Skip to main content
Log in

Construction of exact partial solutions of nonintegrable systems by means of formal Laurent and Puiseux series

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

A package facilitating search for analytic solutions of nonintegrable systems of autonomous ordinary differential equations is suggested. The algorithm discussed, which is a generalization of the Conte-Musette method, allows one to obtain single-valued and multivalued analytical solutions that were known to exist only in the form of formal Laurent and Puiseux series (obtained, for example, by means of the Painlevé analysis), respectively. Solutions in the form of the formal Laurent series and procedures from the package discussed are used not only for constructing elliptic solutions but also for proving impossibility of such construction. The suggested procedures have been implemented as packages in Maple and REDUCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiss, J., Bäcklund Transformation and Linearization of the Hénon-Heiles System, Phys. Lett. A., 1984, vol. 102, pp. 329–331. Bäcklund Transformation and the Hénon-Heiles System, Phys. Lett. A., 1984, vol. 105, pp. 387–389.

    Article  MathSciNet  Google Scholar 

  2. Santos, G.S., Application of Finite Expansion in Elliptic Functions to Solve Differential Equations, J. Phys. Soc. Japan, 1989, vol. 58, pp. 4301–4310.

    MathSciNet  Google Scholar 

  3. Conte, R. and Musette, M., Link between Solitary Waves and Projective Riccati Equations, J. Phys. A., 1992, vol. 25, pp. 5609–5623.

    Article  MathSciNet  Google Scholar 

  4. Antonov, V.A. and Timoshkova, E.I., Simple Trajectories in Rotation-Symmetric Gravitation Field, Ross. Astron. Zh., 1993, vol. 70, pp. 265–276.

    MathSciNet  Google Scholar 

  5. Timoshkova, E.I., A New Class of Motion Trajectories in a Hénon-Heiles Potential Field, Astron. Rep., 1999, vol. 43, pp. 406–411.

    Google Scholar 

  6. Fan, E., An Algebraic Method for Finding a Series of Exact Solutions to Integrable and Nonintegrable Nonlinear Evolution Equations, J. Phys. A., 2003, vol. 36, pp. 7009–7026.

    MATH  MathSciNet  Google Scholar 

  7. Musette, M. and Conte, R., Analytic Solitary Waves of Nonintegrable Equations, Phys. D., 2003, vol. 181, pp. 70–76.

    Article  MathSciNet  Google Scholar 

  8. Vernov, S.Yu. and Timoshkova, E.I., On Two Nonintegrable Cases of the Generalized Hénon-Heiles System, Phys. Atomic Nuclei, 2005, vol. 68, no. 11, pp. 1947–1955; math-ph/0402049.

    MathSciNet  Google Scholar 

  9. Kudryashov, N.A., Analiticheskaya teoriya nelineinykh differentsial’nykh uravnenii (Analytic Theory of Nonlinear Differential Equations), 2nd ed., Moscow-Izhevsk: RCD, 2004.

    Google Scholar 

  10. Heck, A., Introduction to Maple, 3rd ed., New York: Springer, 2003.

    Google Scholar 

  11. Hearn, A.C., REDUCE. User’ and Contributed Packages Manual. Version 3.7, Santa Monica: CA and Codemist Ltd, 1999; http://www.zib.de/Symbolik/reduce/more/moredocs/reduce.pdf.

    Google Scholar 

  12. Edneral, V.F., Kryukov, A.P., and Rodionov, A.Ya., Yazyk analiticheskikh vychislenii REDUCE (The Language of Analytical Computations REDUCE), Moscow: Mos. Gos. Univ., 1989.

    Google Scholar 

  13. Vernov, S.Yu., On Elliptic Solutions of the Cubic Complex One-Dimensional Ginzburg-Landau Equation; nlin.PS/0503009.

  14. Golubev, V.V., Lektsii po analiticheskoi teorii differentsial’nykh uravnenii (Lectures on Analytic Theory of Differential Equations), Moscow: Gostekhizdat, 1950.

    Google Scholar 

  15. Ablowitz, M.J., Ramani, A., and Segur, H., Nonlinear Evolution Equations and Ordinary Differential Equations of Painlevé Type, Lett. Nuovo Cimento, 1978, vol. 23, pp. 333–338. A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type, I & II, J. Math. Phys., 1980, vol. 21, pp. 715–721, pp. 1006–1015.

    MathSciNet  Google Scholar 

  16. Painlevé, P., Leçons sur la Théorie Analytique des Équations Différentielles, Profeesées à Stockholm (Septembre, Octobre, Novembre 1895) sur l’invitation de S. M. le Roi de Suède et de Norwège, Paris: Hermann, 1897. Internet version: The Cornell Library Historical Mathematics Monographs, http://historical.library.cornell.edu/.

    Google Scholar 

  17. Vernov, S.Yu., Construction of Solutions of Generalized Hénon-Heiles System by Means of the Painlevé Test, Teor. Mat. Fiz., 2003, vol. 135, pp. 792–801.

    MathSciNet  Google Scholar 

  18. Renner, F., A Constructive REDUCE Package Based upon the Painlevé Analysis of Nonlinear Evolution Equations in Hamiltonian and/or Normal Form, Computational Phys. Commun., 1992, vol. 70, pp. 409–416.

    MathSciNet  Google Scholar 

  19. Scheen, C., Implementation of the Painlevé Test for Ordinary Differential Equations, Theor. Comp. Sci., 1997, vol. 187, pp. 87–104.

    Article  MATH  MathSciNet  Google Scholar 

  20. Xu, G.Q. and Li, Z.B., Symbolic Computation of the Painlevé Test for Nonlinear Partial Differential Equations Using Maple, Computational Phys. Commun., 2004, vol. 161, no. 1–2, pp. 65–75.

    MathSciNet  Google Scholar 

  21. Baldwin, D. and Hereman, W., Symbolic Software for the Painlevé Test of Nonlinear Ordinary and Partial Differential Equations, J. Nonlinear Math. Phys., 2006, vol. 13, pp. 90–110; nlin.SI/0505004.

    Google Scholar 

  22. Vernov, S.Yu., Construction of Special Solutions for Nonintegrable Systems, J. Nonlinear Math. Phys., 2006, vol. 13, pp. 50–63; astro-ph/0502356.

    Google Scholar 

  23. Davenport, J., Siret, Y., and Tournier, E., Calcul formel, Paris: Masson, 1987. Translated under the title Komp’yuternaya algebra, Moscow: Mir, 1991.

    Google Scholar 

  24. Gerdt, V.P. and Blinkov, Yu.A., Involutive Bases of Polynomial Ideals, Math. Comp. Simul., 1998, vol. 45, pp. 519–542. Gerdt, V.P. and Blinkov, Yu.A., Minimal Involutive Bases, Math. Comp. Simul., 1998, vol. 45, pp. 543–560. Gerdt, V.P., Involutive Algorithms for Computing Gröbner Basis, Computational Commutative and Non-commutative Algebraic Geometry. NATO Science Series, Cojocaru, S., Pfister, G., and Ufnarovsi, V., Eds., IOP, 2005, pp. 199–225; math.AC/0501111.

    MathSciNet  Google Scholar 

  25. Gerdt, V.P., Yanovich, D.A., and Blinkov, Yu.A., Fast Search for the Janet Divisor, Programmirovanie, 2001, no. 1, pp. 22–24. Gerdt, V.P., Blinkov, Yu.A., and Yanovich, D.A., Construction of Janet Bases I. Monomial Bases, Proc. of the Int. Conf. “Computer Algebra in Scientific Computing” (CASC’2001), Ganzha, V.G., Mayr, E.W., and Vorozhtsov, E.V., Eds., Berlin: Springer, 2001, pp. 233–248. Gerdt, V.P., Blinkov, Yu.A., and Yanovich, D.A., Construction of Janet Bases II. Polynomial Bases, Proc. of the Int. Conf. “Computer Algebra in Scientific Computing” (CASC’2001), Ganzha, V.G., Mayr, E.W., and Vorozhtsov, E.V., Eds., Berlin: Springer, 2001, pp. 249–263.

  26. Vernov, S.Yu., Packages of Procedures for Maple 9 (’ellipso’) and REDUCE 3.7., 2005, http://theory.sinp.msu.ru/svernov/programms/.

  27. Vernov, S.Yu., Construction of Single-Valued Solutions for Nonintegrable Systems with the Help of the Painlevé Test, Proc. of the Int. Conf. “Computer Algebra in Scientific Computing” (CASC’2004) (St. Petersburg, 2004), Ganzha, V.G., Mayr, E.W., and Vorozhtsov, E.V., Eds., Munchen: Technische Universitat, 2004, pp. 457–465; nlin.SI/0407062. Vernov, S.Yu., Interdependence between the Laurent-Series and Elliptic Solutions of Nonintegrable Systems, Lecture Notes in Computer Science, vol. 3718 (Proc. of the Int. Conf. “Computer Algebra in Scientific Computing” (CASC’2005, Kalamata, 2005)), Ganzha, V.G., Mayr, E.W., and Vorozhtsov, E.V., Eds., Berlin: Springer, 2005, vol. 3718, pp. 457–468.

    Google Scholar 

  28. Drouffe, J.-M., Simplex AMP Reference Manual, Version 1.0, 1996. SPhT, CEA Sacley. F-91191 Gif-sur-Yvette Cedex, 1996.

  29. Hone, A.N.W., Non-existence of Elliptic Travelling Wave Solutions of the Complex Ginzburg-Landau Equation, Phys. D., 2005, vol. 205, pp. 292–306.

    Article  MATH  MathSciNet  Google Scholar 

  30. Wolf, T., Applications of CRACK in the Classification of Integrable Systems, CRM Proc. and Lecture Notes, 2004, vol. 37, pp. 283–300, http://lie.math.brocku.ca/twolf/crack/.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.Yu. Vernov, 2006, published in Programmirovanie, 2006, Vol. 32, No. 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vernov, S.Y. Construction of exact partial solutions of nonintegrable systems by means of formal Laurent and Puiseux series. Program Comput Soft 32, 77–83 (2006). https://doi.org/10.1134/S0361768806020046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768806020046

Keywords

Navigation