
ar
X

iv
:1

10
9.

27
85

v1
 [

cs
.S

C
]

 1
3

Se
p

20
11

Solving large linear algebraic systems in the context of

integrable non-abelian Laurent ODEs

Thomas Wolf, Brock University, Ontario, Canada

email: twolf@brocku.ca

Eberhard Schrüfer, Bonn, Germany
email: eberhard.schruefer@ca-musings.de

Kenneth Webster, Brock University, Ontario, Canada
email: kw07ty@brocku.ca

November 21, 2018

Abstract

The paper reports on a computer algebra pro-
gram LSSS (Linear Selective Systems Solver)
for solving linear algebraic systems with ratio-
nal coefficients. The program is especially effi-
cient for very large sparse systems that have a
solution in which many variables take the value
zero. The program is applied to the symmetry
investigation of a non-abelian Laurent ODE in-
troduced recently by M. Kontsevich. The com-
puted symmetries confirmed that a Lax pair
found for this system earlier generates all first
integrals of degree at least up to 14.

1 Introduction

In mathematics, science and engineering many
problems lead to sparse linear algebraic sys-
tems. For example, in a discretization of a
smooth object the relations between variables
defined in neighbouring points typically involve
only a small number of variables that is depen-
dent on the dimension of the object which is
low.

For sparse linear systems there are computer
algebra programs available, for example, the

code of Roman Pearce [15] that has been incor-
porated intoMaple 14: SolveTools:-Linear.
It is automatically applied if a sparse system is
to be solved.

The typical concern of solvers for sparse sys-
tems is to avoid a choice of pivot that increases
the number of variables in equations and thus
leads to non-sparse equations during the solu-
tion process. For many problems this can not
be avoided, only delayed. For example, when
solving the sparse linear system resulting from
the discretization of the (partial differential)
Laplace equation (i.e. heat equation in the sta-
tionary limit) it is clear that the temperature at
each single point depends on the temperature at
all boundary points and that the temperature
inside is typically non-zero.1

The linear systems we studied are also sparse
but different in nature. The value of most of
their variables in the solution is exactly zero.
Such systems play the role of selectors and are
therefore called “selection systems” in this pa-
per, because from a large number of monomials,
all with a constant undetermined coefficient,

1Even if the temperature on the whole boundary is
zero except on an ε-sized part where it is positive, the
temperature at all inner points will be positive.

1

http://arxiv.org/abs/1109.2785v1

some linear combinations of the monomials are
selected which satisfy some condition and the
other monomials are dropped by setting their
coefficient to zero. This is very different from
linear sparse systems like those resulting from
the discretization of the Laplace equation. Ta-
ble 1 compares both types of problems.
Selection systems have a number of useful

properties.

• The existence of zero-valued variables al-
lows an effective solution as performed by
the program LSSS, described in this pa-
per. LSSS is running under the computer
algebra system Reduce ([8]).

• From the application it is clear whether
a linear system belongs to this class, i.e.
whether many variables take the value zero
and thus a specialized computer program
should be applied.

• The efficiency of solving selection systems
increases with the complexity of the prob-
lem. For example, the higher the degree of
the polynomial ansatz in a symmetry inves-
tigation - the larger is the size of the linear
system for the unknown coefficients but the
higher is also the percentage of zero-valued
coefficients and the higher is the efficiency
of the solution technique that uses zero-
valued variables (see section 3).

• Not only can such linear systems be solved
efficiently, they can also be formulated
more economically. More precisely, it is
possible to formulate much smaller equiv-
alent systems as shown in section 3.7.

The strategy to have many different meth-
ods available to solve a system of equations
and to give those methods the highest priority
which make most progress and are least risky to
lead to an explosion of size is not new. In the
Maple command solve this is used since 1985
even with the heuristic of substituting zero vari-
ables first (see [14]) and in theReduce package
Crack such strategies including substitution of
variables by zero as highest priority are applied
to the solution of overdetermined algebraic and

differential systems ([13]. What is new in this
paper is the realization that if variables take
the value of zero in linear systems, then usually
many variables vanish and then very fast rou-
tines for identifying 1-term equations, for drop-
ping such variables from equations and even for
avoiding the construction of equations pays of.
What justifies the creation of special purpose

programs for selection systems is the fact that
these systems occur frequently, especially in in-
tegrability investigations of differential equa-
tions when computing infinitesimal symmetries,
first integrals, conservation laws, variational
principles or other qualitative properties which
may but need not exist and for which an ansatz
can be formulated.
The following section describes an applica-

tion that leads to a series of sparse systems with
a high percentage of zero-valued variables. This
application was the starting point for the devel-
opment of LSSS. Readers interested essentially
in the computational aspects of formulating and
solving the systems may proceed directly to sec-
tion 3 which describes methods for formulating
and solving selection systems efficiently.
The times for solving the linear systems re-

sulting in the applications are shown in section
4. The subsequent section 5 discusses aspects
of the computer algebra system Reduce which
become important in large computations. Sec-
tions 6 and 7 report on tests of other computer
algebra systems. The paper concludes with a
list of available procedures in section 8 and a
summary.

2 The application

2.1 A non-abelian ODE-system

In the programme of M. Kontsevich of creating
a proper non-commutative algebraic geometry
inspired by modern quantum field-theoretic re-
quirements and challenges, he proposed a non-
commutative version of symplectic geometry in
which integrable non-abelian ODE-systems ap-
pear naturally ([1]).
More specifically, he considered the discrete

2

type “numerical” systems “selection” systems
examples systems resulting from a systems resulting from a sym-

discretization of PDEs metry investigation of PDEs
value of free parameters any floating 0 or 1
when applying the solution point numbers (to isolate the individual
of the linear system (boundary values of PDE) symmetries)
number of zero-valued essentially none most variables
variables in solution
sparsity yes yes
overdetermination no yes
usability of iteration
schemes for large problems useful not useful
of that type

Table 1: Characterization of two different types of sparse linear systems

map

u → uvu−1 , v → u−1 + v−1u−1 (1)

([2]) and the following non-abelian ODE system
which is invariant under (1):

ut = uv − uv−1 − v−1, vt = −vu+ vu−1 + u−1

(2)
where u, v are non-commutative variables (in
particular, square matrices of arbitrary size). In
comparison to non-abelian ODE systems with
polynomial right hand sides investigated first
in [3] and later in [4], [5] the system (2) in-
volves Laurent polynomials, i.e. polynomials in
u, v and inverses u−1, v−1.
Based on numerical experiments Kontsevich

conjectured that (2) is integrable itself. This
was demonstrated recently in [6] where a Lax
pair has been found which also proves integra-
bility of (1) (see section 2 of [2]). In addi-
tion a pre-Hamiltonian operator is given in [6]
that maps gradients of trace first integrals to
infinitesimal symmetries. The existence of in-
finitely many symmetries and even better of a
Lax pair is taken as an indicator of integrabil-
ity of an ODE or PDE system ([7]). To verify
that the Lax pair produces all Laurent polyno-
mial first integrals our strategy is to compute by
brute force all Laurent polynomial infinitesimal
symmetries up to some degree and to compare

them with the symmetries produced from the
Lax pair. This paper reports on the computer
algebra program LSSS that was developed to
solve the linear algebraic systems resulting in
the computation of all such symmetries up to
degree 16.

2.2 Symmetries

For a given system of equations

ut = P1(u, v, u
−1, v−1), vt = P2(u, v, u

−1, v−1)
(3)

where P1, P2 are polynomials in u, v, u−1, v−1

a Laurent polynomial (infinitesimal) symmetry
is defined through two polynomials Q1, Q2 in
u, v, u−1, v−1 such that the flow

uτ = Q1(u, v, u
−1, v−1), vτ = Q2(u, v, u

−1, v−1)
(4)

commutes with the system, i.e.

DτDt u = DtDτ u, (5a)

DτDt v = DtDτ v. (5b)

The vector (Q1, Q2)
t is called generator of the

symmetry.
In this paper the system (3) is given through

(2). The polynomials Q1, Q2 are generated by
a special purpose procedure that creates the
most general (inhomogeneous) polynomials up

3

to some given degree in the non-abelian vari-
ables u, v, u−1, v−1 with symbolic (abelian) co-
efficients ci. The only condition satisfied by
Q1, Q2 is that u, u−1 and v, v−1 are not stand-
ing next to each other anywhere in any term as
they would cancel.

The symmetry conditions (5) have to be sat-
isfied identically for any u, v. That means, after
(5) is formulated, the coefficients of all different
products of powers of u, v, u−1, v−1 have to be
set to zero generating a linear system for the
unknown coefficients in the symmetry genera-
tors(4). This process is called ’splitting’ in the
remainder of the paper.

The number t̂n of terms of each Qi of de-
gree n (which is one half of the number of un-
known coefficients) satisfies the recursive rela-
tion t̂n = 3t̂n−1 + 2 with t̂0 = 1 because apart
from the coefficients ci the polynomial of de-
gree 0 has only the term 1 and the most general
polynomial of degree n is obtained by multiply-
ing each term of the most general polynomial
of degree n − 1 from one side, say from the
left, with all possible three of the four factors
u, v, u−1, v−1 which do not give a cancellation.
One exception is the term 1 that is multiplied
with each one of the 4 factors i.e. from this term
results one extra term and the extra term 1 is
added giving t̂n = 3t̂n−1 + 1 + 1 = 3t̂n−1 + 2.
Thus the total number of terms tn occuring in
Q1 and Q2 of degree n satisfies tn = 3tn−1 + 4.

2.3 Necessary symmetry condi-

tions

Additional information available for our sym-
metry computation results from a separate com-
putation of full first integrals I satisfying DtI =
0 where Dt is the total time-derivative. The
condition that a Laurent polynomial in u, v is
a first integral is very restrictive because it im-
plies that each of the m×m components of the
matrix first integral is an integral of its own.
Restrictive conditions lead to very overdeter-
mined systems (here linear) which are easier to
solve. Therefore it was possible to compute all
first integrals up to degree 14 with the result

that

I = uvu−1v−1, I−1 = vuv−1u−1 (6)

and their integer powers Ik, k = −3, .., 3 are
the only first integrals up to degree 14.
From the symmetry conditions (5) andDtI =

0 follows

DtDτI = DτDtI = 0

and further from Ik being the only first integrals
(up to degree 14)

DτI =
k0∑

k=−k0

akI
k, (7a)

and similarly

DτI
−1 =

k0∑

k=−k0

bkI
k, (7b)

for sufficiently high k0, in our case k0 = 3 be-
cause I is of degree 4. These conditions involve
a few more extra unknown constants ak, bk but
adding (7b) is beneficial because these are first
order conditions involving fewer terms than the
full symmetry conditions (5) which are of sec-
ond order.

3 The solution of selection

systems

The linear systems resulting from splitting the
necessary and sufficient conditions (5) and the
additional necessary conditions (7) cover a wide
range of sizes as shown in table 2. As dis-
cussed in section 2.2 the numbers kn of un-
knowns for a symmetry ansatz of degree n grow
like kn+1 = 3kn+4 which is also the growth rate
of the number e1 of equations in the necessary
condition DτI = 0.2

As the table indicates, the linear systems
have a few characteristic properties that need
to be exploited in order to compute high degree
symmetries. These properties are:

2The vanishing of constants ak in (7a) and bk in (7b)
follows when formulating these conditions.

4

n k e1 t1 e2 t2 p

3 106 142 192 448 1,034 1
4 322 430 616 1,412 3,706 2
5 970 1,294 1,904 4,448 12,914 4
6 2,914 3,886 5,784 13,878 44,098 5
7 8,746 11,662 17,440 43,052 148,346 7
8 26,242 34,990 52,424 132,954 493,162 8
9 78,730 104,974 157,392 409,470 1,623,842 12
10 236,194 314,926 472,312 1,258,526 5,304,562 13
11 708,586 944,782 1,417,088 3,862,086 17,212,778 17
12 2,125,762 2,834,350 4,251,432 11,835,758 55,535,578 18
13 6,377,290 8,503,054 12,754,480 36,228,892 178,298,450 24
14 19,131,874 25,509,166 38,263,640 110,777,292 569,970,466 25
15 57,395,626 76,527,502 > 1.1×108 > 3.3× 108 > 1.7× 109 31
16 > 172×106 > 229×106 > 3.4×108 > 1×109 > 5.7×109 32

Table 2: For each symmetry ansatz of degree n = 3..16 are listed the numbers: k of variables,
e1 of equations and t1 of terms of system DτI = 0, e2 of equations and t2 of terms of system
[Dt, Dτ](u, v) = 0 and p of free parameters of the solution.

• Overdetermination: There are 4.5 to 5.5
times as many equations as unknowns.

• Sparsity: Equations have on average 4 to 5
terms.

• Zero-valued Variables: Most of the vari-
ables take an exact value of zero in the
solution. Even more importantly, the per-
centage of zero-valued variables is increas-
ing as the degree of the ansatz increases,
i.e. as the system to be solved increases in
size. For systems resulting from symme-
tries of degree 4 this percentage is 93.2%
and for symmetries of degree 16 the per-
centage is 99.966% . Nevertheless, the so-
lution for degree 16 is not trivial. It has
58118 non-vanishing variables and 32 free
parameters.

3.1 Ideas for a solver of large

sparse linear algebraic sys-

tems

The following ideas take advantage of the fea-
tures of selection systems as listed above and

describe the stages of development of the com-
puter algebra program LSSS. These stages have
been to:

• start with a program for solving a stream
of equations,

• sort equations initially by size, shortest
first,

• apply 1-term equations very efficiently and
apply them before any other equation,

• be able to generate only 1-term equations
before formulating the whole system,

• iterate between the exclusive formulation
and the application of 1-term equations,

• be able to generate and take advantage of
extra necessary conditions before working
on the original system, and

• choose from possibly different options to
generate 1-term equations the most effi-
cient one.

Any extra low level procedures that were writ-
ten to implement these concepts assume that

5

systems are linear in the unknowns. This al-
lows them to be more efficient than universal
routines.
In the following subsections more detailed

comments are made to each of the measures.

3.2 A stream of equations

In earlier work [12] large and very overdeter-
mined polynomial systems were solved which
had too many equations (in the order of 1014)
to be even formulated initially. A linear alge-
braic system solver was developed at the time
for related problems dealing with the system of
equations as an incoming stream of data not to
be stored in RAMmemory, only to be processed
equation by equation. A strength of this algo-
rithm is that any limitation on available RAM
memory poses only restrictions on the size of
the preliminary solution of the system and thus
only on the number of variables, not on the
number of equations.
At the start of this program a preliminary

solution is initialized as an empty list. Then
with each incoming equation the following steps
are performed.

• The equation is simplified modulo a pre-
liminary solution stored in the form of a
substitution list gi = fi(gj) where gk are
the unknowns and fi are linear expressions
in the unknowns except gk from any of the
left hand sides.

• If the resulting simplified equation is not
an identity then it is solved for one of the
gm,

• substitutions gm = fm(gj) are performed
in all fi of the preliminary solution, and

• gm = fm(gj) is appended to the substitu-
tion list.

In the computation of high order symmetries
this procedure is applied to the remaining sys-
tem after all 1-term equations have been de-
termined and used. The remaining system is
small enough that it does not have to be stored
on hard disk and then read again from disk.

3.3 Sorting equations

A first speedup is obtained by sorting equa-
tions according to size, shortest first, before pro-
cessing them as described above leading to the
times shown in column (B) of table 4. For ex-
ample, for symmetries of degree 9 the speed up
is a factor of 4.
Processing shorter equations earlier means

that the substitution list involves shorter right
hand sides and reduces incoming equations to
shorter size earlier which adds shorter new sub-
stitution rules to the preliminary solution, i.e.
it is a self-amplifying increase of efficiency.
In symbolic mode of Reduce the sorting of

equations can be done very effectively, for ex-
ample, by establishing a list L = {l1, l2, l3, ...}
where li is a list of (pointers to) all equations
with i terms and then linking these lists. As-
signing an equation to a list li is done efficiently
by having 2 pointers, one stepping from one
term to the next in the equation and the other
at the same time stepping from li to li+1. When
the first pointer reached the end of the equation,
the other pointer gives the list li under which
the equation is then listed.

3.4 Applying 1-term equations

Sorting equations is beneficial if equations vary
much in size. This is especially the case for
selection systems with many equations having
only one term.
But not all the variables that take zero value

in the solution need to appear in 1-term equa-
tions in the original system. Many 1-term equa-
tions may result only after the first 1-term equa-
tions are applied. Still, during the solution pro-
cess many 1-term equations are generated which
justifies their special treatment.
What makes 1-term equations special is the

fact that replacing a variable by zero in a poly-
nomial (or linear) expression can be done very
fast without re-writing the expression, at least
in a lisp-representation: the pointer from the
previous term to the term that vanishes is sim-
ply re-directed to the next term. Also, no
re-simplification is necessary. In contrast, al-

6

ready the application of 2-term equations re-
quires afterwards simplifications as the term
resulting from substitution may combine with
other terms.
To set many variables in an expression to zero

in a most efficient way, the value cell of the vari-
able was set to nil. Testing a variable for a zero
value can then be done by just testing whether
the variable is bound. After this is done for all
known vanishing variables, the (large linear) ex-
pression in these variables is pruned only once
by the special low level routine PruneZeros.
The pruning is done ’in place’ avoiding copy-
ing of the whole expression and also reducing
future garbage collections.
All efficiency improving measures introduced

in the sections 3.2, 3.3, 3.4 are applied in the
procedure LSSS [10] but can also be performed
alone on given expressions.
In the following subsections techniques are

described that make the formulation of the lin-
ear system more efficient, or avoid the formula-
tion of large selection systems.

3.5 Selective splitting of equa-

tions

The following steps are all computationally ex-
pensive:

• the formulation of two large symmetry con-
ditions (5),

• their separation (called ’splitting’ in the
following) into two large linear systems
with many redundant equations by setting
coefficients of different products of powers
of u, v separately to zero, and

• millions of simplifications of the large linear
systems due to millions of vanishing vari-
ables.

The idea is to avoid most of these computations
by

• extracting selectively only 1-term equa-
tions from the symmetry conditions (5),
and

• using them to simplify the symmetry con-
ditions themselves, and

• to repeat this procedure as long as 1-term
equations can be found (see section 3.7).

Finally, the much smaller symmetry conditions
are completely split and the resulting linear sys-
tem is solved using LSSS as described in the
previous three subsections.

The only remaining large step is the initial
formulation of the symmetry conditions. One
can save half of that computation by formu-
lating only one symmetry condition, extracting
from it and applying to it repeatedly 1-term
equations, then pruning the ansatz for the sym-
metry (4) before computing the second symme-
try condition.

Furthermore, even the formulation of the first
symmetry condition can be postponed if short
additional necessary conditions are known as
described in the next subsection. From them 1-
term equations, i.e. vanishing variables can be
extracted and the ansatz for the symmetry (4)
be pruned before any new symmetry condition
is formulated.

The interplay between formulating and solv-
ing equations may be the only way to approach
a large problem which otherwise could even not
be formulated. For example, this iterative ap-
proach was necessary to compute symmetries of
degree 14 on the available computer hardware
with 128 GB memory under PSL Reduce. The
same approach was also applied in [12] to solve
a non-linear system which was too large to be
formulated at once.

The key to be able to selectively split up 1-
term equations is a low level procedure written
in Symbolic Mode of Reduce that takes
only two lines. It recursively steps through an
expression and identifies 1-term coefficients of
any monomial in u, v, u−1, v−1. If such a coeffi-
cient is found, it directly sets the value cell of
the variable to nil (see section 3.4 for the case
that a system of linear equations is given from
which 1-term equations are picked).

7

3.6 Utilizing additional neces-

sary conditions

Apart from a system of equations to be solved
sometimes additional necessary conditions are
available. The question is whether these condi-
tions can be utilized to speed up the solution of
the original system. If a program is performing
its computation with the whole system that is
to be solved at once then solving in addition
extra conditions results in an increase of the to-
tal computation time. On the other hand, if the
program is able to extract information from the
system selectively then having extra necessary
equations available means that the program has
more options and may be able to solve the com-
bined system faster than the original system
alone.

If a program is able to generate repeatedly
1-term equations and to apply them then it is
beneficial for the program to have extra nec-
essary conditions (7a). Even if such opportu-
nities do not exist, extra necessary conditions
can already be useful if the length of equations
varies much and if all equations are sorted by
size and if system plus extra necessary condi-
tions are very overdetermined.

3.7 Optimizing iterations

An optimal strategy to speed up computation
is not to find and use as many as possible van-
ishing variables but to find and use as many
as possible per time. This means one wants to
find an optimum between formulating new con-
ditions (7), (5) which each provide many vanish-
ing variables but which take considerable time
to formulate, or to utilize already formulated
conditions by extracting again vanishing vari-
ables, utilizing them, extracting more, and so
on. The second process is faster than formulat-
ing new conditions but the number of vanishing
variables that are found is gradually decreasing
as shown in table 3. The following comments
refer to the computation of symmetries of de-

gree 13.3

After extracting vanishing variables from the
necessary condition (7a) one has the options to

• prune Dτ (u, v) (8 sec) and re-formulate
(7a) (39 sec), or

• prune Dτ (u, v) (8 sec) and formulate the
other necessary condition (7b) (39 sec)

• prune the already formulated condition
(7a) (37.3 sec)

before extracting vanishing variables from that
equation which was just formulated or pruned.
Because in all 3 cases about 1,535,270 new van-
ishing variables are found, the third option is
the fastest and most efficient one which is there-
fore repeated several times. As shown on table
3 the number of vanishing variables that are
found, shrinks and the time to scan the condi-
tion stays constant, thus it pays off after three
runs to invest in the formulation of a new con-
dition

uτt = utτ . (8)

After a first selective split of (8) it is most ef-
fective to prune and selectively split (7a) again,
even twice before continuing to prune and split
selectively (8). It turns out that formulating in
addition the second symmetry condition

vτt = vtτ (9)

only for the purpose of selective splitting does
not result in additional 1-term equations and is
therefore not beneficial.
To summarize, denoting the pruning and se-

lective splitting of necessary condition (7a) by
n and the pruning and selective splitting of
symmetry condition (8) by s, the sequence
n3(snn)4(sn)4 followed by a formulation of the
symmetry condition (8), a complete splitting of
(9) and complete splitting of what is left of (8)
and a call of LSSS to solve the linear system
brings down the total time for formulating and
solving symmetry conditions for degree 13 to

3Given times refer to the computation of degree 13
symmetries on a single CPU of a 8 core node (2 sockets
x 4 cores per socket) Xeon @ 2.93 GHz using 48 GB
memory of the node.

8

runs 1 2 3 4 5 6 7 8
t1 116 37.3 14.6 12.2 11.7 11.7 11.7 11.7
t2 1.8 .49 .32 .26 .26 .25 .25 .25

new 5314423 1535271 288684 32076 3564 396 44 0

Table 3: Times and results for extracting 1-term equations repeatedly in the computation of
symmetries of degree 13. t1: time to formulate (7a) in run 1 and to prune it in later runs, t2:
time to 1-term-split (7a), new: number of new vanishing variables found in each run.

467 sec, compared to 3615 sec when straight-
forwardly formulating and splitting (8), (9) and
solving them with LSSS.

An additional benefit of utilizing 1-term
equations consists in a drastic reduction of
memory needs to only 13 GB for PSL Reduce

or 7 GB for CSL Reduce (see section 5 about
the differences between PSL and CSL Reduce)
whereas the ad hoc formulation of the large
symmetry conditions (8), (9) requires 120 GB
in PSL Reduce or 60 GB in CSL Reduce for
degree 13 symmetries. Without selective split-
ting of 1-term equations, i.e. determination of
vanishing variables, it would not have been pos-
sible to determine symmetries of degree 15 on
the computer with 128 GB and of degree 16 on
a computer with 256 GB.

3.8 Applying Solutions of large

linear Systems

In applications the solution of a system of equa-
tions has usually to be substituted in expres-
sions that are the main interest of the appli-
cation. But millions of variables to be sub-
stituted in expressions with millions of terms
is expensive. In such situations the labelling
of zero-valued variables and the pruning of
large expressions containing them becomes use-
ful again.

In table 4, column (D) subst. shows drasti-
cally reduced substitution times of the solution
into the symmetry ansatz (4) compared to col-
umn (C) subst. After the computation in col-
umn (D) no explicit substitutions are necessary.
Any expression containing the unknowns needs
only a) to be pruned to drop terms involving

zero-valued variables and b) be simplified where
non-zero variables get replaced by their com-
puted value.

4 Results

The impact of measures described in the previ-
ous section is shown in table 4. The entries in
columns with the header ’solve’ give the time in
sec to solve the linear algebraic system resulting
from splitting the symmetry condition (5) (de-
noted in the following by D[t,τ](u, v) = 0) wrt.
monomials in u, v, u−1, v−1. Columns with the
header ’subst.’ show the time to substitute the
solution into the symmetry ansatz (4).4

As described in the previous section, col-
umn (A) was produced with the original stream
solver [9]. Sorting equations by size results in
a speedup of a factor up to 4 shown in column
(B) and column (C) shows the times when 1-
term equations are applied first as described
in section 3.4. Computations in columns (A)-
(C) use standard substitutions and in column
(C) the explicit formulation of 1-term equa-
tions and complete splittings of equations. The

4Columns (A)-(C) have been run on one Opteron
2.2 GHz core of a 32 core node (8 sockets x 4 cores per
socket) with 128 GB memory. In column (D) n = 3..15
were run on one Xeon 2.4 GHz core of a 16 core node
with 128 GB memory and n = 16 was run on a single
core of a machine equipped with 4 AMD Opteron pro-
cessors each having 12 cores running at 2.2.GHz and
with 256 GB of main memory. Computation times
turned out to be strongly dependent on the load on
the remaining cores of the node and the other nodes of
the cluster. The times in column (D) are conservative
times which are always reproducible. Sometimes com-
putations have been up to 30% faster than shown in
column (D).

9

(A): (B): (C): 1-term equ., (D):
n sorting by size, sorting by size, all techniques

stream solve stream solve stream solve of section 3
solve subst. solve subst. solve subst. solve subst.

3 .02 .01 .01 .00 .00 .00 .01 0
4 .14 .01 .15 .02 .02 .02 .03 0
5 1.6 .17 1.3 .23 .20 .16 .08 0
6 20.8 1.46 15.3 2.4 1.7 1.3 .26 0
7 206 9.0 85 9.0 16.3 15.4 .77 0
8 2,740 82.5 808 92.8 241 223 2.7 .01
9 53,940 1,190 13,335 1,482 4,645 2,675 9.1 .01
10 60,140 20,360 30 .03
11 96 .07
12 302 .13
13 927 .34
14 2284 .42
15 7587 1.58
16 27970 3.16

Table 4: Times in sec for solving the symmetry conditions (5) for each degree n by different
methods and for substituting the computed values into the symmetry ansatz (4).

drastic improvement shown in column (D) be-
came possible through direct detection of van-
ishing variables (specialized partial splitting),
repeated partial splitting, assigning nil to the
value cell of a variable and thus avoiding substi-
tutions and enabling fast pruning of expressions
from zero variables.

Table 5 compares four runs of the n = 13
case.5 In all these computations the program
LSSS is used to solve the linear algebraic sys-
tems (the row ’complete solution of all remain-
ing equations’). LSSS repeatedly applies 1-
term equations and sorts the remaining equa-
tions by size before starting the stream-solver.
What table 5 shows is the benefit of generat-
ing and solving the linear algebraic system in
stages. With the availability of LSSS as an
effective solver of large selection systems, the
main cost shifted to the formulation of the lin-
ear system.

5All times in this table include CPU time and
garbage collection time of CSL Reduce running on one
of 16 cores (4 sockets x 4 cores per socket) Xeon 2.4
GHz node with 128 GB memory.

In the first column the whole system is for-
mulated and solved at once. In the second col-
umn at first D[t,τ]u = 0 is formulated, then
1-term equations are extracted and utilized to
simplify the ansatz for Dτu and Dτv before
D[t,τ]v = 0 is formulated and the complete sys-
tem is solved. This provides a speedup of nearly
1.7 for n = 13.

The third column gives the times when the
whole computation is done in 3 stages. In the
first step the necessary condition (7a): DτI =∑k0

k=−k0
akI

k is formulated, and once vanishing
variables are extracted which are used to sim-
plify the symmetry ansatz (4) and speed up
the formulation of the system. Although that
first step is an additional computation not per-
formed in the first two runs costing an extra
238 sec, this is more than compensated after-
wards by the speedup of computing and solving
D[t,τ](u, v) = 0 (also in two stages) leading to
another overall speedup factor of about 1.7.

The fourth column reports the times when at
first a sequence of runs is performed where van-
ishing variables are extracted and set to nil as

10

(E) (F) (G) (H)
D[t,τ](u, v) = 0 D[t,τ](u, v) = 0 DτI = 0 Iteration

at once in two stages first first
formulation of ansatz for Dτ 47.7 47.7 47.7 47.7
multiple runs to find vanishing − − − 777
variables (see section 3.7)
formulation and extraction of
vanishing variables once from − − 238.7 −
necessary condition (7a)
formulation and complete
splitting of D[t,τ]u = 0 1624 1624 621.3 4.5
extraction of vanishing
variables from complete set of − 101.7 64.5 0.28
conditions D[t,τ]u = 0 once
formulation and complete
splitting of D[t,τ]v = 0 1274 46.9 46.7 1.77
complete solution of all
remaining equations 365 125 142 92.7
substitution of solution
in Dτ (u, v) 2.95 0.39 0.35 0.18
total time (rounded) 3314 1946 1161 924

Table 5: Times in sec of the whole symmetry computation for n = 13

explained in section 3.7. This leads to another
modest overall speedup of 1.25 but the main
advantage of the computation in the fourth col-
umn is to lower the maximum memory require-
ments that occur when the first half of symme-
try conditions is formulated.
The next section describes how differences

between two versions of the computer algebra
system Reduce become important for large
computations.

5 Reduce issues

The open-source computer algebra system Re-

duce can be run on two different LISP imple-
mentations. They are PSL (Portable Standard
Lisp) and CSL (Codemist Standard Lisp).
The computations of this article require a

very large number of identifiers. CSL has no
restriction on the number of identifiers that
can be used, whereas PSL is usually limited to
65,000 identifiers. To run the symmetry com-

putations reported in this paper in PSL, an ex-
tended version of PSL Reduce had been devel-
oped by Winfried Neun that allows for 20 Mio
identifiers. This extended version of PSL can
be downloaded for free [11].

When applied straightforwardly, PSL Re-

duce typically runs somewhat faster than CSL
Reduce.6 However, CSL allows for compila-
tion of critical routines into C. When this is
done, CSL runs in most cases as fast as PSL or
even faster. Compilation into C can be achieved
by creating a package and making a profiling
run followed by a rebuild of the CSL-Reduce
system.

A big advantage of CSL is its garbage collec-
tor. CSL uses both a copying and a mark-sweep
collector. Copying garbage collectors have little
overhead but can give only half of the memory
to the application as the other half is needed for

6The timings reflect the state of CSL/PSL at the
time of writing the paper. The performance of both
LISP systems is under active development.

11

n (I) (J) (K) (L)
s solve s tools ns solve ns tools

3 .0036 .024 .035 .027
4 .11 .089 .11 .085
5 .38 .20 .3 .23
6 1.1 .86 1.2 .80
7 4.3 2.97 4.9 3.75
8 20.4 13 24 16.9
9 128 73 162 81.3
10 792 262 929 294
11 7560 871 8615 972
12 DNF 3527 DNF 3232
13 11786 11840

Table 6: Maple 14 times

n degree of the symmetry
s solve: solving the system (5) with the solve command
s tools: solving the system (5) with the SolveTools:-Linear command
ns solve: solving both systems (7) and (5) with the solve command
ns tools: solving both systems (7) and (5) with the SolveTools:-Linear command
DNF: does not finish in one week

copying. A mark-sweep garbage collector allows
the use of all of the memory by the application.
In CSL the copying collector is used as long
as the memory pressure is low, but switches
to mark-sweep when the requirement for more
memory rises. This way, CSL leverages per-
formance and available memory. This feature
of CSL made it possible to ultimately compute
symmetries of degree 15 with 115 GB of mem-
ory and symmetries of degree 16 on a different
machine with 256 GB.

6 Comparison with Maple

In this section we report on applying the com-
puter algebra system Maple 14 on solving our
linear systems. Table 6 shows times7 for solving
the symmetry conditions (5) with the Maple

standard solve command in column (I) and
with the SolveTools:-Linear command in col-

7Computations were run on one Xeon 2.4 GHz core
of a 16 core node with 128 GB memory

umn (J) and the times for solving the combined
systems of additional conditions (7) and sym-
metry conditions (5) in columns (K) and (L).

We see that for small systems, solve and
SolveTools:-Linear take similar times. For
larger systems (N = 11) SolveTools:-Linear
is 9 times as fast and even bigger systems could
not be solve with the command solve within a
week.

Another observation is that neither solve

nor SolveTools:-Linear can take advantage
of additional necessary equations except for
n = 12 in column (L) to a small extent. The
best times for Maple 14 in column (J) of ta-
ble 6 and LSSS (Reduce) in column (D) in
table 4 have been measured on the same nodes
of the same cluster and can be compared. To
explain the 11786/927=12.7 times faster per-
formance of LSSS for symmetries of degree
13 the following test has been made. Table 7
shows the times in sec for Maple 14 procedure
SolveTools:-Linear to solve

12

n (M) (N) (O) (P) (Q): read (M/(O+P+Q))
unsimp. unsorted sorted simplify simplified sys. factor of speedup

3 .024 .0012 .0014 0 .010 2.1
4 .089 .0084 .0084 .01 .012 2.9
5 .20 .011 .0092 .01 .012 6.4
6 .86 .036 .037 .03 .016 10
7 3.0 .047 .047 .09 .021 19
8 13 .19 .22 .31 .037 23
9 73 .41 .38 1.04 .060 49
10 262 2.6 2.7 3.44 .118 42
11 871 4.7 4.9 11.2 .228 53
12 3527 32 31 31.7 .443 56
13 11786 78 71 87.5 .940 74
14 402 387 1.574

Table 7: Maple 14 times for pre-simplified systems

• the unsimplified system (5) in column (M)
(=column (J) of table 6),

• the same system simplified after 1-term
equations have been solved repeatedly in
column (N),

• and then in addition all equations being
sorted by size, shortest first in column (O).

The cost of these simplifications using the
Reduce procedures FindZeros to find and
utilize all 1-term equations repeatedly and
LengthSort to sort the remaining system
by size is shown in column (P). The time for
Maple 14 to read the simplified system is
given in column (Q). The rightmost column
gives the factor of speedup ofMaple if it would
use at first the Reduce procedures to sim-
plify the system before solving it. The potential
speedup of Maple is impressive and increasing
with increasing size of the system.

7 Comparison with LinBox

As described on its web page [16] LinBox

is a C++ template library for exact, high-
performance linear algebra computations with
dense, sparse, and structured matrices over the
integers and over finite fields.

Because the solution of our linear system (5)
contains free parameters, LinBox can not be
applied straightforwardly to solve our system.
However, what can be computed easily is the
rank of these systems. Table 8 compares the
best times of Maple solving the system (5)
(column (J) in table 6) with the best times
of Reduce achieved when solving (5) and us-
ing additional necessary conditions (7) and with
LinBox at least determining the dimension of
the nullspace of (5) and of (5) together with
(7). The timings of LinBox include reading of
the sparse coefficient matrix of the linear sys-
tem which is the only way to enter data into
LinBox.

8 The procedures

The following four procedures are available for
the formulation and solution of linear algebraic
system with an emphasis on selection systems
which have many zero variables in their solu-
tion.
The procedure LSSS can solve linear systems

with an arbitrary number of equations and un-
knowns, i.e. the linear system can be under-
or overdetermined. In case the linear system is
inconsistent a message will be printed. The un-
knowns to be solved for must be ordered ahead

13

Maple 14 LinBox Reduce

n SolveTools default sparse LSSS
eqn. (5) eqn. (5) eqn. (5),(7) eqn. (5) eqn. (5),(7)

3 .024 .01
4 .09 .02 .02 .02 .03
5 .20 .13 .12 .08
6 .86 30.6 .90 1.1 .26
7 3 12.9 14.9 .77
8 13 3080 210 283.5 2.7
9 73 1812 2318 9.1
10 262 21210 21610 30
11 871 96
12 3527 302
13 11786 927
14 2284
15 7587
16 27970

Table 8: A comparison of times of Maple, LinBox and Reduce

of the rest of the variables. The coefficients of
the linear variables can be rational functions of
parameters.

The procedure FindZeros repeatedly picks
all 1-term equations from an input list of equa-
tions and sets the value cell of the vanishing
variables to nil. It returns a list of vanishing
variables and list of remaining equations.

The procedure LengthSort effectively sorts
a list of equations by their size.

The procedure PruneZeros drops all terms
of the input expression which should be zero
due to an earlier run of LSSS or FindZeros.

The procedures LSSS, FindZero and
LengthSort are freely available from [10]
where more details about syntax are given.
These procedures are also included as module in
the open source computer algebra system Re-

duce. The server at [10] contains also files for
all linear systems for symmetries of degree 3 to
15 in Reduce format and in LinBox format
which can also be read by Maple.

9 Summary

A class of sparse linear systems that allows ef-
ficient solution strategies and that occurs fre-
quently, for example, in integrability investiga-
tions, is characterized by the vanishing of many
of the unknowns in its solution. In association
with the purpose of such systems we call them
selection systems. A series of such systems that
we investigated results from symmetry investi-
gations of a non-abelian ODE system of Kont-
sevich. It is demonstrated how the vanishing
of many variables of a selection system can not
only be used to speed up the solution of the
system but also to avoid formulating most of
the system and to apply the solution of the sys-
tem to large expressions. It is demonstrated
how a pre-processor step in which repeatedly 1-
term equations are identified and applied and
afterwards the remaining equations are sorted
by size could speed up Maple routines that are
specialized in sparse systems by a considerable
factor.

14

Acknowledgement

The first author would like to thank Winfried
Neun for providing a PSL version for large num-
bers of identifiers. The second author would
like to thank Arthur C. Norman for very help-
ful discussions concerning CSL. Computations
were run on computer hardware of the Sharcnet
consortium (www.sharcnet.ca).

References

[1] Kontsevich, M., private communication.

[2] Kontsevich, M., Noncommutative identi-
ties, Opening Talk at the Arbeitsta-
gung 2011 of the Max Planck Institute
Bonn/Germany http://www.mpim-bonn.

mpg.de/webfm send/146 (2011)

[3] Olver, P.J. and Sokolov, V.V., Inte-
grable evolution equations on associative
algebras, Comm. in Math. Phys., 1998,
193, no.2, 245-268.

[4] Mikhailov, A.V. and Sokolov, V.V., In-
tegrable ODEs on Associative Algebras,
Comm in Math Phys., 211, 231-251, 2000.

[5] Efimovskaya, O.V., Integrable cubic ODEs
on Associative Algebras, Fundamental-

naya i Prikladnaya Matematika, 8, no. 3,
705-720, 2002.

[6] Wolf, T. and Efimovskaya, O., On
integrability of the Kontsevich non-
abelian ODE system, accepted for pub-
lication in Lett in Math Phys, 9
pages, DOI: 10.1007/s11005-011-0527-4
and http://lie.math.brocku.ca/twolf

/papers/EfWNew11.pdf (2011).

[7] Olver, P.J., Applications of Lie Groups
to Differential Equations, Second Edi-
tion, Graduate Texts in Mathematics, 107,
Springer–Verlag, New York, 1993.

[8] Reduce - A portable general-
purpose computer algebra

system, free download site:
http://reduce-algebra.sourceforge.net,
2009.

[9] The program streamsolve.red for solv-
ing linear algebraic systems in Reduce

(2007), http://lie.math.brocku.ca/

papers/TsWo2007/.

[10] The program LSSS.red for solving lin-
ear algebraic selection systems in Re-

duce (2011), http://lie.math.brocku.
ca/papers/LSSS/.

[11] Neun W.: The computer algebra sys-
tem Reduce with an extension allow-
ing 20M identifiers: http://www.zib.de/

Symbolik/reduce/twentyM.zip

[12] Tsarev, S.P. and Wolf, T.: Classifica-
tion of 3-dimensional integrable scalar
discrete equations, Lett in Math Phys,
DOI:10.1007/s11005-008-0230-2, also
arXiv: 0706.2464, (2008).

[13] Wolf, T: Applications of CRACK in the
Classification of Integrable Systems, CRM
Proceedings and Lecture Notes, 37 (2004)
pp. 283-300.

[14] Gonnet, G.H., Monagan, M.B.: Solv-
ing Systems of Algebraic Equations
or the Interface between Software and
Mathematics. Research report CS-89-13,
University of Waterloo (1989). http://

www.cs.uwaterloo.ca/research/tr/1989/

CS-89-13.pdf.

[15] Pearce, R.: Solving Sparse Linear Systems
in Maple, http://www.mapleprimes.com/
posts/41191-Solving-Sparse-Linear-

Systems-In-Maple, source code at: http:
//www.cecm.sfu.ca/~rpearcea/sge/sge

.mpl (2007).

[16] Project LinBox: Exact computational lin-
ear algebra, http://www.linalg.org/

15

http://www.mpim-bonn
http://lie.math.brocku.ca/twolf
http://reduce-algebra.sourceforge.net
http://lie.math.brocku.ca/
http://lie.math.brocku
http://www.zib.de/
http://www.mapleprimes.com/
http://www.linalg.org/

	1 Introduction
	2 The application
	2.1 A non-abelian ODE-system
	2.2 Symmetries
	2.3 Necessary symmetry conditions

	3 The solution of selection systems
	3.1 Ideas for a solver of large sparse linear algebraic systems
	3.2 A stream of equations
	3.3 Sorting equations
	3.4 Applying 1-term equations
	3.5 Selective splitting of equations
	3.6 Utilizing additional necessary conditions
	3.7 Optimizing iterations
	3.8 Applying Solutions of large linear Systems

	4 Results
	5 Reduce issues
	6 Comparison with Maple
	7 Comparison with LinBox
	8 The procedures
	9 Summary

