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A Logical Foundation for 
Representation of 
Clinical Data 

Abstract Objective: A general framework for representation of clinical data that provides a 
declarative semantics of terms and that allows developers to define explicitly the relationships 
among both terms and combinations of terms. 

Design: Use of conceptual graphs as a standard representation of logic and of an existing 
standardized vocabulary, the Systematized Nomenclature of Medicine (SNOMED International), for 
lexical elements. Concepts such as time, anatomy, and uncertainty must be modeled explicitly in a 
way that allows relation of these foundational concepts to surface-level clinical descriptions in a 
uniform manner. 

Results: The proposed framework was used to model a simple radiology report, which included 
temporal references. 

Conclusion: Formal logic provides a framework for formalizing the representation of medical 
concepts. Actual implementations will be required to evaluate the practicality of this approach. 

n J Am Med Informatics Assoc. 1994;1:218-232. 

1. Clinical Data Representation 

Collection of clinical data is expensive and time-con- 
suming. Currently, only minimal data are encoded 
routinely. Any analysis requiring new data elements 
consumes significant resources to develop a sampling 
plan for the data, to develop data-collection instru- 
ments, to train the data abstracters, to collect the 
data, and to analyze the data. 

In today’s cost- and quality-conscious atmosphere, 
there is increasing interest in encoding more data on 
a routine basis, such as the data contained in ad- 
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mission histories and physical examinations, prog- 
ress notes, and discharge summaries. Some research- 
ers have been working on applications to collect these 
data as part of the process of care.1-6 Other research- 
ers have been developing applications to extract these 
data from narrative text.7-10 Agencies such as the 
Health Care Financing Administration (HCFA) rec- 
ognize that the process of standardizing and auto- 
mating representation of medical information is es- 
sential for increasing the efficiency of their 
programs. 11,i2 

Today, there is no existing standard capable of rep- 
resenting the detailed clinical data contained within 
histories and physical examinations, progress notes, 
and discharge summaries. 

In this paper, we describe a model for how these 
clinical data (including their temporal dimensions) 
might be represented. We start by describing the 
problems with existing medical terminologies, and 
by giving a brief historical perspective on concept 
classification. Next, we describe our rationales for 
using formal logic as a foundation and conceptual 
graphs as a standard representation of logic, and 
provide an example of how a simple radiology report 
could be represented using conceptual graphs. Later, 
we describe the need for foundational models to rep- 
resent topics such as anatomy and time, and we use 
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time as an example to show how foundational models 
can be represented using formal logic. Next, we de- 
scribe how an existing terminology system, the Sys- 
tematized Nomenclature of Medicine (SNOMED In- 
ternational), l3 can be enhanced to fit within our 
framework. Finally, we provide a critical discussion 
of our work. 

2. Common Terminology Structure 

Typical medical terminologies, such as SNOMED 
International 13 and the International Classification of 
Diseases, 9th ed., with Clinical Modifications (ICD- 
9-CM),14 use a hierarchical structure that organizes 
the concepts into type hierarchies. As an example, we 
show SNOMED and ICD-9-CM classifications of 
“pleural effusion” in Figure 1. 

These type hierarchies provide a mechanism for in- 
dexing terminology within the system; however, such 
hierarchies have significant shortcomings. For ex- 
ample, this simple categorization neither defines suf- 
ficiently what a term represents nor tells how one 
term differs from another. It simply indicates that 
terms with the same parents are related, and that 
they are also different in that they were not given 
the same term code. This kind of classification scheme 
works well for a system in which a term needs only 
one parent, in which only terminology that is un- 
ambiguously interpreted by anyone using the type 
hierarchy is used, and, finally, in which minimal 
automated processing of the terms in the type hier- 

ICD-9-CM Term 
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511.9 
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Pleural Effusion 

archy is required. In other cases, this mechanism has 
serious limitations. These limitations may contribute 
to the significant random errors in ICD-9-CM clas- 
sification of hospital discharge diagnoses. Error rates 
between 20% and 29% have been reported in the 
literature.15-17 If a terminology lent itself to auto- 
mated consistency checking, perhaps these errors 
could be reduced. 

The most serious limitation of vocabularies that use 
only type hierarchies is their lack of a formal definition 
for each term. If each term in the terminology were 
defined formally, it could be used in a more con- 
sistent manner. Some medical-terminology systems, 
such as the Medical Subject Headings (MeSH)ls and 
the Diagnostic and Statistical Manual of Mental Dis- 
orders (DSM-111),19 have textual definitions intended 
for the human reader. If these definitions also could 
be processed by a machine, then we could develop 
tools to process the terminology in a consistent way. 

3. Historical Perspective 

Type hierarchies, similar to the ones used by most 
medical-terminology systems, were first introduced 
by Aristotle, around 300 B.C., with his theory of cat- 
egories. 2O Aristotle also developed a method for de- 
fining new types within the type hierarchy by genus 
(the category of classification for a term) and differ- 
entia (the elements, features, or factors that distin- 
guish one term from another); and for using deduct- 
ive arguments to analyze the inheritance of proper- 
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Figure 1 ICD-9-CM type hierarchy (left) and SNOMED type hierarchy (right) showing classification of “pleural effusion.” 
The dashed lines represent cross-reference links provided by SNOMED. There were no cross-references for the ICD-9-CM 
terms. The SNOMED cross-references are discussed in Section 8.2. 
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ties of these new types. This kind of type hierarchy 
is called Aristotelian. The type hierarchies in Figure 1 
already define the genus of each term by the lines 
connecting each term to its parent or genus. To make 
these type hierarchies Aristotelian, we need to spec- 
ify differentia for each term. An example of a defi- 
nition that contains both the genus and differentia 
for the term PLEURAL-EFFUSION can be represented in 
English by the phrase “a pleural effusion is an ef- 
fusion located in the pleural cavity and caused by a 
disease.” The genus is represented by the first por- 
tion, “a pleural effusion is an effusion,” and the 
differentia is represented by the last portion, “located 
in the pleural cavity and caused by a disease.” 

A little over 300 years ago, Leibniz developed the 
first system capable of computing the elementary con- 
cepts of which more complex terms are composed. 
This system, the Universal Characteristic, repre- 
sented primitive concepts as prime numbers. It created 
compound concepts by multiplying primitive concepts 
together. If PLEURAL were represented by 3 and EF- 
FUSION were represented by 7, their product, 21, would 
represent PLEURAL-EFFUSION. Leibniz’s system was 
certainly visionary, and led to his development of 
the first mechanical computer capable of performing 
multiplication and division. 

The Universal Characteristic was essentially the first 
mechanical implementation of a multiple-inheritance 
type hierarchy. Because it implements only a type 
hierarchy, and is not able to represent machine-pro- 
cessible definitions by means of differentia, it suffers 
from the same limitations of type hierarchies de- 
scribed in Section 2. In fact, the only logical relations 
permissible in such a system are conjunctions of prim- 
itives. To represent the logical relations necessary to 
define fully a system for medical concept represen- 
tation, we need more complex relations, such as ne- 
gation and disjunction, as well as the ability to use 
defined relations, such as IS-A relationships and PART- 
OF relationships. 

Although Leibniz was limited by having only me- 
chanical computers capable of performing multipli- 
cation and division, today we have far fewer con- 
straints on what we are able to compute reasonably. 
Modern computing power makes it possible to im- 
plement concept-representation systems that define 
terms by genus and differentia, which in turn will 
allow the development of automated methodologies 
to process the terminology. The more complete the 
differentia defined by such a system, the more pow- 
erful the tools that can be developed. The ideal sys- 
tem would allow the differentia to be defined in a 
complete system of logic. 

Although comprehensive logic-based approaches have 
not yet affected our common medical naming sys- 
tems, other researchers have been exploring how for- 
mal systems could be used for medical terminology. 
Cimino and colleagues have constructed the Medical 
Entities Dictionary using a semantic network.21 Ma- 
sarie and colleagues described a frame-based ap- 
proach to map equivalent concepts between clinical 
vocabularies.22 In another project, Rector and col- 
leagues have described an approach that uses their 
Structured Meta Knowledge (SMK) formalism.23 These 
systems can also be described using first-order logic. 
If we adopt logic as a common foundation for rep- 
resentation of medical concepts, all applications will 
benefit. 

4. logical Foundation 

Predicate logic is relevant to any area of reasoning. 
It is topic neutral.‘” Logic can be applied to problems 
in any domain with equal validity. In certain fields, 
such as linguistics and knowledge representation, 
practitioners use logic extensively. Computers use 
logic at their lowest level, in the switching of their 
circuitry, and at their highest level, in logic program- 
ming languages such as PROLOG and to represent 
knowledge in expert-system shells such as KL-ONE.25 

We use logic as the basis for our proposal, but we 
realize that logic is not without its critics. Early ar- 
tificial-intelligence systems ignored logical sound- 
ness. Some early researchers ignored logical sound- 
ness because they were overwhelmed by problems 
of syntax and semantics. 26 Other early researchers 
lacked understanding about what logic is, confusing 
logic with a particular programming system of syn- 
tax.27 Today, logic has been making a steady resurg- 
ence with the development of a family of term-sub- 
sumption languages. 28-3o In addition to these systems, 
new standards for interchanging information are based 
on logic such as the Knowledge Interchange Format 
(KIF)31 being developed with support from the Ad- 
vanced Research Project Agency (ARPA), and the 
Information Resource Dictionary Standard (IRDS) de- 
veloped by the American National Standards Insti- 
tute (ANSI).“’ 

Logic’s notation makes it possible to formalize rela- 
tionships between terms in a system, so that appli- 
cations can make valid inferences using those rela- 
tionships. These formal relationships are the most 
powerful argument in logic’s favor. Without this for- 
mality, we must use ad hoc approaches that may 
result in questionable conclusions because the meth- 
ods of inference cannot be proved sound. 
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5. Conceptual Graphs 
Conceptual graphs are a system of logic that is able to 
represent complete first-order, modal, and higher- 
order logics. They were developed as a more intuitive 
notation for logic. To illustrate the benefits of this 
notation, we shall give an example that uses different 
notations for logic. Using logic, we can state the 
definition of the term PLEURAL-EFFUSION given in 
Section 3 as: 

For all x, x is a pleural effusion if x is an effusion, 
and for some pleural cavity y and for some disease 
Z, x is located in y and x is caused by z. 

Or, using predicate-calculus notation, we restate the 
definition as follows: 

x PLEURAL-EFFUSION(x) = 
EFFUSION(X) 3lj PLEURAL-CAVITY(y) A 
32 DISEASE(Z) A LOCATED-IN(x,y) A 
CAUSED-BY(X,Z). 

The predicate-calculus notation for logic was devel- 
oped by mathematicians, who patterned it after al- 
gebra. The awkwardness of this notation was noted 
by one of its original developers, Charles Saunders 
Peirce, who, in 1897, developed a graphic notation 
for logic that he called existential graphs.33 The modern 
descendant of existential graphs is conceptual graphs, 
as described by Sowa.26 

The attractive features of conceptual graphs have been 
noted previously by other medical-informatics re- 
searchers who are using them in applications.7,34-41 
These features include the ability to represent com- 
plex relationships among entities; to express selection 
constraints for any given entity; to map conceptual 
graphs onto database representations; and to map 
onto other formal systems, such as first-order pred- 
icate calculus. In addition to these advantages, con- 
ceptual graphs also have an intuitive structure that 
can be understood easily. The same definition for a 
PLEURAL-EFFUSION represented in predicate calculus can 
be represented using conceptual-graph notation, as 
shown in Figure 2. 

Conceptual-graph notation is relatively simple. A 
conceptual graph is a finite, connected graph with 
two kinds of nodes: concept nodes-denoted by boxes, 
and concept-relation nodes denoted by circles. Concep- 
tual nodes can be connected to only concept-relation 
nodes, and vice versa, making the graph bipartite. 

There is also an alternate notation for conceptual 
graphs, called the linear form. The box-and-circle no- 
tation, shown in Figure 2, is not machine readable 

type PLEURAL-EFFUSION(x) is 

Figure 2 Conceptual-graph definition of “pleural effu- 
sion.” 

and often takes up excessive space on the page. The 
linear form uses only standard machine-readable 
characters and therefore is suitable as an interchange 
format. The linear notation uses square brackets for 
the boxes and parentheses for the circles. The defi- 
nition for pleural effusion can be represented in the 
linear form as follows: 

type PLEURAL-EFFUSION(X) is 
[EFFUSION: x]- 

(LOCATED-IN)-[PLEURAL-CAVITY] 
(CAUSED-BY) [DISEASE],.. 

A conceptual node can refer to a general concept, or 
to an instance of a general concept. When a node 
refers to an instance, its label is followed by a colon 
and the node is marked with a symbol. This symbol 
is called the node’s referent. 

Some referants are marked with the "#" symbol fol- 
lowed by a serial number, representing a specific in- 
stance. Other referents are variables, represented by 
a string of characters that does not start with the "#" 
symbol. The serial number of a graph is valid for the 
entire collection of graphs. If two nodes have the 
same serial number, then they refer to the same in- 
stance. Variables are only local in scope. Two graphs 
that are not connected, yet share the same variable 
label, may not refer to the same instance. 

Every conceptual-relation node has one or more arcs, 
each of which must be linked to some concept. Within 
a node, braces “{ }” denote a set of concepts, and a 
set that contains an asterisk “{*}” denotes a set of 
zero or more elements. When a set is preceded by a 
term with a colon, this term specifies selection con- 
straints for the set of elements. All elements of the 
set must then be a specialization of the preceding 
term (all terms are considered specializations of 
themselves). A cokfive set can be represented by 
separating elements with commas: {i1, i2, i3}. We can 
use this set notation to specify allowable values for 
laterality as follows: 

[LATERALITY: {LEFT, RIGHT}] 
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This brief introduction to conceptual graphs is suf- 
ficient for the examples in this paper, but does not 
describe the conceptual-graph syntax completely. 
Additional details are discussed by Sowa.26 

5.1 Canonical Graphs 

A developer can create conceptual graphs by joining 
concept nodes and relation nodes together, as de- 
scribed earlier. It is possible to combine these nodes 
in ways that do not make sense. To distinguish graphs 
that actually represent true situations, developers de- 
clare certain graphs to be canonical, using their insight 
and perceptions. These graphs form the basis for 
creation of other graphs that also represent true sit- 
uations. Developers must create an initial set of can- 
onical graphs from their insight and their perceptions 
regarding clinically relevant information. Once the 
initial set of canonical graphs is defined, developers 
can derive new canonical graphs from existing can- 
onical graphs by applying the rules copy, restrict, 
simplify, and join: 

Copy. Any graph may be duplicated. 

Restrict. Any concept label may be replaced by the 
label of a subtype as long as the referent of the 
node conforms to the type before and after the 
change. 

Simplify. If two conceptual relations in a graph are 
duplicated, then one of them may be deleted from 
the graph together with all its arcs, thus simpli- 
fying the graph. 

Join. If a concept in one graph is identical to a 
concept in another graph, then a new graph can 
be created by deletion of the concept in one graph 
and linkage of all the arcs from the concept to the 
identical concept in the other graph. 

We shall give examples that use these canonical for- 
mation rules in Section 6. 

5.2 Subsumption 

Formal rules for subsumption are an important feature 
of logic, and are also essential for meaningful aggre- 
gation of clinical data. By using formal subsumption 
rules, we. make it possible to ask the question “How 
many cases of pleural effusion are in the data set?” 
of a database and to have the database count properly 
all the concepts subsumed by “pleural effusion,” such 
as “right-sided pleural effusion,” “left-sided pleural 
effusion,“ and “an effusion located in the pleural 
cavity.” 

There are several ways that subsumption can be im- 
plemented. Conceptual-graph applications can im- 

plement subsumption using structural subsumption. 
Structural subsumption can be implemented using 
techniques of subgraph isomorphism that check to see 
whether the structure of one graph is completely 
contained within that of another. If one graph com- 
pletely contains another, it is said to subsume the 
other graph. Efficient algorithms have been devel- 
oped to support subsumption over certain classes of 
conceptual graphs.42,43 

6. Proposed Model 

Our proposed model uses conceptual graphs as a 
standard representation of logic to implement an Ar- 
istotelian classification of medical concepts. A variety 
of knowledge-representation systems, including 
PROLOG and KL-ONE, can implement this method 
of classifying medical concepts. We shall show how 
to use the set of concepts that we define in Table 1, 
together with the canonical formation rules described 
in Section 5.1, to represent the report of a posterior- 
anterior (PA)* chest radiograph. We shall start with 
the hypothetical example of patient John Doe (patient 
ID = 123-45-67). The chest radiograph was read by 
Dr. Smith (provider ID = MD-56789), who noted a 
left pleural effusion. 

6.1 Type Definitions 

In all type hierarchies, there must be some starting 
point from which all other concepts are derived. This 
concept is usually called the fop concept; we refer to 
it simply as T. To create an Aristotelian hierarchy, 
we must specify differentia for every term. We are 
using conceptual graphs to specify these differentia 
by defining, for each term, relations and selection 
constraints that are appropriate for the term, but that 
are not appropriate for the term’s immediate ances- 
tor(s). These differentia are contained within the con- 
ceptual-graph type definition, a statement that incor- 
porates both the genus and differentia of each term. 
The definitions necessary to represent the hypothet- 
ical example are presented in Table 1. 

The type definition for the term DIAGNOSTIC-RADIOL- 
OGY-PROCEDURE is prototypical. The genus of DIAGNOS- 
TIC-RADIOLOGY-PROCEDURE is RADIOLOGY-PROCEDURE. The 
differentia of diagnostic radiology procedures is that 
an image is always created from which a report can 
be generated. We can define formally the genus and 
differentia of DIAGNOSTIC-RADIOLOGY-PROCEDURE by 
specifying the following type definition: 

‘The orientation of a chest radiograph where the patient is upright 
and the image is created by the x-rays entering the chest from the 
posterior, exposing the film placed on the anterior of the chest. 
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type DIAGNOSTIC-RADIOLOGY-PROCEDURE(x) is 

[RADIOLOGIC-PROCEDURE: x]- 
(RESULTS-IN)[REPORT] 
(CREATES) [IMAGE],. 

For all the type definitions that we describe, the term‘s 
label is tied to the term’s genus by the referent "x.” 
These referents are local in scope, and, when we join 
these graphs with other graphs, as we do in Section 
6.3, we may need to rename the referent to prevent 
conflicts. 

In some cases, we cannot adequately define a term 
by relating it to other terms within the type hierarchy. 
In these cases, the concept is considered primitive. In 

Concepts and Their Corresponding Type Definitions* 

Number 3 May /Jun 1994 

our type definitions, we indicate primitives by defin- 
ing the genus of the concept as we normally would, 
but we define the differentia to include a relation 
labeled GD, which stands for generic difference. The 
generic difference is followed by a concept node given 
a label that is identical to the label of the type defi- 
nition, except that the label is preceded by an under- 
score. An example defined this way would be the 
term LEFT: 

type LEFT(X) is 
[LATERALITY: x] (GD) [-LEFT]. 

This method for defining terms ensures that each 
primitive concept is related to a unique term that is 

PROCEDURE 

RADIOLOGIC-PROCEDURE 

DIAGNOSTIC-RADIOGRAPHY-PROCEDURE 

PA-CHEST-X-RAY 

IMAGE 

OBSERVATION 

LOCALIZED-OBSERVATION 

LOCATION 

BILATERALLY-SYMMETRIC-LOCATION 

LATERALITY 

RIGHT 

LEFT 

PATIENT 

PROVIDER 

EFFUSION 

PLEURAL-CAVITY 

CHEST 

PERSON 

REPORT 
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[T: X] (PERFORMED-ON) [PATIENT]. 

[PROCEDURE: X] (USES) IONIZING-RADIATION]. 

[RADIOLOGIC-PROCEDURE: x]- 
(RESULTS-IN) REPORT] 
(CREATEs) [IMAGE],. 

[RADIOLOGIC-PROCEDURE: x]- 
(RESULTS-IN) [REPORT] 
(CREATEs) [IMAGE]- 

(OF-LoCATION) [CHEST] 
(HAS- oRIENTATION) [PA],,. 

[T: x]- 
(CREATES) [PROCEDURE] 
(OF-LoCATIoN) [BoDY-REGION] 
(HAS-ORIENTATION) [ORIENTATION],. 

[T: X] (GD) [-OBSERVATION]. 

[OBSERVATION:X] (LOCATED-IN) [LOCATION]. 

[T: X] (GD) [_LOCATION]. 

[LOCATION: X] (HAS-LATERALITY) [LATERALITY]. 

[T: X] (GD) [-LATERALITY]. 

[LATERALITY: x] GD) [_RIGHT]. 

[LATERALITY: x] (GD) [_LEFT]. 

[PERSON: X] HAS-PATIENT-ID) [IDENTIFIER]. 

[PERSON: X] HAS-PROVIDER-ID) [IDENTIFIER]. 

[LOCALIZED-OBSERVATION: x] (GD) [EFFUSION]. 

[BILATERALLY-SYMMETRIC-LOCATION: x]- 
(GD) [_PLEURAL-CAVITY],. 

[LoCATION:X] (GD)[_CHEST]. 

[T: X] (HAS-NAME) [String]. 

[T: x]- 
(CREATES) [PRoVIDER] 
(HAS-OBSERVATIONS) [OBSERVATION: {*}],. 

GD = generic difference. 
*See Section 6 for further explanation. 
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not within the type hierarchy. This method formally 
requires that any primitive concept is different from 
its parent term in a way that is not expressible within 
the system. By defining primitive concepts ‘in this 
way, we can maintain the properties of an Aristo- 
telian type hierarchy. Other examples of such prim- 
itive terms include RIGHT and LOCATION, as shown in 
Table 1. 

Medical-terminology systems must allow definition 
of primitive concepts; however, primitive definitions 
should be avoided when practically possible. At least 
part of a primitive definition cannot be expressed 
within the system, therefore the term cannot be clas- 
sified completely; thus, the extent to which appli- 
cations can process terms is limited. 

6.2 Canonical-Graph Derivation 

The canonical graph for a term can be derived from 
the term’s type definition, joined with the type def- 
initions of all the ancestors of the type definition’s 
referent node. This derivation first restricts the re- 
ferent nodes of each of the type definitions to the 
type label that is the subject of the derivation. Then, 
the definitions are joined on identical nodes. If the 
definition of an ancestor is specialized by a child, 
then the definition is overridden. The process of rec- 
ognizing specialization occurs by a combination of 
restrict, join, and simplify. 

We shall illustrate, by example, how canonical-graph 
derivation is used. To derive the canonical graph for 
PA-CHEST-X-RAY, we first copy the type definition for 
the term PA-CHEST-X-RAY: 

[RADIOLOGIC-PROCEDURE: x]- 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE]- 

(OF-LOCATION) [CHEST]- 
(HAS- ORIENTATION) [PA]. 

Second, we copy all the type definitions for all the 
ancestors of PA-CHEST-X-RAY. The set of graphs now 
includes the definitions for PROCEDURE, RADIOLOGIC- 
PROCEDURE, and DIAGNOSTIC-RADIOGRAPHY-PROCEDURE: 

[T:X] (PERFORMED-ON) [PATIENT]. 

[PROCEDURE: X] (USES) [IONIZING-RADIATION]. 

[RADIOLOGIC-PROCEDURE: x]- 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE],. 

[RADIOLOGIC-PROCEDURE: x]- 
(RESULTS-IN) [REpoRT] 
(CREATES) [IMAGE]- 

(OF-LOCATION) [CHEST] 
(HAS- ORIENTATION) [PA],,. 

Third, we restrict all the concept nodes with the re- 
ferent "x" to the type PA-CHEST-X-RAY: 

[PA-CHEST-X-RAY: x] (PERFORMED-ON) [PATIENT]. 

[PA-CHEST-X-RAY: x] (USES) [IONIZING-RADIATION]. 

[PA-CHEST-X-RAY: x]- 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE],. 

[PA-CHEST-X-RAY: x]- 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE]- 

(OF-LOcATION [CHEST] 
(HAS-ORIENTATION) [PA],,. 

Fourth, we join the graphs on identical concepts, 
.starting with the nodes with the referent "x,” re- 
sulting in the following graph: 

[PA-CHEST-X-RAY: x]- 
(PERFORMED-ON) [PATIENT] 
(USES) [IONIZING-RADIATION] 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE] 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE]- 

(OF-LOCATION) [CHEST] 
(HAS-ORIENTATION) [PA],,. 

Finally, we extend this join to be maximal by doing a 
combination of join and simplify, until all duplicate 
concepts and relation are removed. This procedure 
results in the following graph: 

[PA-CHEST-X-RAY: x]- 
(PERFORMED-ON) [PATIENT] 
(usEs) [IONIZING RADIATION] 
(RESULTS-IN) [REPORT] 
(CREATES) [IMAGE]- 

(OF-LOCATION) [CHEST] 
(HAS- ORIENTATION) [PA],,. 

6.3 Addition of the Data 

Using the same steps as we used to create the can- 
onical graph for PA-CHEST-X-RAY, we can derive the 
following canonical graphs by starting with the type 
definitions for PATIENT, REPORT, PROVIDER, and LOCAL- 
IZED-OBSERVATION presented in Table 1: 

[PATIENT: x]- 
(HAS-PATIENT-ID) [123-45-67] 
(HAS-NAME) [JOhn Doe],. 
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[REPORT: x]- 
(CREATES) [PROVIDER] 
(HAS-OBSERVATIONS) [OBSERVATION: {*}],. 

[PROVIDER: x]- 
(HAS-PROVIDER-ID) [MD-56789] 
(HAS-NAME) [Dr. Smith],. 

[EFFUSION: x]- 
(LOCATED-IN) [PLEURAL-CAVITY]- 

(HAS-LATERALITY) [LEFT],,. 

Substituting these graphs into the graph for the pro- 
cedure PA-CHEST-X-RAY yields: 

[PA-CHEST-X-RAY: x]- 
(PERFORMED-ON) [PATIENT: a]- 

(HAS-PATIENT-ID) 23-45-67] 
(HAS-NAME) [John Doe], 

(USES) [IONIZING-RADIATION] 
(RESULTS-IN) [REPORT: b]- 

(CREATES) [PROVIDER: c]- 
(HAS-PROVIDER-ID) [MD-56789] 
(HAS-NAME) [Dr. Smith], 

(HAS-OBSERVATIONS)- 
[EFFUSION: d]- 

(LOCATED IN) [PLEURAL CAVITY]- 
(HAS-LATERALITY) [LEFT],,, 

(CREATES) [IMAGE]- 
(OF-LOCATION) [CHEST] 
(HAS-ORIENTATION) [PA],,. 

The preceding conceptual graph represents the ex- 
ample in a reproducible manner; however, there are 
no temporal references describing when the film was 
taken or when the film was read by the radiologist. 
In addition, the anatomical model used to represent 
the pleural cavity and laterality has no formal foun- 
dation. To provide a sound foundation, we need to 
develop detailed models to represent specific topics, 
such as the temporal and anatomical dimensions of 
the report. In Section 7, we describe how such a 
model can be developed for time. 

7. Foundational Models 

Conceptual graphs emphasize-in an intuitive, vis- 
ual manner--the logical constructs needed to rep- 
resent clinical concepts. In Section 6, we defined a 
small set of relations necessary to represent the struc- 
ture of a simple radiology report. We can also in- 
corporate the existing models contained in a standard 
terminology system-such as SNOMED-by using 
their existing labels and defined relationships to pop- 
ulate our conceptual model. We show how this in- 
corporation might be done in Section 8. The set of 
concepts and relations in existing coding schemes is 

limited, and represents only the beginning of the 
work needed to develop a comprehensive medical 
terminology. 

Implicit in standard lexicons such as SNOMED are a 
number of foundational assumptions. SNOMED, for ex- 
ample, includes in its modifier and linkage axis (the 
G axis) anatomical concepts, such as anterior and ad- 
jacent, temporal concepts, such as subacute and re- 
lapsing, and measures of uncertainty, such as possible 
and cannot exclude. These terms for representing tem- 
poral relationships, anatomical relationships, and un- 
certain relationships reflect underlying models of time, 
of anatomy, and of uncertainty that users can apply 
to almost any concept description created out of 
SNOMED codes. Nonaxial coding schemes, such as 
ICD-9-CM, also embody such foundational models, but 
the models are reflected only in the distinctions made 
by the surface-level terms in the lexicon. For example, 
by making a distinction between the code 410 (my- 
ocardial infarction, acute) and the code 412 (myocardial 
infarction, old), ICD-9-CM offers a choice of disease 
codes that reflects its rather simple underlying model 
of time. 

SNOMED offers an advance over lexicons such as 
ICD-9-CM by separating out and making explicit sets 
of modifiers for anatomical, temporal, and probabil- 
istic concepts. SNOMED, however, offers only a list 
of terms without clarifying the relationships among 
those terms. Our proposal for representation of clin- 
ical data requires that we create reusable models of 
these foundational concepts-models that allow us 
to encode arbitrary medical descriptions so that the 
attendant anatomical, temporal, and probabilistic dis- 
tinctions can be represented in a uniform manner 
with precise semantics. 

In this section, we show how we can create a foun- 
dational model to represent temporal relations. Time 
is an essential context for representing all clinical 
data, since automated methods to manage and in- 
terpret patient data require the temporal dimension 
of those data.“” 

Existing medical-terminology systems model the 
temporal context of clinical data using the time-stamp- 
ing schemes used in clinical databases; these data- 
bases simply provide an instant time stamp to record 
the date and time at which the datum was observed. 
Such schemes are not able to represent temporal in- 
formation commonly found in clinical reports. For 
example, observations such as “left pleural effusion 
increased over previous examination”! require rep- 
resentation of the interval of time between the two 
examinations. Since current instant-stamping schemes 
do not readily capture the uncertainty associated with 
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such interval-based observations, we require a new 
formalism to model the semantics of time references. 

To model time with conceptual-graph representa- 
tions of clinical data, we must define a model of time 
appropriate for clinical data and a standard syntax 
for time references. 

7.1 Model of Time 

Several methods of time have been proposed for the 
computer-based representation and manipulation of 
clinical data. Kahn45 has differentiated these temporal 
models of clinical data by two different aspects: (1) 
whether time consists of a continuous flow or a set of 
discernible values, and (2) whether the primitive ele- 
ment is the time point or the interval. Since modern 
database technology requires discrete time-stamp 
values for efficient and reliable storage, indexing, and 
processing, we chose a metric model of time that 
time stamps clinical data with- explicit calendar-date 
or clock-time values. We use two special symbols, 
- 00 and + to represent the lower and upper bounds, 
respectively, of all other time points. We require that 
all time stamps have an interval-based representa- 
tion, thus allowing representation of incomplete tem- 
poral references, such as “chest x-ray taken 9/12/93” 
or “the problem lasted for 2 to 3 days,” using these 
intervals. The necessity of modeling such temporal 
uncertainty for clinical data has been recognized by 
Console and colleagues, 46 by Das and colleagues,47 
and by Kohane and Haimowitz.48 

Our proposed temporal model can represent uni- 
formly three general types of time-stamped clinical 
data: instant based, interval based, and time invariant. 
Most discrete time models use a single time stamp 
with varying granularities. The coarser the granular- 
ity of the time stamp, the greater the temporal un- 
certainty associated with the datum. Our temporal 
model uses time stamps with a single granularity, 
and represents uncertainty with two time points that 
represent the lower and upper bounds of the closed 
interval of uncertainty (IOU) during which the datum 
occurred. Our representation of instant-based data 
offers two distinct advantages over representations 
that use different granularities. First, we are not lim- 
ited to storing a period of uncertainty for instant- 
based data that corresponds to real-world calendar 
or clock units. For example, we can store the interval 
of uncertainty for the previous examination as 36 
hours, instead of simply 1 day. Second, when com- 
paring instant-based data with different intervals of 
uncertainty, our time-stamping scheme does not re- 
quire time-point approximations, which temporal 
models storing various granularities need to make. 

7.2 Standard Syntax for Time 

To incorporate our temporal model into a conceptual- 
graph representation of clinical data, we must create 
a standardized syntax for temporal references. We 
specify conceptual terms for time stamps, and con- 
ceptual links to joint clinical-finding terms to their 
temporal dimension. 

We provide the following canonical graph for the 
IOU representation for instant-bused time stamps in 
our temporal model: 

[TIME-STAMP: x]- 
(POINT-START) [date time] 
(POINT-END) [date time],. 

The date-time box could be filled with any repre- 
sentation for time points; we choose the format MM/ 
DD/YY HHMM. For example, the conceptual-graph rep- 
resentation of the time stamp of a chest x-ray image 
taken 9/12/93 would be: 

[TIME-STAMP: x]- 
(POINT-START) [9/12/93 oooo] 
(POINT-END) [9/12/93 2359],. 

This graph states formally that the previous exami- 
nation occurred at some time after midnight 9/11/93 
and before midnight 9/12/93. If we wish to represent 
a second time stamp of another x-ray image taken 
sometime in January 1993, we can do so as: 

[TIME-STAMP: x]- 
(POINT-START) [l/l/93 oooo] 
(POINT-END) [1/31/93 2359],. 

To represent the time elapsed between two different 
examinations, we must first establish the represen- 
tation of time stamps for interval-bused information. 
As we described in our temporal model, our time- 
stamping scheme can capture the uncertainty asso- 
ciated with interval-based data by a pair of intervals, 
which represent the start and end IOUs. We can thus 
model interval-based data using the following can- 
onical graph: 

[INTERVAL: x]- 
(INTERVAL-START) [TIME-STAMP] 
(INTERVAL-END) [TIME-STAMP],. 

By substituting the value of the time stamps corre- 
sponding to the time stamps of the previous and the 
current films, we would obtain the following interval 
of comparison: 
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[INTERVAL: x]- 
(INTERVAL-START) [TIME-STAMP: y]- 

(POINT-START) [l/l/93 oooo] 
(POINT-END) [1/31/93 2359], 

(INTERVAL-END) [TIME-STAMP: z]- 
(POINT-START) [9/12/93 oooo] 
(POINT-END) [9/12/93 2359],,. 

Now that we have developed a general method for 
representing time, we can modify our initial type 
definitions to include time. To represent the time that 
a procedure was performed, we must add the fol- 
lowing definition to those given in Table 1: 

type TIME-STAMP(X) is 
[T: x]- 

(POINT-START) [date time] 
(POINT-END) [date time],. 

Second, we must change the definition of procedure 
as follows: 

type PROCEDURE(X) is 

[T: x]- 
(PERFORMED-oN) [PATIENT] 
(PERFORMED-AT-TIME) [TIME-STAMP],. 

If we use the preceding type definitions, and specify 
that the x-ray examination was performed on 9/12/93, 
the graph that represents our simple example in Sec- 
tion 6.3 becomes: 

[PA-CHEST-X-RAY: x]- 
(PERFORMED-oN) [PATIENT: a]- 

(HAS-PATIENT-ID) [123-45-67] 
(HAS-NAME) [John Doe], 
(PERFORMED-AT-TIME)[TIME-STAMP: e]- 

(POINT-START) [9/12/93 oooo] 
(POINT-END) [9/12/93 2359], 

(USES) [IoNIzING-RADIATIoN] 
(RESULTS-IN) [REPoRT: b]- 

(CREATES) [PRovIDER: c]- 
(HAS-PROVIDER-ID) [MD-56789] 
(HAS-NAME) [Dr. Smith], 

(HAS-oBSERVATIoNS)- 

[EFFUSION: d]- 
(LOCATED IN) [PLEURAL-CAVITY]- 

(HAS-LATERALITY) [LEFT],,, 
(CREATES) [IMAGE]- 

(OF-LOCATION) [CHEST] 
(HAS-oRIENTATION) [PA],,. 

In a way similar to how procedures are changed to 
represent time, findings themselves can be changed 
to represent time including interval-based observa- 

tions, instant-based observations, and time-relative 
observations. 

We have described how a logical foundation can be 
developed for representation of clinical data. We have 
described how a simple radiology report, including 
the report’s temporal references, can be represented. 
We have not described how a sound model for rep- 
resenting the other detailed foundational models rel- 
evant to this report should be represented. Detailed 
foundational models, such as a model able to rep- 
resent the anatomy of the pleural cavities, will need 
to be developed. 

SNOMED has a set of concepts and relations that 
can provide a basis to represent such anatomical con- 
cepts. In Section 8, we shall describe how SNOMED 
might be enhanced, in an evolutionary way, to fit 
within our framework. 

8. SNOMED International 

We have described previously the desirable features 
and limitations of SNOMED.49 Perhaps the most im- 
portant feature of SNOMED is its relative domain com- 
pleteness. SNOMED has over 120,000 terms that rep- 
resent concepts commonly found in clinical medicine. 

8.1 Conceptual Graphs and SNOMED 

Because of SNOMED’s size and the numerous per- 
son-years that have already been invested in its de- 
velopment, and the existing infrastructure and im- 
plementations of SNOMED-based systems, it makes 
sense to enhance SNOMED rather than to start from 
scratch to develop a new standard. SNOMED has 
been evaluated for its ability to represent nursing 
concepts in the patient record, and was found more 
complete than existing nursing-specific classifica- 
tions.50 In addition, the Board of Directors of the 
American Medical Informatics Association has pub- 
lished a position paper in which it suggests SNOMED 
as a standard to represent diagnoses, symptoms and 
findings, microbes and etiologies, and anatomic lo- 
cations.51 

SNOMED has no standardized syntax to allow con- 
struction of statements with complex interrelation- 
ships. For example, to encode that a patient had “left 
pleural effusion,” SNOMED provides all the needed 
functional and topographic terms, as shown in Table 
2. However, having all the terms is not in itself suf- 
ficient. SNOMED provides no standard syntax to 
combine the terms into a statement. 

Before conceptual-graph formalisms can be applied 
to SNOMED, an initial set of graphs must be ap- 
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Table 2 n 

SNOMED Codes and Their Corresponding Terms 

SNOMED 
Codes Terms 

A-81000 Ionizing radiation 
D2-80100 Pleural effusion 
G-Al00 Right 
G-Al01 Left 
G-C220 With laterality 
PO-00000 Procedure, NOS 
P5-00000 Radiologic procedure, NOS 
P5-00010 Diagnostic radiologic examination, NOS 
P5-20040 - Diagnostic radiography of chest, PA 

NOS = not otherwise specified; PA = posterior-anterior. 

proved officially or canonized. Once a set of canonical 
graphs has been developed, additional graphs can 
be derived from formation rules. Using these can- 
onical graphs and formation rules, we can create a 
standard syntax for SNOMED codes, and can en- 
hance the overall system to include important con- 
cepts not included in SNOMED, such as the model 
of time that we described in Section 7. 

8.2 Migration Path for SNOMED 

The first step in recasting SNOMED to fit within a 
logical framework is to create an Aristotelian type 
hierarchy from the existing codes, taking advantage 
of SNOMED’s hierarchy and cross-reference links. 
Initially, most of the SNOMED codes will have to be 
declared as primitive, as we described in Section 6.1. 
Once this initial Aristotelian type hierarchy is cre- 
ated, the differentia of each term can be enhanced 
in an evolutionary way until only a minimum set of 
terms are primitives. 

Initially, we can use SNOMED’s existing cross-ref- 
erence links to develop these enhancements. Each 
SNOMED term has an associated cross-reference field 
where one or more related terms may be linked by 
including the relevant term code in this field. Figure 
1, illustrates these cross-references for the terms “dis- 
ease of respiratory system, ” “disease of pleura, NOS,” t 
and “pleural effusion, NOS.” The type of cross-ref- 
erence link often can be inferred based on the terms 
that are cross-referenced. For example, a term from 
the diagnosis axis may be cross-referenced to terms 
in the morphologic axis that represent the morphologic 
changes associated with that particular disease. It can 
be inferred that the linkage is that the change rep- 
resented by the morphology term is CAUSED-BY the 
disease represented by the disease term. 

NOS is an abbreviation for “not otherwise specified.” 

We can use these cross-reference links as a first ap- 
proximation to create the differentia for each term. 
We can assume that a probable relationship between 
a morphology term and a disease term is that the 
morphological change is CAUSED-BY the disease, and 
that a probable relationship between a disease and a 
location is that the disease is LOCATED-IN the location. 
We can use these probable relations, the existing 
SNOMED cross-references for the term PLEURAL-EF- 
FUSION, and the hierarchical parent for this term (hi- 
erarchical parent and cross-references are shown in 
Fig. 1) to suggest the following definition for pleural 
effusion: 

type PLEURAL-EFFUSION(X) is 

[PLEURAL-DISEASE: x]- 
(CAUSED-BY) [EFFUSION] 
(LOCATED-IN) [PLEURAL-CAVITY],. 

We ho not believe that this definition is the correct 
definition for PLEURAL-EFFUSION, however. It would 
be a simple matter for a developer to rearrange the 
definition to a more correct one by using a "smart” 
graphical editing environment: 

type PLEURAL-EFFUSION(X) is 
[EFFUSION: x]- 

(CAUSED-BY) [DISEASE] 
(LOCATED-IN) [pLEuRAL-CAVITY],. 

Cimino 21 has discussed other desirable features of 
knowledge-based editing environments that can be 
used to maintain and enhance a controlled clinical 
terminology. He describes how, by using a knowl- 
edge-based approach, the quality of Columbia- Pres- 
byterian Medical Center’s laboratory and pharmacy 
terminology has improved, and the maintenance ef- 
forts have been reduced by 90%. 

9. Discussion 

We have presented a framework for formalizing the 
representation of medical concepts, using conceptual 
graphs as a standard notation for logic. The concep- 
tual-graph representations can be applied broadly to 
several different practical applications and research 
areas, providing a unifying framework. There are, 
however, important limitations to this approach. 

9.1 Logic-based Approach 

In this paper, we have suggested the use of concep- 
tual graphs for representation of the logical relation- 
ships among the terms used to represent medical 
concepts. As mentioned in Section 5, conceptual-graph 
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representations have a number of desirable features, 
including the ease with which they may be read by 
humans and parsed by machines. We emphasize, 
however, that conceptual graphs constitute but one 
syntax for writing expressions in logic. Although we 
believe that it is essential to represent medical-con- 
cept descriptions using a form of logic, the concep- 
tual-graph notation is only one of several equivalent 
formalisms. We might just as easily represent medical 
concepts using either the common algebraic notation 
for logical propositions, or any one of several popular 
knowledge-representation languages. 

Fortunately, researchers in the computer-science 
community. are working to overcome the problems 
of multiple competing syntaxes for knowledge rep- 
resentation. Members of the ARPA-sponsored 
knowledge-sharing project 52 have created the Knowl- 
edge Interchange Format (KIF) 31 to serve as a means 
to interconvert knowledge bases created in a variety 
of representations. In the same way that Microsoft’s 
rich-text format (RTF) allows users of different word- 
processing programs to translate documents from the 
format used by one proprietary program to another, 
KIF permits concept descriptions created in a variety 
of languages (including conceptual graphs) to be in- 
terchanged. Thus, KIF allows medical concepts de- 
scribed using a combination of SNOMED and con- 
ceptual graphs to be translated directly into a 
knowledge-representation system such as KL-ONE. 
Similarly, medical concepts represented by an object- 
oriented language such as MODEL (used to represent 
knowledge in our laboratory’s PROTeGe-II system 53) can 
be translated via KIF into conceptual-graph notation. 
Thus, conceptual graphs provide a convenient mech- 
anism for writing and reviewing standardized de- 
scriptions of medical concepts, but do not need to 
be the vehicle for representing those concepts within 
end-user applications. 

This flexibility is critical. Whereas conceptual graphs 
capture the full semantics of first-order logic, and 
thus offer enormous expressive power, proving theo- 
rems in first-order logic is, in the worst case, com- 
putationally intractable. Logic, while supporting the 
rich semantics that we seek to represent nuances in 
clinical findings, is in its full form too computation- 
ally expensive for most practical applications. De- 
velopers of knowledge-representation systems con- 
sequently make deliberate decisions about which 
elements of first-order logic they may safely omit to 
improve run-time performance.“” For example, com- 
mon object-oriented languages do not allow the 
expression of concepts such as negation or disjunc- 
tion. No practical knowledge-representation system 
is perfect; each embodies a particular set of trade-offs. 

Our approach thus is to use complete first-order logic 
(as reflected in the syntax of conceptual graphs) for 
canonical representations of clinical concepts, and to 
translate those representations into the particular 
knowledge-representation systems that are most 
suitable for individual applications. 

9.2 Foundational Models 

Because logic is topic neutral, the choice of concep- 
tual graphs as a method for medical-concept repre- 
sentation does not imply any particular model of the 
medical domain. Indeed, to capture the rich seman- 
tics of clinical data and to formalize clinical concepts 
and their relationships, we must rely on foundational 
models in medicine. Existing medical nomenclature 
systems (such as SNOMED) provide a set of labels 
and defined relationships that can serve as the basis 
for a comprehensive terminology; yet, the founda- 
tional models embodied in such nomenclature are 
either limited in their scope or encoded implicitly. 
Therefore, developers of logic-based conceptual models 
face the challenge of formalizing such foundational 
models. 

In this paper, we have presented in detail one simple 
but essential foundational model: a representation for 
the temporal dimension of clinical data. We have 
derived our model of time references from our re- 
search on a uniform temporal data model for clinical 
databases.“’ Our temporal representation shares the 
same formal underpinnings as Shoham’s formal in- 
terval-based logics 55; both models rely on time points 
as primitive temporal elements, but permit temporal 
assertions only over intervals. The main obstacle to 
creating a foundational model of time references, 
however, is representing the temporal indeterminacy 
of clinical observations. By measuring within a 
bounded IOU the instant at which an observation 
was valid, we can define an interval-based logic that 
captures the semantics of clinical data time stamped 
at different granularities. Our temporal model thus 
can avoid the information loss that occurs when pro- 
viders enter time stamps that are more or less precise 
than can be justified by their knowledge. 

A foundational model of the time stamps of clinical 
findings is only one of many aspects of time that a 
provider may want to encode. Our simple temporal 
model, for example, does not assume any particular 
density distribution of the instance’s occurrence dur- 
ing the IOU. Consequently, a provider could not use 
our proposed temporal representation to model the 
occurrence of a datum as more probable in the first 
6 hours of a given date than in the last 18 hours. If 
a principled model of uncertainty was added to our 
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conceptual-graph representation, we could assert 
various types of density distributions (such as uni- 
form distributions) with IOUs. In addition, the re- 
lations we have described here are not sufficient to 
specify the ordering of events when only their se- 
quences are known. We should thus anticipate the 
need to merge different foundational models (such 
as time, uncertainty, and anatomy) to develop a com- 
prehensive conceptual representation of clinical ob- 
servations. We should further expect a range in the 
complexity of the foundational models from simple 
time references in radiology reports to spatiotemporal 
changes in an embryo. 

Determining whether our foundational model of time 
references (or any other foundational model) is suf- 
ficiently expressive for encoding clinical findings re- 
quires empirical evaluation. Like our uniform tem- 
poral data model for clinical databases, foundational 
models that we choose to incorporate into our logic- 
based representation may already be implemented in 
data-management systems. In such cases, the limi- 
tations of the foundational models may be well 
understood. In other cases (such as the model of 
anatomy in GALEN56), we will not be able to evaluate 
the appropriateness of such models until we use the 
models in data acquisition or in data encoding. 
Therefore, to establish the suite of foundational models 
that is necessary for a logic-based clinical represen- 
tation, we need (1) to incorporate current or devel- 
oping formal models of specific topics whenever pos- 
sible, (2) to extend or combine these models as 
necessary, and (3) to instantiate the concepts and 
relations in these models with standardized codes 
from existing medical nomenclatures. 

9.3 Evolutionary Enhancement 

The evolution of a standard representation for clinical 
data will be a challenging task to manage. This ev- 
olution will have to be guided by empirical studies 
of real-world applications. These applications may 
require local enhancements to function properly. If 
these enhancements are useful, they should even- 
tually be incorporated into the standard so that other 
applications can use them. The technical and man- 
agerial aspects of how this process should be man- 
aged are poorly understood. 

Tuttle and colleagues57 have described how devel- 
opers incur a penalty for creating local enhance- 
ments. This penalty occurs when developers try to 
synchronize their enhancements with similar changes 
that may be incorporated into the Unified Medical 
Language System. 58 If participation by more than one 
institution in the development of the standard is de- 

sired, then we must find a way to incorporate local 
enhancements from multiple sites, without penaliz- 
ing institutions for their efforts. 

We have been looking at how the concurrency-con- 
trol models of advanced-database applications59 might 
be used to manage local enhancements in a way that 
eliminates the penalty created by local enhance- 
ments. If we are able to develop a proper concur- 
rency-control model for managing evolutionary en- 
hancement, national participation in the evolution of 
a clinical data-representation standard may become 
a reality. Without such a concurrency-control model, 
the problems of managing local enhancements will 
discourage participation by all but the most deter- 
mined developers. 

9.4 Conclusion 

This paper described the beginning stages of work 
on our medical-terminology systems. Significant 
challenges remain for the development of sound 
foundational models for the various aspects of clinical 
care. If such models can be developed, they could 
ease the task of developing decision-support and ep- 
idemiological tools for use in complex patient situa- 
tions. 

The models that we propose will have to evolve over 
time. Because our underlying framework is based in 
logic, we are confident that the representation is both 
general enough and sufficiently expressive to rep- 
resent the foundational models as they are devel- 
oped. However, we still must prove that such a model 
can be practically implemented. It is crucial that we 
progress to actual implementations so that the prac- 
ticality of this approach can be evaluated formally. 

Finally, the ultimate success or failure of a clinical 
data-representation standard, such as the one that 
we propose, is not based solely on the technical mer- 
its of the underlying representation. Important prob- 
lems of how to manage the development process, 
how to meet the needs of specific applications, how 
to coordinate evolutionary enhancements, and how 
to develop a political consensus have yet to be solved. 

The authors thank Roger Cote for allowing us to use a preliminary 
version of SNOMED International, John Sowa for generously giv- 
ing us his time and insight during many discussions of this work, 
and Lyn Dupre for her editorial assistance. 
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