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ABSTRACT
Objective Natural language processing (NLP) tasks are
commonly decomposed into subtasks, chained together
to form processing pipelines. The residual error produced
in these subtasks propagates, adversely affecting the end
objectives. Limited availability of annotated clinical data
remains a barrier to reaching state-of-the-art operating
characteristics using statistically based NLP tools in the
clinical domain. Here we explore the unique linguistic
constructions of clinical texts and demonstrate the loss in
operating characteristics when out-of-the-box part-of-
speech (POS) tagging tools are applied to the clinical
domain. We test a domain adaptation approach
integrating a novel lexical-generation probability rule
used in a transformation-based learner to boost POS
performance on clinical narratives.
Methods Two target corpora from independent
healthcare institutions were constructed from high
frequency clinical narratives. Four leading POS taggers
with their out-of-the-box models trained from general
English and biomedical abstracts were evaluated against
these clinical corpora. A high performing domain
adaptation method, Easy Adapt, was compared to our
newly proposed method ClinAdapt.
Results The evaluated POS taggers drop in accuracy by
8.5–15% when tested on clinical narratives. The highest
performing tagger reports an accuracy of 88.6%.
Domain adaptation with Easy Adapt reports accuracies
of 88.3–91.0% on clinical texts. ClinAdapt reports
93.2–93.9%.
Conclusions ClinAdapt successfully boosts POS
tagging performance through domain adaptation
requiring a modest amount of annotated clinical data.
Improving the performance of critical NLP subtasks is
expected to reduce pipeline error propagation leading to
better overall results on complex processing tasks.

INTRODUCTION
Electronic health record systems store a consider-
able amount of patient healthcare information in
the form of unstructured, clinical notes. These nar-
ratives contain information about a patients’ socio-
logical and medical history, state of health, medical
prognoses, and past and present treatment plans. If
properly transformed into a coded form, this infor-
mation can be leveraged for more advanced
medical applications supporting evidence-based
medicine, clinical decision support, and research
activities.1–6

Clinical natural language processing (NLP)
systems have been devised to process unstructured
text and transform it into a desired coded form to

support these many healthcare-related activities.
These systems commonly decompose complex pro-
cessing tasks into a series of consecutive subtasks in
which subsequent stages are dependent on the
output from previous stages. These processing
models are known as processing pipelines.7 8

Pipelines can be made up of varying subtask com-
ponents depending on the complexity and nature
of the end processing objective. A well-known
problem in this processing paradigm is cascading
error propagation caused by the residual error that
is generated in each subtask.8 This compounding
residual error affects the overall performance of
NLP systems whose end objective is some higher-
level task such as concept extraction or complex
inference to mimic human-like language under-
standing. NLP used to support clinical care
demands a higher degree of accuracy as results are
incorporated into critical decisions related to
patient care. It is therefore important that NLP
pipeline systems perform as optimally as possible.
The methods currently used in NLP are strongly

influenced by machine learning and statistical tech-
niques. These methods are predicated on the avail-
ability of large volumes of annotated training data
for supervised learning, model development, and
benchmarking. Obtaining large volumes of anno-
tated data in the clinical domain remains a barrier
to realizing fully the potential benefits of clinical
NLP.9 Stringent healthcare privacy laws continue to
impede the sharing of clinical data across institu-
tions. Within institutions, annotated clinical text is
sparse and expensive to produce. Unique medical
terminology and complex disease processes com-
monly require knowledgeable medical staff to help
in the annotation process. These factors have all
played into the limited availability of clinically
annotated text to support modern, statistically
based, clinical NLP methods.
To overcome these barriers, alternative

approaches to traditional training methods are being
explored. One such method is domain adaptation.
Domain adaptation is an approach by which plenti-
ful, out-of-domain training data are leveraged with a
limited set of target domain data such that the
underlying probability distribution of the target
domain is more effectively represented by the aggre-
gate data than by the limited target data alone.
Most statistically based learning techniques rely

on the assumption that training data and test data
share a common underlying probability distribu-
tion. Through domain adaptation, the large volume
of out-of-domain, source-labeled data can be
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leveraged with a small amount of in-domain, target data, with
the goal of optimizing the model for the target domain. This
approach allows existing NLP tools with good performance
characteristics in general English domains to be adapted to clin-
ical target domains for a fraction of the cost of generating new
models requiring large volumes of expensive annotation.

In this study, we evaluate domain adaptation of part-of-speech
(POS) tagging. We selected this task because it is a well-studied
area for domain adaptation, yet as we will show, suggested
methods have not generalized well when applied to clinical nar-
ratives. POS tagging is an important syntactic process whose
performance can greatly affect subsequent downstream pro-
cesses such as syntactic parsing and semantic inference. We dem-
onstrate that through domain adaptation, we can reduce the
residual error in POS tagging in a cost-effective manner lever-
aging current out-of-domain algorithms with a modest amount
of in-domain (clinical) annotated data. We confirm that clinical
narratives have different linguistics characteristics than those of
general English and biomedical texts. We show that
state-of-the-art POS taggers with accuracies upward of 97%
quickly drop to accuracies in the 80%s when applied to clinical
narratives using their general English or biomedical source
domain models.

Furthermore, we introduce a new error-correction approach
to domain adaptation for POS tagging that outperforms other
popular methods. This performance enhancement is achieved
by introducing a transformation-based learner, reducing the
adaptation problem to that of error correction going from the
source to target domain. We introduce a novel, hill-climbing
lexical generation probability rule into the transformation-based
learner that dominates the traditional symbolic rules used in
most transformation-based learner applications.

We also apply an unambiguous lexicon derived from the
SPECIALIST lexicon10 to help with unknown word identifica-
tion and unique medical vocabulary. This approach requires
moderately easy extraction of unambiguous terms (terms with
only one POS) from the SPECIALIST lexicon10 and a modest
amount of target, clinical report data to boost POS tagging
accuracies back to acceptable levels for clinical NLP.

We believe this approach has broad applicability to several
subtasks found in NLP pipelines and provides a fairly generaliz-
able approach to reduce pipeline propagation error in NLP
tasks.11–15

BACKGROUND
Unique characteristics of clinical text
The ability for statistical NLP methods to operate optimally on
clinical narratives is determined by how well the sample data
used in model training represents the probability distribution of
this subdomain. Meystre et al16 define clinical texts as texts
written by clinicians in the clinical setting. These texts have
been well studied and have been shown to contain structural
and linguistic characteristics that differ from general English or
biomedical text.16–21 This has led to classifying these texts as a
sub-domain language.17 Sub-domain languages are characterized
by distinct linguistic features not found in other corpora such as
general English. Some of the features unique to clinical text
include distinct informational categories (eg, disease, procedure,
body location), specific co-occurrence patterns (eg, patient verb
symptom in body location), paraphrastic patterns (eg, medica-
tion dose frequency route), omissions of contextual information
and telegraphic statements (eg, ‘bilateral infiltrates noted’, inter-
preted to mean that bilateral infiltrates in the lungs are noted),
temporal patterns (eg, ‘right perihilar infiltrative change present,

please correlate clinically’), and medical acronyms and specia-
lized medical terminology. These unique sub-language features
make clinical texts difficult to process accurately using statistic-
ally based NLP tools developed from non-medical domains.
This means that the underlying statistical models used in these
methods need to be retrained from representative clinical train-
ing data or adapted to reflect accurately the underlying sub-
language probability distribution.

General POS taggers
For the most part, optimal POS tagging has been achieved.
Several successful, statistically based approaches have reached
accuracies upward of 97% on general English grammar.22–27

Most of these accuracies have been recorded using Penn
Treebank,28 Wall Street Journal (WSJ) data in which there exists
a large volume of labeled data. We describe a representative
subset of state-of-the-art taggers that will be included in our
evaluation to confirm their operating characteristics on general
English as a baseline. We also show how their performance is
significantly reduced when their out-of-domain, general English
tagging models are applied to the clinical text domain.

The Stanford POS tagger is a high-performing open-source
tagger that uses a maximum entropy method to learn a log-
linear conditional probability model and reports a tagging accur-
acy of 97.24% on Penn Treebank WSJ data.23 24 It includes two
general English models trained from Penn Treebank WSJ data.
The first model, english-left3words-distsim.tagger is based on a
standard left-to-right third-order conditional Markov model
considering the three left words to the target word. The second
model, english-bidirectional-distsim.tagger is based on a bidirec-
tional dependency network considering preceding and following
word context to the target word.

The OpenNLP POS tagger is an open source tagger that is
also based on maximum entropy.29 30 Although we could not
find tagger accuracies reported, our evaluation found it to be
on a par with the Stanford tagger tested on Penn Treebank
WSJ data using the packaged en-pos-maxent.bin general English
model.

The LBJ POS Tagger is an open-source tagger produced by
the Cognitive Computation Group at the University of
Illinois.31 32 It is based on a two-layer neural network in which
the first layer represents POS tagging input features and the
second layer represents POS multi-classification nodes.
Winnow33 34 is a weight training algorithm used to optimize the
neural network model. This tagger reported a tagging accuracy
of 96.6% on its packaged general English model trained and
tested on Penn Treebank WSJ data.

The LingPipe POS tagger is implemented using a bigram
hidden Markov model (HMM).35 It includes two models
trained from biomedical domain corpora, GENIA and MedPost.
The GENIA corpus is made up of 2000 MEDLINE abstracts
tied to MeSH terms: human, blood cells, and transcription
factors.36 The MedPost corpus is made up of 5700 sentences
from random subsets of MEDLINE biological abstracts.37 Our
interest in LingPipe was to evaluate how closely biomedical text
linguistic structures paralleled clinical narrative linguistic
structures.

Easy Adapt is a POS tagger based on a perceptron model that
uses a best candidate search space pruning algorithm that opti-
mizes the weights of the perception using supervised learning.38

Easy Adapt also supports a method of domain adaptation that is
discussed in detail below, which produced superior results when
evaluated against other domain adaptation approaches.39
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POS tagging in the clinical text domain
Results reported in the literature on POS tagging on clinical
texts demonstrate limited consistency and reproducibility. We
found no studies that addressed the generalizability of results
across institutions or that use corpora made up of a broad
sample of different clinical narrative types. This may reflect the
stringent privacy laws around the use and distribution of private
health information.9 Most of the studies that have been con-
ducted on POS tagging in the clinical domain have been done
on biomedical abstracts or a single clinical report type. We
review a subset of these studies below.

Smith et al37 constructed a HMM POS tagger trained with
bigram frequencies from MEDLINE abstracts. Their tagger
reported a tagging accuracy of 97%. Although the results of
Smith et al37 were impressive, Coden et al21 and Meystre et al16

provide evidence that the linguistic and distributional character-
istics of biomedical texts and clinical texts are not the same.

Campbell and Johnson20 applied the transformation-based
tagger of Brill40 to a corpus of discharge summaries and
reported an accuracy of 96.9%. Their methods make mention
of modifications made to the tagset to ensure consistency of the
documented guidelines used by human annotators. If tagsets are
modified in such a way as to categorize POS at a more course-
grained level, this can lead to overstated tagger accuracies. The
tagger may not have to differentiate between as many ambigu-
ous case categories. Also, a note type from a single institution
does not provide evidence of generalizability across institutions
or validity across different report types.

Pakhomov et al41 described a proprietary corpus that was
constructed from clinical notes. They reported a tagging accur-
acy of 94.7% over 100 650 tokens using the HMM-based TnT
tagger.42 This same corpus is described as the MED corpus and
was used in a study conducted by Savova et al.43 That study
evaluated the OpenNLP tagger,29 30 which is integrated into the
clinical text analysis and knowledge extraction system
(cTAKES). The OpenNLP tagger retrained using the MED
corpus reported a tagging accuracy of only 93.6%. This same
tagger and model when tested by Fan et al44 on progress notes
in a recent study produced accuracies of 85–88%.

Approaches to domain adaptation
Domain adaptation is a method used to adapt learning algo-
rithms trained from a source domain where labeled data are
readily available to a target domain where labeled data are
limited. The goal of this method is to retain similar cross-
domain characteristics learned from the source domain and
couple those characteristics with new distinct attributes related
to and learned from the limited labeled data available in the
target domain. The hope is that this approach will perform
better than an approach developed from either the source or
target labeled data alone. The realized benefit is that
out-of-domain tools can be adapted to new domains only
requiring a modest amount of newly annotated target data.

Several approaches to domain adaptation have been
researched. The most common approach is simply to combine
the source and target labeled data, and train a new model.
Coden et al21 evaluated this method using Penn Treebank WSJ,
labeled data as source data and the MED clinical notes corpus
(as described in Pakhomov et al)41 as the target data. They also
considered a method that augments the aggregated source-target
labeled data with an unambiguous lexicon derived from the
target domain. They reported trigram HMM model tagger

accuracies of 92.87% without lexicon, and 92.88% accuracy
with lexicon.

Liu et al45 explored an interesting domain adaptation method
known as sample selection.46 In that method, heuristics are used
to identify training cases from the target domain that are
believed most informative and will provide the most benefit in
retraining a statistical machine learner. In their study, they com-
pared two different word frequency-based selection heuristics.
A maximum entropy tagger is then retrained using a training set
constructed from combined Penn Treebank WSJ source-labeled
data and heuristic selected target-labeled cases. They reported
accuracies of 92.7% and 81.2% on two implemented heuristics.
They also reported a tagging accuracy of 93.9% using the same
source WSJ data combined with all available target data repre-
senting slightly over 21 000 tagged words. The study did not
address generalizability across different clinical note types or
healthcare institutions.

Blitzer et al47 investigated adapting a POS tagger from the
Penn Treebank WSJ source domain to a target domain of
MEDLINE biomedical abstracts using a method introduced as
structural correspondence learning. In this approach, pivot fea-
tures such as <the token to the right of word> are identified as
features that occur frequently across both domains of unlabeled
data and also behave contextually in the same way. In this
example, the word that is left of the mentioned pivot feature
may be unambiguously identified in the source labeled data.
Using this pivot feature, target domain cases are tagged that are
considered in high correspondence with the defined pivot
feature. Blitzer et al47 reported an improvement from 87.9%
baseline to 88.9%. A critical aspect of this approach is that high
quality pivot features can be identified across both domains.

Daumé and Marcu39 demonstrated that the commonly used
source-target labeled data aggregation method as well as other
high performing approaches to domain adaptation can be out-
performed using a feature space augmentation approach. In this
method, known as Easy Adapt, the learner’s feature space is
expanded to contain three versions of the original feature space:
a general version, a source-specific version, and a target-specific
version. The general version feature space represents features
shared across both source and target labeled POS cases. The
source-specific version feature space is unique to the source
labeled data and the target-specific version is unique to the
target labeled data. The three feature space versions are then
aggregated to make up the feature set used for training. More
formally stated, if the original input space is defined as Graphic
{.}/art/amiajnl2012001453f04.bmp not found=ℝF for
F>0 then the augmented feature space is χ=ℝ3F. This approach
reported an error rate of 3.61% on POS tagging adaptation
from WSJ text to PubMed biomedical abstracts. It is worth
noting that this method of domain adaptation generalizes well
to most machine learning algorithms and adaptation problems.

MATERIALS AND METHODS
POS annotated datasets
Three corpora were used to carry out the experiments in this
study. The source domain corpus was made up of Penn
Treebank WSJ text. Two corpora made up of clinical narratives
were used as target domains. The distributional characteristics
of each corpus are shown in table 1.

The Intermountain Healthcare clinical (IHC) corpus was con-
structed from a uniform distribution of the 10 most common,
electronically recorded, clinical report types in operation at two
large community hospitals, Intermountain Medical Center and
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LDS Hospital in Salt Lake City, Utah. The report types are
described in box 1.

Reports were selected from encounters over a 2-year period
from January 2008 to December 2009. One hundred and
ninety-seven randomly selected sentences (3672 tokens) from
this clinical text corpus were annotated for POS using the Penn
Treebank tag set28 and guidelines28 48 supplemented with guide-
lines conforming to the philosophy of the SPECIALIST
lexicon.10 49 The SPECIALIST lexicon10 49 is heavily made up
of compound nouns. For example, in the SPECIALIST
lexicon10 49 ‘fecal occult blood’ is considered a clinical
symptom annotated as a compound noun. Inter-annotator
agreement among two annotators measured using the Fleiss50

κ test statistic was 0.953 (95% CI 0.941 to 0.965). An add-
itional 327 sentences were then annotated between the two
annotators for a total of 524 clinical sentences.

In addition, a second target clinical corpus was obtained from
the Biomedical Language Understanding Lab51 at the University
of Pittsburgh. This corpus known in this study as the Pitt clinical
corpus consists of 11 emergency department reports and 35
radiology reports. The reports were randomly selected from
documents deposited into the MARS medical archival system at
the University of Pittsburgh Medical Center52 between March
and April 2007.

The set of emergency department reports contains 534 sen-
tences (6236 tokens); the set of radiology reports 502 sentences
(5991 tokens). All reports in the corpus were manually anno-
tated for POS using the Penn Treebank tag set and guide-
lines,28 48 supplemented with guidelines specifically addressing
the annotation of POS information in clinical reports. These
supplemental guidelines expand on complex tagging decisions
for cases that arise frequently in clinical text but are less acute in
general English, for example, choosing between verbal,
nominal, and adjectival tags for words ending in ‘-ing’. The
report set was annotated in four rounds. Inter-annotator agree-
ment measured using the Cohen53 κ test statistic ranged from
0.86 to 0.94.

The two individual clinical corpora were also combined to
form a larger target clinical corpus as part of the evaluation. We
use 10-fold cross-validation in our evaluations.

POS tagger experiments
Four top performing POS taggers were selected (OpenNLP
tagger,29 Stanford tagger,23 24 LBJ tagger,31 and LingPipe
tagger)35 and evaluated against the three corpora using their
out-of-the-box trained models as described in table 2. The focus
of these experiments was to confirm the operating characteris-
tics when applied to clinical narratives. Included in these evalua-
tions were models developed on biomedical abstracts and a
domain adapted clinical model generated from the proprietary
MED corpus.41 Biomedical abstracts intuitively would seem lin-
guistically closer to clinical texts.

Domain adaptation experiments
We evaluated Easy Adapt against a new method of domain adap-
tation called ClinAdapt. This newly suggested method of
domain adaptation turns POS tagging into a form of error cor-
rection. This is a three-step process. The first step is to base tag
each target domain sentence using a tagger model trained from
the source domain. We selected the OpenNLP tagger from the
four evaluated taggers based on its performance and speed at
which it tags. Base tagging was done using the out-of-the-box
en-pos-maxent.bin model trained on general English WSJ text
as defined in table 2. The second step in the process was sup-
ported by the construction of an unambiguous lexicon of terms
derived from the SPECIALIST lexicon.10 Terms contained
within the SPECIALIST lexicon that are defined as having only
one POS were extracted and made up the unambiguous lexicon.
This step of the process retags the initially tagged words that
exist in the constructed unambiguous lexicon. The intuition is
that if a word exists in a clinically oriented lexicon with one
POS then that POS must be correct. In the final step, a
transformation-based learner makes final tag corrections to the
words in the sentence by applying rules that were generated
from the available target domain (clinical) data, thereby adapt-
ing that task of POS tagging to the target domain.

Transformation-based learners traditionally use symbolic rule
templates representing linguistic features related to the task at
hand, such as POS tagging. For example, proper nouns typically
start with a capital letter. So a template may exist that changes an
erroneous POS tag to a proper noun if the first letter of the word
is capitalized. These templates are instantiated with the linguistic
features surrounding a candidate tagging error in an attempt to
identify the template instantiation across all templates that corrects
the most errors in a training iteration.54 Box 2 defines the rule
templates that are instantiated and compete against one another to
correct the most errors in each iteration of training. The rule tem-
plate that corrects the most net-errors (number of errors corrected
by the proposed rule minus number of errors introduced by the
proposed rule) over the entire corpus is selected as the best rule
for that iteration. The winning rule instantiation is then applied to
the training corpus correcting those errors associated with the rule
and then the process repeats itself. This training process continues
generating a sequence of rule transforms that corrects errors as
each rule is applied to the corpus. For example, the rule template
given by equation (1) is interpreted as:

if is Tagðtci�1; tagaÞ then change wi tag tci to tp ð1Þ

If the POS tag (tci−1) of the preceding word is assigned POS
tag (taga) then change the tag of the current word (wi) from

Box 1 Ten most common clinical report types

▸ Progress note
▸ Consultation report
▸ Discharge summary
▸ Operative report
▸ Surgical pathology report
▸ History and physical report
▸ Emergency department report
▸ x-Ray chest two views frontal lateral
▸ Emergency department visit note
▸ x-Ray chest one view portable

Table 1 Distributional corpus characteristics

Corpus
No of
sentences

No of
tokens

No of unique
words

WSJ non-clinical corpus 8887 210 413 17 196
IHC clinical corpus 524 10 233 2442
Pitt clinical corpus 1036 12 227 2100
Combined IHC and Pitt
clinical corpus

1560 22 460 3558

IHC, Intermountain Healthcare; Pitt, University of Pittsburgh; WSJ, Wall Street Journal.
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POS tag (tci) to the new POS tag (tp). An instantiation of this tem-
plate during a training iteration may be ‘if the POS tag of the pre-
ceding word is an adjective then change the tag of the current
word from a verb to a noun’. This rule would be applied across
the entire corpus correcting errors, and in some cases introducing
errors when the verb was the correct POS tag and should not have
been changed to a noun. The rule correcting the most net-errors
would then be selected as the best rule transform for that training
iteration. For each rule template, all combinations of tags are con-
sidered as linguistic features instantiated in the template producing

a correction score for each instantiation. The rule with the best
score wins that round of training and is applied to the corpus.
Training halts when all the rule template instantiations correct less
than three errors in a given training iteration.

The transformation-based tagger of Brill47 only considered
symbolic linguistic rules not taking advantage of the many bene-
fits that statistical machine learning approaches provide.55 To
extend this algorithm, we introduced a novel statistically based,
hill-climbing rule predicated on lexical generation probability
given by equation (2).

if f(pðtpjtci�1ÞpðwijtpÞ pðtciþ1jtpÞ)
. (pðtcijtci�1Þ pðwijtciÞ p(tciþ1jtci))g
then change tci to tp

ð2Þ

This method introduces a Markov model-based mathematical
optimization technique into the transformation-based learner
model.

To facilitate discussion we introduce some notation. TP is
defined as the set of POS tags defined by the Penn Treebank tag
set.28 A POS tagged sentence is given by a sequence of words
{w1 … wn} that make up the sentence, and a sequence of cur-
rently assigned POS tags given by {tc1 … tcn}. Furthermore, we
define a newly proposed POS tag drawn from the set TP as tp.
Then the rule template is applied as follows. Given a sentence
{w1 … wn}, a current tag sequence {tc1 … tcn}, and a newly
proposed replacement tag tp≠tci∈^TP, for an incorrectly tagged
word wi, tp replaces tci if the former probability with the pro-
posed replacement tag tp is greater than the probability with the
current incorrect tag tci. This rule attempts to find the optimal
tag for the word in the sentence using a Markov model. In
figure 1, we work through an example for clarity.

In this example, the word ‘left’ is an adjective incorrectly
marked as a verb. Estimating the probabilities from the training
set and applying the lexical generation rule template where tp is
an adjective, we would increment the score of this template
instantiation by one for correctly modifying the tag to an adjec-
tive because it results in a greater probability over being marked
as a verb. This same process would take place for every possible
replacement tag in the set TP, and the highest scoring template
among all the template instantiations would be selected. This
also includes competing against the symbolic rule instantiations.

The lexical generation probability rule template relies on
bigram tag probabilities and word-tag conditional probabilities
that are estimated from the training data. These probability esti-
mates were generated using Kneser–Ney smoothing.56

Smoothing is a technique used to reallocate a portion of the
available probability mass to low frequency words, unknown
words, and unseen tag sequences that were not encountered in

Box 2 Transformation-based learner rule templates

Lexical generation probability rule
if {p(tp|tci−1) p(wi|tp) p(tci+1|tp)>p(tci|tci−1) p(wi|tci) p(tci+1|
tci)} then change tci to tp

Symbolic linguistic rules
if isAcronym(wi) then change wi tag tci to tp
if isSymbol(wi) then change wi tag tci to tp
if containsDigit(wi) then change wi tag tci to tp
if startsWithCapitalLetter(wi) then change wi tag tci to tp
if hasPrefix(wi, prefixa) then change wi tag tci to tp
if hasSuffix(wi, suffixa) then change wi tag tci to tp
if isPlural(wi) then change wi tag tci to tp
if isTag(tci−1, taga) then change wi tag tci to tp
if isTag(tci−2, taga) then change wi tag tci to tp
if isTag(tci−2, taga) & isTag(tci−1, tagb) then change wi tag tci
to tp

if isTag(tci−3, taga) & isTag(tci−2, tagb) & isTag(tci−1, tagc)
then change wi tag tci to tp

if isTag(tci+1, taga) then change wi tag tci to tp
if isTag(tci+2, taga) then change wi tag tci to tp
if isTag(tci+1, taga) & isTag(tci+2, tagb) then change wi tag tci
to tp

if isTag(tci+1, taga) & isTag(tci+2, tagb) & isTag(tci+3, tagc)
then change wi tag tci to tp

if isTag(tci−1, taga) & isTag(tci+1, tagb) then change wi tag tci
to tp

if isWord(wi−1, worda) then change wi tag tci to tp
if isWord(wi−2, worda) & isWord(wi−1, wordb) then change wi

tag tci to tp
if isWord(wi+1, worda) then change wi tag tci to tp
if isWord(wi+1, worda) & isWord(wi+2, wordb) then change wi

tag tci to tp
if isWord(wi−1, worda) & isWord(wi+1, wordb) then change wi

tag tci to tp

Table 2 Top performing taggers with out-of-the-box models

POS tagger Algorithm Model Training corpus description

OpenNLP tagger Maximum entropy en-pos-maxent.bin Penn Treebank WSJ
OpenNLP tagger Maximum entropy postagger.model.bin.gz Mayo Clinical Model—cTAKES
Stanford tagger Maximum entropy english-bidirectional-distsim.tagger Penn Treebank WSJ
Stanford tagger Maximum entropy english-left3words-distsim.tagger Penn Treebank WSJ
LBJ tagger Winnow neural network N/A English Penn Treebank WSJ
LingPipe tagger HMM pos-en-bio-genia.HiddenMarkovModel GENIA (MEDLINE abstracts w/MeSH terms: human,

blood cells, and transcription factors)
LingPipe tagger HMM pos-en-bio-medpost.HiddenMarkovModel Medpost (MEDLINE biological abstracts)

cTAKES, clinical text analysis and knowledge extraction system; HMM, hidden Markov model; WSJ, Wall Street Journal.
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the training corpus but may be seen in the test corpus. Kneser–
Ney smoothing56 considers the number of different contexts a
word or a tag has appeared in when assigning probability esti-
mates. This method of smoothing more accurately quantifies
realistic POS tag sequences and word-tag combinations when
calculating the product of the conditional components in the
lexical generation probability rule.

We evaluated Easy Adapt and ClinAdapt on the two clinical
corpora and the combined clinical corpus using 10-fold
cross-validation.

RESULTS
POS tagger evaluations
Our results in table 3 report the tagger accuracies on each of the
three corpora using the out-of-the-box models available with
each tagger. Each tagger trained and tested on general English
WSJ text reported accuracies of 96.9–97.3% as would be
expected. When tested on clinical narratives these taggers
dropped in accuracy by 8.5–15.5%. The cTAKES tagger, trained
on clinical data performed slightly better than the standard
general WSJ trained models in all but one case. The LingPipe
models trained on biomedical abstracts performed poorly on all
three corpora.

Domain adaptation evaluations
Easy Adapt reported results of 88.3% on the IHC clinical
corpus, 91.0% on the Pitt clinical corpus, and 89.3% on the
combined clinical corpus as shown in table 4. Baseline training
of Easy Adapt on source only and target only datasets was

confirmed to produce lower accuracies as would be expected. If
this was not the case, there would be no benefit from domain
adaptation as simply retaining learners on target data would be
sufficient.

Two experiments were conducted using ClinAdapt, one
including the SPECIALIST lexicon as a second step in the
tagging process and one removing the second step completely
(no lexicon). The reason for this was to try and better under-
stand the contribution the integration of a target domain-
specific lexicon made. In addition to these two experiments, the
ClinAdapt base tagger, OpenNLP, was retrained using clinical
target data only as a baseline to confirm base tagger retraining
was not sufficient to produce optimal results. Results demon-
strated that there is benefit in using a domain adaptation algo-
rithm. ClinAdapt with integrated lexicon reported accuracies of
93.8% on the IHC clinical corpus, 93.9% on the Pitt clinical
corpus, and 93.2% on the combined clinical corpora. On each
corpus, simply correcting errors by applying the clinical lexicon
boosted accuracy by 1.1–1.2% over the base tagger. The add-
itional gains attributed to the transformation-based learner were
4.6–10.3%. Overall, domain adaptation using ClinAdapt (with
lexicon) accounted for an increase in accuracy of 6.2–11.4%.
Adding the clinical lexicon to ClinAdapt resulted in an overall
increase in performance. ClinAdapt with and without the
lexicon outperformed Easy Adapt.

The frequency with which the transformation-based learner
selected rules when evaluating the combined clinical target
corpus is shown in figure 2. The lexical generation probability
rule dominated the more traditional symbolic rules being
selected as the optimal rule 77.2% of the time. Thirteen sym-
bolic rules shown in the figure shared the remaining 22.8%.

To explore the relationship of target training set size to accur-
acy, the natural logarithm of the performance of Easy Adapt and
ClinAdapt were fitted using linear regression as shown by the
graph in figure 3. The analysis confirms that added accuracy
could be achieved by growing the target training set.

DISCUSSION
In this paper, we demonstrated that the linguistic constructions
and terminology found in clinical narratives differ from that
of general English texts such as newswire and biomedical
abstracts. We confirmed this hypothesis by evaluating several
state-of-the-art POS taggers with their out-of-the-box models
trained on either WSJ text or biomedical abstracts. In all cases,
the performance of these taggers dropped significantly when
applied to clinical text.

A surprising find was that the cTAKES POS tagger trained on
the MED corpus43 performs no better than models trained on

Table 3 Out-of-the-box POS tagger performance

WSJ corpus (%) IHC clinical corpus (%) Pitt clinical corpus (%)
Combined IHC and
Pitt clinical corpus (%)

OpenNLP tagger (maximum entropy—WSJ) 97.1 87.6 82.5 84.9
OpenNLP tagger (maximum entropy—Mayo clinical
model—cTAKES)

96.9 87.9 88.4 88.1

Stanford tagger (maximum entropy—bi-directional WSJ) 97.1 85.7 86.8 86.2
Stanford tagger (maximum entropy—left 3 words WSJ) 97.1 85.7 88.6 87.2
LBJ tagger (winnow neural network—WSJ) 97.3 87.3 81.8 84.3
LingPipe tagger (HMM—GENIA) 78.5 81.9 81.4 81.6
LingPipe tagger (HMM—Medpost) 74.4 83.1 82.9 83.0

cTAKES, clinical text analysis and knowledge extraction system; HMM, hidden Markov model; WSJ, Wall Street Journal.

Figure 1 Lexical generation probability rule execution example.
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general English WSJ text when applied to the clinical corpora
from two additional institutions. The fact that these compari-
sons are possible highlights an important point. Studies in clin-
ical NLP can be more informative if multiple datasets across
institutions were used to demonstrate generalizable solutions.9

In this study, we used multiple clinical corpora from independ-
ent institutions.

The sparse availability of clinically annotated data remains a
barrier to reaching state-of-the-art operating characteristics on
statistically based NLP tools when applied to the clinical
domain.9 Domain adaptation is a viable method to improve per-
formance and leverage the existing high performance algorithms
already available. We introduced a new method of domain adap-
tation that outperformed leading adaptation methods. It
requires modest amounts of clinically annotated data to obtain

reasonable operating results. This suggested method changes the
adaptation problem to that of error correction thereby increas-
ing efficiency.

Intuitively, clinical narratives are full of unique terminology
that may be sparsely encountered depending on the clinical note
type. These unique and rarely seen words contribute to per-
formance reductions in statistically based methods that are
grounded in learning methods relying solely on textual context
for inference.57 We addressed this problem by integrating an
unambiguous, domain-specific lexicon, which improves overall
POS tagging performance.

In this study, we successfully introduced a novel
transformation-based learner rule predicated on lexical gener-
ation probability. This rule outperformed the more traditional
symbolic rules typically used in transformation-based learners.
Practically, we have shown how statistically based NLP methods

Table 4 Domain adaptation results

IHC clinical corpus Pitt clinical corpus Combine IHC and Pitt clinical corpus

Known
word (%)

Unknown
words (%)

Total
(%)

Known
word (%)

Unknown
words (%)

Total
(%)

Known
word (%)

Unknown
word (%)

Total
(%)

Easy Adapt (source only) 89.7 65.6 84.5 91.3 51.3 78.3 90.5 56.4 81.1
Easy Adapt (target only) 87.8 70.7 85.1 91.2 74.3 89.0 89.6 74.4 87.9
Easy Adapt (source+target) 89.7 74.0 88.3 92.1 80.1 91.0 90.4 75.5 89.3
ClinAdapt—base tagger (target
only)

94.7 89.6 89.8 97.4 91.4 92.1 95.9 90.6 91.1

ClinAdapt (w/lexicon)
Step 1: base tagging (source

only)
89.1 80.1 87.6 85.6 62.0 82.5 87.0 68.4 84.9

Step 2: lexicon 90.5 82.3 89.2 85.3 71.8 83.6 87.4 76.1 86.1
Step 3: transformation-based

learner (target only)
95.9 82.8 93.8 97.1 72.8 93.9 94.9 76.1 93.2

ClinAdapt (wo/lexicon)
Step 1: base tagging (source

only)
89.1 80.1 87.6 85.5 62.7 82.5 87.0 67.9 84.9

Step 2: transformation-based
learner (target only)

95.6 80.2 93.2 97.0 63.2 92.6 94.8 68.0 91.8

IHC, Intermountain Healthcare; Pitt, University of Pittsburgh.

Figure 2 Transformation-based learner rule selection frequency. Figure 3 Accuracy as a function of training set size.
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can be integrated with symbolic methods for improved perform-
ance. This method should generalize well to other applications
of transformation-based learners and domain adaptation.11–15

A limitation of our method is the time it takes to train
transformation-based learners. As training sets grow in size,
training time increases significantly. This is a well-known
problem with transformation-based learners.58 59 In addition,
we were unable to obtain a general sense of the number of tags
required to reach tagging accuracies achieved in other non-
clinical domains.22 Unfortunately, there were not enough data
points to extrapolate safely from the natural logarithm fits. It
seems reasonable that accuracy would be a logarithmic function
of training set size as there are always unknown words being
generated in language. Future work will further consider
methods to improve the tagging accuracy of unknown words.

CONCLUSION
NLP tasks are commonly decomposed into subtasks that are
chained together in a processing pipeline. The residual error in
these subtasks may propagate to unreasonable levels adversely
affecting subsequent downstream higher level processing tasks.
By improving the performance of the individual subtasks, we
expect to reduce the residual propagating error. We have sug-
gested an alternative method of domain adaptation for clinical
NLP. This method addresses the issue of limited annotated data
to improve performance in the important subtask of POS
tagging.
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