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ABSTRACT
Objective Current techniques for knowledge-based Word
Sense Disambiguation (WSD) of ambiguous biomedical
terms rely on relations in the Unified Medical Language
System Metathesaurus but do not take into account the
domain of the target documents. The authors’ goal is to
improve these methods by using information about the
topic of the document in which the ambiguous term
appears.
Design The authors proposed and implemented several
methods to extract lists of key terms associated with
Medical Subject Heading terms. These key terms are
used to represent the document topic in a knowledge-
based WSD system. They are applied both alone and in
combination with local context.
Measurements A standard measure of accuracy was
calculated over the set of target words in the widely
used National Library of Medicine WSD dataset.
Results and discussion The authors report
a significant improvement when combining those key
terms with local context, showing that domain
information improves the results of a WSD system based
on the Unified Medical Language System Metathesaurus
alone. The best results were obtained using key terms
obtained by relevance feedback and weighted by inverse
document frequency.

INTRODUCTION
The published literature in medicine and related
fields now forms a vast amount of information
which is so large that it can only be accessed
effectively using automatic search tools.1 2

Providing these tools is an important goal since
access to information in the medical literature has
been shown to be beneficial for both consumers and
health professionals.3 4 Automatic processing of
biomedical documents is, however, made difficult
by the fact that they contain terms that are
ambiguous. For example, ‘culture’ can mean ‘labo-
ratory procedure’ (eg, ‘In peripheral blood mono-
nuclear cell culture’) or ‘anthropological culture’
(eg, ‘main accomplishments of introducing
a quality management culture’).
The process of resolving lexical ambiguities is

known as Word Sense Disambiguation (WSD) and
has been widely studied in Natural Language
Processing.5 6 Several approaches to WSD in the
biomedical domain have been based on supervised
methods.7e9 However, these rely on large datasets
for training which are difficult to obtain or create.10

Recently, researchers have explored techniques for
automatically identifying examples and using them
as an alternative to manually labeled data,11 12

although these approaches have yet to be applied to

more than small sets of ambiguous terms.
Humphreys et al13 avoided the need for labeled data
by making use of Journal Descriptors14 to exploit
information about the topic of the document in
which an ambiguous term appears. This approach
assigned ambiguous terms one of the 135 Semantic
Types from the Unified Medical Language System
(UMLS) Metathesaurus15 but was unable to
distinguish between meanings that have the same
Semantic Type.
Unlike supervised approaches, knowledge-based

approaches do not require training data and make
use of information from some external resource, or
knowledge base (KB). McInnes16 reported an
approach that used the UMLS Metathesaurus as
a KB and could distinguish between all possible
meanings (and not just those with different
Semantic Types). Textual descriptions for each
meaning of an ambiguous word were generated
from the Metathesaurus and the most appropriate
sense chosen by identifying the one which shared
the most terms with the context, a commonly used
technique for WSD.17 As an alternative, graph-
based techniques have recently proved to be
a successful knowledge-based approach.18 19 These
have recently been applied to the biomedical
domain by creating a graph using the relations in
the UMLS Metathesarurus as a KB and then
applying a random-walk algorithm in order to
determine the most appropriate meaning according
to the context.11 18 Jimeno-Yepes and Aronson11

compared a number of knowledge-based WSD
algorithms and found that the graph-based
approach is outperformed by alternative
approaches. However, a similar approach20 reported
superior performance using a more recent version of
UMLS.
Most work on WSD has ignored the domain of

the target documents. More recently, there has
been interest in methods that take into account the
domain in which an ambiguous word appears.21e23

Medical Subject Heading (MeSH) terms are
manually curated labels for biomedical and health-
related documents that often provide information
about the topic of the document to which they are
applied. Several studies have shown that MeSH
terms are useful for WSD of biomedical docu-
ments.9 24e28 However, all of these approaches have
used MeSH terms as features in a supervised (or
semisupervised) system. This paper makes use of
MeSH terms within a knowledge-based approach
by using them to create a set of key terms closely
associated with each MeSH term. These key terms
are used as context for a WSD system, and it is
found that combining these key terms with local
context outperforms the use of either in isolation,
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and significantly improves the system’s performance. The main
advantage of our system with respect to previous WSD systems
for biomedical documents, for example,13 16 20 is that it makes
use of information contained in the UMLS Metathesaurus while
combining it with information about the domain of the target
document automatically learned from text.

BACKGROUND
This section describes the graph-based methods for WSD as used
in Agirre et al.20

Graph-based WSD
A KB is typically formed by a set of concepts, relations among
the concepts and a dictionary (a list of words linked to at least
one concept). We consider the KB as a graph G¼(V;E), using
vertices V for representing concepts, and edges E for relations
between them.

The WSD system is based on random walks over a graph
representing a KB and uses the PageRank29 algorithm, originally
developed to identify important pages in web searches.
PageRank can be viewed as a technique for scoring the vertices V
according to their importance in the overall structure of the
graph. After the PageRank calculation, the final weight assigned
to a node represents the proportion of time that a random
walker spends visiting that node after a sufficiently long time.

Assume that G has N vertices (v1,.,vn). For a given vertex vi,
let In(vi) be the set of vertices pointing to it, and let dj be the
out-degree of vertex vj. The PageRank of vertex vi is defined as:

P
�
vi
� ¼ c +

vj˛InðviÞ
1
dj
P
�
vj
� þ �

1� c
�1
N

(1)

where c is the so-called damping factor, a scalar value between
0 and 1.

In standard PageRank, weight is assigned to unconnected
vertices with probability 1ec and uniformly distributed across
the graph, whereas for Personalized PageRank (PPR) it is chosen
non-uniformly and specified by a teleport vector.30 In order to
introduce PPR, equation 1 is rewritten in a compact form using
matrices. Let M be an N3N transition probability matrix, where
Mji¼1/di if a link from vi to vj exists, and zero otherwise. Let v
be a stochastic normalized N31 vector whose elements are all 1/
N (the teleport vector). Then, the calculation of the PageRank
Vector P over the graph G is equivalent to resolving the
following equation:

P ¼ cMP þ ð1� cÞv (2)

PPR is used for WSD by constructing a vector v that assigns
high probabilities to the context words that surround the
ambiguous word. Let W¼{W1,., Wm} be an input context
comprising words which have an entry in the dictionary, and
can therefore be related to KB concepts. For each target word Wi,
the system concentrates the teleport vector in the concepts of
the words surrounding Wi, but not in the concepts of the target
word itself, and applies the PPR over the graph. The target word
is then disambiguated by choosing the concept associated with
it with the highest rank. This approach has been used success-
fully by a number of authors.19 20 31

Application to UMLS
PPR has been applied to the disambiguation of medical docu-
ments using the UMLS Metathesaurus as a KB.11 20 The UMLS
was created by unifying a diverse range of controlled vocabularies
and classification systems. It consists of more than one million

biomedical concepts and five million concept names. The Meta-
thesaurus is organized around concepts, and each is assigned
a Concept Unique Identifier (CUI). Strings are considered
ambiguous in the UMLS if they are associated with more than
one CUI. For example, the following CUIs are associated with
the term ‘culture’: C0010453 ‘Anthropological Culture’ (eg, ‘a
quality management culture’) and C0430400 ‘Laboratory culture’
(eg, ‘blood mononuclear cell culture’). The Metathesaurus also
contains information about a wide variety of relations between
CUIs in database tables. For example, the MRREL table relates
C0010453 to C0015032 ‘Ethnology’ and C0037455 ‘Societies’. A
graph is created using the CUIs as vertices and edges between
them defined using the MRREL table.
The dictionary contains mappings from words and phrases in

text to UMLS CUIs. It is created using the MetaMap program32

which splits the input text into phrases and maps each onto the
set of possible CUIs that they could refer to, known as candi-
dates. The set of candidates for each word or phrase in the
context of the ambiguous terms is extracted from the MetaMap
output and used to create the dictionary to define the possible
CUIs for each word in its context.
The graph and dictionary were constructed using publicly

available software (http://ixa2.si.ehu.es/ukb/) and resources
(https://uts.nlm.nih.gov/) and can be easily replicated, as
explained in Agirre et al.20

National Library of Medicine-WSD data set
The National Library of Medicine (NLM)-WSD data set33 was
used for evaluation. This is a collection of 50 terms that are
ambiguous in the UMLS Metathesaurus and occur frequently in
Medline. A hundred instances of each of the 50 terms were
selected from citations added to Medline in 1998 and manually
disambiguated. In addition to the meanings defined in UMLS,
annotators had the option of assigning a special tag (‘none’) when
none of the meanings in UMLS were judged to be appropriate.
Following common practice among researchers who use this
corpus,11 13 16 20 we removed these instances from the test set
leaving 3983 instances and 49 ambiguous terms. One term,
association, was excluded, since all instances were labeled ‘none.’

EXTRACTING DOMAIN TERMS
This section describes two general methods for identifying
domain key terms; we then describe how key terms are created
for the NLM-WSD dataset (Section ‘Identifying key terms for
NLM-WSD’) as well as providing examples.

Domain context
Our approach to integrating domain information is to identify
terms that are indicative of the domain (key terms) and use
them as context, either as a replacement for or in addition to the
local context. For example, the fact that ‘culture’ occurs in
documents discussing microbiology is a strong indicator that it
means ‘cell culture’ rather than one of the alternative meanings.
Examples of key terms in the microbiology domain could include
‘cell,’ ‘activity,’ ‘inhibited,’ and ‘assay.’ We use these terms as
additional context in the PPR algorithm.
This approach relies on being able to identify the key terms

that indicate a domain. We use two different lexical statistics,
which rely on the assumption that we have access to a corpus in
which documents have domain labels associated with them. The
domain labels we use are MeSH terms.15 MeSH is a controlled
vocabulary for indexing biomedical and health-related informa-
tion. The most recent version contains 26 142 descriptors. MeSH
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terms are manually assigned to Medline abstracts by human
indexers and provide an accurate information about the domain
and topic of the abstract. For example, MeSH terms associated
with the abstract containing the phrase ‘blood mononuclear cell
culture’ include Cultured Cells, Membrane Proteins, and Human.

Log likelihood
The first method for identifying key terms is the log-likelihood
ratio, G2, which has been widely used in language proc-
essing.34e36 This approach relies on analyzing variables and
assigning high scores when their co-occurrence is greater than
would be expected by chance. The log-likelihood ratio has been
used within a corpus comparison method to identify the terms
that were indicative of each corpus,37 and we reapply their
method here. In this application, the variables are the occurrence
(or otherwise) of a term within a document and assignment (or
otherwise) of a domain label to a document. Terms are assigned
high scores in relation to a domain label when the probability of
their occurring in documents marked with the domain label is
greater than chance would predict.

The G2 score for each term and MeSH code is computed by
creating a 232 contingency table listing the observed occur-
rences of that term in documents labeled with that MeSH code.
An example table is shown in table 1, where o++ indicates the
number of times a term occurs in a document labeled with the
MeSH code, o+� the number of times that it occurs in a docu-
ment not labeled with the code, and so on.

The expected value for each cell in the contingency table can
then be computed using equation 3, which allows the G2

statistic to be calculated according to equation 4.

eij ¼ oi*3o*j
o**

(3)

G2 ¼ 2+
i;j
oij3log

oij
eij

(4)

Relevance feedback
The second method for identifying key terms is based on rele-
vance feedback in Information Retrieval,38 which has previously
been used to generate labeled training data for WSD.39 11 Given
a set of documents, D, we assume that some are labeled with
a MeSH code, D+, while the remainder, D� are not. The number
of times a term, t, occurs in a document, d in D, is represented
as count (t; d) and the number of documents containing t in D as
df(t). A score indicating the association between the term t and
D+ can then be computed using equation 5. In this equation, idf
(t) is the inverse document frequency (IDF) of the term t and
is computed using equation 6, where df(t) is the number of
documents in D that contain t. IDF is a commonly used measure
in Information Retrieval which provides information about
the number of documents in which a term appears and assigns
high values to terms that appear infrequently. When relevance
feedback is used in Information Retrieval, the idf term in

equation 5 is not normally included. However, when it is being
used to find terms that are indicative of a domain, it is helpful to
include it, since not doing so leads to infrequent terms being
scored highly.30

score(t;Dþ ) ¼ idf(t)3
0
B@

+
cd˛Dþ

countðt;dÞ

jDþ j �
+

cd˛D�
countðt;dÞ

jD�j

1
CA

(5)

idf
�
t
� ¼ log

jDj
dfðtÞ (6)

Identifying key terms for NLM-WSD
A set of key terms were generated for the MeSH codes associated
with the abstracts in the NLM-WSD corpus. For each of these
MeSH codes, 100 abstracts were downloaded from Medline
using Entrez (http://www.ncbi.nlm.nih.gov/Entrez/). The
downloaded abstracts were then run through MetaMap to
identify the candidates for each term. (MetaMap also identifies
compound terms.) The processed corpus is then analyzed using
the lexical statistics, and the top 10 key terms extracted for each
MeSH code. For example, the key terms for the MeSH code
Cultured Cells include ‘cells,’ ‘inhibitors,’ ‘virus,’ ‘carcinoma cell,’
and ‘human cells.’
The key terms are used as context for each abstract that is

annotated with that MeSH term. Abstracts in the NLM-WSD
are typically labeled with several MeSH codes, and the context is
created by taking the combination of all keys terms for the
MeSH codes that apply to an abstract.
MeSH codes are not evenly distributed in Medline abstracts.

On average, MeSH codes apply to 6.1 abstracts in the NLM-
WSD corpus, but the most common code (Human) is associated
with 2624 (76.6% of the total). This is taken into account using
the IDF of each MeSH code. This is a different application of the
IDF measure from that used to compute the importance of
terms when computing the domain context. IDF of MeSH codes
is computed using equation 7, where m is a MeSH code, M the
corpus of abstracts downloaded from Medline, and df(m) the
number of abstracts in M that have the MeSH code m associated
with them.

idf
�
m
� ¼ log

jMj
dfðmÞ (7)

When IDF weighting is applied, the key terms for each MeSH
code are weighted by the IDF score for that code, thereby
reducing the importance of very common codes, such as Human,
Male, or Female.

Example key terms and contexts
Table 2 shows some of the key terms that are identified by
the relevance feedback method for two MeSH terms that tend
to be associated with different meanings of the term ‘culture.’
The MeSH term Cells, Cultured is often associated with
abstracts in which ‘culture’ is used to mean ‘laboratory
procedure,’ while occurrences in abstracts labeled with Socie-
conomic Factors ‘culture’ almost always means ‘anthropological
culture.’ It can be seen that there are clear differences between
the terms that are identified for each MeSH code and those
that would intuitively be expected to be associated with the
different meanings of ‘culture.’

Table 1 Contingency table showing distribution of terms
in documents

Medical Subject
Heading code

Totals+ L

Term

+ o++ o+� o+*

� o�+ o�� o�*

Totals o*+ o*� o**
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Table 3 shows example contexts for a sentence from the NLM-
WSD corpus which contains the word ‘culture’ to mean ‘labo-
ratory procedure.’ The row labeled ‘Local context’ shows the
context created from the terms found around the ambiguous
word. All context terms are assigned the default weight of 1
(indicated by #1). The next row, ‘Key terms,’ shows context
created from the MeSH term Cells, Cultured which is associated
with the abstract in which this sentence appears. The next row,
‘Key terms (IDF),’ shows the same context with IDF weighting.
In this case, all context terms are weighted 1.36, the IDF score
for the MeSH term Cells, Cultured. When these are combined
with the local context (bottom row), context terms are assigned
different weights.

RESULTS AND DISCUSSION
Results are shown in table 4. (Performance figures for local
context reported here are slightly higher than those previously
reported.20 The difference was caused by the use of a newer
version (0.1.6) of the PPR software, which fixed several minor
bugs.) Performance is measured as the percentage of instances
correctly disambiguated. The column ‘Local context’ shows
performance when the context around the ambiguous word is
used, and corresponds to the use of PPR over the UMLS Meta-
thesarus without any additional information about the domain
of the documents. Results are also reported when each of the
contexts created using the domain is used, both alone and in
combination with the local context. G2 indicates that the
context is generated using the log-likelihood score and RF that
the relevance feedback approach was used. Both methods are
applied with and without IDF scores of the MeSH terms being
used to weight the context (indicated by ‘IDF’ in table 4 when it
is used). Results obtained using the domain model are compared
with the local context and statistical significance computed
using bootstrap resampling with 95% confidence.40

The results for local context and domain models are compa-
rable. However, when the local and domain contexts are
combined, performance is significantly better than when only
local context is used. This indicates that terms from the domain
contain useful information for WSD that is different from the
local context. Note also that when the domains model is used
alone, disambiguation is performed at the MeSH code level:
words in abstracts labeled with the same MeSH codes are tagged
with the same sense. However, when adding local contexts, the
system is able to discriminate among contexts, thus providing
a more fine-grained disambiguation. Performance consistently
improves when IDF weighting is used. Improvement is observed
regardless of which method is used to generate the domain
context and whether the domain context is used alone or in
combination with local context. This improvement shows that
applying the IDF weighting is able to accommodate the skewed
assignment of MeSH codes to abstracts. The relevance feedback
method for generating domain context produces higher results
than the log likelihood, although the difference is not significant.
Note that our results compare favorably to all knowledge-

based systems reported in Jimeno-Yepes and Aronson,11 which
reports a best result of 68.36. In order to compare the results
with McInnes,16 the second row of table 4 reports our results for
the same subset of 13 terms. The relevance feedback method
with IDF weighting significantly also outperforms the local
context for these terms and is over 12 points higher than the
performance reported by McInnes16 (48.1).
Results are also reported for each term in the NLM-WSD data

set. The column labeled ‘count’ shows the number of instances
of each term that were used for the experiments. There is
a wide variation in performance over individual terms. Disam-
biguation for some terms (eg, fat, pressure, secretion, surgery,
and transient) is very high with near-perfect disambiguation.
However, for other terms (such as fit and inhibition), perfor-
mance is very poor. The use of domain information leads to
a large improvement in performance for many terms, and in
general, the improvement is observed regardless of which
domain model is used. For example, results for the term man
increase from 45.7 to between 76.9 and 87.0 depending on the
domain model. Other terms for which the domain models lead
to substantial increases in performance include cold, extraction,
nutrition, reduction, and sensitivity.
Although the overall performance improves when the domain

model is used, there are some terms for which the results get
worse. The drop in performance for the term condition is
particularly striking. This term has two possible meanings in the
NLM-WSD corpus: ‘a state of being, such as state of health’ and
‘psychological conditioning.’ The first meaning applies to 90 of
the 92 instances of condition in the NLM-WSD corpus and is
quite general, which leads to the low performance of the
approach using local context alone. However, some abstracts in
which this meaning appears also contain MeSH terms that lead
to the second sense being preferred through connections in the
graph created from the UMLSdfor example, Anxiety Disorder,
Behavior, and Depressive Disorder.
Our approach relies on converting the UMLS Metathesaurus

into a graph and computing the contexts associated with each-
MeSH code. Although these tasks are time-consuming, they are
typically performed off line. When applying our system to text, it
has to be preprocessed with MetaMap and then run through
PPR. Overall, the system is able to disambiguate 37 instances per
minute on a PC with 2 QuadCore Xeon3 160 Mhz processors and
32 GB of RAM.20 The runtime overhead of augmenting local
context with domain information is negligible.

Table 2 Example key terms identified by relevance
feedback approach for Medical Subject Heading codes
associated with different meanings of ‘culture’

Cells, cultured Socio-economic factors

Inhibitors Health

Cell Education

Virus Income

Inhibition Social

Assay Countries

Inhibited Economic

Cytotoxicity Care

Staining Need

Virions Services

Epithelial Children

Table 3 Samples of contexts generated for the sentence ‘The main
goal of the present study was to determine whether or not
oligodendrocytes in culture constitutively express the different bAPP
isoforms’ (simplified for brevity).

Local context goal#1 present#1 study#1 oligodendrocytes#1 culture#1
different#1 isoforms#1

Key terms inhibitors#1 cell#1 virus#1 inhibition#1 assay#1

Key terms (IDF) inhibitors#1.36 cell#1.36 virus#1.36 inhibition#1.36
assay#1.36

Local context and
Key terms (IDF)

goal#1 present#1 study#1 oligodendrocytes#1 culture#1
different#1 isoforms#1 inhibitors#1.36
cell#1.36 virus#1.36 inhibition#1.36 assay#1.36

IDF, inverse document frequency.
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CONCLUSIONS
This paper demonstrates that including information about the
domain in which ambiguous words appear significantly improves
the performance of a knowledge-based WSD algorithm for
medical documents,20 and over other knowledge-based systems.11
16 Domain information has already been shown to provide useful
information for WSD in general,21e23 and the results reported

here show that it also improves WSD performance for docu-
ments that share related topics, such as medical texts.
The WSD system described here uses a knowledge-based

approach. It has the advantage of not requiring labeled training
data (unlike several other studies7e9 25e28) and being able to
distinguish between UMLS concepts with the same Semantic
Type (unlike Humphrey et al13). The system was evaluated on

Table 4 Word Sense Disambiguation results using local and domain context

Domain context alone Domain context and local context

Count Local context G2 G2 (IDF) RF RF (IDF) G2 G2 (IDF) RF RF (IDF)

All 70.4 70.0 70.8 70.6 71.5 72.8 73.5* 73.5* 73.7*

McInnes subset 54.5 57.5 57.9 57.7 58.6 58.9 59.2 59.1 60.2

Adjustment 93 33.3 32.3 34.4 35.5 33.3 34.4 35.5 38.7 37.6

Blood pressure 100 46.0 51.0 52.0 52.0 53.0 52.0 52.0 53.0 54.0

Cold 95 30.5 60.0 64.2 63.2 64.2 66.3 67.4 68.4 68.4

Condition 92 41.3 6.5 15.2 8.7 5.4 13.0 20.7 13.0 9.8

Culture 100 80.0 87.0 91.0 83.0 86.0 88.0 92.0 85.0 86.0

Degree 65 92.3 95.4 93.8 96.9 96.9 95.4 95.4 95.4 95.4

Depression 85 88.2 100.0 98.8 98.8 98.8 98.8 97.6 98.8 97.6

Determination 79 94.9 73.1 87.2 87.2 84.6 79.7 91.1 87.3 83.5

Discharge 75 81.3 82.7 81.3 84.0 82.7 85.3 84.0 89.3 84.0

Energy 100 95.0 86.9 86.9 93.9 92.9 87.0 87.0 94.0 93.0

Evaluation 100 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Extraction 87 28.7 32.2 39.1 33.3 40.2 35.6 41.4 35.6 42.5

Failure 29 93.1 86.2 82.8 65.5 79.3 86.2 86.2 75.9 82.8

Fat 73 95.9 97.3 97.3 97.3 97.3 97.3 97.3 97.3 97.3

Fit 18 11.1 5.6 5.6 0.0 0.0 11.1 11.1 5.6 5.6

Fluid 100 90.0 92.9 92.9 93.9 93.9 90.0 90.0 91.0 92.0

Frequency 94 98.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Ganglion 100 73.0 69.0 72.0 71.0 73.0 80.0 79.0 80.0 81.0

Glucose 100 90.0 92.9 92.9 91.9 91.9 92.0 94.0 92.0 92.0

Growth 100 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0 37.0

Immunosuppression 100 62.0 73.0 73.0 74.0 74.0 73.0 74.0 74.0 74.0

Implantation 98 87.8 70.4 83.7 74.5 88.8 76.5 90.8 84.7 93.9

Inhibition 99 3.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0

Japanese 79 81.0 82.3 78.5 84.8 82.3 84.8 79.7 86.1 82.3

Lead 29 93.1 20.7 20.7 93.1 93.1 93.1 93.1 93.1 93.1

Man 92 45.7 81.3 85.7 76.9 82.4 84.8 87.0 81.5 83.7

Mole 84 57.1 56.6 53.0 62.7 57.8 69.0 65.5 72.6 70.2

Mosaic 97 71.1 59.8 56.7 59.8 58.8 67.0 67.0 70.1 71.1

Nutrition 89 29.2 49.4 53.9 46.1 52.8 47.2 50.6 44.9 49.4

Pathology 99 33.3 16.7 17.7 16.7 17.7 20.2 22.2 22.2 22.2

Pressure 96 97.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Radiation 98 52.0 43.9 43.9 43.9 43.9 43.9 43.9 42.9 43.9

Reduction 11 45.5 72.7 72.7 72.7 72.7 72.7 72.7 72.7 63.6

Repair 68 76.5 80.9 80.9 79.4 82.4 82.4 82.4 79.4 82.4

Resistance 3 66.7 100.0 100.0 100.0 100.0 66.7 66.7 66.7 66.7

Scale 65 81.5 82.8 81.2 82.8 82.8 73.8 73.8 72.3 75.4

Secretion 100 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0

Sensitivity 51 33.3 62.7 62.7 62.7 62.7 64.7 62.7 64.7 64.7

Sex 100 87.0 85.0 82.0 85.0 83.0 86.0 84.0 86.0 85.0

Single 100 94.0 87.0 86.0 79.0 85.0 91.0 89.0 90.0 90.0

Strains 93 94.6 91.4 86.0 95.7 90.3 96.8 95.7 96.8 95.7

Support 10 90.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0

Surgery 100 97.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0 98.0

Transient 100 99.0 92.9 97.0 88.9 96.0 98.0 99.0 98.0 99.0

Transport 94 95.7 98.9 98.9 98.9 98.9 97.9 97.9 97.9 97.9

Ultrasound 100 83.0 84.0 84.0 82.0 82.0 84.0 84.0 84.0 82.0

Variation 100 90.0 83.0 67.0 73.0 70.0 88.0 81.0 88.0 83.0

Weight 53 60.4 56.6 60.4 60.4 60.4 60.4 56.6 64.2 64.2

White 90 60.0 58.9 62.2 58.9 63.3 71.1 71.1 71.1 73.3

*Statistical significance with respect to the local context baseline, computed using bootstrap resampling.40

Terms used in McInnes subset16 are shown in italics.
IDF, inverse document frequency.
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the set of terms in the NLM-WSD corpus but could disambig-
uate all words in a document that are ambiguous in the UMLS
Metathesaurus. A novel method for representing domain infor-
mation was also introduced in which the domain is represented
as a set of key terms. These are used as context for the WSD
algorithm, either alone or in combination with local context.
The WSD algorithm used is a ‘bag of words’ model, which does
not make use of information about the order in which terms
occur in the context of ambiguous words, and can make use of
the key terms extracted for each domain in a straightforward
way. Key terms are identified by applying lexical statistics to
a corpus in which documents are labeled with domain code. Two
lexical statistics were explored, and it was found that one based
on relevance feedback provided the best performance. The
frequency of domain labels was also found to be important, and
the IDF statistic was used to weight key terms and to reduce the
importance of those which occur frequently.

The approach for identifying key terms described in the paper
assumes that a corpus with domain labels is available. The
MeSH codes in Medline provide suitable domain labels that have
been assigned by human annotators and are therefore likely to
be accurate. Alternative methods could be used to generate
domain labels if manually annotated labels were not available.
For example, labels could be assigned automatically using text
categorization,41 42 or examples of documents on a particular
topic can be gathered automatically.43 We plan to explore these
alternative methods for generating domain labels in future work.
In addition, we also plan to explore performance on other genres
of medical documents, such as clinical texts.44
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5. Ide N, Véronis J. Introduction to the special issue on word sense disambiguation:
the state of the art. Comput Ling 1998;24:1e40.

6. Navigli R.Word sense disambiguation: a survey. ACM Comput Surv 2009;41:1e69.
7. Joshi M, Pedersen T, Maclin R. A comparative study of support vector machines

applied to the word sense disambiguation problem for the medical domain.
Proceedings of the Second Indian Conference on Artificial Intelligence (IICAI-05).
Pune, India, 2005:3449e68.

8. Savova GK, Coden AR, Sominsky IL, et al. Word sense disambiguation across two
domains: biomedical literature and clinical notes. J Biomed Inform 2008;41:1088e100.

9. Liu H, Teller V, Friedman C. A multi-aspect comparison study of supervised word
sense disambiguation. J Am Med Inform Assoc 2004;11:320e31.

10. Artstein R, Poesio M. Inter-coder agreement for computational linguistics. Comput
Ling 2008;34:555e96.

11. Jimeno-Yepes AJ, Aronson AR. Knowledge-based biomedical word sense
disambiguation: comparison of approaches. BMC Bioinformatics 2010;11:569.

12. Stevenson M, Guo Y. Disambiguation of ambiguous biomedical terms using examples
generated from the UMLS Metathesaurus. J Biomed Inform 2010;43:762e73.

13. Humphrey SM, Rogers WJ, Kilicoglu H, et al. Word sense disambiguation by
selecting the best semantic type based on journal descriptor indexing: preliminary
experiment. J Am Soc Inf Sci Technol 2006;57:96e113.

14. Humphrey SM. Automatic indexing of documents from journal descriptors:
a preliminary investigation. J Am Soc Inf Sci 1999;50:661e74.

15. Nelson S, Powell T, Humphreys B. The Unified Medical Language System (UMLS)
project. In: Kent A, Hall CM, eds. Encyclopedia of Library and Information Science.
New York: Marcel Dekker, Inc, 2002.

16. McInnes B. An unsupervised vector approach to biomedical term disambiguation:
integrating UMLS and medline. Proceedings of the ACL-08: HLT Student Research
Workshop. Columbus, Ohio, 2008:49e54.

17. Lesk M. Automatic sense disambiguation using machine readable dictionaries: how
to tell a pine cone from an ice cream cone. Proceedings of ACM SIGDOC Conference.
Toronto, Canada, 1986:24e6.

18. Navigli R, Lapata M. Graph connectivity measures for unsupervised word sense
disambiguation. Proceedings of IJCAI. Hyderabad, India, 2007:1683e8.

19. Agirre E, Soroa A. Personalizing PageRank for word sense disambiguation.
Proceedings of EACL-09. Athens, Greece, 2009.

20. Agirre E, Soroa A, Stevenson M. Graph-based word sense disambiguation of
biomedical documents. Bioinformatics 2010;26:2889e96.

21. Koeling R, McCarthy D, Carroll J. Domain-specific sense distributions and
predominant sense acquisition. Proceedings of the Human Language Technology
Conference and Conference on Empirical Methods in Natural Language Processing.
HLT/EMNLP. Ann Arbor, MI, 2005:419e26.

22. Agirre E, de Lacalle OL, Soroa A. Knowledge-based WSD on specific domains:
performing better than generic supervised WSD. Proceedings of the 21st International
Joint Conference on Artificial Intelligence, 2009:1501e6.

23. Khapra M, Kulkarni A, Sohoney S, et al. All words domain adapted WSD:
finding a middle ground between supervision and unsupervision. Proceedings of ACL
2010. Uppsala, Sweden, 2010:1532e41. http://www.aclweb.org/anthology/
P10-1155.

24. Yu H, Kim W, Hatzivassiloglou V, et al. A large scale, corpus-based approach for
automatically disambiguating biomedical abbreviations. ACM Trans Inform Syst
2006;24:380e404.

25. Xu H, Fan JW, Hripcsak G, et al. Gene symbol disambiguation using knowledge-
based profiles. Bioinformatics 2007;23:1015e22.

26. Stevenson M, Guo Y, Gaizauskas R, et al. Disambiguation of biomedical text using
a variety of knowledge sources. BMC Bioinformatics 2008;9(Suppl 11):S7.

27. Stevenson M, Guo Y. Disambiguation in the biomedical domain: the role of
ambiguity type. J Biomed Inform 2010;46:972e81.

28. Jimeno Yepes A, Aronson A. Self-training and co-training in biomedical word sense
disambiguation. Proceedings of BioNLP 2011 Workshop. Portland, OR: ACL,
2011:182e3.

29. Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine.
Comput Netw ISDN Syst 1998;30:107e17.

30. Haveliwala TH. Topic-sensitive PageRank. WWW’02: Proceedings of the 11th
International Conference on World Wide Web. New York: ACM, 2002:517e26.

31. Reddy S, Inumella A, McCarthy D, et al. Domain specific word sense
disambiguation. Proceedings of the 5th International Workshop on Semantic
Evaluation. Uppsala, Sweden: ACL, 2010.

32. Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent
advances. J Am Med Inform Assoc 2010;17:229e36.

33. Weeber M, Mork J, Aronson A. Developing a test collection for biomedical word
sense disambiguation. Proceedings of AMIA Symposium. Washington, DC: AMIA,
2001:746e50.

34. Dunning T. Accurate methods for computing the statistics of surprise and
coincidence. Comput Ling 1993;19:61e74.

35. Pedersen T. A decision tree of bigrams is an accurate predictor of word sense.
Proceedings of the Second Meeting of the North American Chapter of the Association
for Computational Linguistics (NAACL-01). Pittsburgh, PA: ACL, 2001:79e86.

36. Korkontzelos I, Manandhar S. Detecting compositionality in multi-word expressions.
Proceedings of the ACLIJCNLP 2009 Conference Short Papers. Suntec, Singapore,
2009:65e8. http://www.aclweb.org/anthology/P/P09/P09-2017.

37. Rayson P, Garside R. Comparing corpora using frequency profiling. The Workshop on
Comparing Corpora. Hong Kong, China, 2000:1e6. http://www.aclweb.org/
anthology/W00-0901.

38. Rocchio J. Relevance feedback in information retrieval. The SMART Retrieval
SystemdExperiments in Automatic Document Processing. Englewood Cliffs, NJ:
Prentice Hall Inc, 1971.

39. Stevenson M, Guo Y, Gaizauskas R. Acquiring sense tagged examples using
relevance feedback. Proceedings of the 22nd International Conference on
Computational Linguistics (COLING-08). Manchester, UK: COLING, 2008.

40. Noreen E. Computer-Intensive Methods for Testing Hypotheses. New York: John
Wiley & Sons, 1989.

41. Manning H, Schütze H. Foundations of Statistical Natural Language Processing.
Cambridge, MA: MIT Press, 1999.

42. Sebastiani F. Machine learning in automated text categorization. ACM Comput Surv
2002;34:1e47.

43. Kilgarriff A, Reddy S, Pomikalek J, et al. A corpus factory for many languages. LREC
Workshop on Web Services and Processing Pipelines. Valetta, Malta: ELRA, 2010.

44. Roberts A, Gaizauskas R, Hepple M, et al. Semantic annotation of clinical text: the
CLEF corpus. Proceedings of the LREC 2008 Workshop on Building and Evaluating
Resources for Biomedical Text Mining. Marrakech: ELRA, 2008:19e26.

PAGE fraction trail=6
240 J Am Med Inform Assoc 2012;19:235e240. doi:10.1136/amiajnl-2011-000415

Research and applications


