
ar
X

iv
:1

91
1.

06
56

1v
2 

 [
cs

.I
T

] 
 2

4 
A

pr
 2

02
2

ON THE MAXIMUM NUMBER OF NON-CONFUSABLE STRINGS

EVOLVING UNDER SHORT TANDEM DUPLICATIONS

MLADEN KOVAČEVIĆ

Abstract. The set of all q-ary strings that do not contain repeated substrings of length

63 (i.e., that do not contain substrings of the form aa, abab, and abcabc) constitutes

a code correcting an arbitrary number of tandem-duplication mutations of length 63.

In other words, any two such strings are non-confusable in the sense that they cannot

produce the same string while evolving under tandem duplications of length 63. We

demonstrate that this code is asymptotically optimal in terms of rate, meaning that it

represents the largest set of non-confusable strings up to subexponential factors. This

result settles the zero-error capacity problem for the last remaining case of tandem-

duplication channels satisfying the “root-uniqueness” property.

1. Introduction

Tandem duplications are a type of “sticky” errors that naturally occur as mutations

in DNA strings and are therefore a potential source of impairments in in vivo DNA-

based data storage systems [5]. While the problem of correcting tandem duplications

of fixed and known length ℓ is well-understood, both in scenarios with bounded [7, 8]

and unbounded number of errors [5, 6], much less is known about the presumably more

relevant problem of correcting duplications of varying lengths. For example, optimal codes

correcting all patterns of duplications of length 6ℓ have been found only in the special

cases ℓ = 1 and ℓ = 2 [5, Thm 32]. Our main contribution here is a proof that an

analogous construction of codes correcting an unbounded number of tandem duplications

of length 63 [5, Thm 27] is also asymptotically optimal in terms of rate. This result

settles the zero-error capacity problem for tandem-duplication channels in all cases where

the duplication roots of strings are unique [5, Thm 40]. For larger values of ℓ, however,

the roots with respect to duplications of length 6ℓ are not unique [5, Thm 40] and, hence,

different constructions and upper bounds will be required to solve the zero-error capacity

and related problems for these models.1

Apart from information- and coding-theoretic questions of the kind we discuss here,

several other problems concerning models with tandem duplications of varying lengths

have been studied in the literature; see, e.g., [3, 4, 9].
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1.1. Model description. The q-ary alphabet is denoted by Aq := {0, 1, . . . , q − 1}, and
the set of all strings (or words) over Aq by A∗

q :=
⋃∞

n=0A
n
q . The length of a string

x = x1 · · · xn ∈ An
q is denoted by |x| = n. The string obtained by concatenating two

strings u and v is written as uv. A string v is said to be a substring of x (or a segment

in x) if there exist (possibly empty) strings u and w such that x = uvw.

Let ℓ be a fixed positive integer. The (6ℓ)-tandem-duplication channel acts on a trans-

mitted string x by successively applying to it a number of tandem duplications, each of

length 6ℓ, where a tandem duplication of length k is an insertion of an exact copy of a

substring of length k next to the original substring (it is irrelevant whether a duplicate

is inserted to the left or to the right of the original as both options result in the same

string). We assume that the number of applied duplications is not known in advance

to either the transmitter or the receiver and can take on any value in the set of natural

numbers {0, 1, 2, . . .}. In more precise terms, the channel is described as follows:

• Input: x ≡ x
(0)

• Choose a number t (the number of duplications) from the set {0, 1, 2, . . .}
• For i = 1, . . . , t, repeat the following:

– Choose the duplication location j in the string x
(i−1) arbitrarily from the set

{1, . . . , |x(i−1)|}
– Choose the duplication length k arbitrarily from the set {1, . . . ,min{j, ℓ}}
– Insert a copy of the substring x(i−1)

j−k+1 · · · x
(i−1)

j next to the original substring in

x
(i−1) to produce x

(i), that is

x
(i) = x(i−1)

1 · · · x(i−1)

j−k+1 · · · x
(i−1)

j x(i−1)

j−k+1 · · · x
(i−1)

j x(i−1)

j+1 · · · x(i−1)

|x(i−1)|
,

where the original substring that is being duplicated is overlined, and the inserted

duplicate is underlined

• Output: y ≡ x
(t).

Hereafter we assume that ℓ = 3.

Example 1.1. The following list of strings, each producing the next via a tandem du-

plication of length 63, is an example of how the channel acts on a transmitted string

x ∈ A8
3:

x = 0 1 1 2 0 2 1 0(1.1a)

x
(1) = 0 0 1 1 2 0 2 1 0(1.1b)

x
(2) = 0 0 1 1 2 0 2 2 0 2 1 0(1.1c)

x
(3) = 0 0 1 1 2 0 2 2 0 2 1 2 1 0(1.1d)

x
(4) = 0 0 1 1 1 1 2 0 2 2 0 2 1 2 1 0 .(1.1e)

Here t = 4 and the channel output is y = x
(4). N

We say that a string y is a t-descendant of x, or that x is a t-ancestor of y, if y

can be obtained by successively applying t tandem duplications of length 63 on x. The

set of all t-descendants of x is denoted Dt(x). Note that a string may belong to both

Dt(x) and Ds(x), s 6= t, because duplications of different lengths are allowed in the

model, i.e., Dt(x) ∩ Ds(x) is not necessarily empty (for example, 0 1 1 1 1 is both a 1-

descendant of 0 1 1 obtained via a single duplication of length 2, and a 2-descendant of

0 1 1 obtained via two duplications of length 1 each). The set of all descendants of x is

denoted D∗(x) :=
⋃

t>0 D
t(x), where D0(x) := {x}. In this notation, for a given input

string x, D∗(x) is the set of possible outputs of the (63)-tandem-duplication channel.
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1.2. Non-confusable strings and error-free communication. Two strings x,y ∈
A∗

q are said to be confusable in a given communication channel if they can produce the

same string at the output of that channel; they are said to be non-confusable otherwise.

In our terminology, x and y are confusable if they have a common descendant, i.e., if

D∗(x) ∩ D∗(y) 6= ∅. A set of strings C ⊆ A∗
q is said to be a zero-error code [11] for a

given channel if every two different codewords x,y ∈ C are non-confusable. Note that a

zero-error code is able to correct all error patterns that can be realized in the channel;

namely, any given output string can be unambiguously decoded by the receiver as there is

only one codeword from C that could have produced it. A zero-error code C ⊆ An
q is said

to be optimal if there is no other zero-error code C′ ⊆ An
q such that |C′| > |C|.

The rate of a code C ⊆ An
q , expressed in bits per symbol, is the exponent 1

n log2 |C|. The
zero-error capacity of a channel with input alphabet Aq is the lim supn→∞ of the rates of

optimal zero-error codes in An
q . This quantity represents the largest number of bits per

symbol that can be transmitted through the given channel in an error-free manner.

2. Duplication roots and irreducible strings

By successively applying the operation of de-duplication, i.e., removing duplicate sub-

strings of length 63, every string x can be reduced to its root string R(x) which contains

no repeated substrings of length 63. Furthermore, as shown in [5, Thm 24], the roots

are unique, meaning that one is guaranteed to end up with the same string regardless of

the order in which de-duplication is performed. (We emphasize that this “root uniqueness

property” holds only in models with tandem duplications of length (i) = ℓ, (ii) 62, or

(iii) 63. It does not hold, for example, in models with tandem duplications of length 6ℓ,

when ℓ ∈ {4, 5, . . .}; see [5, Thm 40].)

In this context, a string that contains no repeated substrings of length 63 is called

irreducible. In other words, a string is irreducible2 if it contains no substring of the form

a a, a b a b, and a b c a b c, where a, b, c ∈ Aq. Let Irrq denote the set of all irreducible strings

over Aq, Irrq(n) the set of all irreducible strings of length n, and Iq(n) the cardinality of

the latter, Iq(n) := | Irrq(n)|. It follows from the “root-uniqueness property” mentioned

above that every two different irreducible strings x,y ∈ Irrq are non-confusable in the

(63)-tandem-duplication channel, i.e., D∗(x) ∩D∗(y) = ∅, and therefore the set Irrq(n)

is a zero-error code for this channel [5, Thm 27].

In the remainder of the article we assume that q > 3 because the problems we address

are trivial when the alphabet is binary. For example, there are only finitely many irre-

ducible strings over a binary alphabet, Irr2 = {0, 1, 01, 10, 010, 101}, and the zero-error

capacity of the (63)-tandem-duplication channel with binary alphabet is equal to zero.

Of interest to us here is the asymptotic behavior of the quantity Iq(n) as n → ∞,

particularly its exponential growth-rate:

(2.1) ιq := lim
n→∞

1

n
log2 Iq(n).

The exponent ιq can be characterized by using standard methods from the theory of

constrained systems [10], e.g., as the logarithm of the largest eigenvalue of the adjacency

matrix of a directed graph that represents the state-diagram of the system generating the

irreducible strings. We shall use here a simpler characterization from [1, Prop. 2] where

it was shown that Iq(n) satisfies the recurrence relation Iq(n) = (q − 2)Iq(n − 1) + (q −

2Irreducible strings are an instance of pattern-avoiding strings, or constrained strings [10], the set of
forbidden patterns being {a a, a b a b, a b c a b c : a, b, c ∈ Aq}.
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3)Iq(n − 2) + (q − 2)Iq(n− 3), and that, consequently,

(2.2a) ιq = log2 r,

where r is the unique positive real root of the polynomial, x3−(q−2)x2−(q−3)x−(q−2),

i.e., r is defined implicitly by:

(2.2b) r3 − (q − 2)r2 − (q − 3)r − (q − 2) = 0, r > 0.

In the following lemma we give another characterization of the exponent ιq for the

ternary alphabet (q = 3), as well as the consequent lower bound on ιq for larger alphabets,

which will be instrumental in proving our main result (Theorem 4.2).

Lemma 2.1. For every q > 3 and β ∈ [0, 1],

ιq >
H(β)

1 + 2β
,(2.3)

where H(β) := −β log2 β− (1−β) log2(1−β) is the binary entropy function. The equality

in (2.3) is attained if and only if q = 3 and β = β̄, where β̄ is the unique positive solution

of the equation (1− x)3 = x.

Proof. We prove the identity:

ι3 = max
06β61

H(β)

1 + 2β
,(2.4)

from which the statement of the lemma will follow immediately (as ιq is a monotonically

increasing function of q). Equating the derivative of H(β)
1+2β to zero, one finds that the

maximizer of this function is the unique positive real number satisfying the equation

(1− x)3 = x, call it β̄. The right-hand side of (2.4) can then be expressed as:

H(β̄)

1 + 2β̄
= log2

(

β̄
−β̄

1+2β̄ · (1− β̄)
−1+β̄

1+2β̄

)

= − log2
(
1− β̄

)
.(2.5)

On the other hand, we know that ι3 = log2 r, where r is the unique positive real solution

of the equation x3 − x2 − 1 = 0 (see (2.2)). Therefore, proving the equality in (2.4) is

equivalent to proving that − log2(1 − β̄) = log2 r, i.e., that (1 − β̄)−1 is a solution to

x3 − x2 − 1 = 0. This can be verified directly by substituting (1 − β̄)−1 for x and using

the fact that (1 − β̄)3 = β̄. �

3. Confusability of strings in the (63)-tandem-duplication channel

In this section we demonstrate several facts about the evolution of strings under tan-

dem duplications of length 63, the main point of which is to derive an upper bound

on the maximum number of pairwise non-confusable strings in a given descendant cone

D∗(x) (Proposition 3.5). For a further study of combinatorial and algorithmic aspects of

confusability in the (62)- and (63)-tandem-duplication channels, see [2].

The following lemma states that a set of pairwise non-confusable strings, all of which

are 1-descendants of a given string x, can have at most two elements. The proof also

illustrates the conditions under which two non-confusable strings may be obtained after

applying different mutations on x (see (3.1) ahead).

Lemma 3.1. Consider an arbitrary string x, the set of its 1-descendants D1(x), and let

C ⊆ D1(x) be a zero-error code for the (63)-tandem-duplication channel. Then |C| 6 2.

Proof. Consider x′,x′′ ∈ D1(x), and suppose that the mutations producing x′ and x
′′ from

x are applied on different, non-overlapping substrings of x. Then x
′ and x

′′ are confusable

because they have a common descendant; to see this, perform in x
′ the duplication that
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has produced x
′′ from x, and vice versa. Now suppose that the duplications producing

x
′ and x

′′ from x are applied on overlapping substrings of x. It turns out that in all

the possible cases but one, we can use the same reasoning as for the non-overlapping

substrings to conclude that x′ and x
′′ are confusable (we illustrate this for the cases when

the overlap happens at the right-hand end of the longer substring, the remaining cases

follow by symmetry): (i) for the case of overlapping substrings of lengths 1 and 2, write

x = u a bv and note that its descendants x′ = u a b a bv and x
′′ = u a b bv are confusable

as they have a common descendant u a b a b bv; (ii) for the case of overlapping substrings

of lengths 2 and 2, write x = u a b cv and note that its descendants x
′ = u a b a b cv

and x
′′ = u a b c b c v are confusable as they have a common descendant u a b a b c b cv;

(iii) for the case of overlapping substrings of lengths 2 and 3, where the overlap is of

length 1, write x = u a b c dv and note that its descendants x
′ = u a b c a b c dv and

x
′′ = u a b c d c d v are confusable as they have a common descendant u a b c a b c d c dv;

(iv) for the case of overlapping substrings of lengths 2 and 3, where the overlap is of length

2, write x = u a b cv and note that its descendants x′ = u a b c a b c v and x
′′ = u a b c b c v

are confusable as they have a common descendant u a b c a b c b cv; (v) for the case of

overlapping substrings of lengths 3 and 3, where the overlap is of length 1, write x =

u a b c d ev and note that its descendants x
′ = u a b c a b c d ev and x

′′ = u a b c d e c d e v

are confusable as they have a common descendant u a b c a b c d e c d ev; (vi) for the case

of overlapping substrings of lengths 3 and 3, where the overlap is of length 2, write x =

u a b c dv and note that its descendants x
′ = u a b c a b c dv and x

′′ = u a b c d b c d v are

confusable as they have a common descendant u a b c a b c d b c dv; (vii) for the case of

overlapping substrings of lengths 1 and 3, write x = u a b cv and note that its descendants

x
′ = u a b c a b c v and x

′′ = u a b c cv are confusable as they have a common descendant

u a b c a b c cv. The only case that was left out from the above list is the case of overlapping

substrings of lengths 1 and 3, where the overlap happens in the middle of the longer

substring. Namely, for x = u a b cv, where a, b, c ∈ Aq are distinct symbols, let

x
′ = u a b c a b c v(3.1a)

x
′′ = u a b b cv .(3.1b)

In this case we cannot apply the same reasoning as before to conclude that x′ and x
′′ are

confusable, and indeed they are not in general. For example, if both u and v are empty

strings, then x
′ and x

′′ in (3.1) are non-confusable because the symbol a cannot appear

after the symbol c in the descendants of x′′, whereas a appears after c in all descendants

of x′ (a similar example was given in [5]). This situation arises because the segment a b c

that appears in the original string x no longer appears in x
′′ as it has been “broken up” by

the insertion of a copy of b. In conclusion, one can mimic in x
′′ (resp. x′) the duplication

that has produced x
′ (resp. x′′) from x, and thus conclude that x′ and x

′′ are confusable,

in all cases with the exception of (3.1). Therefore, a zero-error code in D1(x) can contain

at most 2 codewords. �

Remark 3.2. Not every situation of the form (3.1) will result in non-confusable descen-

dants. As a counterexample, suppose that u is empty and v = a, so that x = a b c a,

x
′ = a b c a b c a, and x

′′ = a b b c a. Now x
′ and x

′′ have a common descendant a b b c a b c a

and are therefore confusable. However, the fact that (3.1) is the only case when two de-

scendants may be non-confusable is sufficient for our purposes. In particular, it will enable

us to derive a tight upper bound on the cardinality of optimal zero-error codes. N

The above observation is true in general, not just for 1-descendants of a string x.

Namely, if x′,x′′ ∈ D∗(x) are obtained by applying two different patterns of duplications
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on x, in each of these strings we can repeat/imitate the duplications applied to the other,

in the same order, and thus conclude that they have a common descendant. The only

way this imitation process may become impossible from some point on, is to arrive at

a situation where a duplication of length 3 has been applied in x
′ and a duplication of

length 1 on the appropriate segment in x
′′ (see (3.1)), so that x′′ is not able to imitate the

corresponding mutation in x
′. This is because, whenever a duplication of length 2 or 3 is

performed in a string, all segments of length 63 from the original string are preserved in

the resulting string (with additional few substrings being created at the place the duplicate

was inserted). The only way for a segment of length 3 from the original string to disappear

in the resulting string is after a duplication of length 1, as illustrated in (3.1b). Based on

this observation, we shall derive an upper bound on the cardinality of optimal zero-error

codes in the set of all t-descendants of a given string x, for any t (Proposition 3.5 ahead).

Example 3.3. Here is the example from (1.1) presented in a slightly different way so as

to further clarify our point (the segment 1 2 0 is highlighted, and the duplications to the

left, resp. right, of this segment are shown so that a duplicate is inserted to the left, resp.

right, of the original):

x = 0 1 1 2 0 2 1 0(3.2a)

x
(1) = 0 0 1 1 2 0 2 1 0(3.2b)

x
(2) = 0 0 1 1 2 0 2 2 0 2 1 0(3.2c)

x
(3) = 0 0 1 1 2 0 2 2 0 2 1 2 1 0(3.2d)

x
(4) = 0 0 1 1 1 1 2 0 2 2 0 2 1 2 1 0 .(3.2e)

Let z = 0 1 1 2 2 0 2 1 0. Note that z can mimic all duplications of substrings of x

that either do not overlap with the segment 1 2 0, or overlap with it only partially3, such

as those illustrated in (3.2):

x = 0 1 1 2 0 2 1 0(3.3a)

z = 0 1 1 2 2 0 2 1 0(3.3b)

z
(1) = 0 0 1 1 2 2 0 2 1 0(3.3c)

z
(2) = 0 0 1 1 2 2 0 2 2 0 2 1 0(3.3d)

z
(3) = 0 0 1 1 2 2 0 2 2 0 2 1 2 1 0(3.3e)

z
(4) = 0 0 1 1 1 1 2 2 0 2 2 0 2 1 2 1 0 .(3.3f)

Therefore, any pair of strings from (3.2) and (3.3) are confusable; for example, a common

descendant of z and x
(3) above is z

(3). The only mutation z cannot imitate is the dupli-

cation of the entire segment 1 2 0 because the corresponding segment in z no longer exists

(it has been “broken up” by the inserted symbol 2). For example, if x(2) in (3.2c) was to

mutate to

(3.4) y = 0 0 1 1 2 0 1 2 0 2 2 0 2 1 0

instead of x(3), it would no longer be possible to apply the same process as in (3.3). N

Before stating Proposition 3.5, which is the main result of this section, we prove a useful

lemma.

3For x in (3.2a), the substrings of length 63 that partially overlap with the substring 1 2 0 are: 1, 2, 0,
1 1, 1 2, 2 0, 0 2, 0 1 1, 1 1 2, 2 0 2, 0 2 1.
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Lemma 3.4. Fix positive integers b, t, n with b 6 t 6 n. Let U ⊆ {l1, l3, ∗}
n be a set

of strings satisfying the following two conditions: 1) every string u ∈ U has exactly b

symbols l3, t − b symbols l1, and n − t symbols ∗, and 2) for every two distinct strings

u,v ∈ U there is a location i ∈ {1, . . . , n} at which {ui, vi} = {l1, l3} (i.e., such that either

ui = l1, vi = l3, or ui = l3, vi = l1). Then |U| 6 2tH(b/t).

Proof. Consider n tosses of a coin whose probability of landing heads is b/t, and define

the following events indexed by the strings in U . For u ∈ U , let Au be the event of the

i’th toss landing heads if ui = l3, landing tails if ui = l1, and landing arbitrarily if ui = ∗,
for all i = 1, . . . , n. It follows from the condition 1) that the probability of this event is

Pr{Au} =
(
b
t

)b(
1− b

t

)t−b
= 2−tH(b/t) for every u ∈ U . Furthermore, by the condition 2),

the events Au and Av are disjoint for any u,v ∈ U , u 6= v. Therefore, |U| · Pr{Au} 6 1,

which is what we wanted to prove. �

Note that the stated upper bound on |U| does not depend on n (i.e., on the number of

∗ symbols).

Proposition 3.5. Consider a string x ∈ An
q , and let C ⊆ Dt(x) be a zero-error code for

the (63)-tandem-duplication channel satisfying the requirement that, out of t duplications

producing each codeword y ∈ C from x, exactly b are of length 3. Then |C| 6 2tH(b/t).

Proof. As shown above, if two strings x′,x′′ ∈ Dt(x) are non-confusable, then it necessarily

holds that a duplication of length 3 was applied on a segment a b c in one of the ancestors of

x
′, while a duplication of length 1 was applied on the middle symbol of the corresponding

segment in an ancestor of x′′, or vice versa. In other words, for every pair of codewords of

a zero-error code in Dt(x) there is a segment on which they differ by a length 1/length 3

mutation. Hence, the question we are interested in is how big a set of strings, any two of

which differ by a length 1/length 3 mutation at some location, can be. (It is irrelevant

which locations are these, and what happens in between them, the only requirement we

have is that each pair of codewords differs somewhere by a length 1/length 3 mutation

because this is the only way two strings may become non-confusable.) Therefore, |C| can
be upper bounded by the maximum cardinality of a set U of strings over the “alphabet”

{length 1, length 3, ∗} satisfying the following conditions: 1) every string in U has exactly

b symbols ‘length 3’ and t − b symbols ‘length 1’, and 2) every two distinct strings in U
differ at some location by an ‘length 1’/‘length 3’ symbol. (‘∗’ is a dummy symbol that

serves to fill in the empty locations which may occur because different pairs of codewords

may differ by a length 1/length 3 mutation on different segments; see also Example 3.6

below.) The stated upper bound on |C| is now obtained by invoking Lemma 3.4. �

Example 3.6. Let us illustrate the set of strings U mentioned in the preceding proof.

Consider the following string:

x =
︷ ︷

0 1 2 3
︸ ︸

4
︷ ︷

5 6 7 8 9
︸ ︸

.(3.5)

(All the symbols of x being different makes the example clearer without affecting its

generality.) Let the following descendants in D3(x) be obtained by applying tandem

duplications on the four segments in x that are under- or over-braced:

x
′ = 0 1 2 0 1 2 2 3 4 5 6 6 7 8 9(3.6a)

x
′′ = 0 1 1 2 3 4 5 6 6 7 8 9 7 8 9(3.6b)

x
′′′ = 0 1 1 2 3 4 5 6 7 5 6 7 8 8 9 ,(3.6c)



8 MLADEN KOVAČEVIĆ

where the inserted duplicates are underlined. The mutations applied on the four segments

can be described by using the following strings:

u
′ = l3 l1 l1 ∗(3.7a)

u
′′ = l1 ∗ l1 l3(3.7b)

u
′′′ = l1 ∗ l3 l1 ,(3.7c)

where the symbol l3 indicates that a duplication of length 3 was applied on the observed

segment, l1 indicates that a duplication of length 1 was applied on the middle symbol of

that segment, and ∗ indicates that neither of those two mutations was applied on that

segment. Note that, for every pair of strings in (3.7), there is a coordinate at which one

of them equals l1 while the other equals l3. N

4. Zero-error capacity of the (63)-tandem-duplication channel

Let C⋆
q (n) ⊆ An

q be an optimal zero-error code for the (63)-tandem-duplication channel.

For a given irreducible string x ∈ Irrq, define C
⋆
q (n;x) := C⋆

q (n)∩D
∗(x). Then C⋆

q (n;x) is an

optimal zero-error code in the set of all descendants of x of length n. This is because, due

to the root-uniqueness property for tandem duplications of length 63, any two different

descendant cones are disjoint [5, Cor. 26], and hence any two strings having different roots

are non-confusable. In other words, one can, without loss of generality, construct a code

separately in the descendant cones of each of the possible roots/irreducible strings. This

fact is stated explicitly in the following lemma; the proof is omitted as it follows directly

from [5, Cor. 26].

Lemma 4.1. An optimal zero-error code of length n can be expressed as a disjoint union

of optimal codes in each of the descendant cones:

C⋆
q (n) =

⋃̇

x∈Irrq
C⋆
q (n;x).(4.1)

The following claim gives a characterization of the exponential growth-rate of the car-

dinality of optimal codes C⋆
q (n) or, equivalently, of the zero-error capacity of the (63)-

tandem-duplication channel. It states that this quantity equals ιq = limn→∞
1
n log2 Iq(n)

(see (2.1) and (2.2)). In other words, the zero-error capacity is attained by the codes

Irrq(n) consisting of irreducible strings of length n.

Theorem 4.2. The zero-error capacity of the (63)-tandem-duplication channel with al-

phabet Aq, q > 3, equals ιq.

Proof. We need to show that:

(4.2) lim
n→∞

1

n
log2

∣
∣C⋆

q (n)
∣
∣ = ιq.

Since Irrq(n) ⊆ C⋆
q (n), we know that limn→∞

1
n log2 |C

⋆
q (n)| > limn→∞

1
n log2 Iq(n) = ιq

(see (2.1)), so it is enough to prove the opposite inequality limn→∞
1
n log2 |C

⋆
q (n)| 6 ιq.

In order to show this, we shall simplify the analysis by constructing a sufficiently large

subcode Cq(n;m, t, b) ⊆ C⋆
q (n) having the same exponential growth-rate as the optimal

code C⋆
q (n), i.e., limn→∞

1
n log2 |C

⋆
q (n)| = limn→∞

1
n log2 |Cq(n;m, t, b)|, for an appropriate

choice of the parameters m, t, b.

Fix an arbitrary irreducible string x of length m, x ∈ Irrq(m), and let Cq(n;x, t, b) ⊆
C⋆
q (n;x) be a code containing only those codewords of C⋆

q (n;x) that satisfy the following

two conditions: 1) every codeword belongs to Dt(x), i.e., is a t-descendant of x, and 2) out
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of t duplications producing a given descendant/codeword from x, exactly b are of length 3.

We then define the above-mentioned subcode as:

Cq(n;m, t, b) :=
⋃

x∈Irrq(m)

Cq(n;x, t, b).(4.3)

It follows from the construction and Lemma 4.1 that:

C⋆
q (n) =

⋃

m,t,b

Cq(n;m, t, b).(4.4)

It should now be clear that |Cq(n;m, t, b)|, maximized over all possible values of m, t, b, has

the same exponential growth-rate as |C⋆
q (n)| (the choice of m, t, b is made for every n, i.e.,

the optimal values of the parameters m, t, b are in general functions of the block-length

n). This follows from (4.4) and the pigeon-hole principle—the cardinality of the code

C⋆
q (n) grows exponentially fast in the block-length n, and there are linearly many choices

for each of m, t, and b, so for at least one of these choices the codes Cq(n;m, t, b) will

contain exponentially many codewords (with the same exponent). Therefore, the codes

Cq(n;m, t, b) are asymptotically optimal in terms of rate, i.e., they achieve the zero-error

capacity of the (63)-tandem-duplication channel, when the parameters m, t, b are chosen

appropriately (so as to maximize |Cq(n;m, t, b)|).
Let us now calculate the rate of the constructed codes. By (4.3) and Proposition 3.5

(which states that |Cq(n;x, t, b)| 6 2tH(b/t)), the cardinality of the code Cq(n;m, t, b) can

be upper-bounded as:
∣
∣Cq(n;m, t, b)

∣
∣ 6 Iq(m) · 2tH(b/t),(4.5)

while the length of this code can be lower-bounded as:

n > m+ 3b+ (t− b) = m+ t+ 2b(4.6)

(the initial irreducible string is of length m, and exactly b duplications that produce its

descendants are of length 3). Therefore,

1

n
log2

∣
∣Cq(n;m, t, b)

∣
∣ 6

log2 Iq(m) + tH(b/t)

m+ t+ 2b
.(4.7)

To determine the asymptotics of this quantity as n → ∞, two cases that correspond to

different choices of the parameters m, t, b need to be considered:

• m = o(t). Let limt→∞
b
t = β ∈ [0, 1]. Then:

lim sup
n→∞

1

n
log2

∣
∣Cq(n;m, t, b)

∣
∣ 6

H(β)

1 + 2β
6 ιq,(4.8)

where the first inequality follows from (4.7), and the second is identical to (2.3).

• t = O(m). Let lim infm→∞
t
m = τ > 0 and limt→∞

b
t = β ∈ [0, 1]. Then:

lim sup
n→∞

1

n
log2

∣
∣Cq(n;m, t, b)

∣
∣ 6

ιq + τH(β)

1 + τ(1 + 2β)
6 ιq.(4.9)

Again, the first inequality follows from (4.7), and the second is equivalent to (2.3).

In conclusion, all choices of the parameters m, t, b result in the asymptotic rate of the

codes Cq(n;m, t, b) being 6 ιq. Since these codes are rate-wise optimal, as argued in the

second paragraph of this proof, the identity (4.2) is thereby established. �
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5. Conclusion

The evolution of strings under tandem duplications is an interesting and non-trivial

problem of relevance in several fields of research. In this work, we have studied the

confusability of strings under tandem duplications of varying length, a problem inspired

by error correction in communication channels in which the transmitted messages are

affected by this kind of mutations. Specifically, for the case of duplications of length

63, we have derived an upper bound on the maximum cardinality of a set of pairwise

non-confusable strings, which, together with the construction from [5], establishes the

maximum rate achievable by codes correcting an arbitrary number of such impairments.

In cases in which duplication roots are not unique, e.g., the (6 ℓ)-tandem-duplication

models with parameter ℓ larger than 3, the maximum achievable rates remain unknown.

Due to the “root non-uniqueness property”, the analysis of the evolution and confusability

of strings in these models is more complicated and, hence, further work, and possibly

different methods, will be required to solve the zero-error capacity and related problems

therein.
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6. M. Kovačević, “Zero-Error Capacity of Duplication Channels,” IEEE Trans. Commun. 67(10), 6735–

6742, 2019.
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