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ABSTRACT
Objective The conduct of investigational studies that
involve large-scale data sets presents significant
challenges related to the discovery and testing of novel
hypotheses capable of supporting in silico discovery
science. The use of what are known as Conceptual
Knowledge Discovery in Databases (CKDD) methods
provides a potential means of scaling hypothesis
discovery and testing approaches for large data sets.
Such methods enable the high-throughput generation
and evaluation of knowledge-anchored relationships
between complexes of variables found in targeted data
sets.
Methods The authors have conducted a multipart model
formulation and validation process, focusing on the
development of a methodological and technical approach
to using CKDD to support hypothesis discovery for in
silico science. The model the authors have developed is
known as the Translational Ontology-anchored
Knowledge Discovery Engine (TOKEn). This model utilizes
a specific CKDD approach known as Constructive
Induction to identify and prioritize potential hypotheses
related to the meaningful semantic relationships
between variables found in large-scale and
heterogeneous biomedical data sets.
Results The authors have verified and validated TOKEn
in the context of a translational research data repository
maintained by the NCI-funded Chronic Lymphocytic
Leukemia Research Consortium. Such studies have
shown that TOKEn is: (1) computationally tractable; and
(2) able to generate valid and potentially useful
hypotheses concerning relationships between phenotypic
and biomolecular variables in that data collection.
Conclusions The TOKEn model represents a potentially
useful and systematic approach to knowledge synthesis
for in silico discovery science in the context of
large-scale and multidimensional research data sets.

INTRODUCTION
The conduct of basic science, clinical, and trans-
lational research is extremely complex, involving
a variety of actors, processes, resources, and infor-
mation types that ideally are integrated at a systems
level. In particular, the translational research para-
digm focuses on the bi-directional flow of data,
information, and knowledge between the basic
sciences, clinical research, and clinical/public health
practice, and is predicated on an integrative approach
to hypothesis generation, testing, and evidence
dissemination.1 Recent reports have identified
numerous challenges that may prevent the effective
conduct of translational research, which have been

broadly categorized into two ‘translational blocks.’
The first such block, known commonly as T1, is
concerned with factors preventing translation
between basic science knowledge and clinical studies.
The second block, known as T2, is concerned with
factors affecting translation between clinical or
observational study results and clinical or public-
health practice.2 For both the T1 and T2 blocks, the
workflows and activities required to overcome
potential impediments are extremely reliant on
information-management tasks, including the
collection, formalization, and analysis of large-scale,
heterogeneous, multidimensional biomedical data
sets.3 The efficacy of informatics-based approaches
to addressing such needs has been described in
several instances.4e12 For the purposes of the project
we will describe in this report, we have focused our
efforts on a specific information need present in the
translational research domain, specifically the iden-
tification and prioritization of potential hypotheses
that serve to link clinical phenotype and biomolec-
ular markers as found in large-scale data sets. This
focus is in part motivated by a desire to maximally
utilize such costly and difficult to assemble data
repositories in order to pose and evaluate pertinent
questions that may inform the design of clinical and
translational studies. A further motivation of this
work was to provide a methodological and technical
approach to in silico discovery science in such
a context, thus enabling informaticists to both ask
and answer biologically and clinically relevant ques-
tions relative to targeted data sets.13 14 We believe
that models such as that described in this report will
ideally be capable of supporting the synthesis of
novel biomedical knowledge, which can in turn
support the realization of outcomes such as the
delivery of personalized medicine.2 3 13 15e17

Given the preceding motivation, in the remainder
of this report, we will describe the formulation of
the previously described methodological and tech-
nical approach to high-throughput hypothesis
generation and knowledge synthesis with specific
applications in the translational research setting. As
part of this methodology, we have developed and
will report upon the initial validation of an algo-
rithmic and data-analytic pipelining software plat-
form known as the Translational Ontology-
anchored Knowledge Discovery Engine (TOKEn).
Of note, our methodology and the resulting
TOKEn platform is based on the use of conceptual
knowledge engineering (CKE) theories and tech-
niques that have been commonly employed in the
computer science and artificial intelligence domains
to support knowledge discovery in databases
(KDD).4 5 9 13 18e20
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BACKGROUND
In this section, we will provide an overview of CKE and
associated KDD methods, and then describe the specific experi-
mental context for the TOKEn project. These two areas
comprise the basis for our model formulation efforts.

Conceptual knowledge engineering and knowledge discovery in
databases
Knowledge engineering (KE) is a process by which knowledge is
collected, represented, and ultimately used by computational
agents to replicate expert human performance in an application
domain. The KE process incorporates four major steps:
1. knowledge acquisition (KA);
2. computational representation of that knowledge;
3. implementation or refinement of the knowledge-based agent;

and
4. verification and validation of the output of the knowledge-

based agent.
The three primary types of knowledge that can be targeted by

KE are: conceptual knowledge, procedural knowledge, and
strategic knowledge. Conceptual knowledge can be defined as
a combination of atomic units of information and the mean-
ingful relationships among those units. In comparison, proce-
dural knowledge is a process-oriented understanding of a given
problem domain, and strategic knowledge is that used to convert
conceptual knowledge into procedural knowledge. These defi-
nitions have been derived and validated based upon empirical
research that focuses on learning and problem-solving in
complex scientific and quantitative contexts.14 21

Conceptual knowledge collections in the biomedical domain
span a spectrum that includes ontologies, controlled terminol-
ogies, semantic networks, and database schemas. The knowl-
edge sources used during the KA stage of the KE process can take
many forms, including narrative text and domain experts. We
have previously described a taxonomy consisting of three cate-
gories of KA techniques that can be employed when targeting
the conceptual knowledge found in such sources. This includes
the elicitation of atomic units of information or knowledge, the
relationships between those atomic units, and combined method-
ologies that aim to elicit both such atomic units and the rela-
tionships between them.21 The work described in this
manuscript focuses specifically on a conceptual knowledge
acquisition approach known as KDD, which is a combined
elicitation technique. At a high level, KDD is concerned with the
utilization of automated or semiautomated computational
methods to derive knowledge from the contents of databases or
more specifically, metadata describing the content of such
structures. The use of domain-specific knowledge collections,
such as ontologies, is necessary to inform the KDD process since
commonly used database modeling approaches do not incorpo-
rate semantic knowledge corresponding to the database
contents. This overall approach is the basis for a specific KDD
methodology known as constructive induction (CI), which was
selected as the basis for our model formulation efforts and
described in further detail in the section ‘Formulation process.’

Experimental context: chronic lymphocytic leukemia
The specific experimental context for the development and vali-
dation of the TOKEn methodology and associated software
platform is a collaborative translational research effort situated
within the Chronic Lymphocytic Leukemia Research Consortium
(CLL-RC, http://cll.ucsd.edu), a National Cancer Institute (NCI)-
funded program/project consisting of eight sites. The CLL-RC
coordinates and facilitates basic and clinical research on the

genetic, biochemical, and immunologic bases of Chronic
Lymphocytic Leukemia (CLL). In addition, the CLL-RC Clinical
Trial Unit facilitates the development and execution of phase I/II
clinical trials and correlative science studies on clinical specimens
obtained from patients under observation and/or undergoing
therapy. As such, the CLL-RC is able to research novel biologic
and pharmacologic treatments for CLL and examine phenotypic
4 biomolecular relationships that may improve clinical staging
and/or assist in evaluating patient responses to novel therapies.
The CLL-RC Integrated Information Management System
(CIMS) facilitates the collection and storage of numerous high-
throughput, multidimensional data sources generated by
instrumentation and methodological approaches used during
consortium studies, including: clinical phenotyping, quantitative
and qualitative immunophenotyping, multiple modalities of gene
expression analysis, and fluorescent in situ hybridization analyses
of cytogenetic abnormalities. At the time of this submission,
CIMS is being used to collect, manage, and analyze data for over
6000 patients spanning a maximum duration of 12 years of
involvement in multiple clinical trial modalities, as well as
hundreds of thousands of correlative CLL-specific tissue samples
and correlative basic-science annotations.

FORMULATION PROCESS
The formulation of the TOKEn methodological and technical
implementation model was performed using a four-step process,
as briefly summarized below, and illustrated in figure 1.

Identification of applicable CKE approaches
In the first phase of the model formulation process, a targeted
literature review was performed, using both the MEDLINE
bibliographic database and the ACM (Association for Computing
Machinery) Digital Library. In both instances, a heuristically
developed and refined set of keywords were used to query free,

Figure 1 Overview of the four-phase model formulation process used
during the design and evaluation of the Translational Ontology-anchored
Knowledge Discovery Engine. CKE, conceptual knowledge engineering.
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full-text literature, published within the past 3 years, employing
all relevant permutations of the following phrases or concepts:
‘knowledge discovery,’ ‘hypothesis discovery,’ ‘data,’ ‘database,’
and ‘metadata.’ These heuristics were developed via an iterative
and qualitative process involving the collaboration of multiple
informatics professional with expertise in the KE and knowledge
management fields. Those same individuals reviewed the
resulting collection of 289 abstracts, and those that described
reports of methodological evaluations of knowledge discovery
approaches pertinent to our initial search phrases were selected
for further, in-depth analyses (n¼30, 10.4% of retrieved
abstracts). The selected manuscripts were then subject to a full
manual review, and all unique CKE-based approaches to KDD
were identified and recorded for further analyses (n¼12).

Mapping of methods to available knowledge sources and
technologies
The CKE-based knowledge discovery methods identified and
recorded in the prior phase were then evaluated relative to two
primary axes:
1. the feasibility of employing the methods to reason upon

a meta-data collection corresponding to either a conventional
relational structure or a generic entity-attribute-value data-
base schema; and

2. the availability of conceptual knowledge collections that
were both able to support the method and applicable to the
targeted domain (i.e., leukemia research).
Relative to axis 1, we focused our evaluation on the adequacy

of the described methods for implementation using conventional
software engineering techniques and programming languages (eg,
PERL, JAVA). Relative to axis 2, we focused our evaluation on the
ability of the method to use an ontology represented in a stan-
dardized format (eg, OWL, delimited text) and the degree of
content coverage for that ontology relative to the previously
described experimental context. During these analyses, we found
that seven of the 12 methods (58%) identified in the prior phase
were feasible to implement and utilized readily available
knowledge collections (eg, publically available ontologies or
equivalent knowledge collections). These techniques included:
(1) CI; (2) semiautomated approaches to laddering using domain
ontologies or literature abstracts; (3) repertory grid analyses;
(4) single-dimensional formal concept analyses (FCS); (5) multi-
dimensional FCS; (6) variations on latent semantic analysis; and
(7) combined ontology-enrichment and statistical analysis
methods.

Gap analysis and development of mitigation strategies
Based upon the findings of the preceding model formulation
phase, in this phase we evaluated the potential gaps in

knowledge associated with employing the seven methods
identified in the prior project phase. We then evaluated poten-
tial mitigation strategies that could be employed to address
such gaps. In this context, we use the term mitigation strategy to
describe a combination of complementary and well-defined
methodological approaches that may be employed in order to
render a particular technique executable when all of the
necessary details needed to do so are not described in the
available domain literature. Based upon this analysis, and our
ability to define a sufficiently robust mitigation strategy, we
selected a specific methodological approach known as CI that
exhibited the highest likelihood of success in terms of imple-
mentation and knowledge-collection availability/coverage. Of
note, the preceding evaluation of gaps and mitigation strategies
was informed in part by the data and metadata available within
the scope of the experimental context (ie, CLL Research
Consortium, and its associated data repositories).

Verification and validation
In the final phase of our model formulation process, the aggregate
methodological approach, mitigation strategies, and domain-
specific knowledge collections identified in the preceding phases
were instantiated as a reference implementation (ie, the TOKEn
platform) and applied to a subset of the data/metadata contained
in the CLL-RC’s data repositories. The output of this application
was then evaluated by subject-matter experts (SMEs) in order to
determine: (1) the computational tractability of the model;
(2) the validity and novelty of the knowledge generated using the
approach as it pertained to the ability to inform new study
designs; and (3) the ability to ‘prioritize’ such knowledge in order
to identify high-priority bio-marker-to-phenotype associations.

MODEL DESCRIPTION
As was introduced in the preceding description of our model
formulation process, we selected a specific KDD method known
as CI (figure 2) as the basis for our model implementation and
verification/validation activities.
In CI, data elements defined by a database schema are mapped

to concepts defined by one or more ontologies. Subsequently, the
relationships included in the mapped ontologies are used to
induce semantically meaningful relationships between the
mapped data elements. The induction process generates what are
known as ‘facts,’ which are defined in terms of the database data
elements and semantic relationships that significantly link those
elements together. These ‘facts,’ which are a type of conceptual
knowledge, can then be used to support higher-level reasoning
about the data defined by the targeted database schema.

Figure 2 Overview of constructive
induction process whereby mapping
between database elements and
corresponding ontology concepts are
used to induce new ‘facts’ concerning
the contents of the database. In this
case, Concept 2, which is included in
the ontology but does not map to the
database construct, is used as an
intermediate concept to define
a concept triplet or higher-order
construct involving multiple
intermediate entities that begins and
terminates with data elements that map
to concepts in the ontology construct.
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We instantiated our CI-based model and the previously
described mitigation strategies needed to render it computa-
tionally tractable as a reference implementation that comprises
a five-phase data-analytic ‘pipeline,’ as illustrated in figure 3, and
described in the remainder of this section. Unless otherwise
specified, the constituent components of the pipeline were
implemented using a collection of PERL scripts and the MySQL
relational database-management system.

Phase 1: data dictionary to conceptual entity mapping
A corpus of 107 data elements were extracted from the CLL-RC
Integrated Management System (CIMS) data dictionary, of
which 68 (63.5%) and 39 (36.4%) corresponded to phenotypic (eg,
white-blood-cell count, disease-specific performance status) and
biomolecular (eg, leukemic cell CD5 frequency, chromosome 11
abnormality) variable types, respectively. It is important to note
that this initial data set contained only metadata extracted from
a structured data dictionary, and not study- or patient-specific
values. Those data elements were then mapped to concepts found
in the SNOMED-CT22 and NCI Thesaurus23 ontologies, using
both the Unified Medical Language System (UMLS) Knowledge
Source Server lexical search tool and the SNOMED-CT
CliniClue browser. This process was semiautomatic, in that
initial mappings were made using the aforementioned tools in an
automated manner, and then reviewed and revised by a trained
knowledge engineer (TB) in order to ensure their accuracy and
content coverage. The initial 107 data elements mapped to 882
(537 unique) ontology concepts, of which 455 (51.6%) and 427
(48.4%) corresponded to the initial phenotypic and biomolecular
concepts, respectively. These annotations were heuristically
selected such that they described the action resulting in the data
element (eg, laboratory procedure such as white blood cell count)
and/or the specific values that could be contained within
a particular database field (eg, laboratory test results such as
a value indicating an increased white blood cell count). This phase of

the pipeline is semiautomated, leveraging the computational
tools as described, and involves the adjudication of ambiguous
mappings by a trained knowledge engineer.

Phase 2: subset selection from knowledge collection(s)
Based upon input from SMEs, a set of heuristics were developed
to identify pertinent ontologies within the UMLS, and deter-
mine of subset of concept classes and semantic relationships
that were likely to generate actionable hypotheses linking
phenotypic and biomolecular variables. As indicated in Phase 1,
the SNOMED-CT and NCI Thesaurus knowledge collection
were selected based upon their broad coverage of clinical
concepts and the cancer domain. The corpus of UMLS Meta-
thesaurus associations was initially filtered by selecting only
those parent, child and semantic relationships between concepts
corresponding to these source vocabularies. Two SMEs further
refined this list of relationships by identifying those that would
be most meaningful for relating biomolecular and phenotypic
concepts. A total of 196 unique UMLS semantic relationships
were selected for subsequent use. In addition to parent/child
associations, examples of these relationship types included: ‘may
be cytogenetic abnormality of disease,’ ‘disease may have
abnormal cell,’ ‘has definitional manifestation,’ and ‘disease has
finding.’ This phase of the pipeline is primarily manual,
leveraging an iterative process whereby SMEs working in coor-
dination with a trained knowledge engineer select and refine
targeted and domain-relevant knowledge collections or their
subcomponents. It is important to note that the heuristics being
generated via this process are reusable relative to a given domain
without further SME input or KE activities.

Phase 3: depth-based annotation
In order to support a set of search space optimization controls
utilized by the CI algorithm in Phase 4, the shortest path depth-
from-root (d) of the ontology concepts selected in Phase 1 was

Figure 3 ‘Pipeline’ model for the
Translational Ontology-anchored
Knowledge Discovery Engine,
illustrating input information/knowledge
sources, methodological phases,
intermediate knowledge products, and
the output products of the methodology
and associated tools. In this pipeline,
the data structure used to store triples
known as ‘facts’ in the CI nomenclature
is labeled as a ‘Conceptual Knowledge
Construct’ (CKC).
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calculated and used to annotate those concepts as a surrogate
indicator of concept granularity. The UMLS MRHIER source
file indexes all unique hierarchical paths (determined by the
source vocabulary) as strings of distinct atoms from a particular
concept to the UMLS root concept. If the source vocabulary
allowed for multihierarchies, a concept may have more than
one path to the root. In such cases, we used the shortest of the
available paths as the source for (d). Using this file, the
minimum distance (ie, number of ‘steps’ or atoms) to the root
was calculated for each UMLS concept corresponding to either
the SNOMED-CT or NCI Thesaurus source vocabularies. For
each unique CUI, the ‘minimum distance to the root’ is equal to
the minimum number of elements in the corresponding PTR
(path to the top or root of the hierarchical context from this
atom) fields. The average depth of the ontology concepts that
were mapped from the initial CLL-RC data dictionary variables
was found to be 4.1 and 5.5 ‘steps’ from the UMLS root for
phenotypic and biomolecular variable types respectively. This
phase of the pipeline is entirely automated, leveraging a set of
computational agents and the conceptual knowledge and
associated characteristics encoded in the UMLS knowledge
collection.

Phase 4: ‘fact’ induction
A novel graph-theoretic algorithm was used to induce ‘facts’
that comprised zero (eg, pairwise relationships) to three inter-
mediate concepts. Each ‘fact,’ or traversal path, initiated and
terminated with an annotated phenotype and biomolecular
concept, respectively, that corresponded to a data element
from the CIMS database. Additionally, the algorithm avoided
cycles by preventing the inclusion of duplicate concepts within
a single traversal path. Using the surrogate granularity indi-
cators calculated in Phase 3, a constraint was set such that
all concepts included in the traversal paths were at a depth
(d) equal to or greater than the minimum (d) of those initial
and terminal concepts. A high-level summary of this algorithm
is provided in figure 4. In addition, table 1 illustrates the effects
of the aforementioned search depth controls on the number of

‘facts’ induced using this approach. This phase of the pipeline is
entirely automated, leveraging a set of computational agents
and the products generated during the preceding pipeline
phases.

Phase 5: web-based interface development
The TOKEn Browser (figure 5) is a web-based tool that allows
end users to search and annotate relationships between biomo-
lecular and phenotypic concepts that have been generated via
the preceding four phases of the TOKEn pipeline. The browser is
implemented using AJAX (Asynchronous JavaScript and XML),
and is written in HTML, JavaScript (client scripting language),
and PHP (server scripting language), and employs an XML-based
data representation scheme. The technology provides the users
with instantaneous feedback, which also serves to improve this
application through asynchronous request/response communi-
cation between the browser and the server.
The TOKEn Browser allows for the following workflows:

select concepts, define number of intermediate steps, filter/view
defined relationships, vote/comment on predefined and user-
defined relationships, add annotated relationships, add relation-
ships to ‘My Notebook’ and distribute results via email. The ‘My
Notebook’ function allows users to store relationships that they
deem to be interesting, and use them as queries against the
corresponding data repository.

VALIDATION
Following the CI-based knowledge synthesis process described in
the preceding section, a group of five SMEs evaluated the
following metrics related to a random sample drawn from the
study data set:
1. validity of the mappings between CIMS data elements and

ontology concepts;
2. validity of the ‘facts’; and
3. potential ‘meaningfulness’ (ie, ability to potentially inform

a new, testable hypothesis) of the ‘facts’ in terms of
informing novel hypotheses.
The SMEs completely agreed with the mappings 69.2% of the

time in a random sample of 250 such data element-ontology
concept pairs, partially agreed/disagreed on 16% of the pairs, and
disagreed on only 2% of the pairs. In a small number of instances
(12.8% of the time) the SMEs indicated that they did possess
enough domain knowledge to evaluate these mappings. The
same SMEs indicated that 24.2%, 65.2%, and 10.6% of a random
sample of 66 ‘facts’ were completely valid, partially valid/
invalid, and completely invalid respectively.

Table 1 Summary of dimensionality of ‘fact’ collections generated at
increased search depth controls (d)

Search depth (d)

No of concepts in induced ‘facts’

2 3 4 5 Total

1 5 896 844 139 024 140 769

2 5 676 822 136 456 137 959

3 5 676 822 136 456 137 959

4 5 676 804 133 816 135 601

5 5 145 351 8656 9157

6 0 3 57 3063 3123

In this context, ‘d’ is the minimum shortest path to the Unified Medical Language System
root for the included concepts in the induced ‘fact,’ as calculated per the description
provided in the section ‘Phase 3: depth-based annotation.’ Of note, a ‘fact’ with three
included concepts would include an initial and terminal concept that maps to a database
metadata variable of interest, as well as a single intermediate concept being used to link
those initial and terminal concepts.

Figure 4 High-level overview of the Translational Ontology-anchored
Knowledge Discovery Engine algorithm, represented as ‘pseudo-code.’
UMLS, Unified Medical Language System.
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Finally, the SMEs evaluated those ‘facts’ designated as
completely valid and concluded that 90% of the selected ‘facts’
were meaningful and could be used to formulate a novel
hypothesis for further testing (eg, table 2). A qualitative review
of these meaningful ‘facts’ indicated that they tended to include
very specific ‘leaf node’ concepts, rather than broader concepts
that might have several ‘child’ or ‘sibling’ concepts in the source
ontologies being used.

DISCUSSION
The results of the preceding validation studies serve to demon-
strate several important findings concerning the efficacy and
utility of applying CI methods as part of the TOKEn platform in
the context of large-scale translational data repositories, namely:
< the application of TOKEn and its constituent CI algorithms

to such repositories is both computationally tractable, and
able to generate hypotheses that are both valid and
potentially ‘meaningful;’

< widely available domain-specific knowledge collections, such
as those frequently encountered in the biomedical domain,
can support the application of CI in the context of driving
biological or clinical problems; and

< the use of simple ‘concept granularity ’ metrics, such as the
minimum depth from root (d) metric described previously, is
sufficient to control the dimensionality of knowledge
collections generated via CI, thus increasing the efficacy of
the method and usability of resulting ‘facts.’
However, our initial validation studies have also identified

a number of critical gaps in knowledge and practice that impact

the ability of researchers to investigate and reason upon novel
interrelationships between higher-order complexes of data,
information, and knowledge, namely:
< the ability to evaluate and judge the domain coverage and

granularity of data dictionaries corresponding to data sets
that may serve as target resources for the TOKEn platform
remains an open and unresolved area of researchdthese types
of factors are critical when applying CI methodologies to
resource-specific metadata collections, as a variability in their
composition and content could have dramatic effects on the
output of such techniques;

< the ability to extend our CI approach, including the TOKEn
algorithm and platform, in order to discover and characterize
higher-order marker complexes that involve multiple initial
and terminal concepts corresponding to domain-specific data
resources.

< the identification of systematic and knowledge-anchored
methods for the prioritization of CI-generated hypotheses,
executed using the TOKEn platform, in order to identify
‘high-priority ’ knowledge constructs;

< optimal approaches to enabling end-user interaction with and
investigation of data, information, and knowledge complexes
generated using CI approaches as implemented in TOKEn;

< the validity and utility of TOKEn-generated data, informa-
tion, and knowledge complexes synthesized for in silico
exploration of extremely large-scale and/or heterogeneous
research data sets remains an open area of research;

< the scalability of the technologies used to implement the
prototype TOKEn pipeline; and

< approaches to the testing of TOKEn generated hypothesis in
targeted or analogous large-scale data sets, thus allowing for
a data-driven approach to ‘fact’ verification and validation.
Given such limitations, in our future work, we intend to

explore a number of extensions to the existing TOKEn platform,
including: (1) the development and evaluation of systematic
metrics and approaches to the assessment and comparison of
data-source specific metadata, with an emphasis on measure-
ments related to concept granularity and content coverage;
(2) the exploration of the use of literature-based support metrics
and information retrieval methods to enhance or prioritize
TOKEn generated ‘facts’; (3) the application of TOKEn in

Figure 5 Examples of the Translational Ontology-anchored Knowledge Discovery Engine Browser user interface. The left-hand screen is used for
defining a query of available TOKEn-generated hypotheses (eg, relational paths linking together phenotypic and biomolecular variables as a ‘fact’). The
right-hand screen is used for browsing and annotating such hypotheses. UMLS, Unified Medical Language System.

Table 2 Examples of valid and meaningful ‘facts’

Relationship pattern Induced relationship

Chromosomal abnormality /
diagnosis

del(17p13)d[may be cytogenetic abnormality
of disease]dchronic lymphocytic leukemia
refractory

Chromosomal abnormality /
clinical laboratory value/finding

t(6;9)(p23;q34)d[may be cytogenetic
abnormality of disease]dacute myelomonocytic
leukemia without abnormal eosinophilsd
[disease may have finding]dwhite-blood-cell
count increased
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multiple retrospective and prospective studies in a variety of
experimental contexts; (4) the migration of the TOKEn plat-
form to a more extensible and scalable suite of technologies
utilizing a component-based architecture and object-oriented
programming languages; and (5) the further validation of
TOKEn-generated hypotheses in the previously described CLL-
RC data set in order to better understand their efficacy in terms
of identifying and answering biologically and/or clinically rele-
vant questions, and to identify what characteristics of such
hypotheses may serve to prioritize similarly novel and impactful
hypotheses using semiautomated or automated methods.

CONCLUSION
We have developed a novel model incorporating both a meth-
odological approach and corresponding technical implementa-
tion (collectively known as TOKEn) that enables the synthesis
of knowledge from large-scale database metadata in support of
in silico discovery science. This platform incorporates a suite of
computational methods that allow for the tractable and effica-
cious generation of hypotheses that can link together pheno-
typic and biomolecular variables of interest, allowing
investigators to ask and answer potentially large numbers of
impactful translational science questions. As such, we believe
that this platform represents an exemplary instance of the
effective confluence of computation, biomedical informatics,
and the clinical and translational sciences ultimately intended to
support the high-throughput interrogation of multidimensional
data sets.
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