
Journal of the American Medical Informatics Association Volume 1 Number 6 Nov / Dec 1994 

Machine L earning for an 
Expert System to Predict 
Preterm Birth Risk 

Abstract Objective: Develop a prototype expert system for preterm birth risk assessment 
of pregnant women. Normal gestation involves a term of 40 weeks, but because 8-12% of the 
newborns in the United States are delivered prior. to 37 weeks’ gestation, problems associated with 
prematurity continue to plague individuals, families, and the health care system. 

Design: A knowledge-base development methodology used machine learning, statistical analysis, 
and validation techniques to analyze three large datasets (18,890 subjects and 214 variables). The 
dependent (i.e., decision) variable studied was weeks of gestation at delivery, with dichotomous 
coding of preterm delivery (prior to 37 weeks) and full-term delivery (37+ weeks). 

Results: Machine learning with a program named Learning from Examples using Rough Sets (LERS). 
induced 520 usable rules that were entered into a prototype expert system. The’ prototype expert 
system was 53-88% accurate in predicting preterm delivery for 9,419 patients. 

Conclusion: The prototype expert system was more accurate than traditional manual techniques in 
predicting preterm birth. 

n J Am Med Informatics Assoc. 1994;1:439-446. 

Determining preterm birth risk and decision making 
related to interventions remain problematic in the 
clinical setting. 1-3 Accurate assessment of preterm 
risk will permit intervention with educational pro- 
grams, bed rest, and early symptom management to 
prolong gestation or prevent preterm birth and will 
provide for improved perinatal survival and treat- 
ment outcomes. One problem related to preterm de- 
livery risk assessment appears to be a poorly defined 
and complex knowledge base. The plethora of infor- 
mation about preterm risk remains disorganized, 
poorly validated through research, and of little guid- 
ance to patients and providers of prenatal care. Pre- 
term risk information, including risk factors and out- 
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comes, is increasing at a rate that confounds traditional 
techniques of information management and patient 
management. Previous approaches to studying the 
problems of preterm birth prediction have failed to 
validate linear models. Factors traditionally used- to 
assess risk are not clearly or consistently associated 
with weeks of gestation at birth.4-6 

Many risk ‘scoring and screening instruments are 
available, but no conceptual or theoretical model of 
preterm risk has been reported, which may account 
for the poor reliability and validity of traditional man- 
ual screening techniques. McLean et al.,2 on review- 
ing previous studies, found that manual risk assess- 
ment scoring ‘tools were 17-38% accurate in their 
abilities to predict preterm delivery. This astonish- 
ingly poor predictive ability of accepted risk screen- 
ing methods is a significant degradation of the ac- 
curacy that can be achieved by flipping a coin: The 
primary reason for this degradation is a psychometric 
problem where there is no underlying conceptual 
model7 of preterm birth risk. Existing preterm birth 
risk screening tools include factors that ‘are not valid 
predictors of preterm birth! risk and fail to include 
reported factors that may be valid predictors of pre- 
term labor. Although existing tools do not adequately 
predict preterm birth, current prenatal practice uses 
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Table I n 

Example of a Decision Table and the Rules 
Discovered From It by the Learning from 
Examples. using Rough Sets (LERS) Machine 
Learning Program* 

Deci- 
Attribute sion 

Example pregnancy-# maternal-age bleeding delivery 

patient-l 1 <20 yes preterm 

patient-2 3 30..39 no fullterm 

patient-3 2 20..29 no preterm 

patient-4 2 20..29 no fullterm 

patient5 1 20..29 yes fullterm 

‘This decision table and its rules are simplified to demonstrate the 
theoretical foundations. Actual decision tables and rules are much 
more complex. 

these invalid, unreliable tools daily when dealing 
with pregnant women, resulting in an increasing trend 
to treat all pregnant women as though they are 
at “high risk’ for preterm labor. Alternative solu- 
tions to the problem may be achieved using machine 
learning and expert system technology to support 
health care providers’ assessments in this complex 
domain. 

The purpose of this research was to improve clinical 
outcomes for childbearing families, first through the 
development of a knowledge base and then through 
the development of an expert system for improved 
preterm birth risk assessment of pregnant women. 
This was the second study in an ongoing program 
of informatics research in which artificial intelligence 
techniques, called machine learning, were used for 
knowledge acquisition to develop and describe a 
knowledge base for preterm birth risk assessment. 

Machine Learning 

Knowledge acquisition is the transfer of knowledge 
from the (expert) source to a knowledge base 8 Tra- 
ditional approaches to knowledge acquisition are te- 
dious and frequently based on manual techniques, 
e.g., verbal protocol analysis.9 The difficulty encoun- 
tered in studying experts lies in the experts them- 
selves and the processes by which they become ex- 
perts. Experts have two kinds of knowledge- 
knowledge used to explain a task and knowledge 
that actually is used to perform a task. 10 Johnson” 
called this the “paradox of expertise” and argued that 
the knowledge we wish to capture is that which the 
expert is least able to discuss. The human experts 

developed preterm risk scoring and screening tools 
in the 198Os, but these tools remain only 17-38% 
accurate in predicting preterm birth risk.2 There is 
no expert with a proven track record for accurately 
predicting preterm birth risk, and research findings 
are frequently contradictory. Traditional approaches 
to expert system development, where knowledge is 
acquired from human experts, simply have not worked 
in the domain of preterm birth risk assessment. 

Newer approaches to knowledge acquisition using 
machine learning techniques were developed during 
the 1980s. Algorithms with different strengths and 
limitations have been developed to extract patterns 
from data for the creation of decision trees, produc- 
tion rules, and other representations for expert sys- 
tems. 8 Four general paradigms of machine learning 
have evolved: the analytic paradigm, the genetic par- 
adigm, the connectionist paradigm, and the inductive 
paradigm. 12 The analytic paradigm generally starts 
with a strong underlying theory and attempts to build 
and learn concepts from that theory. Because preterm 
birth risk lacks a strong underlying theory, this par- 
adigm is not appropriate for this study. Another par- 
adigm not well suited for preterm delivery risk as- 
sessment is the genetic paradigm, which generates 
new solutions to a problem and then tests the “fit- 
ness” of these solutions. The connectionist, or neural 
network, paradigm recognizes patterns in input data, 
and learns how to classify the input based on pre- 
vious classifications with similar input patterns. This 
paradigm is appropriate for preterm birth risk as- 
sessment and will be used in future studies. The 
inductive paradigm generally works from sets of data 
where the classification of an example (patient) is 
known, and the system learns to discriminate be- 
tween different classifications given the data values 
associated with the patient. The inductive paradigm 
of machine learning was used for this study. 

The most successful inductive machine learning tech- 
nique employed in this project involved the use of a 
computer program called Learning from Examples 
using Rough Sets (LERS), which was developed in 
the Computer Science Department of the University 
of Kansas by one of the authors (JG-B). 8,13-18,21 In 
clinical practice, where inconsistency is an integral 
part of caring for humans, the rough set approach 
seems a desirable theory to explore more fully in 
developing expert systems. 

LERS works with a decision table that presents data 
about real-world phenomena that will be used for 
decision making. In the decision table, objects or ex- 
amples are characterized by attributes and decisions. 
Examples are described by values of attributes, while 
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decision values are often provided by experts. The 
primary goal is for LERS to extract information from 
various sets of data to discover rules from the deci- 
sion table. A simplified description of this approach 
involves building a table with examples, attributes, 
decisions, attribute values, and decision values that 
are then read by the machine learning program for 
evaluation (Table 1). 

In machine learning from examples, a concept is 
understood as the subset of the set of all examples 
having the same value of the decision. Let d denote 
a decision (e.g., delivery from Table 1) and let w de- 
note a value of the decision (e.g., preterm from Table 
1). Formally, a concept, denoted [(d, w)], is a set of 
all examples that have value w for decision d. In our 
example, the concept [(delivery, preterm)] is the set 
{palient-1, patient-3). Similarly, let 9 be an attribute 
and its value. The block of an attribute-value pair 
(9, v), denoted [(9, v)], is the set of all examples that 
have value for attribute 9. In our example, the 
blocks of all attribute-value pairs are: 

[(pregnancy-#, 1)] = {patient-l, patient-5}, 
[(pregnancy-#, 2)] = {patient-3, patient-4}, 
[(pregnancy-#, 3)] = {patient-2}, 
[(maternal-age, <20)] = {patient-l}, 
[(maternal-age, 20..29)] = {patient-3, patient-4, patient-5}, 
[(rnaternal-age, 30..39)] = {patient-2}, 
[(bleeding, yes)] = {patient-l, patient-5}, 
[(bleeding, no)] = {patient-2, ,patient-3, patient-4). 

LERS is based on rough set theory, a method for 
managing uncertainty in knowledge acquisi- 
tion. 13,19,20 Uncertainty may be caused by data errors, 
ambiguity of exact meanings of data in the table, or 
doubtful connections between conditions and a con- 
clusion of the rule. A special case of uncertainty is 
an inconsistency when a decision table contains two 
examples having identical attribute values but dif- 
ferent decision values. For example, patient-3 and 
patient-4 have identical attribute values-2 for preg- 
nancy-#, 20..29 for maternal-age, and no for bleeding- 
but different decision values-preferm for patient-3 
and fullterm for patient-4. A problem exists with other 
approaches to managing uncertainty where inconsis- 
tencies are removed from the table and ignored by 
the learning program. In rough set theory, inconsis- 
tencies are not removed. 

In the rough set approach used in LERS, the basic 
concepts are lower and upper approximations of a con- 
cept. The lower approximation of the concept [(d, w)] 
is the largest set of all examples that may be described 
as being certainiy a part of the concept, taking into 
account all attributes. For example, for the concept 

[(delivery, preterm)], the only patient who may be clas- 
sified as being certainly a part of the concept is pa- 
tient-1. Patient-3 is not so classified because even 
looking at values of all attributes we cannot distin- 
guish her from patient-4, and patient-4 does not be- 
long to the concept. 

On the other hand, the upper approximation of the 
concept [(d, w)] is the smallest set of all examples 
that is described as possibly containing the concept. 
In our example, for the concept [(delivery, preterm)], 
not only patient-1 but also patient-3 and patient-4 may 
possibly belong to the concept. Therefore, the upper 
approximation of the concept [(delivery, preterm)] is 
the set {patient-1, patient-3, patient-4). 

LERS computes both lower and upper approxima- 
tions for concepts of the decision fable. In the next 
step, LERS induces rules from these lower and upper 
approximations. The rules that are computed from 
lower approximations are called certain, while the 
rules that are computed from upper approximations 
are called possible. The definitions of these rules are 
similar to those mentioned above for lower and upper 
approximations of the concept. Certain rules are com- 
pletely backed up by data, as long as we restrict our 
attention to available data. Certain rules describe reg- 
ularities in the data, without any uncertainty. Pos- 
sible rules are also supported by the same data, but 
it is possible that some data may support a rule and 
some other data may contradict the same rule. Thus 
it is only possible that a rule is true. Possible rules 
are further quantified by a special measure, called 
the rough measure. The rough measure of the rule 
describing concept [(d, w)] is the ratio of the number 
of all examples from the concept [(d, w)] correctly 
described by the rule to the number of all examples 
described by the rule. The rough measure may be 
interpreted as a conditional probability of the con- 
clusion of the rule given all rule conditions. Ob- 
viously, the rough measure of a certain rule is equal 
to 1. The higher the rough measure for a possible 
rule, the more reliable the rule. 

A basic algorithm that was used in the system LERS 
is called LEM2. In LEM2 an attribute-value pair is 
selected first by looking for attributes with the high- 
est. priorities. Attribute priorities should be allocated 
by the expert. In our project, the assumption ,was 
that all priorities are equal or that no priority is al- 
located, i.e., no bias was added. The next criterion 
for selection of an attribute-value pair-is its relevance 
to a goal. Goal initially is a concept; later on, it is a 
concept with deleted examples that are already de- 
scribed by rules. The relevance of an attribute-value 
pair and the goal is evaluated as the cardinality of 
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the common part of both sets. When a tie occurs, an 
attribute-value pair is selected on the basis of the 
maximum of conditional probability of a block of the 
attribute-value pair given the. goal. 

Table 1 describes two concepts. The first concept is 
characterized by value preterm for the decision delivery 
and is equal to the set {patient-l, patient-3). The sec- 
ond concept, the set (patient-2, patient-4, patient-5}, 
describes all patients who have value fullterm for de- 
cision delivery. 

The lower approximation of the concept {patient-1, 
patient-3) is the set {patient-l}. For the set {patient-1}, 
the set of all relevant attribute-value pairs is: 

{(pregnancy-#, l), (maternal-age, <20), (bleeding, yes)}. 

Obviously, the attribute-value pair (maternal_age, ,<20) 
should be selected, since it describes only the set 
{patient-l}. Thus, the only certain rule is: 

(maternal-age, <20) -- (delivery, preterm). 

On the other hand, possible rules are computed on 
the basis of the upper approximation of the concept, 
i.e, the set {patient-l, patient-3, patient-4). The set of 
all relevant attribute-value pairs is: 

{(pregnancy-#, l), (pregnancy-#, 2), (maternal-age, <20), 
(maternal-age, 20..29), (bleeding, yes), (bleeding, no)}. 

The best attribute-value pair is (pregnancy-#, 2) be- 
cause [(pregnancy-#, 2)] = {patient-3, patient-4) is the 
most relevant set contained in the goal, the set {pa- 
tient-1, patient-3, patient-4). Thus, the first possible 
rule is: 

(pregnancy-#, .2) + (delivery, preterm). 

All certain rules, induced by LEM2, are: 

(maternal-age, <20) -- (delivery, pretern), 
(pregnancy-#, 3) + (delivery, fulllerm), 

(pregnancy-#, 1) & ,(maternal_age, 20..29) + (delivery, full- 
term). 

Possible rules, induced by LEM2, are: 6. The prototype expert system was built and tested. 

(pregnancy-#2) -- (delivery, preterm), 
(maternal_age, <20) + (delivery, preterm), 
(bleeding, no) + (delivery, fullterm), 
(maternal-age, 20..29) + (delivery, fullterm). 

Results of Statistical Analysis (Methodology Steps 
2 and 3) 

All statistical analyses were conducted with datasets 
that were used for rule induction. Descriptive statis- 
tics were collected and exploratory factor analyses 
and multiple regression analyses were conducted for 
9,419 subjects and 214 variables. Database 1 collected 
52 variables, including patient demographic data, high- 
risk factors (such as multiple gestation, smoking, or 
drug use), medical complications (such as bleeding, 
diabetes, or hypertension), intervention data (such 
as medications and monitoring results), and outcome 

Sample, Setting, and Methodology 

The methodology used in this study was refined from 
earlier knowledge base development methodology 
work 6,21 using simplified classification schemes, mul- 
tiple large datasets (n = 18,890), and multiple ma- 
chine learning programs (ID3,22,23 LERS,18 and 
CONCLUS24). An earlier study 6 used ID3 to generate 

88 rules from a single database, but the classification 
criterion used was weeks of gestation at delivery and 
all 88 rules were deemed meaningless by a panel of 
experts. The conclusion reached was that the clas- 
sification was too complex for ID3 to manage the 
large dataset. Based on this prior experience, we used 
a dichotomous decision classification where the ma- 
chine learning programs analyzed preterm delivery 
or full-term delivery. The research procedure in- 
cluded the following steps: 

1. Data from three large databases (n = 18,890) were 
loaded into appropriate computers and formats. 
The original intent was to merge databases, but 
their sizes and dissimilar variables made this un- 
wieldy, so each database was processed sepa- 
rately. The clinical data represented a mixture of 
high-risk and low-risk pregnant women collected 
by a level III perinatal center in the midwest and 
two private companies providing home uterine- 
monitoring services for high-risk patients 
throughout the United States. The data in each 
database were split in half at this step. Half of the 
data were used for statistical analysis, machine 
learning, and rule generation for the prototype 
expert system. The other half of the data were set 
aside and used only to test the prototype expert 
system with real patient cases. 

2. 

3. 

Exploratory factor analysis was conducted. 

Multivariate regression analysis was conducted to 
determine predictors of preterm delivery risk. 

.4. Knowledge acquisition based on machine learning 
was conducted to induce rules directly from the 
data. 

5. Rules were validated using content validity tech- 
niques and perinatal experts. 
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data (such as gestational. age, birth, weight, and 
American’ Pediatric Gross Assessment Record scores). 
Database 2 collected 77 variables, including items 
similar to those collected by the first database as well 
as numerous variables for biophysical markers such 
as height, weight, blood pressure, pulse, and uterine 
contractions. Database 3 collected 85 variables and 
included minimal demographic and high-risk data 
but detailed data with regard to International Classi- 
fication of Diseases, 9th edition (ICD-9) diagnostic codes 
and Current Procedural Terminology procedure codes 
associated with patients who experienced preterm 
labor. 

According to descriptive statistics, the average age 
of women in all three databases was in the late twen- 
ties: The number of adolescent subjects was relatively 
small, and these data may not reflect risk. factors of 
adolescent pregnancy. Only three of the subjects an- 
alyzed had not received prenatal care, thus this study 
was unable to address preterm birth risk of women 
who do not seek prenatal care. Dichotomous coding 
and small numbers of subjects who had positive re- 
sponses on numerous variables produced several 
problems for statistical analysis that will be managed 
in future studies using logistic regression techniques. 

In general, conclusions drawn from descriptive data 
analysis were that the data were voluminous, some- 
times erroneous, poorly organized, inconsistently re- 
corded, and frequently dichotomous, and that data 
items needed were often not collected. The multiple 
regression statistics used in this study did find sta- 
tistical significance for many of the variables, but the 
low correlations between most of the 213 predictor 
variables and the criterion variable (weeks of gesta- 
tion at delivery) rendered statistical significance 
meaningless for assessment purposes in clinical prac- 
tice. The multiple regression findings in this study 
may, lend additional support to an earlier study” that 
found no statistically significant results for race, age, 
marital status, parity, or socioeconomic status and to 
a study 5 that found. no statistically significant rela- 
tionships between gestational, age at delivery and 
maternal age, gravidity, parity, or race. More work 
is needed to replicate and analyze preterm birth risk 
factors in relation to age, race, and other items be- 
lieved to’ predict or to be strongly associated with 
preterm birth risk. It is possible that preterm birth 
risk does not fit a linear model, and alternative anal- 
yses may, be more appropriate in future studies. 

The inability to predict preterm birth risk from the 
data was somewhat surprising, at first; but this find- 
ing can be clarified through several explanations. The 
low correlations between predictor variables and the 

Table 2 n 

Accuracy Rates of the Prototype Expert System for 
Predicting Preterm or Full-term Delivery 

Database 1 Database 2 Database 3 

Total no. of test 
cases 

1,593 1,218 6,608 

correctly No. 
classified 

1,415 (88.8%) 722 (59.2%) 3,533 (53.4%) 

No. misclassified 171 (10.7%) 456 (37.4%) 2,796 (42.3%) 

No: unclassified 7 (0.4%) 40 (3.2%) 279. $4.2%) 

criterion may be due, in part, to the possibility that 
health care providers continue to collect a great deal 
of data that have little to do with preterm birth risk. 
The data in the perinatal databases reflected risk fac- 
tors that are consistent with traditional preterm birth 
risk screening instruments developed in the 1980s. 
However, review of the literature found that pre- 
term risk scoring indices were not developed accord- 
ing to psychometric standards. It is possible that cur- 
rent clinical practice operates with assumptions about 
risk factors for preterm birth that are invalid. And 
it is important to remember that the exact cause 
of labor, whether full-term or preterm, remains un- 
known. 

Results of Machine Learning and Expert Validation 
(Methodology Steps 4 and 5) 

Multiple approaches to machine learning were con- 
ducted using software programs named ID3, LERS, 
and CONCLUS., One of us (JG-B) previously indicated 
that most successful research activity in the area of 
inductive machine learning worked with data that 
were free of errors, and conflicts, or inconsistencies. 
The study tested the robustness of machine learning 
with data that contained both errors and inconsis- 
tencies. Examples with missing values and obvious 
errors, such as maternal lo-pound or 700-pound 
weights,’ systolic pressures of 14,000, and pulses of 
less than 40, were excluded from machine learning 
analysis, leaving 9,419 cases for further analysis: Of 
the programs tested, LERS produced the only usable 
output, inducing 1,655 rules directly from the data. 

A content validity technique was used for rule vali- 
dation, where two certified perinatal nurses who were 
experts were asked to verify rules ‘using categories 
described by Fieschi 25 for tests of incompleteness and 
logical, structural, and semantic verification of rule 
output. Some of the verification process was accom- 
plished through LERS programming enhancements 
that guaranteed that contradictory rules were not 
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generated (logical verification), unattainable and cir- 
cular rules (where rules iterate and never end) were 
not generated (structural verification), and rules with 
erroneous value limits were not generated (semantic 
verification). Programming enhancements to the LERS 
software were also able to determine which patient 
cases in the test data were unable to be classified by 
the rules, thus pointing out where rules were missing 
and where more data and rules were needed (tests 
of incompleteness). 

LERS analysis of database 3 generated 1,133 rules, 
but there were multiple problems with the data. First, 
listwise deletion of cases with missing values created 
problems for database 3, where only 9 of 6,616 cases 
were without missing values. The first test of data- 
base 3 produced predictive accuracy rates of 98%, 
which were exciting until careful analysis revealed 
an analyzed attribute for preterm delivery, as well as 
a decision variable with the same value. This actually 
served to confirm the machine learning classification 
process, but was not clinically useful. Considering 
the confusion with duplicate attributes and proble- 
matic missing values, the experts recommended the 
prototype be built without the 1,133 rules from 
database 3. The remaining 520 rules from databases 
1 and 2 were used for further expert verification. 

Expert verification involved checking for redundant 
rules, irrelevant attributes, erroneous rules, and 
meaningless or nonsense rules. For example, a single 
rule the expert was asked to verify was: 

(abortions, 0) & (gravida, 2) & (pregnancy complication, 
2nd trimester bleeding) & (pregnancy complication, incom- 
petent cervix) & (pregnancy complication, premature rup- 
ture of membranes) ===> (birth, preterm). 

Experts found the above format difficult to analyze, 
and, at their requests, programs were written to make 
the rule output easier for the experts to analyze (see 
below); however, the process of verifying 520 com- 
plex’ rules remained tedious and difficult. 

(abortions, 0) & 
(gravida, 2) & 
(pregnancy complication, 2nd trimester bleeding) & 
(pregnancy complication, incompetent cervix) & 
(pregnancy complication, premature rupture of mem- 
branes) 
===> (birth, preterm) 

Expert verification of the rules deemed all 520 rules 
usable, since there were no redundant rules, irrele- 
vant attributes, erroneous rules, or meaningless or 
nonsense rules. In general, the experts indicated that 

each individual rule did not appear to provide enough 
information and that important data seemed to be 
missing. Considering the predictive accuracy of the 
prototype expert system, described in the next sec- 
tion, limitations of expert validation in complex and 
disorganized domains would benefit from further 
study. 

Results of the Prototype Expert System 
(Methodology Step 6) 

The prototype expert system used 520 rules in an 
object-oriented expert system shell named “Kappa”26 
that ran in a Windows (Microsoft)27 environment. 
Forward chaining techniques and priority encoding 
of the rules were used to develop the prototype. It 
is important to remember that none of the testing 
data was used in building the prototype. A computer 
program was written to “feed” each of the 9,419 test 
subjects through the prototype expert system to an- 
alyze the system’s ability to accurately predict pre- 
term delivery. Accuracy was tested by having the 
expert system analyze each test case’s data and pre- 
dict either preterm or full-term delivery. The com- 
puter program then retrieved the actual preterm or 
full-term outcome from the database, and the expert 
system prediction was compared with the actual pa- 
tient outcome. Where the predicted outcome and the 
actual outcome matched, there was 100% accuracy. 
Accuracy rates are reported in Table 2. 

Considering the limitations with databases used, 
“noisy” data, and difficulties encountered with ex- 
pert validation, the accuracy rates reflected in Table 
2’ were both surprising and encouraging. The results 
achieved with database 1 were 88.8% accurate in pre- 
dicting preterm birth for both low-risk and high-risk 
pregnant women. Database 2 was 59.2% accurate in 
predicting preterm delivery in a population of high- 
risk pregnant women, most of whom were referred 
for home uterine monitoring because they were in 
preterm labor. The predictive accuracy of database 2 
was less impressive, but it would be expected that 
predicting preterm delivery in a high-risk group being 
treated for preterm labor would be more difficult 
since medical interventions will, it is hoped, influ- 
ence subsequent birth outcomes. And the seemingly 
poor results (53.4%) for database 3 were actually quite 
remarkable from two perspectives. First, there was 
no ‘rule in the expert system that was derived from 
data in database 3, suggesting that the expert system 
may be tapping a construct of preterm birth risk in- 
dependent of any particular database. Second, even 
the 53.4% accuracy rate was an improvement over 
existing manual screening tools that remain only 17- 
38% accurate.* 
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Discussion 

While the ultimate goal of expert system develop- 
ment is to predict preterm labor risk, the definition 
of preterm labor and data needed to analyze preterm 
labor risk are less amenable to study presently. There 
were numerous confounding variables in the data 
that made prediction of preterm labor impossible, 
and it was determined that accuracy of predicting 
preterm delivery was more viable. Therefore, the 
purpose of this study was to determine the feasibility 
of using machine learning to generate expert system 
(knowledge-base) rules for prediction of preterm de- 
livery. Each of the databases tested surpassed tra- 
ditional manual accuracy rates in predicting preterm 
birth. Future studies are planned to determine the 
feasibility of using the expert system to predict pre- 
term labor risk. 

Future studies using prospective, carefully planned, 
and quality-controlled data collection methods are 
expected to improve rule induction and accuracy pre- 
dictions to high levels in a fully implemented expert 
system, but this needs testing and validation. The 
statistical, machine learning, and prototype expert 
system findings from this study confirmed that pre- 
term risk assessment is a complex and disorganized 
knowledge domain. But even with this complexity, 
the research methodology and machine learning 
techniques used in this study were able to extract 
rules directly from data and use these rules in a 
prototype expert system that was more accurate than 
traditional manual systems in predicting preterm de- 
livery. 

Thompson and Thompson 28 recommended adding 
attributes to improve machine learning classification 
and suggested that, when selecting attributes, it is 
better to err on the side of having too many. In other 
words, the 214 variables analyzed by LERS were in- 
adequate to classify preterm birth for all subjects 
studied. The notion that additional attributes, or var- 
iables, are needed for preterm birth classification is 
consistent with findings indicating that data items 
that may be associated with preterm birth risk were 
missing. For example, the database did not include 
data about stress, sexual activity, substance abuse, 
nutritional status, or infections. The overall indica- 
tion is that the variables needed to predict, or classify, 
preterm birth were not all available for LERS analysis. 
Future studies should find improved prediction ac- 
curacy as variables are added for machine learning 
classification. 

The problems that prompted this study involve the 
difficulties encountered in acquiring and processing 

an overload of information for decision making re- 
lated to preterm birth risk assessment. While this 
study provides a foundation for improved preterm 
birth prediction, the clinical problems associated with 
accurate assessment and treatment of women at risk 
for preterm labor need continued research. The 
knowledge base development methodology used in 
this study offers a mechanism to further develop 
linkages between technology and clinical problem 
solving in a variety of health care settings. 
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