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Abstract To better extract the features from text instances with various shapes, a scene text detector 
using High Resolution Net (HRNet) and spatial attention mechanism is proposed in this paper. 
Specifically, we use HRNetV2-W18 as the backbone network to extract the text feature in text instances 
with complex shapes. Considering that the scene text instance is usually small, to avoid too small feature 
size, we optimize HRNet through deformable convolution and Smooth Maximum Unit (SMU) activation 
function, so that the network can retain more detail information and location information of the text 
instance. In addition, a Text Region Attention Model (TRAM) is added after the backbone to make it pay 
more attention to the text location information and a loss function is added to TRAM, so that the network 
can learn the features better. The experimental results illustrate that the proposed method can compete 

with the state-of-the-art methods. Code is available at: https://github.com/zhangyan1005/HR-DBNet. 

Keywords Text region attention· High resolution networks· Scene text detection· Deep learning 

 

1 Introduction 

As the most critical part of scene text recognition, 
scene text detection refers to the extraction of 
the text regions from a natural scene image. In 
recent years, scene text detection and recognition 
has attracted increased attention due to its wide 
applications in scene understanding, blind 
guidance and autonomous driving, etc. Scene text 
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detection is a very challenging task in computer 
vision. The main difficulties are as follows: (1) 
There may contain a variety of languages, fonts, 
shapes, sizes and directions in natural scene text. 
(2) The defocusing, blurring and degradation 
arise during image data collection make the basic 
tasks such as segmentation difficult. (3) The 
background may be very complex and the signs 
in the background could be like the text which 
leads to false detection.  

With the tremendous progress in deep 
learning, there have emerged numerous methods 
based on convolutional neural networks (CNNs) 
in scene text detection. These methods can be 
roughly divided into two categories: regression-
based methods and segmentation-based methods. 
Regression-based method Such methods first 
obtain feature maps by the backbone, then predict 
whether each pixel on the feature maps belongs to 
a text instance and finally obtain the text boxes by 
means of the non-maximum-suppression. For 
example, by modifying the region suggestion and 
boundary box regression modules of the general 
detector Faster R-CNN[6] and SSD[7], a scene text 
detection algorithm is designed to locate text 
instances directly. By improving the Faster R-
CNN, CTPN[8] can detect horizontal words. Poly-
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FRCNN[9] can detect bent text. Textboxes[10] and 
Textboxes++[11] tweaked SSD by defining the 
default text box as a quadrangle with different 
width ratio specifications to accommodate 
different orientations and width ratios of text. 
Jaderberg et al.[12] used Edge Boxes[13] to generate 
candidate boxes and then used regression to fine-
tune the candidate Boxes. Dai et al.[14] proposed a 
Progressive Contour Regression (PCR) method 
for detecting text boxes with arbitrary shapes. 
PCR generates horizontal text suggestions by 
estimating the center and size of the text. Then, 
the text suggestion-oriented corners are predicted 
from the initial horizontal corners, and finally the 
text box of arbitrary shape is returned by iteration 

[14]. Regression-based methods rely heavily on 
complex heuristic processing, which wastes a lot 
of computing resources. 
Segmentation-based method Such methods use 
segmentation to obtain text instance directly 
without regression operation. The boundary 
learning method[15] divides each pixel into three 
categories: text, boundary and background[15]. 
PSENet[1] obtained multiple mask kernel regions 
with the same center points and different 
proportions through instance segmentation based 
on the boundary learning method, and obtained 
text instance prediction text regions by using 
progressive scale extension algorithm. In the 
segmentation framework, Tian et al.[16] added a 
loss term to maximize the Euclidean distance 
between pixel embedding vectors belonging to 
different text instances and pixel embedding 
vectors belonging to the same instance, so as to 
better separate adjacent texts[16]. Lyu et al.[17] 
proposed a Mask TextSpotter that uses character-
level tags to detect and recognize both character 
and instance masks. PixelLink[2] predicts whether 
two adjacent pixels belong to the same text 
instance by adding additional output channels to 
represent links between adjacent pixels. DBNet[3] 
proposes the differentiable binarization (DB) 
which makes the process of binarization end-to-
end trainable. This simplifies the post-processing 

steps and greatly saves the time cost. 
Due to the capacity of detection arbitrary 

shapes of scene text and the robustness in 
practical applications, scene text detection 
methods based on segmentation have attracted 
more and more attention in recent years. Accurate 
feature extraction is very crucial to segmentation-
based methods. The previously mentioned 
segmentation-based methods obtain good 
performance through label making and post-
processing, but few attentions are paid to the 
backbone networks. ResNet[19] and VGG[20] are 
usually used as the backbone network to extract 
features in text detection, and then a structure like 
feature pyramid (FPN)[21] is built to perform 
feature fusion. For the feature obtained by 
networks through continuous stridden 
convolution or pooling, although the high-
resolution representation is obtained by up-
sampling, some spatial information is lost since 
up-sampling cannot make up for the loss of 
spatial resolution.   

In HRNetV2[5] network, the representation 
of high resolution is always maintained, and then 
the low resolution is continuously added. HRNet 
can adapt to complex changes in human posture, 
so it is often used for human body posture 
estimation. Considering the shapes of the text are 
also complex and various, we use HRNet as the 
backbone to better extract the text feature in text 
instance with various shapes.  

The network usually performs a series of 
convolution operations with strides to obtain high 
resolution semantic information. During this 
process, the network loses some location 
information, which may affect the final detection 
results. We propose a text region attention module 
(TRAM) added after the backbone to compensate 
for the location information lost in downsampling. 

Our main contributions are as follows: 
1. We verifies that HRNetV2-W18 network can 
be used for scene text detection with good results. 
2. We propose a text region attention module and 
improve the DB module to better capture text area 
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information. 
3. We achieve the precision of 87.6%, recall of 
79.6% and F-measure of 83.4% on the data set 
ICDAR2015 without additional data set pre-
training. On the data set Total-Text, the precision 
recall and F-measure reach 85.7%, 77.6% and 
81.5%, respectively. 
4. We pretrain 300 epochs on ICDAR2017, 
iterating about 541K times, and then fine-tune the 
data sets on different data sets (ICDAR2015, 
Total-Text, MSRA-TD500 and CTW1500) to 
obtain a better result. The F-measures reach 
85.7%, 84.4%, 85.0% and 83.4%, respectively. 

The rest of this article is organized as 
following. We discuss related work in Sec. 2. In 
Sec. 3, we explain the influence of attention 
mechanism and activation function on text 
detection. In Sec. 4, we present the experimental 
results and compare them with the results of 
previous methods. We present the conclusions in 
Sec. 5. 

2 Related work 

We use HRNet as the backbone and DBNet 
in the image segmentation process. We introduce 
them briefly.  

2.1 HRNet 

HRNet[5] is usually used for human posture 
estimation which performs well in keypoints 
detection, posture estimation and multi person 
posture estimation. It is composed of parallel 
high-to-low resolution subnetworks with repeated 
information exchange across multi-resolution 
subnetworks. While increasing the depth, HRNet 
still retains the high-resolution feature map, and 
adds new branches to increase the number of 
channels to obtain more channel information. 
Each new branch is formed by 3×3 convolutions 
with step size of 2. The output size is 1/2 of the 
input size and the number of channels is doubled. 
Then the feature maps with different resolutions 
are fused in the feature fusion stage. Compared 

with the first block of VGG and ResNet, HRNet 
uses two 3×3 convolutions to replace the 7×7 
convolutions to reduce the number of parameters 
while keeping the size of receptive field.  

2.2. DBNet 

The segmentation-based scene text detection 

methods need to predict whether each pixel 

belongs to the text instance. The general method 

is to select a threshold, and then the pixel with 

predicted probability greater than the threshold is 

classified as the text area. Usually, this 

binarization process can be described as follows: 

          
,

1,  if S ,

0,  Otherwise,

ij

i j

t
B


= 


    (2.1) 

where S is the probability map produced by a 

segmentation network and B is the binary map. t 
is the predefined threshold and (i, j) indicates the 
coordinate point in the map. The binarization 

described in Eq. (2.1) is not differentiable. 

Therefore, the hyper-parameter t cannot be 

optimized by the network. To solve this problem, 

DBNet[3] proposes to approximate the standard 

binary function by a differentiable function:  

          
( ), ,

,

1
,

1 i j i j
i j k S T
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e
− −
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     (2.2) 

where B  is the approximate binary map, T is 

the adaptive threshold map learned from the 

network and k indicates the amplifying factor. 

Since Eq. (2.2) is differentiable, the network can 

optimize the threshold T to improve the 

performance of segmentation.  

3 Methodology 

The overall architecture of the proposed 
method is shown in Fig. 3.1. It includes three 
modules: feature extraction module, text attention 
module and DB module. First, the input image is 
fed into HRNetV2-W18 to obtain the feature map. 
Then, the feature map and att_text_ map is fused 
by dot product to achieve the new feature map F. 
Here the att_text_ map is generated by real text 
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labels. The detail for the generation method of 
this label will be given in Sec. 3.1. Finally, the 
new feature F is used to predict the segmentation 
map(S) and Threshold map(T), and then the 
approximate binary map is obtained by 

differentiable binarization function from the 
prediction map S and threshold map T. In the 
inference stage, text boxes can be obtained 
through post-processing operations.  

 

Fig. 3.1 The model framework. “DB” denotes differentiable binarization. 

3.1 The label generation 

To train the network, we need to generate 
four maps: att_text_map, segmentation map, 
threshold_map and approximate binary map. 

 

Fig. 3.2 The production of the labels. (a) different 
text borders: real label text borders (red), 
shrunken text borders(blue) and expanded text 
borders(green). (b) segmentation map, (c) 
threshold_map. (d) att_text_map. (e) approximate 
binary maps. 

As shown in Fig. 3.2, the methods to 
generate the segmentation map, threshold_map 
and approximate binary map are consistent with 
those in DBNet[3]. The detail to generate att_text_ 
map is shown in Table 3.1, where Gs denotes the 
text bounding box shrunk by the ground truth, Gd 
represents the text bounding box dilated by the 
ground truth and [Gs, Gd] represents the gap 

between Gs and Gd. We use |σ| to represent the 
normalized distance from each pixel to the closest 
segment in the ground-truth bounding box. The 
segmentation map and approximate binary map 
are denoted by S and B, respectively. 
 

Table 3.1 The production of the label 
Maps <Gs [ Gs, Gd] > Gd 

S 1 0 0 

Threshold_map 0 |σ| 0 

B Eq. (2.2) 

att_text_ map 0.3 |σ| 0.3 

3.2 Text region attention 

Inspired by the spatial attention 
mechanism[18], the TRAM module is proposed to 
compensate for the location information lost in 
downsampling. The TRAM module (shown in 
Fig. 3.3) is constructed by combining convolution 
operations with att_text_map, so that the high-
resolution semantic information can be obtained 
by convolution operations while the location 
information can be learned through the 
att_text_map feature. Therefore, the attention 
module of the text area can help the network for 
information transmission by learning information 



Scene text detection using HRNet and spatial attention mechanism                                 5 

that needs to be emphasized or suppressed. 
TRAM uses the spatial position relationship 

of features to generate text area attention, which 
is different from the channel attention. It focuses 
more on the spatial position of the text region, and 
so the network can understand which region of 
the features should have higher response. As 
shown in Fig. 3.3 (b), first, convolution operation 
is used to downsample the input feature image to 
obtain a new feature image with the size of 1/4 of 
the original image and the number of channels is 
not changed. Then, a feature map of size C*H*W 

is obtained by SMU activation and two 2×2 
deconvolution operations with a stride of 2. 
Finally, the feature is multiplied with 
att_text_map element by element, and activated 
by sigmoid to obtain the feature map with 
attention. 

Formally, given an intermediate feature map
C H W

F R
   as input, the model predicts a two-

dimensional spatial attention map
1_ _ H W

att text map R
   and a new feature 

map ' c H W
F R

   . The whole process can be 
summarized as follows: 

 

Fig. 3.3 Text area attention module, (a)TRAM structure in blue box as shown in Fig3.1. (b) details of 
text region attention model. 

( )( )( )( )( )'

2 2 2 2 3 3F deconv SMU deconv SMU conv F  = ， 

(3.1) 
where l l

def    represents the deconvolution 

operation of size l l  and SMU  denotes the 
sigmoid activate function. Then, the output of the 
TRAM module can be obtained as  

 ( )'_ _ ,
out

F att text map F=     (3.2) 

where   represents the pointwise product. 
In the module of TRAM, att_text_map 

generated by labels plays a role of like spatial 
attention which makes the network backbone pay 

more attention to the features of text area to 
emphasize the area containing text and suppress 
information of other locations. Fig. 3.4 shows the 
heatmaps of the three images from Total-Text. 
The first column represents the original images. 
The second column represents the heatmap of 
DBNet. The third column represents the heatmap 
of DBNet with TRAM. We can see that the 
heatmap is clearer and is better fitting for the text 
instance after adding TRAM. 
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(a) Original Image       (b) DBNet (c) our 
Fig. 3.4 Heatmaps of TRAM_DBNet and DBNet detection results in Total-Text 

3.3 Backbone 

We choose HRNetV2-W18 as the backbone 
network and optimize it through deformable 
convolution and SMU activation function, so that 
the network can retain more detail information 
and location information of the text instance. 

3.3.1 Residual blocks and bottleneck blocks 

The network structure of HRNetV2-W18 is 
consistent with the basic architecture in [5], 
which is mainly composed of residual blocks and 
bottlenecks as in ResNet50[19]. It can be roughly 

divided into four stages. The first stage is 
composed of four bottleneck blocks with 64 
output channels, and each stage has one more 
branch than the previous stage. Each new branch 
is the result of convolution operation and fusion 
of all feature maps of the previous stage, in which 
the resolution is half of that of the previous branch 
and the number of channels is twice of that of the 
previous branch to fuse feature and repeat 
exchange of information. The structure of 
residual block and bottleneck block modified in 
are shown in Fig. 3.5, where SMU represents the 
smooth maximum unit which will be defined in 
Sec. 3.3.2.
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(a) basic block (b) bottleneck 

Fig. 3.5 Improved basic block and bottleneck. (a) basic block. (b) bottleneck. 

3.3.2 Activation function 

We select Smooth Maximum Unit (SMU)[22] 
as the activation function which is defined as  

( ) ( ) ( ) ( )( )1 1 1
, : .

2

x xerf x
f x x

   
 

+ + − −
= ( 3.3) 

Here ( ) 2

0

2 x
t

erf x e dt


−=   .   and   are 

hyperparameters, which are set to 0.25 and 
1000000, respectively.  

 

Fig. 3.6 HRNetV2 W18 feature fusion in different ways. (a) The first case: fusion between feature maps 
of the same resolution. (b) The second case: fusion from low-resolution feature images to high-resolution 
feature images. (c) The third case: fusion from high resolution feature images to low resolution feature 
images. The first case is included in both (b) and (c). 
 

3.3.3 Feature fusion 

As mentioned above, HRNetV2-18 consists 
of four stages. The second, third and fourth stages 
have different branches, which requires the fusion 
of features obtained from different branches with 
different resolutions. Fig. 3.6 includes three 
situations: fusion between feature map of the 
same resolution, fusion from low-resolution 

feature map to high-resolution map, and fusion 
from high-resolution feature map to low-
resolution feature map. In the first case, the fusion 
method is to copy the input feature map directly. 
In the second case, bilinear interpolation is used 
to up-sample the target size and convolution 
operation with convolution kernel size of 1×1 is 
used to keep the number of channels. In the last 
case, 3×3 convolution operation with stride 2 is 
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used to downsample to the target size. 
The feature fusion process can be 

summarized as Eq. (3.4), (3.5) and (3.6): 
 'F F=  (3.4) 

 up 2 1 1 1( ( ))F F f n up F=  
 

(3.5) 

 1 3 3 2( ( ))
down

F F n f F=    (3.6) 

where 1 1f    and 
3 3f    represent convolution 

operation with 1×1 and 3×3 kernel, respectively. 
F1 and F2 represent the input features with 

different resolution.   represents addition 
element by element. n denotes the number of the 
operation. upF and down

F  represent the fusion 
from low resolution to high resolution and the 
fusion from high resolution to low resolution, 
respectively.  

3.3.4 The output form of the backbone 

As shown in Fig. 3.7, the number of output 
channels of HRNetV2-W18 are 18,36, 72 and 144, 
respectively. The output can be summarized as 

 

Fig. 3.7 Output structure of HRNet V2 

 

( ) ( ) ( )( )( )1 1 1 2 3 42 ;2 ;4 ;8 ,f cat F up F up F up F   

(3.7) 
where 4 up  and 8 up  represent 4 times up-
sampling and 8 times up-sampling, respectively. 
CAT represents concatenation operation. F1, F2, 
F3, and F4 represent the input features with 
different resolution, respectively. 

The number of the output channel in the last 
layer is 19 in the original version of HRNetV2.  
We use two convolution operations of size 1×1 to 
increase it to 256 to obtain more channel 
information.  

3.4 Loss function 

Denote the loss on the TRAM, threshold 
map, approximate binary map and segmentation 
prediction map in the text area as 𝐿𝑡𝑟𝑎𝑚 , 𝐿𝑡ℎ𝑟𝑒 , 𝐿𝐵  and 𝐿𝑆 , respectively. The total 
loss function is defined as 

( ) ( )tram thre B S
L L L L L =  + +  + , (3.8) 

where 10 =   and 5. =   The cross-
entropy loss is adopted for 𝐿𝐵 and 𝐿𝑆. And the 
hard case mining is used to balance positive and 
negative samples. The cross-entropy loss is 
defined as 

 ( ) ( )log 1 log 1
l

i i i i

i S

y x y x


+ − − ,   (3.9) 

where Sl represents the sampled data set, and the 
ratio of positive and negative samples is set to 1:3. 
xi denotes the pixel value of sampling points in the 
segmentation probability map or approximate 
binary graph output by the network and yi 
represents the label for xi. L1 loss is adopted for 𝐿𝑡𝑟𝑎𝑚 and 𝐿𝑡ℎ𝑟𝑒 as  

 
* * ,

tram thre i i

i R

L L y x


= = −  (3.10) 

where R is the set of pixels after attention 
expansion in an expanded polygon or text region. 

*

i
y  denotes the label of the adaptive binarization 
threshold map or the label of the att_text_map and  

*

i
x  denotes the feature value of network output. 

4 Experiments and results 

4.1 Datasets 

ICDAR2015[24] contains 1500 images, including 
1000 training images and 500 test images, 

respectively. It contains 17,548 instances of 
English text. The label information of the text 
includes the coordinates of the four points 
surrounding the boundary box of the text 
(clockwise) and the content of the text. In addition, 
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"###" is used to indicate unattended text content. 
ICDAR2017[25] contains a total of 9000 images, 
including 7200 training images and 1800 test 
images, respectively. It mainly includes 
horizontal, vertical and slanted text and most of 
them are horizontal and long text. The text label 
information of ICDAR2017 dataset contains four 
corner points of the text boxes and text contents. 
Total-Text[26] contains 1555 images, including 
1255 training images and 300 test images, 
respectively. The Total-Text dataset is 
characterized by various shapes of text, including 
horizontal, multi-directional and curved text. 
MSRA-TD500[27] contains a total of 500 images, 
including 300 training images and 200 test images. 
The TD500 dataset contains both English and 
Chinese texts with multi-direction. Text labels are 
annotated at the line level. Due to the lack of 
training sets in this data set, we also add 
additional data set HUST-TR400[28] in the 
training stage. 
CTW1500[29] contains 1500 images in total, 
including 1000 training images and 500 test 
images. Each text label is given by 32 coordinate 
values, the first four being the coordinates of the 
"top left, bottom right" vertices of the rectangular 
box, and the remaining 28 values representing the 
polygonal box coordinates of the curved text. 

4.2 Data augmentation 

To increase the generalization of the model, 

we adopt data enhancement to enlarge the training 

sets. Our data augmentation mainly includes the 

following operations: (1) Random rotation with 

an angle range of ( 10 ,10 )−    (2) Random 
clipping. All the images are resized to 640×640 
randomly  (3) Random rotation in horizontal or 
vertical direction. 

4.3 Implementation details 

All experiments are performed under the 
environment of PyTorch 1.10.0 and Python3.7.10. 
The details of the hyperparameters are shown in 
Table 4.1. The learning rate per iteration is 
calculated as 

_ 1 .
max_ 1

power

r r

epoch
l init l

epoch

 
=  − + 

(4.1) 

Here _
r

init l   represents the initial learning 

rate and we set it to 0.007. 
r

l  represents current 

learning rate and max_ epoch  represents the 
maximum number of epochs in the training period. 
power is set to 0.9. 
 

Table 4.1 Experimental hyperparameter setting 

Names parameter 
Batch_size 4 

The number epochs 1200 

Initial learning rate 0.007 

The learning rate per 
iteration 

Eq. (4.1) 

Gradient descent 

method 

stochastic gradient 

descent (SGD) 

SGD momentum 0.9 

SGD weight_decay 0.0001 

 

As usual, we use Precision(P), Recall(R) and 

F-measure(F)[30] to evaluate the performance of 

the model. 

4.4 Experiment results 

The experiments include three parts. In the 
first part, we conduct some ablation experiments 
on ICDAR2015. In the second part, we compare 
the proposed model with other methods. In the 

third part, we present some visualization analysis. 

4.4.1 Ablation experiments 

In this section, we conduct some ablation 
experiments on ICDAR2015 to verify the 
effectiveness of different backbone networks, 
activation function and the proposed spatial 
attention mechanism (i.e. TRAM). The 

experiment results are shown in Table 4.2.  

The effectiveness of HRNetV2-W18 as the 
backbone network Since ResNet is the most 
common backbone network in scene text 
detection, we compare HRNetV2-W18 with 
ResNet18 and ResNet50 to verify the 
effectiveness of HRNetV2-W18 as the backbone 
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network. As shown in Table 4.2, DBNet with 
HRNetV2-W18 as the backbone network 

achieves better performance than ResNet18 and

Table 4.2 Ablation results of ATT DBNet at ICDAR2015 

Method P (%)   R (%) F (%) #Par(M) FPS 

ResNet18+Relu 86.1 74.2 79.8 51.11 24.57 

ResNet18+SMU 88.0 74.0 80.5 51.14 26.70 

ResNet18+ Relu+TRAM 87.5 72.0 79.0 52.77 26.56 

ResNet18+SMU+TRAM 85.7 77.6 81.4 51.14 23.76 

ResNet50+Relu 87.0 74.5 80.2 107.09 15.94 

ResNet50+SMU 85.9 76.9 81.2 107.09 20.63 

Resnet50+ Relu+TRAM 86.3 75.0 80.2 107.08 20.15 

Resnet50+SMU+TRAM 85.9 77.7 81.6 107.09 15.82 

HRNetV2-W18+Relu 85.9 76.2 80.7 42.03 11.50 

HRNetV2-W18+SMU 87.8 77.8 82.5 42.03 17.76 

HRNetV2-W18+Relu+TRAM 86.9 79.3 82.9 42.11 17.69 

HRNetV2-W18+SMU+TRAM 87.6 79.6 83.4 40.84 12.26 

 

ResNet50. Specifically, compared to DBNet with 
ResNet50 and ResNet18 as backbone network, 
the F-measure increases by 0.5% and 0.9%, 
respectively. Moreover, the number of parameters 
in DBNet with HRNetV2-W18 as the backbone 
network is less than half of that with ResNet50 as 
the backbone network.  

The effectiveness of SMU activation function 

In Table 4.2, we can see that using SMU as   
activation function also achieves better 
performance than Relu. For ResNet18 backbone, 
although the Recall decreases by 0.2%, the 
Precision and F-measure increases by 1.9% and 
0.7%, respectively. For ResNet50 backbone 
network, the Precision decreases 1.1%, but the 
Recall and the F-measure increases by 2.4% and 
1.0%, respectively. For HRNetV2-W18 backbone, 
the Precision, Recall and F-measure increases 
by %1.9, 1.6% and 1.8%, respectively.  

The effectiveness of TRAM Table 4.2 shows that 
TRAM cannot improve DBNet with Resnet 

backbone, but it improves DBNet with 
HRNetV2-W18 backbone significantly. The 
Precision, Recall and F-measure are increased by 
1.0%, 3.1% and 2.2%, respectively when TRAM 
is added to DBNet with HRNetV2-W18 as bone 
network and Relu as activation function. The 
Precision decreased by 1.0%, but the Recall and 
F-measure are increased by 0.3% and 0.5%, 
respectively when TRAM is added to DBNet with 
HRNetV2-W18 as bone network and SMU 
activation function.  

In general, the HRNetV2-W18 backbone 
network, SMU activation and TRAM improve the 
performance of text detection on ICDAR2015. 

4.4.2 Comparisons with other methods 

In this section, we compare the proposed 
model with prior methods. In this series of 
experiments, we first pre-training the models on 
ICDAR2017 for 300 epochs and then fine-tune 

them on corresponding data set. #Par represents 
the number of arguments.  

Detection of long text ICDAR2015 composed 
mainly long text images. As shown in Table 4.3 
and Fig 4.1, we can see that our method achieves 

higher F-measure than DBNet (85.7% vs 85.4%). 
Compared with other methods, although the 
speed is not the fastest, our model achieves the 
highest accuracy with the smallest number of 
parameters.  
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Curved text Total-Text dataset and CTW1500 
composed of mainly multi-directional and bent 

text. Almost every image contains an instance of 
bent text. As can be seen from in Table 4.4 and            

Table 4.3 Detection results on ICDAR2015 

Method P(%) R(%) F (%) #Par(M) FPS 

CTPN[8] 74.2 51.6 60.9 - 7.1 

EAST[31] 83.6 73.5 78.2 - 13.2 

FCENet[32] 85.1 84.2 84.6 - - 
TextSnake[33] 84.9 80.4 82.6 218.9 1.1 

PixelLink[2] 85.5 82.0 83.7 234.9 3.0 

SegLink[34] 73.1 76.8 75.0 170.0 - 
PSENet[1] 86.9 84.5 85.7 229.3 1.6 

DBNet[3] 88.2 82.7 85.4 110.4 26 

Ours 88.5 83.0 85.7 42.3 8.2 

 

 

Fig. 4.1 The bubble charts of various methods on ICDAR2015 

Fig. 4.2, our method achieves the highest Recall 
with the smallest number of parameters, but the 
F-measure is lower than ABCNet (84.4% vs 
84.5%). As can be seen from Table 4.5, the 
Precision, Recall and F-measure of our methods 

are 85%, 81.1% and 83% on CTW1500, and the 
number of the parameters is still the smallest. 
Multilingual data MSRA-TD500 contains 
multi-directional texts in both Chinese and 
English. The detection results on this data set are
 

Table 4.4 Detection results on Total-Text 

PixelLink, 83.7

TextSnake, 82.6

PSENet, 85.7

DBNet, 85.4

Ours, 85.7

82

82.5

83

83.5

84

84.5

85

85.5

86

86.5

-5 0 5 10 15 20 25 30 35

F
-
m

e
a
s
u

r
e

FPS

ICDAR2015

Method P(%) R(%) F (%) #Par(M) FPS 

TextSnake[33] 82.7 74.5 78.4 218.9 - 

SAST[35] 83.8 76.9 80.2 - - 

LOMO[36] 87.6 79.3 83.3 - - 
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Fig. 4.2 The bubble charts of various methods on Total-text 
 

Table 4.5 Detection results on CTW1500 

 

shown in Table 4.6. Compared with other 
methods, our method achieves the highest F-

measure with the smallest number of parameters, 
but the Precision is lower than DBNet. 

Table 4.6 Detection results on MSRA-TD500 

TextSnake, 78.4

PSENet, 80.9

DBNet, 82.8

Ours, 84.4

77

78

79

80

81

82

83

84

85

86

-10 0 10 20 30 40 50 60

F
-
m

e
a
s
u

r
e

FPS

Total-text

PSENet[1] 84.0 78.0 80.9 229.3 3.9 

FCENet[32] 87.4 79.8 83.4 - - 

CRNet[37] 85.8 82.5 84.1 - - 

ABCNet[38] 87.9 81.3 84.5 141.00 11 

TextField[39] 81.2 79.9 80.6 - - 

DBNet[3] 88.3 77.9 82.8 52.8 50 

Ours 87.2 81.7 84.4 42.3 12.3 

Method P(%) R(%) F(%) #Par(M) FPS 

CTPN[8] 60.4 53.8 56.9 - 7.14 

FCENet[32] 85.7 80.7 83.1 - - 

TextSnake[33] 67.9 85.3 75.6 - - 

PSENet[1] 84.8 79.7 82.2 230.3 3.9 

LOMO[36] 85.7 76.5 80.8 - - 

ABCNet[38] 84.4 78.5 81.4 - - 

DBNet[3] 84.8 77.5 81.0 52.8 55 

Ours 85.0 81.1 83.0 42.3 11.2 

Method P(%) R (%) F(%) #Par(M) FPS 

PixelLink[2] 83.0 73.2 77.8 234.9 3 

TextSnake[33] 83.2 73.9 78.3 218.9 1.1 
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4 .4.3 Visualization analysis 

In this section, we present some 
TRAM_DBNet detection results on ICDAR2015 
and Total-Text, and compare them with those of 
DBNet. Fig. 4.1 shows the detection results of 
TRAM_DBNet and DBNet in ICDAR2015. 

Comparing the second column and the right-most 
column, we can see that TRAM_DBNet detect 
real text instances more accurate, especially for 
the image corners containing text edges. Fig. 4.2 
shows the test results on data set Total-Text. 
Compared with the red boxes obtained by DBNet, 
the green boxes obtained by TRAM_DBNet can 
encircle the text more completely.

 

 

   

   

(a) Original Image        (b) DBNet (c) Ours 

Fig. 4.1 Some detection results of TRAM DBNet and DBNet in ICDAR2015 

 

   

CRAFT[40] 88.2 78.2 82.9 - 8.6 

SegLink[34] 86.0 70.0 77.0 170.0 8.9 

MCN[41] 88 79 83 - - 

Conner[42] 87.6 76.2 81.5 - - 

DBNet[3] 91.5 79.2 84.9 110.4 32 

Ours 90.3 80.0 85.0 42.3 11.7 
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(a) Original Image     (b) DBNet (c) Ours 

Fig. 4.2 Some detection results of TRAM DBNet and DBNet in Total-Text 

5 Conclusion 

In this paper, we propose a scene text 
detection model using HRNetV2-W18 as the 
backbone. We also propose a text area attention 
module to make the network learning more 
informative features. The experiment results 
show that the proposed method achieve good 
performance, especially in long text and curve 
text, which verifies that the potential of HRNET 
for scene text detection. In the following research, 
we can use lighter HRNetV2-W18 instead of 
HRNetV2-W18, so that the network can achieve 
higher accuracy in real-time text detection. 
 

Data availability Data used in this work is 

available at: 
https://github.com/Yuliang-Liu/Curve-Text-
Detector 
https://rrc.cvc.uab.es/?ch=2&com=tasks 

http://www.iapr-
tc11.org/mediawiki/index.php/MSRA_Text_Det
ection_500_Database_(MSRA-TD500) 
https://github.com/cs-chan/Total-Text-Dataset 
 

Code Availability Code used in this work is 
available at:  

https://github.com/zhangyan1005/HR-DBNet. 
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