Skip to main content
Log in

Practical approach to the fast Monte-Carlo ray-tracing

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

The paper proposes a new high-quality approach to fast Monte-Carlo path-tracing. The key feature of the approach is screen-space filtering with the help of additional information (depth, normal direction, etc.) of the illumination separated from material color. It allows to reach high-quality and edge-aware filtering. The proposed method yields 1–2 times speed-up without putting significant restrictions on the raytracing algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ritschel, T., Dashsbacher, C., Grosch, T., and Kautz, J., The state of the art in interactive global illumination, Comput. Graphics Forum, 2012, vol. 31, pp. 160–188.

    Article  Google Scholar 

  2. Pharr, M. and Humphreys, G., Physically Based Rendering: From Theory to Implementation, San Francisco: Morgan Kaufmann, 2004.

    Google Scholar 

  3. Kontkanen, J., Rasanen, J., and Keller, A., Irradiance filtering for Monte Carlo ray tracing, Monte Carlo and Quasi-Monte Carlo Methods, Berlin: Springer, 2006, pp. 259–272.

    Google Scholar 

  4. Suykens, F. and Willems, Y., Adaptive filtering for progressive Monte-Carlo image rendering, Proc. WSCG 2000, 2000.

    Google Scholar 

  5. Silverman, B., Density Estimation for Statistics and Data Analysis, London: Chapmann and Hall, 1986.

    Book  MATH  Google Scholar 

  6. Gastal, E. and Oliveira, M., Adaptive manifolds for real-time high-dimensional filtering, ACM Trans. Graphics, 2012, vol. 31, no. 4, article 33.

    Article  Google Scholar 

  7. Kornprobst, P. and Tumblin, J., Bilateral Filtering: Theory and Applications, Now Publishers, 2009.

    Google Scholar 

  8. Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H., Edge-avoiding A-Trous wavelet transform for fast global illumination filtering, Proc. of the Conf. on High Performance Graphics, 2010, pp. 67–75.

    Google Scholar 

  9. Holschneider, M., Kronald-Martinet, R., Morlet, J., and Tchamitchian, P., A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet Transform, New York: Springer, 1989.

    Book  Google Scholar 

  10. Hachicuka, T., Wojciech, J., Weistroffer, R., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H., Multidimensional adaptive sampling and reconstruction for ray tracing, ACM Trans. Graphics, 2008, vol. 27, no. 3, article 33.

    Google Scholar 

  11. Rousselle, F., Knaus, C., and Zwicker, M., Adaptive sampling and reconstruction using greedy error minimization, Proc. of 2011 SIGGRAPH Asia Conf. (New York, 2011), New York: ACM, 2011, pp. 159:1–159:12.

    Google Scholar 

  12. Lehmann, E. and Casella, G., Theory of Point Estimation, New York: Springer, 1998.

    MATH  Google Scholar 

  13. Rousselle, F., Knaus, G., and Zwicker, M., Adaptive rendering with non-local means filtering, ACM Trans. Graphics, 2012, vol. 31, no. 6, p. 195.

    Article  Google Scholar 

  14. Buades, A., Coll, B., and Morel, J.M., A non-local algorithm for image denoising, Proc. of IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2005, vol. 2, pp. 60–65.

    Google Scholar 

  15. He, K., Sun, J., and Tang, X., Guided image filtering, Computer Vision-ECCV 2010, Berlin: Springer, 2010, pp. 1–14.

    Chapter  Google Scholar 

  16. Bauszat, P., Eisemann, M., and Magnor, M., Guided image filtering for interactive highquality global illumination, Comput. Graphics Forum, 2011, vol. 30, no. 4, pp. 1361–1368.

    Article  Google Scholar 

  17. Doidge, I. and Jones, M., Probabilistic illuminationaware filtering for Monte Carlo rendering, The Visual Comput., 2013, vol. 29, nos. 6–8, pp. 707–716.

    Article  Google Scholar 

  18. Sen, P. and Darabi, S., On filtering the noise from the random parameters in Monte-Carlo rendering, ACM Trans. Graphics, 2012, vol. 31, no. 3.

    Google Scholar 

  19. Leler, W., Human vision, anti-aliasing, and the cheap 4000 line display, ACM SIGGRAPH Comput. Graphics, 1980, vol. 14, no. 3, pp. 308–313.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Gruzdev.

Additional information

Original Russian Text © A.M. Gruzdev, V.A. Frolov, A.V. Ignatenko, 2015, published in Programmirovanie, 2015, Vol. 41, No. 5.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruzdev, A.M., Frolov, V.A. & Ignatenko, A.V. Practical approach to the fast Monte-Carlo ray-tracing. Program Comput Soft 41, 253–257 (2015). https://doi.org/10.1134/S0361768815050035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768815050035

Keywords

Navigation