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We consider a hypothesis testing problem where a part of data cannot be observed.

Our helper observes the missed data and can send us a limited amount of information

about them. What kind of this limited information will allow us to make the best

statistical inference? In particular, what is the minimum information sufficient to obtain

the same results as if we directly observed all the data? We derive estimates for this

minimum information and some other similar results.
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§ 1. Introduction and main results

1. Statement of the problem. Similarly to [1, 2], a binary symmetric channel BSC(p)
on length n, with unknown crossover probability p is considered. In order to distinguish input
and output alphabets En = {0, 1}n, denote them En

in and En
out, respectively. Concerning the

value p, there are two hypotheses (one of them is true) : H0 : p = p0 and H1 : p = p1, where
0 < p0, p1 ≤ 1/2.

Denote by P and Q conditional output distributions on the BSC(p) output for hypotheses
H0 and H1, respectively. Then probabilities to get the output block y = (y1, . . . , yn) provided
the input block x = (x1, . . . , xn) are given by

P(y|x) = (1− p0)
n−d(x,y)p

d(x,y)
0 , Q(y|x) = (1− p1)

n−d(x,y)p
d(x,y)
1 ,

where d(x,y) - the Hamming distance between blocks x and y (i.e. the number of non-
coincident components of those vectors on length n).

The following problem of minimax testing of hypotheses H0 and H1 is considered. We (i.e.
“the statistician”) observe only the channel output block y ∈ En

out, while our “helper” observes
only the channel input x ∈ En

in. It is assumed that we do not have any prior information on
the input block x. Clearly, that based only on the output block y we are not able to make
any reasonable conclusions on unknown value p.

1The reported study was funded by RFBR according to the research project 19-01-00364.
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Assume further that for a prescribed value R > 0, our helper is allowed to partition in
advance the input space En

in = {0, 1}n on N ≤ 2Rn arbitrary parts {X1, . . . , XN}, and to
inform us (in some additional way) to which part Xi belongs the input block x. Clearly, only
the case N < 2n, i.e. R < 1, is interesting (otherwise, the helper can simply inform us on
the block x).

For example, the helper may transmit to the statistician exact values of the first Rn
components x1, . . . , xRn (but inform nothing on the next values xi). Such simple partitioning
of the input space En

in (on cylinder sets {Xi}), generally speaking, is not optimal. From the
statistician point of view input data (x1, . . . , xn) represent very strong nuisance parameter.

We may also say that the optimal limited information on the block x means the optimal
“contraction” of full information on the block x. Of course, such optimal “contraction”
depends on prior information on transfer probability p and a quality criteria used.

Remark 1. Clearly, the problem will not be changed if the statistician observes the channel
input, and the helper observes the channel output.

Based on observation y and the index i of the part Xi the statistician makes a decision
in favor of one of hypotheses H0 or H1. In order to avoid overcomplification we consider only
nonrandomized decision methods (then the problem essence and results remain the same).

We consider partitions {X1, . . . , XN} and decision methods that are asymptotically (as
n → ∞) optimal. Similar, but much more general problem statements were considered, for
example, in [3, 4, 5, 6, 7, 8].

Remark 2. As far as we know, all results in that area (see, for example, [1, 2, 3, 4, 5, 6, 7, 8])
have the form: “it is possible to get the following testing performance . . . ”. Our aim is to get
an opposite result, i.e. to show that “it is impossible to get a better result than . . . ”.

Below we denote log x = log2 x. For a finite set A we denote by |A| its cardinality.
Introduce balls and spheres in En

Bx(p) = {u : d(x,u) ≤ pn}, x,u ∈ En,

Sx(p) = {u : d(x,u) = pn}.
(1)

2. Error probability exponents and dual problem. Let a partition {X1, . . . , XN}
of the input space En

in = {0, 1}n be chosen. Then general decision making can be described
as follows. For each partition element Xi we choose a set A(Xi) ⊂ En

out, and based on
observation y and known element Xi, make a decision (Ac = En

out \ A):

y ∈ A(Xi) =⇒ H0; y ∈ Ac(Xi) =⇒ H1.

Assume that we set a partition {X1, . . . , XN} of the input space En
in = {0, 1}n. For each

partition element Xi we choose a set A(Xi) ⊂ En
out, and based on observation y and known

element Xi make a decision (Ac = En
out \ A):

y ∈ A(Xi) =⇒ H0; y ∈ Ac(Xi) =⇒ H1.

Define error probabilities of the 1–kind αn and the 2–kind βn as

αn = Pr(H1|H0) = max
i=1,...,N

max
x∈Xi

P (Ac(Xi)|x) ,

βn = Pr(H0|H1) = max
i=1,...,N

max
x∈Xi

Q (A(Xi)|x) .
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Let γ ≥ 0 - a given constant. We demand that the 1–kind error probability αn satisfies
the condition

αn = Pr(H1|H0) ≤ 2−γn. (2)

We are interested in the minimal possible (over all partitions {Xi} of the input space
En

in and all decisions) 2–kind error probability inf βn. We investigate the asymptotic case as
n → ∞ and N = 2Rn, where 0 < R < 1 – a given constant. 1 Then for the best partition
{Xi} and decision methods denote

e(γ, R) = lim
n→∞

1

n
log2

1

inf βn
> 0, (3)

where inf is taken over all partitions {Xi} and decision methods satisfying the condition (2).
Our main aim is upperbounds for the function e(γ, R) (see lowerbounds in [1]). In the

paper we limit ourselves to the case γ → 0, evaluating the function e(0, R) = e(R), and
the related function rcrit(p0, p1) (that case sometimes is called Neiman-Pierson problem). In
other paper we will consider the case γ > 0.

It will be convenient for us to consider also the equivalent dual problem (without the
helper). Let a value r, 0 < r < 1 be given, and we may choose any set X ⊂ En

in of X = 2rn

input blocks. It is known also that the input block x belongs to the chosen set X . We observe
the channel output y and, knowing the set X , consider the testing of hypotheses H0 and H1

problem. We choose a set A and depending on observation y make the decision:

y ∈ A =⇒ H0; y ∈ Ac =⇒ H1.

Define 1–kind αn and 2–kind βn error probabilities as

αn = max
x∈X

P (Ac|x) , βn = max
x∈X

Q (A|x) .

Assume that for the 1-kind error probability αn condition (2) is fulfilled, and we want
to choose the set X ⊂ En

in of cardinality X = 2rn and decision method in order to achieve
the minimal possible 2-kind error probability inf βn. Similarly to (3), for such dual problem
define the function ed(γ, r)

ed(γ, r) = lim
n→∞

1

n
log2

1

min βn
> 0, (4)

where minimum is taken over all sets X ⊂ En
in of cardinality X = 2rn and all decision

methods.
The following result establishes simple relation between functions e(γ, R) and ed(γ, r).
P r o p o s i t i o n 1 [1, Proposition 1]. The following relation holds true

e(γ, 1−R) = ed(γ, R); 0 ≤ R ≤ 1, γ ≥ 0. (5)

1In order to simplify formulas we don’t use integer part sign of value 2
Rn
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By virtue of Proposition 1 and the formula (5) it is sufficient to investigate the function
ed(γ, r). In the paper we limit ourselves to the case γ → 0, investigating the function ed(0, r).

Remark 3. Essentially, we consider the case when distributions P (x, y) and Q(x, y) have
the form: P (x, y) = p(x)P (y|x) and Q(x, y) = p(x)Q(y|x).

3. Known input block. Assume that we know the input block x (then we may set
x = 0) and we observe the output block y. If we demand only αn → 0, n → ∞ (i.e. γ = 0),
and we are interested only in the exponent (on n) of 2-kind error probability βn, then as
n → ∞ by Central Limit Theorem and Pearson-Neiman lemma the optimal decision set in
favor of H0 (i.е. p0) is the spherical slice B0(p0 + δ) \ B0(p0 − δ) in En

out (see (1)), where
δ > 0 - small. Then for the exponent (on n) of 2-kind error probability βn we have

1

n
log βn =

1

n
log

[(

n

p0n

)

(1− p1)
(1−p0)npp0n1

]

+ o(1), n → ∞,

and therefore we get as n → ∞

1

n
log

1

βn
= −(1− p0) log(1− p1)− p0 log p1 − h(p0) + o(1) = D(p0||p1) + o(1), (6)

where

D(a||b) = a log
a

b
+ (1− a) log

1− a

1− b
. (7)

Remark 4. The function D(a||b) is the divergence for two binomial random variables with
parameters a and b, respectively. In other words, it gives the best possible exponent for
2–kind error probability provided fixed 1–kind error probability (i.e. its exponent equals 0),
when testing two simple hypotheses: H0 : p = a versus H1 : p = b.

With γ = r = 0 for the value ed(γ, 0) (see (4)) we have from (6)

ed(0, 0) = D(p1||p0). (8)

4. Unknown input block and critical rate. If we know the input block x and αn → 0,
then the best exponent ed(0, 0) for 2–kind error probability βn is given by the formula (8).

If we know only that the input block x belongs to the set X of cardinality X ∼ 2rn, then
for the best such set X the exponent ed(0, r) of 2-kind error probability βn is defined by the
formula (4). It is clear that

ed(γ, r) ≤ ed(γ, 0), γ ≥ 0, 0 ≤ r ≤ 1. (9)

The function ed(γ, r) does not increase in r. Then the following natural question arises:
does there exist r(γ) > 0 for which the equality in (9) holds, and, if so, what is the maximal
rate rcrit(γ) ? Limiting ourselves to the case γ = 0, define the critical rate rcrit(p0, p1) =
rcrit(p0, p1, 0) as (see (8))

rcrit = rcrit(p0, p1) = sup{r : ed(0, r) = ed(0, 0) = D(p0||p1)}. (10)
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In other words, what is the maximal cardinality 2rn of the best set X for which we can
achieve the same asymptotic efficiency as for known input block x (although we don’t know
the input block x) ?

Similarly, introduce the critical rate Rcrit for the original problem (see (3))

Rcrit(p0, p1) = inf{R : e(0, R) = e(0, 1) = D(p0||p1)}. (11)

By virtue of Proposition 1 and (11) we have

Rcrit(p0, p1) = 1− rcrit(p0, p1). (12)

The paper main result is
Т е о р е м а 1. If p1 < p0 ≤ 1/2, then there exists p∗1(p0) ≤ p0, such that for any

p1 ≤ p∗1(p0) the formula holds

rcrit(p0, p1) = 1− Rcrit(p0, p1) = 1− h(p0), 0 < p1 ≤ p∗1 < p0 ≤ 1/2. (13)

Remark 5. Although the value rcrit(p0, p1) in (13) coincides with the channel BSC(p0)
capacity, its origin (10) is related with the function ed(0, r), similar to the channel reliability
function E(r, p) in information theory [9, 10]. Exact form of the reliability function E(r, p) is
only partially known [11]. For that reason, in the proof of Theorem 1 rather recent results on
spectrum of binary codes are used (as in [11, 12, 13]). Complete description of the function
ed(γ, r) looks rather difficult problem.

In §2 the lower bound for rcrit (Proposition 2) is presented. In §3 the general formula for
2-kind error probability βn (Lemma 1) is derived. Using the method of “two hypotheses”,
in §4 Theorem 1 is proved. But generally speaking, the upper bound (13) for rcrit is weaker
than the corresponding lower bound from §2. In §5 using additional combinatoric arguments
one more upper bound for rcrit (Proposition 3) is derived. In §6 the accuracy of the lower
bound for rcrit from Proposition 2 is shown, provided some additional condition is fulfilled.
In Appendix some necessary analytic results are presented.

Below in the paper f ∼ g means n−1 ln f = n−1 ln g + o(1), n → ∞, and f . g means
n−1 ln f ≤ n−1 ln g + o(1), n → ∞.

§ 2. Lower bound for rcrit

Next result follows from [1, Proposition 2].
P r o p o s i t i o n 2. For rcrit(p0, p1) lower bounds hold

rcrit(p0, p1) ≥ 1− h(p0), if 0 < p1 < p0 ≤ 1/2. (14)

and

rcrit(p0, p1) ≥ 1− h(p0)−D(p0||p1), if 0 < p0 < p1 ≤ 1/2. (15)

Proof. For given r, 0 < r < 1, choose randomly and equiprobably a set X of X = 2rn

input blocks x. It was shown in [1, Proposition 2] that if p0 < p1 ≤ 1/2, then for any τ ,
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p0 ≤ τ ≤ p1, there exist a set X and a decision method for which the following inequalities
hold

1

n
log

1

αn
≥ D(τ ||p0),

1

n
log

1

βn
≥ min{D(τ ||p1), 1− h(τ)− r}. (16)

If it is sufficient to have αn → 0, n → ∞, then setting in (16) τ = p0, we get (15) from (10).
If p1 < p0 ≤ 1/2, then changing p0 with p1 and αn with βn in (16) then for any τ we have

1

n
log

1

αn
≥ min{D(τ ||p0), 1− h(τ)− r},

1

n
log

1

βn
≥ D(τ ||p1). (17)

If it is sufficient to have αn → 0, n → ∞, then setting τ = p0 in (17), from (10) we get (14).
�

§ 3. General formula for 2-kind error probability βn.

Let Cn(r) = {x1, . . . ,xM} - a set (code) of M = 2rn different input codeblocks. For the
code Cn(r) and 1-kind error probability αn denote by D0 = D0(Cn, αn) ⊆ En

out the optimal
decision set in favor of H0, minimizing 2-kind error probability βn. Although the set D0 has
rather complicated form, it is possible to establish some its properties sufficient for proving
Theorem 1.

Set a small δ > 0 and for each xk, k = 1, . . . ,M , introduce the spherical slide in En
out

SLxk
(p0, δ) = Bxk

(p0 + δ) \Bxk
(p0 − δ) = {u : |d(xk,u)− p0n| ≤ δn}, (18)

where Bx(p) is defined in (1). For each xk introduce also the set

Dxk
(δ) = D0

⋂

SLxk
(p0, δ). (19)

Since we need αn → 0, n → ∞, the optimal set D0 contains an “essential” part of each set
SLxk

(p0, δ), k = 1, . . . ,M . In order to evaluate it, note that for any xk and u, z ∈ SLxk
(p0, δ)

we have
P(u|p0,xk)

P(z|p0,xk)
=

(

q0
p0

)d(z,xk)−d(u,xk)

≤

(

q0
p0

)2δn

, q0 = 1− p0. (20)

By Chebychev exponential inequality (Chernov bound) for any xk and small δ > 0 we get

logP{u 6∈ SLxk
(p0, δ)|xk, p0} ≤ −

nδ2

2p0q0
. (21)

Then by (18), (19) and (21) we have for any xk

P {Dxk
(δ)|p0,xk} ≥ 1−P {u 6∈ D0|p0,xk} −P {u 6∈ SLxk

(p0, δ)|p0,xk} ≥

≥ 1− αn − e−n2δ2/(2p0q0),
(22)
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and by (20) also have

δ1|SLxk
(p0, δ)| ≤ |Dxk

(δ)| ≤ |SLxk
(p0, δ)|,

δ1 =
(

1− βn − e−n2δ2/(2p0q0)
)

(

p0
q0

)2δn

.
(23)

Since Dxk
(δ) ⊆ D0 for any xk, then by (19), (22) and (23) for the probability P(e|p1,xi) we

have

P(e|p1,xi) = P{D0|p1,xi} ∼ P

{

M
⋃

k=1

Dxk
(δ)|p1,xk

}

∼

≥ δ1P

{

M
⋃

k=1

SLxk
(p0, δ)|p1,xi

}

.

(24)

For t > 0 and each xi introduce the set

Dxi
(t, p) =

{

u :
there exists xk 6= xi, such that
d(xi,u) = tn, d(xk,u) = pn

}

. (25)

L e m m a 1. For 2-kind error probability βn of a code Cn = {x1, . . . ,xM} and the optimal

set D0 in favor of H0, the formula holds as n → ∞

log βn

n
∼ max

t>0

{

1

n
log

[

1

M

M
∑

i=1

|Dxi
(t, p0)|

]

+ t log p1 + (1− t) log(1− p1)

}

. (26)

The critical rate rcrit(p0, p1) is defined by the formula (M = 2rn)

rcrit(p0, p1) = sup {r : F (p0, p1, r) ≤ 0} = inf {r : F (p0, p1, r) > 0} , (27)

where

F (p0, p1, r) = lim
n→∞

min
|Cn|≤M

max
t

F (p0, p1, r, Cn, t),

F (p0, p1, r, Cn, t) =
1

n
log

[

M
∑

i=1

|Dxi
(t, p0)|

]

+ (p0 − t) log
1− p1
p1

− r − h(p0).
(28)

Proof. Using (24) with δ = o(1) and δ1 = eo(n) as n → ∞, we have

βn = max
i

P(e|p1,xi) ∼
1

M

M
∑

i=1

P(e|p1,xi) ∼
δ1
M

M
∑

i=1

P

{

M
⋃

k=1

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

. (29)

From (25) and (26) for each xi

P

{

M
⋃

k=1

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

∼ P

{

⋃

t>0

Dxi
(t, p0)

∣

∣

∣
p1,xi

}

∼

∼ max
t>0

{

ptn1 (1− p1)
(1−t)n|Dxi

(t, p0|
}

.

(30)
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Therefore from (29) and (30) the formula (26) follows.
Since

P {SLxi
(p0, δ)|p1,xi} ∼ P {d(xi,u) ≥ p0n|p1,xi} ∼ 2−D(p0||p1)n,

the right-hand side of (26) increases with r (i.e. with M = 2rn), starting from (−D(p1||p0)).
Therefore, from (6) and (26) it follows that the critical rate rcrit is the maximal rate r, such
that

min
{xi}

max
t>0

{

1

n
log

[

M
∑

i=1

|Dxi
(t, p0)|

]

+ t log p1 + (1− t) log(1− p1)

}

− r ≤ −D(p0||p1). (31)

Note that

D(p0||p1) + t log p1 + (1− t) log(1− p1) = −h(p0) + (p0 − t) log
1− p1
p1

. (32)

From (31) and (32) the formulas (27)-(28) follow. �

In particular, from (53) with t = p0 we have

F (p0, p1, r, Cn, p0) = o(1), n → ∞.

The main difficulty in analysis of relations (27)-(28) constitutes estimation of cardinalities
|Dxi

(t, p0)| in (28), which depend on the code Cn geometry. Similar problem arose in [11, 12,
13], where the reliability function E(R, p) of the channel BSC(p) was investigated. Direct
estimation of those cardinalities leads to quite bulky formulas.

§ 4. Upper bound for rcrit: two hypotheses.

We get a simple (but not very accurate) upper bound for rcrit(p0, p1), using quite popular
in mathematical statistics (mainly, in estimation theory) method of “two hypotheses”. Using
the formula (26), choose from the code Cn(r) = {x1, . . . ,xM}, M = 2rn, any two codewords,
say, x1 и x2 with d(x1,x2) = ωn. We may assume that for a rate r > 0 the value ω satisfies
constraints

0 < ω ≤ ωmin(r),

where the value ωmin(r) will be defined later. Replace the code Cn(r) by the code C′ of two
chosen codewords C′ = {x1,x2}. Then βn(C) ≥ βn(C

′). Similarly to (29)-(30) we have

βn(C
′) ∼ 2−D(p0||p1)n +P

{

SLx2
(p0, δ)

∣

∣

∣
p1,x1

}

.

We are interested when for x1,x2 the following inequality holds

1

n
logP

{

SLx2
(p0, δ)

∣

∣

∣
p1,x1

}

> −D(p0||p1). (33)

Evaluate the probability in the left-hand side of (33). For d(xi,xk) = ωn denote

Sxi,xk
(t, p, ω) = {u : d(xi,u) = tn, d(xk,u) = pn, d(xi,xk) = ωn}. (34)

8



Then (see Appendix)

1

n
log |Sxi,xk

(t, p, ω)| = g(t, p, ω) + o(1), n → ∞,

1

n
logP

{

Sxi,xk
(t, p, ω)

∣

∣

∣
p1,xi

}

= g(t, p, ω)− t log
1− p1
p1

+ log(1− p1) + o(1),
(35)

where g(t, p, ω) is defined in (78). Therefore as n → ∞ (see (76)-(77))

1

n
logP

{

SLx2
(p0, δ)

∣

∣

∣
p1,x1

}

=
1

n
max

t
logP

{

Sx1,x2
(t, p0, ω)

∣

∣

∣
p1,x1

}

+ o(1) =

= f(p0, p1, ω) + o(1)
(36)

where
f(p0, p1, ω) = max

t
f(p0, p1, ω, t),

f(p0, p1, ω, t) = g(t, p0, ω)− t log
1− p1
p1

+ log(1− p1).
(37)

We have

f ′
t(p0, p1, ω, t) = log

ω − t

t
− log

p0 + t− ω

1− p0 − t
− 2

1− p1
p1

, f ′′
tt(p0, p1, ω, t) < 0. (38)

By (32) and (35)-(37) the inequality (33) takes the form

max
t

F (p0, p1, ω, t) > 0, (39)

where

F (p0, p1, ω, t) = f(p0, p1, ω, t) +D(p0||p1) = g(t, p0, ω) + (p0 − t) log
1− p1
p1

− h(p0). (40)

If for some p0, p1 and ω the inequality (39) holds, then the appropriate upper bound
(14)-(15) is valid. Denote by t01 = t01(p0, p1, ω) the maximizing value t in (37) (it remains the
maximizing one in (39) as well). Then

f(p0, p1, ω) = f(p0, p1, ω, t
0
1(p0, p1, ω)). (41)

From the equation f ′
t(p0, p1, ω, t) = 0 for t01 from (38) we get

t01 = t01(p0, p1, ω) =

√

1 + (v0 − 1)[(ω − p0)2v0 − (1− ω − p0)2 + 1]− 1

v0 − 1
,

v0(p1) =

(

1− p1
p1

)2

≥ 1.

(42)

Then from (40) and (42) we have

F (p0, p1, ω, t
0
1) = g(t01, p0, ω) + (p0 − t01) log

1− p1
p1

− h(p0). (43)
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It is possible to check that for the function F (p0, p1, ω, t
0
1) from (43) we have

F (p0, p1, 0, t
0
1) = 0 and F ′′

ωω < 0, ω > 0. Therefore, it is sufficient to check the inequality (39)
with t = t01 only for the minimal value ω for the code Cn(r) (i.e. for its code distance d(C)).

Let ωmin(r)n - the maximal possible code distance of Cn(r). For the value ωmin(r) the
following bound is known [14, formula (1.5)]

r ≤ h

[

1

2
−

√

ωmin(1− ωmin)

]

, ωmin = ωmin(r). (44)

Consider two possible cases 1) p1 < p0 ≤ 1/2 and 2) p0 < p1 ≤ 1/2.
1. Case p1 < p0 ≤ 1/2. Setting r = 1 − h(p0), denote by ω0 = ω0(p0) the root of the

equation (see (44))

1− h(p0) = h

[

1

2
−

√

ω(1− ω)

]

.

Then the inequality (39) takes the form (ω0 = ω0(p0))

F (p0, p1, ω0, t
0
1) = g(t01, p0, ω0) + (p0 − t01) log

1− p1
p1

− h(p0) > 0. (45)

It is possible to check (Maple), that the inequality (45) is satisfied, if p1 ≤ p∗1(p0), where

p0 0.1 0.12 0.15 0.2 0.3 0.4 0.45 0.49
p∗1(p0) 0.0003 0.003 0.016 0.056 0.17 0.317 0.4 0.48

If p0 ≤ 0.20707 (i.e. ω < 0.273), then in [14, формула (1.4)] there is a little bit more
accurate than (44) bound (but much more bulky).

2. Case p0 < p1 ≤ 1/2. It is possible to check (Maple), that the inequality (39) is not
satisfied for any p0 < p1 !

§ 5. Upper bound for rcrit: combinatorics.

We will get one more upper bound for rcrit, based on the same formula (26), but using
additional combinatorics arguments.

1. Combinatorics lemma. In the code Cn = {xi} we call (xi,xj) ω-pair, if d(xi,xj) =
ωn. The total number of ω–pairs in a code Cn equals MBωn (see (65)). We say that a
point y ∈ En is (ω, p, t)–covered, if there exists ω–pair (xi,xj) such that d(xi,y) = pn,
d(xj ,y) = tn. Denote by K(y, ω, p, t) the number of (ω, p, t)–coverings of the point y (taking
into account multiplicity of coverings), i.e.

K(y, ω, p, t) = | {(xi,xj) : d(xi,xj) = ωn, d(xi,y) = pn, d(xj,y) = tn} |, ω > 0. (46)

Introduce sets (see (25))

Dxi
(t, p, ω) =

⋃

xk

Sxi,xk
(t, p, ω) =

=

{

u :
there exists xk such that d(xi,xk) = ωn,

d(xi,u) = tn, d(xk,u) = pn

}

.

(47)
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Then
Dxi

(t, p) =
⋃

ω>0

Dxi
(t, p, ω).

For t > 0 introduce the value

mt(y) = {число xi ∈ Sy(t)}. (48)

Then for any y, p, t > 0
K(y, t, p) = mt(y)mp(y). (49)

L e m m a 2. For a code {xi} and ω, p, t > 0 the formula holds (see (46) и (47))

M
∑

i=1

|Dxi
(t, p, ω)| ≤

∑

y∈En

K(y, ω, t, p). (50)

Also, if (see (48))
max

y

mp(y) = 2o(n), n → ∞, (51)

then for any ω, t > 0

M
∑

i=1

|Dxi
(t, p, ω)| = 2o(n)

∑

y∈En

K(y, ω, t, p), n → ∞. (52)

Proof. Let y ∈ En and there are m ordered pairs (xi,xj) with d(xi,xj) = ωn and
d(xi,y) = tn, d(xj,y) = pn. Those m pairs (xi,xj) have m1 ≤ m different first arguments
{xi}. Then y appears m times in the right-hand side of (50) and m1 times in the left-hand
side, what proves the formula (50). If the condition (51) is satisfied, then m1 = meo(n), from
where the equality (52) follows. Note also that by (49) we have

M
∑

i=1

|Dxi
(t, p)| =

∑

y:mp(y)≥1

K(y, t, p)

mp(y)
=

∑

y:mp(y)≥1

mt(y) ∼ M2h(t)n −
∑

y:mp(y)=0

mt(y). (53)

From the first of the equality (53) formulas (50) and (52) follow as well. �

The formula (53) looks simple and attractive, but its right-hand side has the form “ large
minus large”, what is not pleasant. Note that in (53) we can not neglect the last sum, because
then we get only rcrit ≤ 1, what is not interesting.

2. One more upper bound for rcrit. We upperbound the last sum in в (53) as follows.
We have

∑

y:mp0
(y)=0

mt(y) ≤ 2h(t)n|{y : mp0(y) = 0}|.
(54)

Maximum of the cardinality |{y : mp0(y) = 0}| is attained when the code C is the ball B0(τ)
of radius τn, where r = h(τ). Therefore

max
C

|{y : mp0(y) = 0}| = 2n − |B0(τ + p0)| ∼ 2h(τ+p0)n, τ + p0 ≥ 1/2;

max
C

|{y : mp0(y) = 0}| ∼ 2n, τ + p0 ≤ 1/2.
(55)
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If τ + p0 ≥ 1/2, i.e. if r ≥ h(1/2− p0), then from (53), (54) and (55) we get

M
∑

i=1

|Dxi
(t, p0)| ≥ 2h(t)n

[

M − 2h(τ+p0)n
]

= 2h(t)n
[

2h(τ)n − 2h(1−τ−p0)n
]

∼ M2h(t)n,

if τ > 1− τ − p0, i.e. if τ > (1− p0)/2, or, equivalently, if r > h[(1 − p0)/2].
Therefore, if r ≥ max{h(1/2 − p0), h[(1 − p0)/2]} = h[(1 − p0)/2], then for any p0 6= p1

(28) takes the form

F (p0, p1, r) = max
t>0

{

h(t) + (p0 − t) log
1− p1
p1

}

− h(p0) =

= h(p1) + (p0 − p1) log
1− p1
p1

− h(p0) > 0, p0 6= p1,

since maximum over t is attained for t = p1. Therefore, it gives the following upper bound
for rcrit (weaker than (13))

rcrit(p0, p1) ≤ h[(1− p0)/2], p0 6= p1. (56)

Remark 6. Note that 1− h(p0) < h(1/2− p0) < h[(1− p0)/2], 0 < p0 < 1/2.
We improve the bound (56). In addition to (54) we also have

∑

y:mp0
(y)=0

mt(y) ≤ M |{y : mp0(y) = 0}|.

Therefore, if τ + p0 ≥ 1/2 and t ≥ 1− τ − p0, then

M
∑

i=1

|Dxi
(t, p0)| ≥ M

[

2h(t)n − 2h(1−τ−p0)n
]

∼ M2h(t)n.

By (39)-(40) it is necessary to have

max
t≥1−τ−p0

f(t, p0, p1) > 0,

f(t, p0, p1) = h(t) + (p0 − t) log
1− p1
p1

− h(p0).
(57)

Maximum of the function f(t, p0, p1) over t ≥ 1−τ−p0 is attained for t = max{p1, 1−τ−p0},
since

max
t

f(t, p0, p1) = f(p1, p0, p1) > 0, p0 6= p1; f(p0, p0, p1) = 0,

f ′
t(t, p0, p1) = log

1− t

t
− log

1− p1
p1

, f ′′
tt(t, p0, p1) < 0,

sign f ′t(t, p0, p1) = sign (p1 − t).

(58)
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1) Therefore, if p1 ≥ 1− τ − p0, then from (57)-(58) for p0 6= p1 we get

max
t≥1−τ−p0

f(t, p0, p1) = h(p1) + (p0 − p1) log
1− p1
p1

− h(p0) > 0. (59)

Hence if τ ≥ max{1/2− p0, 1− p0 − p1} = 1 − p0 − p1, then for p0 6= p1 the inequality (59)
holds, from where the estimate follows

τcrit ≤ 1− p0 − p1, rcrit = h(τcrit). (60)

2) If p1 < 1− τ − p0, then maximum in (57) is attained for t = 1− τ − p0, and then

max
t≥1−τ−p0

f(t, p0, p1) = f(1− τ − p0, p0, p1).

Note that
f(p0, p0, p1) = 0, f ′

t=p0(t, p0, p1) 6= 0, p0 6= p1;

f ′′
tt(t, p0, p1) < 0, sign f ′t(t, p0, p1) = sign (p1 − t).

Let also p0 > 1 − τ − p0 (i.e. τ > 1 − 2p0). Then max
t≥1−τ−p0

f(t, p0, p1) > 0 (it is sufficient to

set t, close to p0). Therefore

τcrit ≤ 1− 2p0, rcrit = h(τcrit). (61)

As a result, from (60) and (61) we get
P r o p o s i t i o 3. For any p0, p1 ∈ [0, 1/2] for rcrit the upper bound holds

τcrit(p0, p1) ≤ min {1− p0 − p1, 1− 2p0} , rcrit = h(τcrit). (62)

C o r o l l a r y. If p0 = 1/2, then from (62) it follows τcrit(1/2, p1)rcrit(1/2, p1) = 0.
Earlier that particular result was proved by different method in [1, предложение 3]. Also

the best exponent ed(γ, r) for γ ≥ 0, 0 ≤ r ≤ 1 from (4) was obtained there.

§ 6. “Potential” additive upper bound for rcrit.

Theorem 1 was proved replacing in the formula (26) the exponential number M of
codewords {xi} by two closest codewords (xi,xj). Such method gives optimal results only if
it is possible to choose a pair (xi,xj) with d(xi,xj) = ωn and small ω > 0. In the problem
statement considered we can not do that.

In order to strengthen Theorem 1 it is necessary to consider in (26) an exponential number
M of codewords {xi}, what is much more difficult [11, 12, 13]. We strengthen Theorem 1
provided it is possible to use in the formula (26) an additive approximation.

We assume that for all {xi} in the formula (26) the additive approximation holds as
n → ∞

P

{

⋃

k 6=i

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

= 2o(n)
∑

k 6=i

P
{

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

. (63)
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Then (see (36)) with d(xi,xk) = ωikn

P

{

⋃

k 6=i

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

= 2o(n)
∑

k 6=i

2f(p0,p1,ωik)n

and
M
∑

i=1

P

{

⋃

k 6=i

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

= 2o(n)
M
∑

i=1

∑

k 6=i

2f(p0,p1,ωik)n. (64)

In order to develop relations (64), introduce some additional notions.
Code spectrum (distance distribution) of length n code C is the (n + 1)–tuple B(C) =

(B0, B1, . . . , Bn) with components

Bi = |C|−1 |{(x,y) : x,y ∈ C, d(x,y) = i}| , i = 0, 1, . . . , n. (65)

In other words, Bi is average number of codewords y on the distance i from the codeword
x. The total number of ordered codepairs x,y ∈ C with d(x,y) = i equals |C|Bi. Denote
also Bωn = 2b(ω,r)n.

Then we can continue the formula (64) as follows

M
∑

i=1

P

{

⋃

k 6=i

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}

= 2o(n)M
∑

ω>0

2[b(ω,r)+f(p0,p1,ω)]n.

Therefore (see (36)-(37))

1

n
log

[

M
∑

i=1

P

{

⋃

k 6=i

SLxk
(p0, δ)

∣

∣

∣
p1,xi

}]

= r +max
ω,t

{b(ω, r) + f(p0, p1, ω, t)}+ o(1), (66)

where f(p0, p1, ω, t) is defined in (37). Then for the function F (p0, p1, r) from (28) and (66)
we have

F (p0, p1, r) = max
ω,t

{

b(ω, r) + g(p0, t, ω) + (p0 − t) log
1− p1
p1

− h(p0)

}

. (67)

As an estimate for b(ω, r) in (67) we use a function blow(ω, r) with the following property:
there exists a value ωmax = ωmax(r) > 0, such that

max
0<ω≤ωmax

[b(ω, r)− blow(ω, r)] ≥ 0, r > 0. (68)

Then in order the inequality F (p0, p1, r) > 0 (see (27)) be valid, it is sufficient the
following condition (see (37) and (67)) be satisfied

min
0<ω≤ωmax

max
t>0

{

blow(ω, r) + g(p0, t, ω) + (p0 − t) log
1− p1
p1

− h(p0)

}

> 0. (69)
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We use in (69) as blow(ω, r) the best of known such functions µ(r, α, ω), h2(τ) = h2(α)−
1 + r, with arbitrary α ∈ [δGV (r), 1/2] (see (83), (84) and Theorem 2 in Appendix). The
function µ(r, α, ω) satisfies the condition (68). Moreover, it monotonically increases in r
and ωmax = G(α, τ), where G(α, τ) is defined in (81). Then in order the inequality (69) be
satisfied, it is sufficient the condition be fulfilled

min
0<ω≤ωmax

max
t>0

K(p0, p1, r, ω, t) > 0, (70)

where

K(p0, p1, r, ω, t) = µ(r, p0, ω) + g(p0, t, ω) + (p0 − t) log
1− p1
p1

− h(p0). (71)

Note that K(p0, p1, r, 0, p0) = 0. In order to avoid bulky calculations, we set t = p0. The
function K(p0, p1, r, ω, p0) = 0 is concave in ω, i.e. K ′′(p0, p1, r, ω, p0)ωω < 0 (the simplest way
is to check that with Maple). Therefore, minimum over ω is attained for ω = ωmax = G(α, τ)
and it is sufficient to check the condition (70) for ω = G(α, τ). The following useful formula
[11, Lemma 4] is known:

µ(r, α,G(α, τ)) = h2(G(α, τ)) + r − 1, h2(α)− h2(τ) = 1− r. (72)

Consider only more simple
Case p1 < p0 ≤ 1/2. Set r = r0 = 1 − h(p0) and α = p0 (then δGV (r0) = p0, τ = 0). We

have G(α, τ) = 2p0(1−p0) and it is sufficient to check the condition (70) for ω = 2p0(1−p0).
From (71)-(72) with α = p0, τ = 0, r = r0 = 1 − h(p0), t = p0 and ωmax = G(α, τ) =
2p0(1− p0) we have

K(p0, p1, 1− h(p0), ωmax, p0) = h2(ωmax) + g(p0, p0, ωmax)− 2h(p0),

where

g(p, p, 2p(1− p)) = 2p(1− p) + [1− 2p(1− p)]h

[

p2

1− 2p(1− p)

]

.

It is possible to check that for ω0 = 2p0(1− p0) the equality holds

K(p0, p1, 1− h(p0), ω0, p0) = h2(ω0) + ω0 + (1− ω0)h

(

p20
1− ω0

)

− 2h(p0) = 0. (73)

We also have

[K(p0, p1, 1− h(p0), ω0, t)]
′
t =

1

2
log

(1− t)2 − (1− ω0 − p0)
2

t2 − (ω0 − p0)2
− log

1− p1
p1

,

[K(p0, p1, 1− h(p0), ω0, t)]
′′
tt < 0.

(74)

Therefore, for t = p0 we have

[K(p0, p1, 1− h(p0), ω0, t)]
′
t=p0

= log
1− p0
p0

− log
1− p1
p1

< 0, p1 < p0, (75)
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It follows from (73)-(75) that

K(p0, p1, 1− h(p0), ω0, t) > 0, t < p0.

Therefore, the inequality (70) holds for any r > r0 = 1− h(p0) и p1 < p0 ≤ 1/2.
As a result, we get the conditional result:
P r o p o s i t i o n 4. If the additive approximation (63) holds, then rcrit(p0, p1) = 1−h(p0),

0 < p1 < p0 ≤ 1/2.
Remark 6. It is possible to show that Theorem 1 and the formula (13) hold for any

p1 < p0 ≤ 1/2. For that purpose we can perform similarly to [11], using Lemma 2 and
considering separately the case of equality in the formula (50) (essentially, it is equivalent to
the considered in §6 case), and the case of inequality in the formula (50). Proof in the second
case turns out to be too bulky (and oriented only to the binary channel BSC(p)). For that
reason we omit that proof. Certainly, there should be a simpler proof.

APPENDIX

1. F u n c t i o n g(t, p, ω) a n d f o r m u l a (35). Consider codewords x = 0

and x1 with d(x,x1) = w(x1) = ωn, and the set Sx,x1
(t, p, ω) from (34). We may assume

that x1 = (1, . . . , 1, 0, . . . , 0) and has first ωn “ones”, and then (1 − ω)n “zeros”. Let also
u ∈ Sx,x1

(t, p, ω) has u1n “ones” on the first ωn positions, and then u2n “ones” on the next
(1− ω)n positions. Since u1 + u2 = t, ω − u1 + u2 = p, then

u1 =
t− p+ ω

2
, u2 =

t + p− ω

2
, (76)

and as n → ∞ we get

1

n
log |Sx,x1

(t, p, ω)| =
1

n
log

[(

ωn

u1n

)(

(1− ω)n

u2n

)]

=

= ωh
(u1

ω

)

+ (1− ω)h

(

u2

1− ω

)

+ o(1) = g(t, p, ω) + o(1),

(77)

where

g(t, p, ω) = ωh

(

t+ ω − p

2ω

)

+ (1− ω)h

(

t+ p− ω

2(1− ω)

)

. (78)

We also have

2g′ω(p, t, ω) = −2 log
1− ω

ω
+ log

(1− ω)2 − (1− t− p)2

ω2 − (t− p)2
,

2g′t(p, t, ω) = log
(1− t)2 − (1− ω − p)2

t2 − (ω − p)2
, g′′tt(p, t, ω) < 0, g′′ωω(p, t, ω) ≤ 0.

(79)

For the root ω0 of the equation g′ω(t, p, ω) = 0 we have

ω0 =
p− t

1− 2t
, g(t, p, ω0) = h(t). (80)
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2. F u n c t i o n µ(R, α, ω). Introduce the function [14] (0 ≤ τ ≤ α ≤ 1/2)

G(α, τ) = 2
α(1− α)− τ(1− τ)

1 + 2
√

τ(1− τ)
≥ 0. (81)

For α, τ , such that 0 ≤ τ ≤ α ≤ 1/2 and h2(α)− h2(τ) = 1−R, introduce the function [16]

µ(R, α, ω) = h2(α)− 2

ω/2
∫

0

log
P +

√

P 2 − 4Qy2

Q
dy − (1− ω)h2

(

α− ω/2

1− ω

)

,

P = α(1− α)− τ(1− τ)− y(1− 2y), Q = (α− y)(1− α− y).

(82)

Denote the function δGV (R) ≤ 1/2 (Varshamov - Gilbert bound) as

1−R = h2(δGV (R)), 0 ≤ R ≤ 1. (83)

Importance of the function µ(R, α, ω) and its relation to the code spectrum {Bi} (see
(65)) is described by the following variant of Theorem 3 from [15].

T h e o r e m 2 [15, Theorem 3]. For any (R, n)-code and any α ∈ [δGV (R), 1/2] there

exist r1(R, α) > 0 and ω, 0 < r1(R, α) ≤ ω ≤ G(α, τ), where h2(τ) = h2(α) − 1 + R, and

G(α, τ) is defined in (81), such that

n−1 logBωn ≥ µ(R, α, ω) + o(1), n → ∞. (84)

For µ(R, α, ω) from (82) the non-integral representation (85)-(87) also holds.
Remark 7. Theorem 2 makes more precise Theorem 5 from [16] (see also [12, Theorem

2]. With r1 = 0 Theorem 2 turns into Theorem 5 from [16]. In [15, теорема 3] there are
estimates for r1(R, α) > 0.

P r o p o s i t i o n 5 [11, Proposition 3]. For the function µ(R, α, ω) the representation

holds

µ(R, α, ω) = (1− ω)h2

(

α− ω/2

1− ω

)

− h2(α) + 2h2(ω) + ω log
2ω

e
− T (A,B, ω), (85)

where

T (A,B, ω) = ω log(v − 1)− (1− ω) log
v2 − A2

v2 − B2
+

+B log
v +B

v − B
− A log

v + A

v − A
−

(v − 1)(B2 − A2)

(v2 −B2) ln 2
,

v =

√

B2ω2 − 2a1ω + a21 + a1
ω

, a1 =
B2 −A2

2
.

(86)

and

h2(α)− h2(τ) = 1− R, A = 1− 2α, B = 1− 2τ, 0 ≤ τ ≤ α ≤ 1/2. (87)
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We have for any α0(R) ≤ α < 1/2 and ω > 0

dµ(R, α, ω)

dα
> 0, α0(R) = h−1

2 (1− R).

For any α > 0 and R > 0 we also have µ(R, α, 0) = 0 and µ′
ω(R, α, ω)

∣

∣

∣

ω=0
> 0. Moreover,

for any 0 ≤ τ ≤ α ≤ 1/2 and 0 < ω < G(α, τ)

µ′′
ω2(R, α, ω) > 0.

3) For any ω > 0 we have µ(0, 1/2, ω) = 0.
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