ0

α,W < ∞. We apply Lemma

35 for λ = λ2 and q = qλ1

α,W and use the fact that 0 ≤ ρ(x ) for all x ∈ X to obtain

Dα

(
qλ2

α,W

∥∥∥ qλ1

α,W

)
+ Cλ2

α,W ≤ supx∈X Dα

(
W (x )‖ qλ1

α,W

)
− λ2 · ρ(x )

≤ supx∈X Dα

(
W (x )‖ qλ1

α,W

)
− λ1 · ρ(x ).

Then (110) follows from (82) of Theorem 2.

For any two point λ1 and λ2 in {λ : ∃ǫ > 0 s.t. Cλ−ǫ1
α,W <∞}, not necessarily satisfying λ1 ≤ λ2, let λ∨ be λ1 ∨ λ2, i.e.

λı
∨ = λı

1 ∨ λı
2 for all ı ∈ {1, . . . , ℓ}. Then as a result of the triangle inequality we have

∥∥∥qλ1

α,W − qλ2

α,W

∥∥∥ ≤
∥∥∥qλ1

α,W − qλ∨

α,W

∥∥∥+
∥∥∥qλ∨

α,W − qλ2

α,W

∥∥∥. (E.26)

On the other hand, as a result of Lemma 2 and (110) we have,
∥∥∥qλ1

α,W − qλ∨

α,W

∥∥∥ =
√

2
α∧1

√
Cλ1

α,W − Cλ∨

α,W , (E.27)
∥∥∥qλ∨

α,W − qλ2

α,W

∥∥∥ =
√

2
α∧1

√
Cλ2

α,W − Cλ∨

α,W . (E.28)

Then continuity of qλα,W in λ on {λ : ∃ǫ > 0 s.t. Cλ−ǫ1
α,W <∞} for the total variation topology on P(Y) follows from (E.26),

(E.27), (E.28), and the continuity of Cλ
α,W in λ on {λ : ∃ǫ > 0 s.t. Cλ−ǫ1

α,W <∞} established in Lemma 29-(a).
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possible without it. The author would like to thank Marco Dalai for informing him about Fano’s implicit assertion of the fixed

point property in [22] and Gonzalo Vazquez-Vilar for pointing out Poltyrev’s paper [19] on the random coding bound. Author

would also like to thank the reviewer for his meticulous report, which allowed the author to correct a number of inaccurate

and/or imprecise statements in the original manuscript.

58



REFERENCES
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[11] S. Verdú. α-mutual information. In 2015 Information Theory and Applications Workshop, 2015.
[12] J. H. B. Kemperman. On the Shannon capacity of an arbitrary channel. Indagationes Mathematicae (Proceedings), 77(2):101–115, 1974.
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