
Automatic glaucoma diagnosis through medical
imaging informatics
Jiang Liu,1 Zhuo Zhang,2,3 Damon Wing Kee Wong,1 Yanwu Xu,1 Fengshou Yin,1

Jun Cheng,1 Ngan Meng Tan,1 Chee Keong Kwoh,3 Dong Xu,3 Yih Chung Tham,4

Tin Aung,5 Tien Yin Wong6

▸ Additional material is
published online only. To view
please visit the journal online
(http://dx.doi.org/10.1136/
amiajnl-2012-001336).
1Department of Ocular
Imaging, Institute for
Infocomm Research, Singapore,
Singapore
2Department of Neural &
Biomedical Technology,
Institute for Infocomm
Research, Singapore, Singapore
3Department of Computer
Engineering, Nanyang
Technological University,
Singapore, Singapore
4Singapore Eye Research
Institute, Singapore, Singapore
5Singapore National
Eye Centre, Singapore,
Singapore
6National University Hospital,
Singapore, Singapore

Correspondence to
Dr Jiang Liu, Department of
Ocular Imaging, Institute for
Infocomm Research,
1 Fusionopolis Way, #21-01
Connexis (South Tower),
Singapore 138632, Singapore;
jliu@i2r.a-star.edu.sg

Received 14 September 2012
Revised 15 February 2013
Accepted 19 February 2013
Published Online First
28 March 2013

To cite: Liu J, Zhang Z,
Wong DWK, et al. J Am
Med Inform Assoc
2013;20:1021–1027.

ABSTRACT
Background Computer-aided diagnosis for screening
utilizes computer-based analytical methodologies to
process patient information. Glaucoma is the leading
irreversible cause of blindness. Due to the lack of an
effective and standard screening practice, more than
50% of the cases are undiagnosed, which prevents the
early treatment of the disease.
Objective To design an automatic glaucoma diagnosis
architecture automatic glaucoma diagnosis through
medical imaging informatics (AGLAIA-MII) that combines
patient personal data, medical retinal fundus image, and
patient’s genome information for screening.
Materials and methods 2258 cases from a
population study were used to evaluate the screening
software. These cases were attributed with patient
personal data, retinal images and quality controlled
genome data. Utilizing the multiple kernel learning-
based classifier, AGLAIA-MII, combined patient personal
data, major image features, and important genome
single nucleotide polymorphism (SNP) features.
Results and discussion Receiver operating
characteristic curves were plotted to compare AGLAIA-
MII’s performance with classifiers using patient personal
data, images, and genome SNP separately. AGLAIA-MII
was able to achieve an area under curve value of 0.866,
better than 0.551, 0.722 and 0.810 by the individual
personal data, image and genome information
components, respectively. AGLAIA-MII also demonstrated
a substantial improvement over the current glaucoma
screening approach based on intraocular pressure.
Conclusions AGLAIA-MII demonstrates for the first
time the capability of integrating patients’ personal data,
medical retinal image and genome information for
automatic glaucoma diagnosis and screening in a large
dataset from a population study. It paves the way for a
holistic approach for automatic objective glaucoma
diagnosis and screening.

BACKGROUND
Glaucoma and early diagnosis
Glaucoma is a disease of the optic nerve. It is the
second leading cause of blindness, and will affect
approximately 80 million people by 2020.1

Glaucoma is a chronic and irreversible neurodegen-
erative disease in which the optic nerve is progres-
sively damaged, leading to deterioration in vision
and quality of life.2 The disease is usually asymp-
tomatic and patients are commonly unaware of the
disease until noticeable visual loss occurs at a later
stage, giving rise to its nickname the ‘silent thief of
sight’. The estimated progression of optic nerve

fiber loss in glaucoma can range from 9% to 63%
over a 5-year period.3–5 In view of this, early detec-
tion of glaucomatous changes is crucial for timely
treatment before the onset of permanent functional
visual loss. However, studies in Singapore and other
countries have shown that 50–90% of glaucoma
cases remain undetected in the population.6–11

Early treatment by lowering the intraocular pres-
sure (IOP) by medication or surgery can halt or
slow disease progression. The American Academy
of Ophthalmology has strongly recommended
screening for glaucoma as part of comprehensive
adult medical eye evaluation, with screening fre-
quency depending on an individual’s age and other
glaucoma risk factors.
Glaucoma can be detected from raised IOP and

visual field loss. IOP measurement using non-
contact tonometry is found to be neither specific
nor sensitive enough to be an effective screening
tool as glaucoma can be present with or without
increased IOP.4 Functional testing through vision
loss is likely to miss most patients with early glau-
coma damage12 as these patients do not have many
visual symptoms. Assessment of the damaged optic
nerve is more promising and superior to IOP meas-
urement or visual field testing, as optic nerve
damage precedes vision loss and can be used to
detect glaucoma earlier with higher sensitivity.
Optic nerve assessment can be performed by a
trained professional. However, as such a manual
assessment is subjective, time consuming and
expensive, there remains a strong need for an effi-
cient and objective way to screen for glaucoma.

Previous work in medical imaging informatics
for computer-aided detection
In recent years, there has been increasing use of
data mining and informatics in biomedical and
medical imaging applications due to the wealth and
expanse of available data.13 This has led to a
greater understanding and interpretation of the
complex relationships in such data. In general, data
used in medical informatics can be broadly classi-
fied as personal data, imaging data and genetic
data.
Personal data and other ocular measurements

have been used to develop models of prediction for
glaucoma. The Ocular Hypertension Study
Group14 designed a predictive model through the
use of baseline age, IOP, central corneal thickness,
vertical cup-to-disc ratio, and visual field pattern
SD to estimate the 5-year risk of glaucoma.
Similarly, Hattenhauer et al15 calculated the
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probability of blindness from new diagnoses of glaucoma using
a Kaplan–Meier model, based on perimetric measurements. It
should be noted that these models use input parameters
obtained from highly specialized instruments found in tertiary
care institutions, which may not be suitable or readily available
for screening.

Current glaucoma screening
A high IOP in the eye has been traditionally regarded as a prin-
cipal risk factor for glaucoma.16 Increased IOP is particularly
evident in closed angle glaucoma, in which the increase in IOP
has been attributed to blockage of the trabecular meshwork.
However, for open angle glaucoma, the use of IOP for screening
is limited. Results from studies have shown that IOP is unable to
differentiate between normal or increased pressure, or low
tension and high tension glaucoma.17 Due to the fluctuation of
IOP over time and throughout the day, repeated IOP measure-
ments are required to detect any anomalous increases in IOP.
Another challenge is that IOP is positively correlated with blood
pressure and other cardiac risk variables.18 This has made the
use of IOP challenging for glaucoma screening. In one study,
increased IOP was found only to have a sensitivity of 47% and
a specificity of 92% for diagnosing glaucoma.19

Our objective is to develop an automatic glaucoma diagnosis
and screening architecture, automatic glaucoma diagnosis
through medical imaging informatics (AGLAIA-MII), which
combines patient personal data, medical retinal fundus image
features, and genome information for glaucoma prediction.

MATERIALS AND METHODS
The rapid development of medical imaging informatics offers
new insights into the computer-aided diagnosis of diseases.
Integrating automatic medical image analysis with the utilization
of informatics methodologies from patients’ personal data and
genome single nucleotide polymorphisms (SNP) provides a
promising direction for disease diagnosis.

The AGLAIA-MII architecture shown in figure 1 uses infor-
mation from multiple sources, including subjects’ personal data,
imaging information from retinal fundus image, and patients’
genome information. Features from each data source will be
extracted automatically. Subsequently, these features will be
passed to a multiple kernel learning (MKL) framework to gener-
ate a final diagnosis outcome.

Data description
AGLAIA-MII is trained and evaluated on data from the
Singapore Malay Eye Study (SiMES) database. SiMES is a
population-based study conducted from 2004 to 2007 to assess
the causes and risk factors of blindness and visual impairment in
the Singapore Malay community. The study was approved by
the institutional review board of Singapore Eye Research
Institute. The database contains 3280 subjects, with complete or
partial personal data, retinal fundus image data and genome
information for each subject. The personal data in SiMES con-
tains demographic data such as age, gender and height, ocular
examination data, such as IOP and cornea thickness, as well as
historical medical data. In addition, diagnostic information of
glaucoma is available and is used as the class labels in our
experiments. Image data for glaucoma analysis in SiMES is
based on an optic disc centered retinal fundus image. These
images were acquired using a 45° FOV Canon CRDGi retinal
fundus camera with a 10D SLR backing, at an image resolution
of 3072×2048 pixels. The patients were also genotyped on

Illumina 610quad arrays, and the data generated form our
genome data information.

Quality control was performed on the personal data, retinal
image data and genome information to remove incomplete data.
Personal data categories with more than 5% missing values were
first removed. Subsequently, subjects with more than 5%
missing values with the remaining features were also excluded.
Subjects with low quality retinal fundus images that are ungrad-
able manually are removed to ensure a clean image dataset. The
genome dataset is made up of selected autosomal SNP after a
stringent quality control procedure. These three datasets are
then merged via subject matching. The final dataset contains
2258 subjects with clean screening data, image data and genome
data. Among the 2258 individuals, 100 were diagnosed to have
glaucoma and the rest were normal. The distribution of glau-
coma subjects in the final dataset is representative of the glau-
coma prevalence in the population.

Personal data
The personal data of each subject is collected and used as one
type of feature for glaucoma assessment in AGLAIA-MII.
Table 1 lists the 46 variables used for each subject.

Univariant analysis is conducted for all demographic and clin-
ical variables that compose the personal data. p Values are
obtained by conducting Student’s t test for numerical variables
and χ2 test for categorical variables. Table 2 lists the mean, SD
and p values for all numerical variables. ‘Age’ is highly related to
glaucoma with p values smaller than 0.001. Systolic blood pres-
sure, pulse pressure, and triglycerides are also associated with
glaucoma. For categorical variables, three are found to be asso-
ciated with glaucoma: ‘age group’ (p<0.001), ‘race’ (p=0.01)
and ‘job categories’ (p=0.047).

Genome information
Vithana et al20 recently reported three SNP markers
(rs11024102 in PLEKHA7, rs3753841 in COL11A1 and

Figure 1 Flowchart of the automatic glaucoma diagnosis through
medical imaging informatics (AGLAIA-MII) architecture.
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rs1015213), which showed significant association with glau-
coma. Besides these three SNP, other SNP that have demon-
strated moderate significance, or have been reported in previous
findings (tables 1, 3, 4, 6 and 7 of Vithana et al)20 have
also been used in our model. In total, 178 SNP are selected
in this study, as listed in supplementary table S1 (available
online only). These 178 SNP are used as genetic features for
glaucoma assessment in AGLAIA-MII. For each single SNP, its
value v [ {0; 1; 2}represents the genotype, with the values of
{0;1;2} reflecting the number of minor alleles in the SNP pair.

Medical retinal image and features
As illustrated in figure 2, for each retinal image, the optic disc is
first segmented by using the method in Wong et al.21 In this
method, the approximate location of the optic disc is detected
using the intensity of equal-sized patches from the retinal image.
Next, a region of interest approximately twice the size of the
typical optic disc size is then extracted from the candidate patch
location. To localize the optic disc, we used a variational level-
set approach, which seeks to minimize an energy functional con-
sisting of contextual parameters in the image domain.

The detected disc is then resized to 256×256 to extract
medical retinal features as follows. First, the optic disc is
divided into 16×16 grids, which are half-overlapping with its
neighbors, thus obtaining 16×16+15×15+2×16×15=961
grids. In each 16×16 grid, a 256-dimensional histogram of the
green channel and a 256-dimensional histogram of the local
binary pattern22 on the grey channel are extracted. In addition,
mode: red green blue (RGB) colors, mode LAB colors (a color-
opponent space with dimension L for lightness and A and B for
the color-opponent dimensions), color moments of the hue sat-
uration value (HSV) colors (1st to 4th moments),23 image
moment invariants RGB colors,24 statistical texture descriptors24

from RGB channels (average grey level, average contrast,
measure of smoothness, third moments, uniformity and
entropy) are also calculated, resulting in a 569 dimensional
descriptor for each grid. The final medical image features are
obtained as the standard derivation of the descriptors for all
grids, which represents the variance of each local part of the
retinal image.

In AGLAIA-MII, three sources of data from different domains
are used for glaucoma assessment, that is, personal data,
genome information and medical retinal image feature. Before
applying learning algorithms, each feature dimension is normal-
ized to the range of [0 1] in order to avoid magnitude differ-
ences and bias among the dimensions, and a support vector
machine (SVM) based MKL framework is utilized to train the
classifier for glaucoma assessment.

SVM-based MKL
SVM25 26 are powerful tools for classification. Given a set of
training examples, each marked as belonging to one of two cat-
egories in a binary classification application, a SVM training
algorithm builds a model that assigns new examples into one
category or the other. SVM cast the data into a higher dimen-
sional space called the ‘kernel-induced feature space’ where the
data are separable. Different kernel functions correspond to dif-
ferent embeddings of the data and thus can be viewed as captur-
ing different notions of similarity. Standard SVM methods build
a single kernel function on different types of input data
throughout the algorithm and may have compromises on learn-
ing with fusion of heterogeneous data types. To utilize fully the
data acquired from various sources and boost the overall system
performance, a classifier can be trained using the increasingly
popular MKL27 approach. Many applications have shown that
using multiple kernels instead of a single one can enhance the

Table 1 Personal data used in AGLAIA-MII

List of demographic and clinical variables included in personal data

Age Blood creatinine Albumin-creatinine ratio Can read Chronic kidney disease indicator
Age group Blood glucose Diabetes I Can write Hyperlipidemia
Gender Blood HbA1c categories Diabetes II Alcoholic drink categories Metabolic syndrome
Height Blood glycosylated hemoglobin Job categories Ever smoke Microalbuminuria
Weight Blood total cholesterol Race Current smoker Incremental metabolic variable
Diastolic blood pressure Blood LDL cholesterol Marital categories Angina* Lens status
Systolic blood pressure Blood HDL cholesterol Income categories Heart attack *
Pulse pressure Triglycerides Type of place living in Stroke*
Mean arterial pressure Hypertension Place of birth Hypercholessterolemia*
BMI Hypertension treatment and control Education categories Thyroid condition*

*Self-reported.
AGLAIA-MII, automatic glaucoma diagnosis through medical imaging informatics; BMI, body mass index; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density
lipoprotein.

Table 2 Univariant analysis for demographic and clinical variables

Normal
(2158)

Glaucoma
(100)

Mean SD Mean SD p Value

Age (years) 57.52 10.5 63.43 10.55 <0.001
Height (cm) 158.89 9.0 157.63 10.25 0.226
Weight (kg) 66.74 13.6 64.55 15.34 0.161
Diastolic blood pressure (mm Hg) 80.04 11.4 78.20 10.43 0.087
Systolic blood pressure (mm Hg) 146.30 23.5 151.44 24.14 0.040
Pulse pressure (mm Hg) 66.26 18.0 73.24 20.68 0.001
Mean arterial pressure (mm Hg) 102.13 14.1 102.61 13.10 0.725
Body mass index (kg/m2) 26.42 5.0 25.98 6.10 0.482
Blood glycosylated Hemoglobin
(mmol/l)

6.42 1.5 6.42 1.38 0.987

Blood total cholesterol (mmol/l) 5.61 1.2 5.55 1.17 0.604
Blood LDL cholesterol (mmol/l) 3.53 1.0 3.56 1.07 0.835
Blood HDL cholesterol (mmol/l) 1.34 0.3 1.39 0.37 0.266
Triglycerides (mmol/l) 1.62 1.3 1.34 0.99 0.007

HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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interpretability of the decision function and improve
performance.27

Given a training set of instance-label pairs ðfi; yiÞ; i ¼ 1;:::; l
where fi [ Rn is the whole feature of a subject, and yi [{−1,1}
denotes its label, that is, 1 denotes glaucoma and −1 denotes
normal, feature fi is mapped into a higher dimensional
space by using a mapping function fm

28 In the case of
SVM-based MKL, a convenient approach is to consider
thekernel K (fi, fi) as a convex combination of the basis kernels:

Kð fi; fjÞ ¼
XM

m¼1

dmKmðfi; fjÞ; dm � 0 and
XM

m¼1

dm¼1;

where M is the total number of basis kernels,
Kmðfi; fjÞ ¼ fmðfiÞTfmðfjÞ is mth basis kernel and dm is its
weight to be determined. Each basis kernel Km may either use
the full set of features describing samples or subsets of features
stemming from different data sources.27 Within this MKL
framework, the problem of data representation through the
kernel is then transferred to the selection of weights dm. In
AGLAIA-MII, we use basis kernels based on each single feature
from only one source, which can demonstrate that the combin-
ation of multiple features from different sources is better than
using a single feature. For efficiency, one linear kernel is initia-
lized for each feature type. There are many MKL solver tool-
boxes that are publicly available, such as SimpleMKL29 and
Group Lasso.30 In AGLAIA-MII, the LIBLINEAR toolbox31 is
used to train linear SVM models for each individual feature,
and the Group Lasso30 toolbox is used to train MKL models.

Experimental methods for AGLAIA-MII
In AGLAIA-MII, for the purpose of demonstrating that the
combination of multiple source data can boost up the diagnosis,
we report and compare the diagnosis performance of
eight methods using different features and their combinations:
(1) personal data (referred to as P); (2) genetic info(referred
to as G); (3) low-level direct image features (referred to as I);
(4) P+G; (5) P+I; (6) G+I; (7) P+G+I (AGLAIA-MII); (8) IOP,
which is the current glaucoma assessment method.

Twofold cross-validation is adopted in our experiments. All sub-
jects are randomly divided into non-overlapping set A and B with
equal size. Because of imbalanced positive (glaucomatous) and

negative (normal) subjects, we use all the positive subjects and the
same number of randomly selected negative subjects from set A as
the training set. The trained model is used for testing in set
B. After that, a similar procedure is conducted to use all positive
subjects and the same number of randomly selected negative sub-
jects from set B as the training set. The trained model is then used
for testing in set A. It is important to clarify that the optimal para-
meters in the above training are obtained through a similar second
round twofold cross-validation within the training set. This strat-
egy is commonly used.32

We conducted 10 sets of independent testing using the cross-
validation and data-balanced strategy as outlined above.
Therefore, 20 sets of testing results were obtained. This approach
was adopted for each of the learning-based methods that is, 1–7.
For the IOP data in method 8, the measured IOP values corre-
sponding to the individual eye were directly used without further
processing.

Analysis methods used for AGLAIA-MII
Sensitivity and specificity are often used as measures of accuracy
in classification tests. Sensitivity is defined as the proportion of
true positives, in our study glaucoma cases, which are correctly
identified by the test. In contrast, specificity refers to the propor-
tion of true negatives, or normals, which are correctly deter-
mined by the test. Both are used to obtain an assessment of the
diagnostic accuracy of a test. The positive predictive value
(PPV), defined as the proportion of true cases from the total
number of positive detections, is often used as another measure
of reliability of the test. The use of PPV is suitable in our study
set, because the ratio of the true positives and true negatives in
the study dataset are representative of the prevalence in the
population. The F-measure score was also calculated from the
results and is included as an additional metric in our analysis.

We further considered two scenario setpoints for testing the
diagnostic accuracy. At the screening setpoint, we maintained a
baseline specificity of 0.850 to limit the rate of false negatives,
and determined the corresponding performance of the various
source combinations. At the second setpoint, we determined the
knee point of the receiver operating characteristic (ROC) curve
and compared the diagnostic metrics at this point. The
knee point is defined as the point on the ROC curve nearest to
the ideal accuracy of specificity (1.000) and sensitivity (1.000).

Figure 2 Medical retinal image feature extraction.
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The latter approach seeks to compare the different source con-
figurations at their optimal settings, while the former is based
on screening settings.

There is a tradeoff between the specificity and sensitivity of a
test. This is usually expressed on a ROC curve, which plots sen-
sitivity against 1-specificity for all possible values. Often, the
area under the curve (AUC) is also calculated. While the individ-
ual specificities and sensitivities are measures of diagnostic
accuracy, the AUC is often regarded as the overall measure of
the diagnostic strength of a test. In our analysis, we compared
the different sources combinations through their AUC using the
method of Hanley and McNeil.33

RESULTS AND DISCUSSION
Table 3 presents the specificity, sensitivity, PPV and the AUC for
the different source configurations. At the screening setpoint
with specificity set at 0.850, we observed that the use of only
genome information resulted in a better sensitivity (0.543), PPV
(0.143) and F-measure (0.227) than that obtained from only
retinal fundus image features (sensitivity: 0.420; PPV: 0.115;
F-measure: 0.180) or only personal data (sensitivity: 0.197;
PPV: 0.057; F-measure: 0.089). When sources were combined,
the use of all data sources in AGLAIA-MII (genome informa-
tion, retinal fundus image features, and personal data) resulted
in the best performing sensitivity, PPV and F-measure metrics
for screening over any other combinations or its individual com-
ponents. Furthermore, we found that the combination of any
two data sources resulted in a better performance than that of
its individual components. The majority of these results outper-
formed the current practice of using IOP for glaucoma screen-
ing. In particular, more than a twofold increase in performance
over IOP was observed when all data sources were used.

When the ROC knee point is used to select the diagnostic
accuracy metrics, a similar trend as above was observed, in
which genome information performed the best out of the single
sources. The best performance was again noted to be from
AGLAIA-MII fusion of genome information, personal data and
retinal image features, resulting in a specificity of 0.786, sensi-
tivity of 0.816, PPV of 0.153 and F-measure of 0.201, generally
higher than any other independent or combined data source.
Combined source results were also improved over individual
data source results.

Figure 3 shows the ROC plots for the different data sources
used in the experiments. The corresponding AUC for the ROC
curves in figure 2 are presented in the last column of table 3.
When the single data sources of AGLAIA-MII are considered
individually, results show that genome information gives the best
AUC at 0.810, and was significantly better than retinal image fea-
tures (0.810 vs 0.722, p<0.005) and personal data (0.810 vs
0.561, p<0.005), while the AUC for retinal image features was
significantly better than that of personal data (0.722 vs 0.561,
p<0.005). Results using genome information and retinal image
features were significantly better than the AUC derived from
current IOP-based glaucoma screening (p<0.005).

The AGLAIA-MII combination of personal data, retinal
image features and genome information resulted in the highest
AUC (0.866) among any other source, single or combined.
Furthermore, the combination of any two sources resulted in a
better AUC than their component sources. This observation
holds for both the top performing single source genome infor-
mation, which registered an average 5% improvement when
combined, as well as a more substantial improvement for the

Table 3 Key diagnostic metrics (specificity, sensitivity, PPV, F-measure, AUC) as a result of using the various individual and combined sources

Screening setpoint Optimal ROC knee setpoint

Specificity Sensitivity PPV F-measure Specificity Sensitivity PPV F-measure AUC

Single source Genome information (G) 0.850 0.543 0.143 0.227 0.744 0.760 0.122 0.183 0.810
Retinal fundus image features (I) 0.850 0.420 0.115 0.180 0.720 0.662 0.101 0.166 0.722
Personal data (P) 0.850 0.197 0.057 0.089 0.596 0.554 0.060 0.108 0.561

Combined
source

Genome information + retinal image features
(G+I)

0.850 0.647 0.166 0.264 0.764 0.812 0.139 0.192 0.856

Personal data + genome information (P+G) 0.850 0.639 0.164 0.261 0.750 0.824 0.134 0.186 0.853
Personal data + retinal image features (P+I) 0.850 0.454 0.123 0.193 0.714 0.718 0.107 0.171 0.753
AGLAIA-MII: Personal data + genome
information + retinal fundus image features
(P+G+I)

0.850 0.671 0.171 0.273 0.786 0.816 0.153 0.201 0.866

Current glaucoma screening using IOP 0.850 0.304 0.086 0.134 0.614 0.560 0.064 0.118 0.604

For specificity, sensitivity and PPV, two conditions are considered: screening setpoint by setting specificity constant at 0.85, and at the optimal ROC knee point. The best results are
highlighted in italics.
AGLAIA-MII, automatic glaucoma diagnosis through medical imaging informatics; AUC, area under the (ROC) curve; IOP, intraocular pressure; PPV, positive predictive value; ROC,
receiver operating characteristic.

Figure 3 Receiver operating characteristic (ROC) plots for automatic
glaucoma diagnosis through medical imaging informatics (AGLAIA-MII)
and the other source combinations. The ROC for intraocular pressure
(IOP)-based glaucoma screening is also provided for comparison.
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poorest performing single source based on personal data,
showing a substantially significant improvement of at least 34%.
Encouragingly, each of the results from the combination of
sources, regardless of combination, generated an AUC that was
significantly higher (p<0.005) than that of the current clinical
standard of care using IOP.

Table 4 shows the quantitative accuracy improvements in
terms of the AUC when combined sources are used compared
to single sources. When the AGLAIA-MII combinations of all
sources (genome information plus retinal image features plus
personal data) are used, the results yield a 5.59%, 20.36% and
60.33% improvement over the individual genome information,
retinal image features and personal data sources, respectively.
Personal data benefited the most from combining with other
sources, yielding an improvement in AUC of at least 37.45%.
The addition of genome information to any other single source
had the most beneficial effect, boosting the accuracy of retinal
image features by 18.84% and that of personal data by 57.93%.

In AGLAIA-MII, we tested and compared several methods
using different features and combinations. From the results
listed in tables 3 and 4 and figure 2, we can make the following
observations:

1. Performance boosting using data from different domains
In AGLAIA-MII, we have used data from three independ-
ent sources based on patient data, retinal fundus image
features and genome information, each of which has some
success in the detection of glaucoma. Through the use of
the MKL framework in AGLAIA-MII, we have shown that
data from different source domains have a complementary
effect in boosting glaucoma diagnosis performance. The
experimental results also show the complementary advan-
tages in combining data domains, as any one combination
was seen to outperform the performance based on a single
domain source.

2. AGLAIA-MII framework is able to integrate high feature
dimensions successfully to boost performance over fewer
features
In our results, we observed a hierarchy of performance, in
which the maximal combination of sources in
AGLAIA-MII outperformed any two combinations of
sources. Similarly, any two source combinations produced
results that were better than the individual component
source. The MKL approach is able to boost the perform-
ance because the use of multiple kernels improves the
interpretability of the decision function, resulting in an
optimal use of discriminative features to boost detection
outcomes, despite the increased feature dimension and
complexity.

3. Effect of feature discriminant power

We observed that using only one type of feature leads to a
lower performance compared to the use of MKL-based
multiple feature fusion in AGLAIA-MII. However, the use
of genome information alone can still result in a relatively
high performance. In AGLAIA-MII, we selected 178 SNP
out of more than 260 000 SNP based on a strong associ-
ation with glaucoma disease, as determined from studies
on very large datasets comprising of data from various
races. This resulted in less noise and redundancy.

Experimental results showed that personal data can be quite
noisy and may have a lower association with glaucoma. The
medical retinal image features used in AGLAIA-MII focused on
the variability of local grids through low level features such as
intensity and contrast, and these features may not have as high a
discriminant power as genetic information for glaucoma disease.
In the future, AGLAIA-MII can be improved by introducing
more and better image features, which are more representative
of glaucoma under the same MKL framework.

AGLAIA-MII’s performance has been proved in a large popu-
lation study. To boost performance further, we will continue to
test the system’s performance in other population studies to find
more evidence and fine tune the performance of AGLAIA-MII.
The same framework and principles can also be used to design
automatic diagnostic systems for other ocular diseases such as
age-related macular degeneration, cataract and pathological
myopia.

CONCLUSION
A patient’s personal data, medical retinal image and genome
information are data types of different natures, with each pro-
viding a different and potentially complementary view of an
indvidual’s condition. Combining these data types intelligently
and providing a holistic glaucoma diagnosis is a new approach
to boost diagnostic accuracy. Accurate early detection of glau-
coma is crucial to allow for early treatment before the onset of
permanent functional visual loss. AGLAIA-MII demonstrates for
the first time the integration of the above three data types for
automatic glaucoma screening and diagnosis in a large popula-
tion dataset. Our experiments have shown that the proposed
AGLAIA-MII framework fuses these data from various sources
intelligently and effectively, paving the way for a holistic
approach for automatic objective glaucoma diagnosis and
screening.

In clinics, the combination of multiple measurements is cur-
rently often an art rather than a science, and can usually only be
mastered by experienced glaucoma specialists. The interpret-
ation can be susceptible to interobserver differences due to var-
iances in training and experience. The promising results
demonstrated in this work raise the possibility of using a clinical

Table 4 Comparative improvements from the use of combined sources over single sources

Accuracy improvement over component single sources

Combinations
Genome information
(G) (%)

Retinal image features
(I) (%)

Personal data
(P) (%)

Genome information + retinal image features (G+I) 5.68 18.56*
Personal data + genome information (P+G) 4.01 – 57.93*
Personal data + retinal image features (P+I) – 4.29 34.22*
AGLAIA-MII: personal data + genome information + retinal fundus image features
(P+G+I)

6.91 19.94* 54.37*

*Significant at p<0.005.
Best results are highlighted in italics.
AGLAIA-MII, automatic glaucoma diagnosis through medical imaging informatics.
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decision support system such as AGLAIA-MII to run in parallel
with existing clinical workflows to offer an objective, evidence-
based diagnosis to clinicians as a second opinion. From the
public healthcare perspective, a carefully designed glaucoma
screening programme based on AGLAIA-MII can provide a
faster, more cost-effective and more accurate detection of the
disease. This will lead to improvements in glaucoma disease
management and cost savings for patients, public healthcare
providers and the government.
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