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ABSTRACT
Objectives We present SHARE, a new system for
statistical health information release with differential
privacy. We present two case studies that evaluate the
software on real medical datasets and demonstrate the
feasibility and utility of applying the differential privacy
framework on biomedical data.
Materials and Methods SHARE releases statistical
information in electronic health records with differential
privacy, a strong privacy framework for statistical data
release. It includes a number of state-of-the-art methods
for releasing multidimensional histograms and longitudinal
patterns. We performed a variety of experiments on two
real datasets, the surveillance, epidemiology and end
results (SEER) breast cancer dataset and the Emory
electronic medical record (EeMR) dataset, to
demonstrate the feasibility and utility of SHARE.
Results Experimental results indicate that SHARE can
deal with heterogeneous data present in medical data,
and that the released statistics are useful. The Kullback–
Leibler divergence between the released multidimensional
histograms and the original data distribution is below 0.5
and 0.01 for seven-dimensional and three-dimensional
data cubes generated from the SEER dataset, respectively.
The relative error for longitudinal pattern queries on the
EeMR dataset varies between 0 and 0.3. While the
results are promising, they also suggest that challenges
remain in applying statistical data release using the
differential privacy framework for higher dimensional data.
Conclusions SHARE is one of the first systems to
provide a mechanism for custodians to release
differentially private aggregate statistics for a variety of
use cases in the medical domain. This proof-of-concept
system is intended to be applied to large-scale medical
data warehouses.

OBJECTIVES
Recent studies and advisory reports to the govern-
ment1–3 have pointed out that information sharing
with appropriate privacy protection is one of the
most critical challenges of our time, which has the
potential to help revolutionize healthcare. In par-
ticular, the Institute of Medicine’s committee on
health research and the privacy of health informa-
tion concludes3 that the current Health Insurance
Portability and Accountability Act (1996) (HIPAA)
privacy rule (http://www.hhs.gov/ocr/privacy/) does
not protect privacy well and calls for an entirely new
approach to protecting privacy in health research.
We present and describe a new software frame-

work, statistical health information release
(SHARE), for releasing statistical health information
with differential privacy, a strong privacy framework
for statistical data release. Through studies with real

medical datasets, we get insight into the feasibility
and utility of applying differentially private statis-
tical data release to medical data.

BACKGROUND AND SIGNIFICANCE
The problem of preserving patient privacy in disse-
minated biomedical datasets has attracted increasing
attention by both the biomedical informatics and
computer science communities.3–7 The goal is to
share a ‘sanitized’ version of the individual records
(microdata) that simultaneously provides utility
for data users and privacy protection for the
individuals represented in the records. In the biomed-
ical domain, many text de-identification tools are
focused on extracting identifiers from different
types of medical documents and use simple
identifier removal or replacements according to the
HIPAA safe harbor method for de-identification.7–10

Several studies and reviews have evaluated the
re-identification risks of linking de-identified data by
the HIPAA safe harbor method with external data
such as voter registration lists.11–14 Many studies
have proposed or applied formal anonymization
methods on medical data.15–22 While still the domin-
ant approach in practice, the main limitation of
microdata release with de-identification is that it
often relies on assumptions of certain background or
external knowledge (eg, availability of voter registra-
tion lists) and only protects against specific attacks
(eg, linking or re-identification attacks).
A complementary research problem to microdata

(ie, original data) release is to release only privacy-
preserving statistical macrodata (ie, derived statis-
tics), which could also be used to construct syn-
thetic data. Differential privacy23–25 has emerged as
one of the strongest unconditional privacy guaran-
tees for statistical data release. It makes few assump-
tions on the background or external knowledge of an
attacker, and thus provides a strong provable privacy
guarantee. A statistical aggregation or computation
satisfies ε-differential privacy, ie, is ε-differentially
private, if the outcomes are formally ‘indistinguish-
able’ (‘indistinguishable’ is formally and quantita-
tively defined in Dwork)23 (outcome probability
differs by no more than a multiplicative factor eɛ)
when run with and without any particular record in
the dataset, where ɛ is a privacy parameter that
limits the maximum amount of influence a record
can have on the outcome. A common mechanism to
achieve ε-differential privacy is the Laplace mechan-
ism, which adds calibrated noise to a statistical
measure, as determined by a given privacy parameter
ε and the sensitivity of the statistical measure to the
inclusion and exclusion of any record in the dataset.
A more stringent privacy parameter requires more
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noise to be added and thus provides a higher level of privacy.
A data custodian can specify an overall privacy parameter (ie,
privacy budget) (the ‘privacy budget’ intuitively refers to an
expendable resource that can be utilized to get statistical informa-
tion from a dataset given a privacy requirement. A lower budget
typically requires more noise to be added to each statistical
measure or allows fewer measures to be computed) that can be
used for a sequence of statistical measures, ie, each computation
utilizes a portion of the budget, and the overall result guarantees
differential privacy according to the composition properties of dif-
ferential privacy.26 27 While interactive mechanisms for specia-
lized studies exist,28 it remains a hard problem to find efficient
and effective algorithms for non-interactive data release (ie, to
find an optimal set of statistical measures) that ensures differen-
tial privacy given a privacy budget while guaranteeing and maxi-
mizing data utility29 for targeted applications of the data.
Applying differential privacy to health data presents practical
challenges in addition to technical challenges,30 but the quantifi-
cation of privacy risk that it entails more than justifies research in
this area.

SHARE is a prototype we have developed for releasing statis-
tical health information with differential privacy guarantees.
The released data allow researchers to deduce important
medical findings without compromising the privacy of indivi-
duals. The usage of formal privacy techniques gives formal
guarantees of privacy, which are typically lacking in honest
brokers and data releasers’ data toolboxes. We present SHARE’s
design and report on its application in guaranteeing privacy of
shared, real-world clinical data.

MATERIALS AND METHODS
Overview
SHARE takes as input structured biomedical data (eg, coded
diagnoses, demographic data), a privacy budget, and outputs
aggregated statistics (eg, means, histograms) with differential
privacy guarantees. It implements several state-of-the-art algo-
rithms that are designed for different types of data. The basic
component, DPCube, releases aggregated count statistics in the
form of multidimensional histograms (data cubes). For longitu-
dinal data, it contains a specialized component, DPTrie, for
accurately releasing count statistics of longitudinal patterns in
the form of a prefix tree (trie). The released statistics can serve
as a sanitized synopsis of the original database. It can also be
used to generate a synthetic dataset that mimics the original
data. Together, they support a variety of online analytical pro-
cessing queries and other learning tasks. We present two use
case studies evaluating DPCube and DPTrie on two real-world
biomedical datasets.

SHARE is also integrated with the health information
de-identification (HIDE)31–34 system we have developed previ-
ously for releasing both differentially private statistical data
and de-identified records for unstructured (eg, narrative text)
and structured data. Figure 1 shows an overall conceptual view
of the SHARE system integrated with the HIDE system. The
integrated system offers an end-to-end solution. A data custo-
dian for a medical institution typically has access to structured
and unstructured components of electronic health records
(EHR). For unstructured records, our previous system HIDE
uses a statistical learning approach, the state-of-the-art condi-
tional random field framework,35 36 as the basis for tagging pro-
tected health information (PHI) and other useful elements.
A patient-centric view of the data is created by linking all of
the relevant variables for the same patient from the structured
and unstructured data. The patient-centric view may be used

to release: the original text with anonymized substitutions in
place of the original PHI and anonymized data tables contain-
ing individual records generated by the de-identification compo-
nent using HIPAA safe harbor methods or more advanced
statistical anonymization methods, and differentially private
aggregated statistics through the SHARE system. Please refer to
Gardner and Xiong,33 Gardner et al34 and Jurczyk et al37 for
details of the PHI extraction and linking components of HIDE.
In this article, we focus on SHARE functionalities using struc-
tured data inputs. Below we describe the DPCube and DPTrie
components in detail.

Differentially private histogram release
The DPCube component builds a differentially private multidi-
mensional histogram (data cube) for an input dataset given a
privacy budget. It implements the multidimensional partition-
ing algorithm we have previously designed.38 39 The DPCube
algorithm consists of three steps. In step 1, the algorithm gen-
erates a differentially private equiwidth cell (unit) histogram.
In step 2, it partitions the data space using the cell histogram
from the first step and generates partitions (optimized histo-
gram buckets). In step 3, the partitions are used to generate a
differentially private subcube histogram. The privacy budget is
allocated to steps 1 and 3 for noise perturbation to ensure dif-
ferential privacy of the resulting histograms. The main goal of
the algorithm is to generate a v-optimal histogram,40 which
minimizes the cumulative weighted variance of the histogram
buckets and thus improves query precision or utility of the dis-
closed histogram. A v-optimal histogram can be approximated
by a variety of heuristics. The initial implementations of
DPCube used greedy partitioning of either the median value of
attribute or information gain-based split points. Given a user-
issued query, an estimation component can answer the query
using the subcube histogram or apply inference or estimation
techniques to boost the accuracy further using both histo-
grams.39 41 The histograms can serve as a sanitized synopsis of
the original database and, together with an optional synthe-
sized dataset based on the histograms, are useful to support
count queries and other types of online analytical processing
queries and learning tasks. Figure 2A shows an example illus-
trating the process of DPCube for releasing two-dimensional
histograms built on age and income attributes from the
original data.

For data that contain set-valued attributes (eg, a list of symp-
toms extracted from a pathology report), SHARE includes an
implementation of the top-down partitioning algorithm42 that
is designed to cope with the high-dimensional set-valued data.

Differentially private longitudinal pattern release
Many biomedical datasets are collected for longitudinal studies
that involve repeated observations of the same variables over
periods of time. Due to high dimensionality and self-correlation
of the data, DPCube and other existing histogram methods are
not well suited for this type of data. SHARE includes an adapta-
tion of the prefix tree-based algorithm43 to maintain the longitu-
dinal patterns of the data accurately. We named this component
DPTrie and briefly describe it with an example below.

Figure 2B shows an example longitudinal dataset of blood
pressure history for several patients and the prefix tree gener-
ated from their original records. A prefix tree groups temporal
patterns with the same prefix into the same branch in the tree.
Each level of the tree corresponds to a time point in the longi-
tudinal data. The key value pair in each tree node represents a
prefix pattern, and the number of patients in the dataset
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corresponding to that pattern. For example, at the first level of
the tree, ‘L:0’ means that there are 0 patients with low blood
pressure (90 or lower, denoted by L) at time t1. Similarly, there
are 70 normal (above 90 and below 130, denoted by N) and 30
with high blood pressure (130 or higher, denoted by H).
Among the 70 patients with N at t1, 40 of them had N at t2
(corresponding to pattern NN) and 30 of them had H at t2
(corresponding to pattern NH). At each level, if a pattern is
associated with no or a low number of patients, it does not
needed to be expanded. For example, if no patient has L pattern
at t1, the node L is not expanded. The counts at each node are
perturbed using the standard Laplace mechanism16 before
release to guarantee differential privacy.

Case studies
We evaluated the feasibility and utility of the SHARE compo-
nents using two real world datasets. The surveillance, epidemi-
ology and end results (SEER) dataset44 contains cancer

statistics representing approximately 28% of the US popula-
tion. The SEER research data include incidence, demographics
(age, sex, race), year of diagnosis, and geographical area. It is
common to use aggregated population statistics to determine
mortality rates over ranges of time or to analyze demographic
patterns. We demonstrate the feasibility and utility of differen-
tially private data cubes generated by the DPCube component
for such studies.

The Emory electronic medical record (EeMR) prescription
dataset contains all e-prescription (eRx) information written
by physicians at Emory University and affiliated hospitals
over a period of 2 years. It also contains demographic informa-
tion about each physician including age, sex, and locations of
residence over the period in which they were in residency in
the hospital system. We evaluated both the DPCube compo-
nent and the DPTrie component on this longitudinal dataset
to assess whether the latter better preserved the longitudinal
patterns.

Figure 2 Overview and examples of differentially private histogram release (DPCube) and longitudinal pattern release (DPTrie) in statistical health
information release (SHARE). This figure is only reproduced in colour in the online version.

Figure 1 System overview of
statistical health information release
(SHARE): it is integrated with health
information de-identification (HIDE) to
provide both de-identification and
differentially private statistical data
release for unstructured and structured
records. This figure is only reproduced
in colour in the online version.
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RESULTS
We performed a variety of experiments addressing heteroge-
neous queries on the two datasets. We present empirical results
and illustrate them with figures followed by a discussion.

SEER statistics
For the SEER44 breast cancer dataset, the goal was to release
data cubes that are close to the original data distribution while
also giving a guaranteed level of privacy. The following seven
dimensions (and cardinality) were selected to generate full data
cubes representing high dimensions: sex (two), age (130), diag-
nosis year (36), behavior code (two), laboratory confirmation
(nine), death code (two), other death code (two). The following
three dimensions were selected to generate reduced data cubes
representing low dimensions: age, diagnosis year, and behavior
code. After filtering out patients with unknown data, the
dataset contained 22 174 breast cancer patient records between
1973 and 2008. In all of our DPCube experiments, we allocated
the privacy budget equally between the released cell histogram
and subcube histogram and the overall released data cubes are
differentially private. The year of diagnosis, age at diagnosis,
and the death status were sliced from the full data cubes as
bases for analyses (all figures in this section use blue to indicate
other cause of death, and green to indicate death as a result of
cancer).

We also compared the DPCube algorithm with a baseline
algorithm that simply generates a noisy cell (unit) histogram
by adding noise to the count of every unit according to the
total privacy budget. We note that there are several
state-of-the-art algorithms45 46 for generating multidimensional
histograms. They have been compared in our earlier work38 47

and others,46 which showed that DPCube results in comparable
accuracy relative to the alternative methods given a privacy
requirement and can even show an advantage for certain data
distributions and queries. Our goal in this article is to demon-
strate the feasibility and utility of releasing differentially
private data cubes for real-world medical data, rather than to
repeat detailed comparisons with other approaches.

Figure 3A, B shows the original histograms and differentially
private histograms from the full data cubes generated by the
baseline algorithm and the DPCube algorithm for a privacy
budget of 0.5 with respect to the variables (year of diagnosis,
cause of death) and (age of diagnosis, cause of death), respect-
ively. The histograms show both individuals who died as a
result of cancer as well as those who are either still living or
died of other causes. DPCube produces distributions that are
closer to the original distributions than those by the baseline
algorithm. In general, we observed that for high-dimensional
data cubes such as the full data cubes, a smaller privacy budget
(ie, higher noise) causes the distributions to become closer to
uniform and thus provides lower utility. When ε=0.1, the abso-
lute values of differentially private counts become less mean-
ingful due to the high noise; however, we observed that they
still preserve the original distribution to some extent. It is a
task for regulators and honest brokers to determine the accept-
able level of utility (or error) for a certain guaranteed level of
privacy.

We performed further error analysis for both the full data
cubes and the reduced data cubes. Figure 4 shows the counts
and absolute error of the number of deaths from breast cancer
with respect to the year of diagnosis. For the full data cubes,
the DPCube algorithm results in errors between 2227 and 3056,
while the baseline gives errors between 6787 and 7447 for the

yearly death counts of individuals diagnosed between years
1973 and 2008. These results confirm that the DPCube algo-
rithm produces distributions closer to the original with the
same level of privacy as the baseline approach. For the reduced
data cubes, the DPCube algorithm provides a slight improve-
ment over the baseline approach. We also calculated the
Kullback–Leibler (KL) divergence between the released noisy
data cubes and the original data cubes. The KL divergence is
used as a standard non-symmetric measure of the difference
between two probability distributions. Figure 4 shows that
DPCube achieves lower (better) KL divergence for varying dif-
ferential privacy budgets.

Longitudinal study using EeMR dataset
The second case study evaluated the longitudinal data support
of SHARE using the EeMR prescription dataset. The results
show that differentially private statistics can be released that
support complex queries involving aggregations of demographic
and longitudinal information from the data. The dataset con-
tains the national provider ID and the average number of eRx
per patient for each month for each physician. Many physi-
cians started at different times, therefore the data were normal-
ized so that each physician started at month 1. This
preprocessing allows for the detection of trends for the counts
of eRx writing for physicians in residence. Physicians with
fewer than 9 months of residency were removed from the
dataset. After filtering, the dataset consisted of 517 physician
temporal sequences. The data were smoothed into ‘quarters’,
for which we took the average over 3-month spans for each
physician. We randomly augmented the data by sampling with
replacement 10 000 entries in order to get a large enough
dataset to apply the differential privacy principles described in
this article. (These data were selected to represent as real-world
data as possible, but the augmentation was necessary to evalu-
ate the differential privacy on histograms, which requires large
datasets. Assuming our dataset is representative of the popula-
tion, similar datasets taken from a larger pool of clinicians
should show similar results.) The data were normalized to indi-
cate physicians who averaged zero, low (0–3), medium (3–6), or
high (≥6) medication counts per patient visit in each month.

Figure 5 shows the trends of a random selection of four phy-
sicians in the dataset. Most physicians tend to write more eRx
per patient visit on average over time, but there are some
trends downward exhibiting ‘zig-zag’ patterns. We performed
experiments to check if demographic information could be used
to classify physicians by trend on the original dataset, without
success. This led us to believe that demographic information
alone is not a good indicator of trend. Even though we were
unable to classify or cluster trends with physician demograph-
ics, we were able to see clear trends in the longitudinal data.
The goal was to provide differentially private release of the
data that still preserve the ability to perform trend queries or
aggregate analysis. The utility of these trends can be evaluated
by measuring the error for temporal queries of varying length.
An example temporal query of length 3 would be ‘How many
physicians averaged 2 eRx per visit the first month, 4 the
second, and 6 the third?’ One measure for determining the
accuracy of a differentially private longitudinal data release is
to measure the average error for temporal queries involving dif-
ferent lengths of time.

We first applied DPCube to the aggregations over these data.
The error was significantly worse than that of the standard
cell-based approach (baseline). By examining the data, the
results confirmed our analysis that the DPCube approach is ill
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suited for datasets with extremely skewed local distributions.
In addition, treating each time point as a single attribute
creates a highly dimensional dataset with an exponential

number of cells with respect to the number of time points,
which DPCube is not designed for. We then applied the DPTrie
component and present the results below.

Figure 3 Histograms of death cause after cancer diagnosis relative to the year of diagnosis and age of diagnosis generated from full data cubes for
the surveillance, epidemiology and end results (SEER) dataset. All figures use green to indicate death as a result of cancer and blue to indicate other
causes of death. This figure is only reproduced in colour in the online version.

Figure 4 Comparison of DPCube and baseline for number of cancer deaths relative to the year of diagnosis generated from the full data cubes
(seven-dimensional) and reduced data cubes (three-dimensional). KL, Kullback–Leibler. This figure is only reproduced in colour in the online version.
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Figure 6A shows the average perturbed counts returned for
temporal queries of random patterns of a given length are com-
parable to the original counts. As expected, the average count
decreases over query length as the query patterns become more
distinguishing. To examine the error more closely, we generated
temporal queries according to different slopes, corresponding to
physicians who tend to write more or fewer eRx over a period
of time (query length) during their residence. The slopes are
defined to be negative (−1.5, −0.5), approximately zero or flat
(−0.5, 0.5), or positive (0.5, 1.5). For example, we could find
out the number of physicians who have particular patterns
with an increasing eRx rate over their entire residence.
Figure 6B, C shows the average absolute error and average rela-
tive error with respect to different slopes and the query length.
We observed that the error decreases as query length increases
because the number of physicians returned will be smaller. The
error is quite small over long patterns. On the other hand,
queries of positive slope have a higher error because of its
higher count as the majority of the physicians exhibit a posi-
tive eRx rate over time. In general, the relative error varies
between 0 and 30%. We believe that the slope statistics on this
dataset are useful and can be released in a differentially private
manner.

DISCUSSION
We have presented the system design of the SHARE system and
various experiments on real-world and augmented datasets. We

envision the released data statistics could be freely used for
queries preparatory to research studies and prospective clinical
trials to gauge whether or not there are enough data satisfying
the needs of the researcher in the original dataset that could
warrant seeking institutional review board approval and access
rights to the original data. Population-level or larger-scale obser-
vational research studies could potentially be done on the
privacy-preserving data release to determine trends or possible
predictors for disease outcomes. Before publication or dissemin-
ation it would probably be necessary to perform the study on
the original data, but a mechanism that is guaranteed to pre-
serve privacy above a certain predetermined level would allow
for potentially more studies without the need for formal
approval or large pools of patients that give consent for some
studies. Comparative effectiveness studies could also be possible
following a similar workflow. Typically, comparative effective-
ness studies require the use of a variety of data sources. These
studies could have increased power if a number of institutions
release differentially private data statistics. If analyses on these
cubes suggest promising trends across diverse data sources, then
it may be possible to reach out to other researchers who could
verify the findings on their own data, for which they may have
higher access rights. Comparing analyses on disclosed data
cubes versus distributed analyses48 is also an important area for
further research.

There are also some questions or challenges that need to be
addressed before differentially private data release can be

Figure 5 Random selection of physicians where X value is month of residence and Y value is the average number of e-prescriptions (eRx) per visit
in each month.
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applied on a large scale. In practice, a data custodian would
specify an initial privacy budget based on how sensitive the
information is and the desired level of privacy. It remains an
open question how to configure and even explain the level of
differential privacy in intuitive ways to the data custodians and
patients. In addition, each of the statistical data releases would
utilize a portion of this privacy budget due to the composition
properties of the differential privacy. The budget bound inevit-
ably still places limitations on the practical implementation of
the system. Finally, as we have observed, many of the heuristic
algorithms are data dependent. Even a subtle difference in the
algorithmic parameters can have a significant effect on the
resulting data. Domain knowledge about the data to be released
(eg, whether they are high dimensional, whether they are longi-
tudinal) and the targeted applications are important and
should be used, when possible, to guide the selection and
design of proper data release algorithms.

While we have shown that differential privacy can be suc-
cessfully applied in two medical datasets, future research is
warranted. The case studies presented here and most existing
work have shown that differentially private histogram release
methods work well for single or low-dimensional data. It
remains a challenge to build high-dimensional histograms effi-
ciently that are accurate due to the high dimensionality and
data sparseness. For the prefix tree-based release of longitudinal
data, one key question is how to allocate the privacy budget
among all the different levels of the tree. We plan to investigate
various allocation schemes to maintain more accurate longitu-
dinal patterns. We are also interested in devising methods to
incorporate domain knowledge in the release process.

CONCLUSION
We have presented the SHARE system for releasing statistical
health information with differential privacy guarantees.

Integrated with HIDE, it enables custodians to implement a
variety of privacy-preserving medical data publishing options.
It gives honest brokers the ability to share privacy-preserving
aggregated statistics and longitudinal data. However, there are
still several aspects that need to be explored further. Our ultim-
ate goal is to create a framework and system that can be used
in practice on a large scale.
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