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ABSTRACT
Objective The constant progress in computational
linguistic methods provides amazing opportunities for
discovering information in clinical text and enables the
clinical scientist to explore novel approaches to care.
However, these new approaches need evaluation. We
describe an automated system to compare descriptions
of epilepsy patients at three different organizations:
Cincinnati Children’s Hospital, the Children’s Hospital
Colorado, and the Children’s Hospital of Philadelphia.
To our knowledge, there have been no similar previous
studies.
Materials and methods In this work, a support
vector machine (SVM)-based natural language processing
(NLP) algorithm is trained to classify epilepsy progress
notes as belonging to a patient with a specific type of
epilepsy from a particular hospital. The same SVM is
then used to classify notes from another hospital. Our
null hypothesis is that an NLP algorithm cannot be
trained using epilepsy-specific notes from one hospital
and subsequently used to classify notes from another
hospital better than a random baseline classifier. The
hypothesis is tested using epilepsy progress notes from
the three hospitals.
Results We are able to reject the null hypothesis at the
95% level. It is also found that classification was
improved by including notes from a second hospital in
the SVM training sample.
Discussion and conclusion With a reasonably
uniform epilepsy vocabulary and an NLP-based algorithm
able to use this uniformity to classify epilepsy progress
notes across different hospitals, we can pursue
automated comparisons of patient conditions,
treatments, and diagnoses across different healthcare
settings.

BACKGROUND AND SIGNIFICANCE
About 3% of the American population will develop
epilepsy by the age of 75.1 The diagnosis of epi-
lepsy significantly affects a patient’s quality of life,
and also imposes a considerable medical and
economic burden.2 Despite the high prevalence of
epilepsy, there is an epilepsy–treatment gap, defined
as the proportion of people with epilepsy who
require treatment but do not receive it.3 Racial,
ethnic, and socioeconomic disparities in access to
healthcare all contribute to this gap.4 Recognizing
the problem, the American Academy of Neurology
introduced eight quality of care measures.5 It is
important for completing these measures that it is
determined whether or not there is a degree of uni-
formity in the clinical vocabulary used by different
hospitals—if there is no such uniformity, then we
cannot use typical natural language processing

(NLP) methods to compare quality measures, as
superficial linguistic differences will spuriously
suggest quality differences. An additional benefit of
this research is the development of an NLP algo-
rithm that can be used to compare clinical notes
between different hospitals without the need for a
huge amount of training data; such algorithms will
become increasingly important in large-scale ana-
lyses of healthcare delivery and outcomes.
To our knowledge, no prior statistical analysis

has directly quantified similarities and/or differ-
ences in the vocabulary of clinical notes across
institutions. However, there has been considerable
effort in understanding inter- and intrahospital
similarities and differences in clinical notes, as well
as the medical terminology used in them. For
instance, in an effort of evaluate interhospital dif-
ferences Uzuner et al,6 was able to train a machine
learning technique using discharge summaries from
one hospital to classify assertions in discharge
summaries and radiology reports from others.
Fan et al7 evaluated the ability of an NLP algorithm
to tag parts of speech in one medical institution
after it was trained using notes from a second insti-
tution. They found that a machine learning model
was able to tag parts of speech in clinical notes
from Kaiser Permanente Southern California with
89% accuracy when trained on clinical notes from
the University of Pittsburgh Medical Center.8

Matykiewicz et al9 presented direct intrahospital
comparisons of clinical notes which utilized a
support vector machine (SVM) and the K-L diver-
gence to determine whether or not there were dif-
ferences in the n-gram frequencies in clinical notes
from patients with intractable and non-intractable
epilepsy. The latter analysis is directly related to
this work: one could replace notes from patients
with intractable and non-intractable epilepsy with
epilepsy progress notes from different institutions
and thereby directly measure the similarities in
their vocabulary. However, such an approach
would not address whether or not the linguistic dif-
ferences among different hospitals were important
(one would expect large-scale interhospital differ-
ences from the electronic health record template
formatting of the notes).

OBJECTIVE
We tackle the problem of quantifying the similar-
ities and differences in epilepsy clinical notes by
developing an SVM that uses surface linguistic fea-
tures, and then testing whether or not the interhos-
pital differences in vocabulary are sufficient to
prevent the SVM from correctly classifying an epi-
lepsy progress note as one describing a patient with
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generalized (GE), partial (PE), or unclassified epilepsy (UE). PE
and GE cover 88% of epilepsy patients.10 Given the ambiguous
nature of UE assigned by a clinician, but also considering its
relatively high prevalence, we first classify the notes using PE
and GE, only, and then perform a separate analysis including
PE, GE, and UE. We further investigate whether the classifica-
tion can be improved by training the SVM using progress notes
from multiple hospitals.

Our approach rests on the assumption that if an SVM is
trained on epilepsy progress notes from one hospital and is then
able to successfully classify notes from another hospital, then
the hospitals share a common epilepsy vocabulary. Supporting
evidence for this assumption would suggest a nationwide com-
monality in epilepsy vocabulary which can be exploited for epi-
lepsy information extraction (eg, annotation and classification of
epilepsy progress notes across different hospitals) for quality
measures.

METHODS AND MATERIALS
We train an SVM using epilepsy progress notes from one or two
hospitals. The SVM classifies the notes based on the frequencies
of (strings of) words (n-grams) in the notes. The common
vocabulary is therefore strictly defined by those n-grams that are
associated with the classifications. However, the classifications
are broad enough that reasonable inferences could be made
regarding the general epilepsy vocabularies of the hospitals. The
SVM is trained to classify each progress note as belonging to a
patient with one of three broadly defined categories of epilepsy:
PE, GE, and UE. Due to the lack of consensus in their annota-
tion, the epilepsy progress notes are defined by the ICD-9-CM
codes assigned to them by their authors with GE defined by
345.00, 345.01, 345.10, 345.11, and 345.2; PE defined by
345.40, 345.41, 345.50, 345.51, 345.70, and 345.71; and UE
defined by 345.80, 345.81, 345.90, and 345.91. Note that the
codes themselves never occur in the notes, and since the clini-
cians are not required to use any controlled vocabulary, the text
strings associated with the codes most likely never occur in the
notes either.

Table 1 summarizes the ICD-9-CM codes and lists the
numbers of progress notes available for classification for each
hospital. As there are sizable variations in the number of notes
between the three epilepsy types, using them all would result in
sample-size effects that could be confused with interhospital dif-
ferences in vocabulary. We therefore fix the training and data
sample sizes to 90 documents per hospital per epilepsy classifica-
tion in the training set, and to 45 documents per hospital per

epilepsy classification in the testing data set. The training set is
used for two purposes: for cross-validation of the parameter
space and for building the optimal classifier. The test set (ie,
‘remaining hospital(s)’) is withheld until the optimal classifier is
built on the full training data.

To validate the gold standard in the face of known problems
with practitioner-assigned ICD-9-CM codes, a random sample
of 24 notes from each category was assembled. Each note was
annotated by two physicians, with each physician only coding
the notes from the hospital(s) other than their own. This
process resulted in a Krippendorff ’s α of 0.691 (with chance
agreement of 1/4), suggesting that the gold standard is of good
quality. When we combined the post hoc coding with the
coding done by the authors of the notes, Krippendorff ’s α
slightly decreased to 0.626.

The documents are represented by their unigrams, bigrams,
and trigrams, which serve as features for the SVM. We found
that the inclusion of n-grams with n larger than 3 decreases clas-
sification accuracy (the F1 score described below) during train-
ing, probably due to over-fitting. The extraction of n-grams is
described in the following section. This is the most basic repre-
sentation that could be used. An alternative approach would be
to use semantic features, rather than surface linguistic features,
by running a term extraction engine such as MetaMap,
cTAKES, or ConceptMapper, and then classifying based on the
extracted semantic concepts. As will be seen, good classification
can be obtained with the simpler approach. Furthermore,
abstraction of semantic concepts has the effect of making the
three hospitals more homogeneous, so the surface linguistic fea-
tures provide a more stringent evaluation of the hypothesis.

N-gram extraction
We used the electronic health records from the neurology
departments of three different hospitals: the Cincinnati
Children’s Hospital Medical Center (CCHMC), Children’s
Hospital Colorado (CHCO), and Children’s Hospital of
Philadelphia (CHOP). The progress notes were required to have
been created for an office visit, be over 100 characters in length,
and have one of the ICD-9-CM codes listed in table 1. Further,
each note had to be signed by an attending clinician, resident,
fellow, or nurse practitioner. Lastly, each patient was required to
have at least one visit per year between 2009 and 2012 (for a
minimum of four visits). Overall, 551, 614, and 433 progress
notes from CHOP, CCHMC, and CHCO, respectively, satisfied
all of the selection criteria.

The notes were then de-identified using a combination of
automatic output from the MITRE Identification Scrubber Tool
(MIST)11 and manual review. After de-identification, the n-gram
frequencies were extracted from each note, and all characters in
the note were changed to lower case. Age, patient name, loca-
tion, hospital name, any initials, patient identification numbers,
phone numbers, URLs, and miscellaneous protected information
such as account numbers and room numbers were replaced with
‘AGE,’ ‘NAME,’ ‘LOCATION,’ ‘HOSPITAL,’ ‘INITIALS,’ ‘ID,’
‘PHONE,’ ‘URL,’ and ‘OTHER,’ respectively. Non-ASCII and
non-alphanumeric characters were then removed, and all
numbers were changed to ‘NUMB.’ All n-grams that occurred
less than nine times within the whole data set were removed.

Progress note classification
SVMs are the most commonly used machine learning technique
for text classification tasks. They are particularly useful in cases
such as that presented in this work, where the training sample is
small but feature rich.12 Further, in Matykiewicz et al,9

Table 1 The ICD-9-CM codes associated with each type of
epilepsy diagnosis, and the corresponding number of clinical notes
from each hospital

Epilepsy
classification ICD-9-CM codes CCHMC CHCO CHOP

Partial epilepsy 345.40, 345.41, 345.50,
345.51, 345.70, 345.71

303 128 269

Generalized
epilepsy

345.00, 345.01, 345.10,
345.11, 345.2

99 163 129

Unclassified
epilepsy

345.80, 345.81, 345.90,
345.91

200 117 121

Data missing 345.3, 345.60, 345.61 12 25 32

CCHMC, Cincinnati Children’s Hospital Medical Center; CHCO, Children’s Hospital
Colorado; CHOP, Children’s Hospital of Philadelphia.
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statistical and machine learning methods were compared based
on their ability to classify epilepsy progress notes as describing
patients with either intractable or non-intractable epilepsy. The
SVM proved to be the best classifier, given differences were
indeed present between the two classes of notes (an SVM
cannot quantify similarity). Both the progress notes and classifi-
cation scheme described in this work are similar to those in
Matykiewicz et al.9

The SVMs are trained using 90 documents for each of the
three epilepsy types, with as many as 23 017 n-grams, and opti-
mized using an F1 score defined by

F1 ¼ 2t2n
ðtn þ fpÞ ðtn þ fnÞ ð1Þ

where tn is the number of true positives, fp is the number of
false positives, and fn is the number of false negatives.

N-grams are weighted based on one of two weighting
schemes. The schemes are selected using cross-validation
methods, among other parameters. Ultimately, the SVM is opti-
mized over the cost regularization parameter (the C parameter),
the number of top-ranked n-grams to use for the SVM input
(N), and the ranking method and n-gram weighting schemes
using the 20-fold cross-validated F1 score. The cost parameter is
optimized over 18 values ranging from 2−8 to 24, incremented
by factors of 2. Parameter N is optimized over 25 to 213

n-grams, incremented by factors of 20.5.
The n-grams are ranked based on either information gain,

information gain ratio, or the Pearson correlation coefficient.
Overall, the SVM is optimized over 13 values of the C param-
eter, 16 values of N, 2 feature weightings, 3 feature rankings,
and 20 folds. This translates to an optimization over 1248
points in the parameter space and 24 960 runs of the SVM.

As discussed previously, the UE classification can be ambigu-
ous. We therefore classify GE and PE for three hospitals using
training samples from either one or two of the other hospitals.
This gives six possible combinations of hospitals. The baseline
classifier for these experiments is random class assignment,
which yields F1=50%.

We also perform a second analysis assuming three possible
types of epilepsy—PE, GE, and UE. Because SVMs are built for
binary classification, three SVMs are trained to classify PE
versus not-PE, GE versus not-GE, and UE versus not-UE, with
the results being subsequently combined to effectively provide a

tertiary classification. The baseline classifier for these experi-
ments is F1=33%.

RESULTS
Table 2 summarizes the performance of our SVM trained
assuming patients are either PE or GE. It shows 20-fold cross-
validated F1’s and corresponding SDs for both GE and PE pro-
gress notes. The corresponding average F1’s and their SDs from
progress notes sampled from the hospitals not in the training set
(ie, ‘remaining hospitals’) are also listed along with the p value
significance, which assume a random baseline classification of
F1=50%. The p values show the SVM is capable of classifying
PE and GE above baseline, although the p value in the case
where the training sample is CCHMC and the F1 is evaluated
on CHOP and CHCO is significantly smaller than in the case
when the SVM is trained and evaluated with other training and
testing data sets. Note that the F1’s are all above approximately
75% when the SVM is trained on two hospitals. Also, training
with two hospitals yields an increase of about 10.4% in F1. The
other effect of adding a second hospital is the decreased gap
between training F1 and testing F1. The gap 0.871–
0.725=0.146 decreases to 0.899–0.829=0.070, yielding a
7.6% improvement. All three effects suggest that two hospitals
are enough to make the third one more similar.

The results from our second study, where we include patients
with UE, are shown in table 3. The F1 scores are all above the
baseline value of 33%, although somewhat marginally. As
before, there is a 10.4% improvement in F1 when a second
hospital is added to the training set and the F1 gap between the
training and testing sets decreases from 0.289 to 0.216, which is
an improvement of about 7.3%.

Although the changes in the second study are marginal, they
do not contradict our previous conclusions. Most likely the
notes from UE patients obscure the classification of GE and PE,
as words associated with both would also appear in the UE
notes.

DISCUSSION
We have developed an SVM classifier with surface linguistic fea-
tures that supports the rejection of our null hypothesis (which is
that such an algorithm cannot be trained using epilepsy-specific
notes from one hospital and then successfully used to classify
epilepsy patients from another hospital) with statistical signifi-
cance. We have therefore established a certain uniformity among
epilepsy progress notes from three different institutions: the

Table 2 Results from the classification of partial epilepsy and generalized epilepsy in epilepsy progress notes

Hospital used for training Average F1 (training) F1 SD (training)
Average F1
(remaining hospitals)

F1 SD
(remaining hospitals)

p Value from baseline
(remaining hospitals)

CCHMC 0.865 0.213 0.691 0.095 0.043
CHOP 0.926 0.149 0.729 0.014 <0.001
CHCO 0.823 0.224 0.754 0.062 <0.001
One-hospital average 0.871 0.195 0.725 0.070 0.001
CCHMC and CHOP 0.913 0.100 0.817 0.047 <0.001
CCHMC and CHCO 0.904 0.097 0.807 0.031 <0.001
CHOP and CHCO 0.904 0.097 0.807 0.031 <0.001
Two-hospital average 0.899 0.105 0.829 0.047 <0.001

The first column lists the hospital(s) used to optimize the support vector machine. The second and third columns list the 20-fold cross-validated average F1 and corresponding SDs of the
training samples, respectively. The fourth and fifth columns list the average F1 and corresponding SDs for the remaining hospital(s). The last column shows the p value significance of
the result compared to the largest class baseline F1=0.5. Systematic improvement when two hospitals are used is highlighted in bold, and the sample size is the same when one and
two hospitals are used.
CCHMC, Cincinnati Children’s Hospital Medical Center; CHCO, Children’s Hospital Colorado; CHOP, Children’s Hospital of Philadelphia.
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CCHMC, CHCO, and CHOP. The document/n-gram matrix
was built using unigrams, bigrams, and trigrams, and employed
for training SVM text classifiers.

We also showed that for a given (fixed) number of progress
notes, the classification of patient notes from a third hospital is
improved by using notes from two hospitals in the SVM training
set. That is, given the choice of increasing the sample size by
increasing the number of notes from a single hospital, or broad-
ening the note pool by including notes from another hospital,
our results suggest the latter is the better choice for classifica-
tion. Our results suggest the inclusion of a second hospital may
yield an improvement. The case where the training sample is
CCHMC progress notes and the model is evaluated on CHOP
and CHCO progress notes gives a significance of ∼5%, whereas
those cases where two hospitals are included in the training
set all yield an improvement over baseline that is statistically sig-
nificant at a p value of <0.01.

We are conscious of certain assumptions and possible biases
that are inherent in this analysis; however, we believe they do
not invalidate our conclusions. For example, while our selection
criteria for the progress notes introduce biases in the number of
GE and PE progress notes, they are not relevant as we train and
classify the SVM on a fixed number of each. Another factor to
consider is that the GE and PE classifications are defined by the
ICD-9-CM codes, which are used primarily to encode billing
information. Although strictly speaking they cannot be used as
proxies for clinical diagnoses, they were assigned by the author
of the note (a healthcare provider).

It is worthwhile noting that while technically our method
does not directly address whether clinical vocabulary is the same
across all three institutions considered, given our results one can
reasonably infer that a degree of similarity exists. Natural lan-
guage, including clinical language, is complex and ambiguous at
the level of vocabulary and at the levels of morphology, syntax,
semantics, and document structure. Even so, we cannot con-
clude that the notes are heterogeneous across the three hospitals
based on lexical features only. In fact, we know that the differ-
ent EPIC templates used in the different hospitals introduce dif-
ferences in the document structure and semantic concepts
mentioned in the records. However, our findings are consistent
with the idea that even in the face of these additional levels of
complexity, surface linguistic features alone do not introduce
spurious indicators of differences in quality measures across the
three hospitals.

CONCLUSIONS
Our work has established that there is a certain degree of uni-
formity of epilepsy vocabulary across different hospitals, and has
developed an NLP-based machine learning technique to classify
and extract information from epilepsy progress notes. This sug-
gests that a limited number of annotated epilepsy progress notes
from each hospital might be enough for developing automated
extraction of epilepsy quality measures from clinical narratives.
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