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Objective: Develop a prototype expert system for preterm birth risk assessment

of pregnant women. Normal gestation involves a term of 40 weeks, but because 8-12% of the
newborns in the United States are delivered prior to 37 weeks’ gestation, problems associated with
prematurity continue to plague individuals, families, and the health care system.

Design: A knowledge—basé development methodology used machine learning, statistical analysis,
and validation techniques to analyze three large datasets (18,890 subjects and 214 variables). The

dependent (i.e.,

decision) variable studied was weeks of gestation at delivery, with dichotomous

coding of preterm delivery (prior to 37 weeks) and full-term delivery (37 + weeks).

Results: Machine learning with a program named Learning from Examples using Rough Sets (LERS)
induced 520 usable rules that were entered into a prototype expert system. The prototype expert
system was 53-88% accurate in predicting preterm delivery for 9,419 patients. .

Conclusion: The prototype expert system was more accurate than traditional manual'techniq‘ues in

predicting preterm birth.
® ] Am Med Informatics Assoc. 1994;1:439-446.

Determining preterm birth risk and decision making
related to interventions remain problematic in the
clinical setting.!-*> Accurate assessment of preterm
risk will permit intervention with educational pro-
grams, bed rest, and early symptom management to
prolong gestation or prevent preterm birth and will
provide for improved perinatal survival and treat-
ment outcomes. One problem related to preterm de-
livery risk assessment appears to be a poorly defined
and complex knowledge base. The plethora of infor-
mation about preterm risk remains disorganized,
poorly validated through research, and of little guid-
ance to patie'r)ts and providers of prenatal care. Pre-
term risk information, including risk factors and out-
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comes, is increasing at a rate that confounds traditional
techniques of information management and patient
management. Previous approaches to studying the
problems of preterm birth prediction have failed to
validate linear models. Factors traditionally used. to
assess risk are not clearly or consistently associated
with weeks of gestation at birth.*-¢

Many risk scoring and screening instruments are
available, but no conceptual or theoretical model of
preterm risk has been reported, which may account
for the poor reliability and validity of traditional man-
ual screening techniques. McLean et al.,2 on review-
ing previous studies, found that manual risk assess-
ment scoring tools were 17-38% accurate in their
abilities to predict preterm delivery. This astonish-
ingly poor predictive ability of accepted risk screen-
ing methods is a significant degradation of the ac-
curacy that can be achieved by flipping a coin. The
primary reason for this degradation is a psychometric
problem where there is no underlying conceptual
model” of preterm birth risk. Existing preterm birth
risk screening tools include factors that are not valid
predictors of preterm birth risk and fail” ‘to_include
reported factors that may be valid predlctors of | pre-
term labor. Although existing tools do riot adequately
predict preterm birth, current prenatal practice usés
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Table 1 m

Example of a Decision Table and the Rules
Discovered From It by the Learning from
Examples using Rough Sets (LERS) Machine
Learning Program*

Deci-

Attribute sion
Example pregnancy_# maternal_age bleeding delivery
patient_1 ' 1 <20 yes preterm
patient 2 3 30..39 no fullterm
patient_3 2 20..29 no preterm
patient_4 2 20..29 no * fullterm
patient_5 1 20..29 yes fullterm

*This decision table and its rules are simplified to demonstrate the
theoretical foundations. Actual decision tables and rules are much
more complex.

these invalid, unreliable tools daily when dealing
with pregnant women, resulting in an increasing trend
to treat all pregnant women as though they are
at “high risk” for preterm labor. Alternative solu-
tions to the problem may be achieved using machine
learning and expert system technology to support
health care providers’ assessments in this complex
domain.

The purpose of this research was to improve clinical
outcomes for childbearing families, first through the
development of a knowledge base and then through
the development of an expert system for improved
preterm birth risk assessment of pregnant women.
This was the second study in an ongoing program
of informatics research in which artificial intelligence
techniques, called machine learning, were used for
knowledge acquisition to develop and describe a
knowledge base for preterm birth risk assessment.

Machine Learning

Knowledge acquisition is the transfer of knowledge
from the (expert) source to a knowledge base.? Tra-
ditional approaches to knowledge acquisition are te-
dious and frequently based on manual techniques,
e.g., verbal protocol analysis.” The difficulty encoun-
tered in studying experts lies in the experts them-
selves and the processes by which they become ex-
perts. Experts have two kinds of knowledge —
knowledge used to explain a task and knowledge
that actually is used to perform a task.'® Johnson'
called this the “paradox of expertise’”” and argued that
the knowledge we wish to capture is that which the
expert is least able to discuss. The human experts

developed preterm risk scoring and screening tools
in the 1980s, but these tools remain only 17-38%
accurate in predicting preterm birth risk.? There is
no expert with a proven track record for accurately
predicting preterm birth risk, and research findings
are frequently contradictory. Traditional approaches
to expert system development, where knowledge is
acquired from human experts, simply have not worked
in the domain of preterm birth risk assessment.

Newer approaches to knowledge acquisition using
machine learning techniques were developed during
the 1980s. Algorithms with different strengths and
limitations have been developed to extract patterns
from data for the creation of decision trees, produc-
tion rules, and other representations for expert sys-
tems.® Four general paradigms of machine learning
have evolved: the analytic paradigm, the genetic par-
adigm, the connectionist paradigm, and the inductive
paradigm.'? The analytic paradigm generally starts
with a strong underlying theory and attempts to build
and learn concepts from that theory. Because preterm
birth risk lacks a strong underlying theory, this par-
adigm is not appropriate for this study. Another par-
adigm not well suited for preterm delivery risk as-
sessment is the genetic paradigm, which generates
new solutions to a problem and then tests the “fit-
ness” of these solutions. The connectionist, or neural
network, paradigm recognizes patterns in input data,
and learns how to classify the input based on pre-
vious classifications with similar input patterns. This
paradigm is appropriate for preterm birth risk as-
sessment and will be used in future studies. The
inductive paradigm generally works from sets of data
where the classification of an example (patient) is
known, and the system learns to discriminate be-
tween different classifications given the data values
associated with the patient. The inductive paradigm
of machine learning was used for this study.

The most successful inductive machine learning tech-
nique employed in this project involved the use of a
computer program called Learning from Examples
using Rough Sets (LERS), which was developed in
the Computer Science Department of the University
of Kansas by one of the authors (JG-B).®!3-18:2! In
clinical practice, where inconsistency is an integral
part of caring for humans, the rough set approach
seems a desirable theory to explore more fully in
developing expert systems.

LERS works with a decision table that presents data
about real-world phenomena that will be used for
decision making. In the decision table, objects or ex-
amples are characterized by attributes and decisions.
Examples are described by values of attributes, while
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decision values are often provided by experts. The
primary goal is for LERS to extract information from
various sets of data to discover rules from the deci-
sion table. A simplified description of this approach
involves building a table with examples, attributes,
decisions, attribute values, and decision values that
are then read by the machine learning program for
evaluation (Table 1).

In machine learning from examples, a concept is
understood as the subset of the set of all examples
having the same value of the decision. Let d denote
a decision (e.g., delivery from Table 1) and let w de-
note a value of the decision (e.g., preterm from Table
1). Formally, a concept, denoted [(d, w)], is a set of
all examples that have value w for decision d. In our
example, the concept [(delivery, preterm)] is the set
{patient_1, patient_3}. Similarly, let g be an attribute
and v its value. The block of an attribute—value pair
(3. v), denoted [(g, v)], is the set of all examples that
have value v for attribute g. In our example, the
blocks of all attribute—value pairs are:

[(pregnancy_#, 1)] = {patient_1, patient_5},
[(pregnancy_#, 2)] = {patient_3, patient_4},
[(pregnancy_#, 3)] = {patient_2},

[(maternal_age, <20)] = {patient_1},

[(naternal_age, 20..29)] = {patient_3, patient_4, patient_5},
[(maternal_age, 30..39)] = {patient_2},

[(bleeding, yes)] = {patient_1, patient_5},

[(bleeding, no)] = {patient_2, patient_3, patient_4}.

LERS is based on rough set theory, a method for
managing uncertainty in knowledge acquisi-
tion.!3192° Uncertainty may be caused by data errors,
ambiguity of exact meanings of data in the table, or
doubtful connections between conditions and a con-
clusion of the rule. A special case of uncertainty is
an inconsistency when a decision table contains two
examples having identical attribute values but dif-
ferent decision values. For example, patient 3 and
patient_4 have identical attribute values—2 for preg-
nancy—#, 20..29 for maternal_age, and no for bleeding—
but different decision values— preterm for patient_3
and fullterm for patient 4. A problem exists with other
approaches to managing uncertainty where inconsis-
tencies are removed from the table and ignored by
the learning program. In rough set theory, inconsis-
tencies are not removed.

In the rough set approach used in LERS, the basic
concepts are lower and upper approximations of a con-
cept. The lower approximation of the concept [(d, w)]
is the largest set of all examples that may be described
as being certainly a part of the concept, taking into
account all attributes. For example, for the concept
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[(delivery, preterm)], the only patient who may be clas-
sified as being certainly a part of the concept is pa-
tient_1. Patient_3 is not so classified because even
looking at values of all attributes we cannot distin-
guish her from patient_4, and patient_4 does not be-
long to the concept.

On the other hand, the upper approximation of the
concept [(d, w)] is the smallest set of all examples
that is described as possibly containing the concept.
In our example, for the concept [(delivery, preterm)],
not only patient_1 but also patient_3 and patient_4 may
possibly belong to the concept. Therefore, the upper
approximation of the concept [(delivery, preterm)] is
the set {patient_1, patient_3, patient_4}.

LERS computes both lower and upper approxima-
tions for concepts of the decision fable. In the next
step, LERS induces rules from these lower and upper
approximations. The rules that are computed from
lower approximations are called certain, while the
rules that are computed from upper approximations
are called possible. The definitions of these rules are
similar to those mentioned above for lower and upper
approximations of the concept. Certain rules are com-
pletely backed up by data, as long as we restrict our
attention to available data. Certain rules describe reg-
ularities in the data, without any uncertainty. Pos-
sible rules are also supported by the same data, but
it is possible that some data may support a rule and
some other data may contradict the same rule. Thus
it is only possible that a rule is true. Possible rules
are further quantified by a special measure, called
the rough measure. The rough measure of the rule
describing concept [(d, w)] is the ratio of the number
of all examples from the concept [(d, w)] correctly
described by the rule to the number of all examples
described by the rule. The rough measure may be
interpreted as a conditional probability of the con-
clusion of the rule given all rule conditions. Ob-
viously, the rough measure of a certain rule is equal
to 1. The higher the rough measure for a possible
rule, the more reliable the rule.

A basic algorithm that was used in the system LERS
is called LEM2. In LEM2 an attribute—value pair is
selected first by looking for attributes with the high-
est priorities. Attribute priorities should be allocated
by the expert. In our project, the assumption was
that all priorities are equal or that no priority is al-
located, i.e., no bias was added. The next criterion
for selection of an attribute—value pair-is its relevance
to a goal. Goal initially is a concept; later on, it is a
concept with deleted examples that are already de-
scribed by rules. The relevance of an attribute—value
pair and the goal is evaluated as the cardinality of
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the common part of both sets. When a tie occurs, an
attribute-value pair is selected on the basis of the
maximum of conditional probability of a block of the
attribute—value pair given the goal.

Table 1 describes two concepts. The first concept is
characterized by value preterm for the decision delivery
and is equal to the set {patient_1, patient_3}. The sec-
ond concept, the set {patient_2, patient_4, patient_5},
describes all patients who have value fullterm for de-
cision delivery.

The lower approximation of the concept {patient_1,
patient_3} is the set {patient_1}. For the set {patient_1},
the set of all relevant attribute—value pairs is:

{(pregnancv_# 1), (maternal_age, <20) (bleeding, yes)}.

Obviously, the attribute—value pa1r (maternal_age, <20)
should be selected, since it describes only the set
{patient_1}. Thus, the only certain rule is:

(maternal_age, <20) — (delivery, preterm).

On the other hand, possible rules are computed on
the basis of the upper approximation of the concept,
i.e, the set {patient_1, patient_3, patient_4}. The set of
all relevant attribute—value pairs is:

{(pregnancy_#, 1), (pregnancy_#, 2), (maternal_age, <20),
(maternal_age, 20..29), (bleeding, yes), (bleeding, no)}.

The best attribute-value pair is (pregnancy_#, 2) be-
cause [(pregnancy_#, 2)] = {patient_3, patient_4} is the
most relevant set contained in the goal, the set {pa-
tient_1, patient_3, patient’4}. Thus, the first possible
rule is:

(pregnancy_#, 2) — (delivery, preterm).
All certain rules, induced by LEM2, are:

(maternal_age, <20) — (delivery, preterm),
(pregnancy_#, 3) — (delivery, fullterm),
(pregnancy_#, 1) & (maternal_agL 20..29) —
term).

Possible rules, induced by LEM2, are:

(delivery, full-

(pregnancy_#2) — (delivery, preterm),
(maternal_age, <20) — (delivery, preterm),
(bleeding, no) — (delivery, fullterin),
(maternal_age, 20..29) — (delivery, fullterm).

Sample, Setting, and Methodology

The methodology used in this study was refined from
earlier knowledge base development methodology
work®?! using simplified classification schemes, mul-
tiple large datasets (n = 18,890), and multiple ma-
chine learning programs (ID3,%>2* LERS," and
CONCLUS*). An earlier study® used ID3 to generate

88 rules from a single database, but the classification
criterion used was weeks of gestation at delivery and
all 88 rules were deemed meaningless by a panel of
experts. The conclusion reached was that the clas-
sification was too complex for ID3 to manage the
large dataset. Based on this prior experience, we used
a dichotomous decision classification where the ma-
chine learning programs analyzed preterm delivery
or full-term delivery. The research procedure in-
cluded the following steps:

1. Data from three large databases (n = 18,890) were
loaded into appropriate computers and formats.
The original intent was to merge databases, but
their sizes and dissimilar variables made this un-
wieldy, so each database was processed sepa-
rately. The clinical data represented a mixture of
high-risk and low-risk pregnant women collected
by a level Il perinatal center in the midwest and
two private companies providing home uterine-
monitoring services for high-risk patients
throughout the United States. The data in each
database were split in half at this step. Half of the
data were used for statistical analysis, machine
learning, and rule generation for the prototype
expert system. The other half of the data were set
aside and used only to test the prototype expert
system with real patient cases.

2. Exploratory factor analysis was conducted.

3. Multivariate regression analysis was conducted to
determine predictors of preterm delivery risk.

4. Knowledge acquisition based on machine learning

was conducted to induce rules directly from the
data.

5. Rules were validated using content validity tech-
niques and perinatal experts.

6. The prototype expert system Was built and tested.

Results of Statistical Analysis (Methodology Steps
2 and 3)

All statistical analyses were conducted with datasets
that were used for rule induction. Descriptive statis-
tics were collected and exploratory factor analyses
and multiple regression analyses were conducted for
9,419 subjects and 214 variables. Database 1 collected
52 variables, including patient demographic data, high-
risk factors (such as multiple gestation, smoking, or
drug use), medical complications (such as bleeding,
diabetes, or hypertension), intervention data (such
as medications and monitoring results), and outcome
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data (such as gestational age, birth- weight, and
American' Pediatric Gross Assessment Record scores).
Database 2 collected 77 variables, including' items
similar to those collected by the first database as well
as numerous variables for biophysical markers such
as height, weight, blood pressure, pulse, and uterine
contractions. Database 3 collected 85 variables and
included minimal demographic and high-risk data
but detailed data with regard to International Classi-
fication of Diseases, 9th edition (ICD-9) diagnostic codes
and Current Procedural Terminology procedure codes
associated with patients who experienced preterm
labor.

According -to descriptive statistics, the average age
of women in all three databases was in the late twen-
ties. The number of adolescent subjects was relatively
small, and these data- ‘may not reflect risk’ factors of
adolescent pregnancy. Only three of the subjects an-
alyzed had not received prenatal care, thus this study
was unab]e to addiess preterm birth risk of women
who do not seek prenatal care. Dichotomous coding
and small numbers of subjects who had positive re-
sponses on numerous variables produced several
problems for statistical analy51s that will be managed
in future studies using logistic regression techniques.

In general, conclusions drawn from' descriptive data

analysis were that the data were voluminous, some-
times erroneous, poorly organized, inconsistently re-
corded, and frequently dichotomous, and that data
items needed were often not collected. The multiple
regression statistics used in this study did find sta-
tistical sxgmﬁcance for many of the variables, but the
low correlations’ between most of the 213 predictor
variables and the criterion variable (weeks of gesta-
tion at delivery) rendered statistical- significance
meaningless for assessment purposes in clinical prac-
tice. The multlple regression findings in this study
may lend additional support to an earlier study? that
found no statlstlcally 51gmf1cant results for race, age,
marital status, parity, or socioeconomic status and to
a study® that found no statistically significant rela-
tlonshlps between gestational, age at delivery and
maternal age, grav1d1ty, parity, or race. More work
is needed to replicate and analyze preterm birth risk
factors in relation to age, race, and other items be-
lieved to predict or to be strongly associated with
preterm birth risk. It is possible that preterm birth
risk does not fit a linear model, and alternative anal-
yses ;may,be more appropriate in future studies.

The inability to predict preterm birth risk from the
data was somewhat surprising, at first, but this find-
ing can be'clarified through several explanations. The
low correlations between predictor variables and the
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Table 2 m

Accufacy Rates of the Prototype Expért System for
Predicting Preterm or Full-term Delivery

Database 2

Database 1 Database 3-

Total no. of test 1,593 1,218 6,608
cases

* No. correctly 1,415 (88.8%) 722 (59.2%) 3,533 (53.4%)

classified

No. misclassified 171 (10.7%) 456 (37.4%) 2,796 (42.3%)

No: unclassified 7 (0.4%) 40 (3.2%) - 279--(4.2%)

criterion may be due, in part, to the dpossibilitj/' that
health care providers continue to collect a great deal
of data that have little to do with preterm birth risk.
The data in the perinatal databases reflected risk fac-
tors that are consistent with traditional preterm birth
risk screening instruments developed in the 1980s.
However, review of the literature found that pre-
term risk scoring indices were not developed accord-
ing to psychometric standards. It is possible that cur-
rent clinical practice operates with assumptions about
risk factors for preterm birth that are invalid. And
it is important to remember that the exact cause
of labor, whether full-term or preterm, remains un-
known.

Results of Machine Learning and Expert Validation
(Methodology Steps 4 and 5)

Muttiple approaches to machine learning were con-
“ducted using software programs named ID3, LERS,
and CONCLUS. One of us (JG-B) previously indicated®
that most successful research activity in the area of
inductive machine learning worked with data that
were free of errors and conflicts, or inconsistencies.
The study tested the robustness of machine learning
with data that contained both errors and inconsis-
tencies. Examples with missing values and obvious
errors, such as maternal 10-pound or 700-pound
weights, systolic pressures of 14,000, and pulses of
less than 40, were excluded from machine learnmg
ana1y51s leaving 9,419 cases for further analy51s Of
the programs tested, LERS produced the only usable
output, inducing 1,655 rules directly from the data.

A content validity technique was used for rule vali-
dation, where two certified perinatal nurses who were
experts were asked to verify rules using categories
described by Fieschi® for tests of incompleteness and
logical, structural, and semantic verification of rule
output. Some of the verification process was accom-
plished -through LERS programming enhancements
that guaranteed that contradictory rules were not



generated (logical verification), unattainable and cir-
cular rules (where rules iterate and never end) were
not generated (structural verification), and rules with
erroneous value limits were not generated (semantic
verification). Programming enhancements to the LERS
software were also able to determine which patient
cases in the test data were unable to be classified by
the rules, thus pointing out where rules were missing
and where more data and rules were needed (tests
of incompleteness).

LERS analysis of database 3 generated 1,133 rules,
but there were multiple problems with the data. First,
listwise deletion of cases with missing values created
problems for database 3, where only 9 of 6,616 cases
were without missing values. The first test of data-
base 3 produced predictive accuracy rates of 98%,
which were exciting until careful analysis revealed
an analyzed attribute for preterm delivery, as well as
a decision variable with the same value. This actually
served to confirm the machine learning classification
process, but was not clinically useful. Considering
the confusion with duplicate attributes and proble-
matic missing values, the experts recommended the
prototype be built without the 1,133 rules from
database 3. The remaining 520 rules from databases
1 and 2 were used for further expert verification.

Expert verification involved checking for redundant
rules, irrelevant attributes, erroneous rules, and
meaningless or nonsense rules. For example, a single
rule the expert was asked to verify was:

(abortions, 0) & (gravida, 2) & (pregnancy complication, -

2nd trimester bleeding) & (pregnancy complication, incom-
petent cervix) & (pregnancy complication, premature rup-
ture of membranes) ===> (birth, preterm).

Experts found the above format difficult to analyze,
and, at their requests, programs were written to make
the rule output easier for the experts to analyze (see
below); however, the process of verifying 520 com-
plex rules remamed tedious and difficult.

(abortions, 0) &

(gravida, 2) &

(pregnancy complication, 2nd trimester bleeding) &
(pregnancy complication, incompetent cervix) &
(pregnancy complication, premature rupture of mem-
branes)

===> (birth, preterm)

Expert verification of the rules deemed all 520 rules
usable, since there were no redundant rules, irrele-
vant attributes, erroneous rules, or meaningless or
nonsense rules. In general, the experts indicated that
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each individual rule did not appear to provide enough
information and that important data seemed to be
missing. Considering the predictive accuracy of the
prototype expert system, described in the next sec-
tion, limitations of expert validation in complex and
disorganized domains would benefit from further
study.

Results of the Prototype Expert System
(Methodology Step 6)

The prototype expert system used 520 rules in an
object-oriented expert system shell named “Kappa’ 2
that ran in a Windows (Microsoft)?” environment.
Forward chaining techniques and priority encoding
of the rules were used to develop the prototype. It
is important to remember that none of the testing
data was used in building the prototype. A computer
program was written to “‘feed’” each of the 9,419 test
subjects through the prototype expert system to an-
alyze the system’s ability to accurately predict pre-
term delivery. Accuracy was tested by having the
expert system analyze each test case’s data and pre-
dict either preterm or full-term delivery. The com-
puter program then retrieved the actual preterm or
full-term outcome from the database, and the expert
system prediction was compared with the actual pa-
tient outcome. Where the predicted outcome and the
actual outcome matched, there was 100% accuracy.
Accuracy rates are reported in Table 2.

Considering the limitations with databases used,
“noisy” data, and difficulties encountered with ex-
pert validation, the accuracy rates reflected in Table
2 were both surprising and encouraging. The results
achieved with database 1 were 88.8% accurate in pre-
dicting preterm birth for both low-risk and high-risk
pregnant women. Database 2 was 59.2% accurate in
predicting preterm delivery in a population of high-
risk pregnant women, most of whom were referred .
for home uterine monitoring because they were in '
preterm labor. The predictive accuracy of database 2
was less impressive, but it would be expected that
predicting preterm delivery in a high-risk group being
treated for preterm labor would be more difficult
since medical interventions will, it is hoped, influ-
ence subsequent birth outcomes. And the seemingly
poor results (53.4%) for database 3 were actually quite
remarkable from two perspectives. First, there was
no rule in the expert system that was derived from
data in database 3, suggesting that the expert system
may be tapping a construct of preterm birth risk in-
dependent of any particular database. Second, even
the 53.4% accuracy rate was an improvement over
existing manual screening tools that remain only 17—
38% accurate.?
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While the ultimate goal of expert system develop-
ment is to predict preterm labor risk, the definition
of preterm labor and data needed to analyze preterm
labor risk are less amenable to study presently. There
were numerous confounding variables in the data
that made prediction of preterm labor impossible
dIlu it was ue[er_l_iied thdt dLLUrdLy UI preululng
preterm delivery was more viable. Therefore, the

nurnaca nf thic c+I1f‘\7 wag tn dotoarmine the faagihility
purposc Or uils siuQy was ¢ Qeerming ing 1€asIoLILY

of using machine learning to generate expert system
(knowledge-base) rules for prediction of preterm de-
livery. Each of the databases tested surpassed tra-
ditional manual accuracy rates in predicting preterm
birth. Future studies are planned to determine the
feasibility of using the expert system to predict pre-
term labor risk.
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and quality-controlled data collection methods are

oxnected to improve rule induction and accuracvy nre-
EXPpeCieq 10 1IMprove ruie InaQudiaon anG accuracy pre

dictions to high levels in a fully implemented expert
system, but this needs testing and validation. The
statistical, machine learning, and prototype expert
system findings from this study confirmed that pre-
term risk assessment is a complex and disorganized
knowledge domain. But even with this complexity,
the research methodology and machine learning
techniques used in this study were able to extract
rules directly from data and use these rules in a
prototype expert system that was more accurate than
traditional manual systems in predicting preterm de-
livery.

Thompson and Thompson® recommended adding
attributes to improve machine learning classification
and suggested that, when selecting attributes, it is
better to err on the side of having too many. In other
words, the 214 variables analyzed by LERS were in-
adequate to classify preterm birth for all subjects
studied. The notion that additional attributes, or var-
iables, are needed for preterm birth classification is
consistent with findings indicating that data items
that may be associated with preterm birth risk were
11115311’15 For examprc, the database did not include
data about stress, sexual activity, substance abuse,

nutritional statiie or infections The agverall indica-
nuiritiona: sSiaius, Or mmueduons. 1ne overaa INGlca

tion is that the variables needed to predict, or classify,
preterm birth were not all available for LERS analysis.
Future studies should find improved predlctlon ac-
curacy as variables are added for machine learning

classification.

"FL PG I PP | N ot | o iAo Toao 1o il o
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difficulties countered in acquiring and processing
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an overload of information for decision making re-
lated to preterm birth risk assessment. While this
study provides a foundation for improved preterm
birth prediction, the clinical problems associated with
accurate assessment and treatment of women at tis
for preterm labor need continued research. The

Yemawrlad hace develan nt {-knﬁ]n‘nnu 11c0d
l\llUVVlCuéC wvaoc uCVLAkaAAnL_Lu. meimnoea UHYy u“ote

this study offers a mechanism to further develop
linkages between technology and clinical problem

ilfiXagts JotWwoelt AeAe Aaivl CIif problclt

solvmg in a variety of health care settings.
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