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ABSTRACT
Objective To develop a decision support system to
identify patients at high risk for hyperlactatemia based
upon routinely measured vital signs and laboratory
studies.
Materials and methods Electronic health records of
741 adult patients at the University of California Davis
Health System who met at least two systemic
inflammatory response syndrome criteria were used to
associate patients’ vital signs, white blood cell count
(WBC), with sepsis occurrence and mortality. Generative
and discriminative classification (naïve Bayes, support
vector machines, Gaussian mixture models, hidden
Markov models) were used to integrate heterogeneous
patient data and form a predictive tool for the inference
of lactate level and mortality risk.
Results An accuracy of 0.99 and discriminability of
1.00 area under the receiver operating characteristic
curve (AUC) for lactate level prediction was obtained
when the vital signs and WBC measurements were
analysed in a 24 h time bin. An accuracy of 0.73 and
discriminability of 0.73 AUC for mortality prediction in
patients with sepsis was achieved with only three
features: median of lactate levels, mean arterial pressure,
and median absolute deviation of the respiratory rate.
Discussion This study introduces a new scheme for the
prediction of lactate levels and mortality risk from patient
vital signs and WBC. Accurate prediction of both these
variables can drive the appropriate response by clinical
staff and thus may have important implications for
patient health and treatment outcome.
Conclusions Effective predictions of lactate levels and
mortality risk can be provided with a few clinical
variables when the temporal aspect and variability of
patient data are considered.

BACKGROUND AND SIGNIFICANCE
The treatment of sepsis has placed a serious burden
on healthcare systems, with an estimated US$14.6
billion spent annually on hospitalizations in the
USA.1 Severe sepsis and septic shock, the more
serious forms of sepsis, kill one in four patients
affected.2 Sepsis occurs when an infection, begin-
ning in any tissue in the body, results in the sys-
temic inflammatory response syndrome (SIRS).3

The SIRS criteria are heart rate >90 beats/min,
respiratory rate (RR) >20 breaths/min (or partial
pressure of arterial CO2 <32), temperature either
>38°C or <36°C, and white blood cell count
(WBC) either >12 000 or <4000 cells/mm3 (or
>10% bands). For a patient to be diagnosed with
sepsis, at least two of the SIRS criteria need to be

present with an infection.3 Severe sepsis is defined
as sepsis resulting in organ dysfunction. Septic
shock occurs when there is sepsis-induced hypoten-
sion (where either the systolic blood pressure is
<90 mm Hg, <40 mm Hg below baseline, or the
mean arterial pressure (MAP) is <70 mm Hg) that
persists despite adequate fluid resuscitation.4

Progression to severe sepsis is associated with
increased mortality and morbidity, including per-
manent organ damage, cognitive impairment, and
physical disability.1 Provision of appropriate treat-
ment early in the development of sepsis has been
associated with improved patient outcomes.4 5 The
benefit of these interventions is dependent upon
the underlying short-term risk for mortality of the
patient. For patients at high short-term risk, aggres-
sive treatment and broad-spectrum empiric antibio-
tics significantly decrease mortality risk.5 6

However, for low-risk patients, the associated risk
of aggressive treatments outweighs their benefit.7

For this reason, it is imperative to rapidly and
accurately stratify patients with sepsis according to
risk at the onset of the syndrome.
Previous studies have demonstrated that machine

learning methods can be incorporated into elec-
tronic health records (EHRs) to predict clinically
relevant outcomes in patients with sepsis. Recently,
Peelen et al8 developed a dynamic Bayesian network
(BN), modeling the progression of organ failure
based on the Sequential Organ Failure Assessment
(SOFA) score in the intensive care unit (ICU).9

Additionally, neural networks have been used to
predict the critical states of sepsis, where a critical
state is defined as a physiologic state proximally
associated with a worsening clinical condition or
death.10 Progression from sepsis to severe sepsis was
found to be accurately classified by using support
vector machines (SVMs).11 12 Furthermore,
dynamic BNs can predict mortality in sepsis and
ICU patients.13 14 Previously, we employed static
BNs for early prediction of sepsis,15 which was fol-
lowed recently by Nachimuthu and Haug16 who
used dynamic BNs for early sepsis detection in the
emergency department. Taken together, these
results demonstrate the potential of SVMs and
dynamic BNs to model clinical states and to prog-
nosticate the outcome in patients with sepsis.
Although the aforementioned studies demon-

strate the feasibility of extracting clinically relevant
information pertaining to patients with sepsis, they
do not specifically deal with the early identification
of sepsis. Early identification of sepsis is challen-
ging as the infection is not always clinically evident.
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In addition, the signs that constitute the SIRS criteria were
selected to be sensitive, but not necessarily specific for sepsis,
making early diagnosis of the syndrome prone to false-positive
classifications. Conversely, scoring systems such as the SOFA,9

the Acute Physiology and Chronic Health Evaluation
(APACHE),17 and Simplified Acute Physiology Score (SAPS)18

have shown reasonable discrimination when classifying patients
with sepsis admitted to the ICU into groups with high-risk and
low-risk mortality. Although there has been some work to strat-
ify patients with sepsis according to risk before ICU care is
needed,19 further investigation is necessary for a classification
system that can accurately assess risk.

Serum lactate levels are used as a biomarker for end-organ
hypoperfusion, impending shock, and increased risk of death in
sepsis.20 21 Adults with sepsis and hyperlactatemia appear to
have a lower mortality risk if diagnosed early and enrolled in a
targeted resuscitative strategy programme.6 22 For this reason,
updated consensus international guidelines for the treatment of
severe sepsis include new recommendations for early lactate
measurement among all adults with sepsis.4 Unfortunately,
testing all adults with suspected sepsis for hyperlactatemia lacks
specificity (SP) (4.6–12.9% SP for hyperlactatemia in some
sepsis screening studies).23–25

Compliance with the guideline for severe sepsis improves
patient outcomes in disparate clinical settings,26 27 but the
burden of screening large numbers of patients for hyperlactate-
mia has been reported as a significant barrier to compliance.24

If screening for severe sepsis could be streamlined to test only
patients at risk of hyperlactatemia, and avoid unnecessary
testing of low-risk patients, then a major barrier to compliance
with the guideline for severe sepsis could be mitigated. If this
improvement in screening efficiency led to increased guideline
compliance, then patient care and outcomes could be improved
while increasing healthcare efficiency and decreasing costs. We
therefore sought to develop an automated decision support
system to identify patients at high risk for hyperlactatemia based
upon routinely measured vital signs and laboratory studies. We
applied naïve Bayes (NB), Gaussian mixture model (GMM) and
hidden Markov model (HMM) classification to the time series
data of temperature, white blood count, RR, and MAP to
predict high or low serum lactate levels in a cohort of patients
meeting SIRS criteria admitted to a large tertiary care hospital.

We also used BNs to determine the underlying relationships
between lactate and patient outcomes, including mortality and
sepsis. Furthermore, using SVM and NB classifiers, we predicted
the risk of mortality in patients with and without sepsis and
compared the performance of this method with existing ICU
severity of illness models.

METHODS
The data processing and analysis pipeline of the EHR sepsis
database is summarized in figure 1. The processing pipeline has
four main components, (1) database preprocessing, (2) BN
structure learning, (3) mortality prediction with SVM and NB,
and (4) lactate level prediction with NB, GMM, and HMM.

Subjects and preprocessing
An EHR database containing 1492 adult patients (≥18 years of
age) meeting at least two SIRS criteria admitted to the
University of California Davis Health System (UCDHS), was
used for all the analyses. Of the 1492 patients, 45.0% were
female, the mean length of stay was 17.0±36.7 days, and
38.0% were admitted from the emergency department. UCDHS
is a tertiary care, academic medical center that did not have an

active EHR alert system for the diagnosis or treatment of sepsis
during the study period. All data were abstracted retrospectively
from the EHR via structured query language interrogation of a
de-identified relational database. Patients were included in the
database if they were hospitalized and discharged between
1 January 2010 and 31 December 2010. The following seven
variables were used for the modeling applications: temperature,
RR, WBC, MAP, lactate levels, mortality, and sepsis occurrence
(determined from the EHR diagnosis). The first five variables
are measurements of a patient’s condition recorded over time
(all but the lactate level and WBC are considered vital signs) and
the final two variables were considered outcomes for this ana-
lysis; temperature, RR, and MAP are part of the SIRS criteria.
The analyses were restricted to the 741 patients for whom all
seven variables were available for both the 590 non-sepsis con-
trols and 151 patients with sepsis. All analyses were approved
by the institutional review board of the University of California
at Davis (IRB# 254575).

Bayesian network structure learning
The BN structure learning was performed using the R statistical
software environment28 with the bnlearn package.29 To con-
struct the BN, the network was trained using the score-based
greedy search hill-climbing algorithm, wherein the four different
scoring measures of Akaike information (AIC), Bayesian infor-
mation, Dirichlet posterior density, and K2 criterion scores were
used to guide the learning procedure. Score-based learning pro-
ceeded by evaluating the change in score after trying all possible
arc permutations, including arc removals, additions, and direc-
tionality changes. The arc-specific action that maximizes the
score is accepted for each edge and the procedure stops if every
further arc change decreases the overall score.30

To determine the generalization error of the inference
method and to avoid overfitting, 10-fold cross-validation on
each network was performed to estimate the goodness of fit.
The cross-validation performance is evaluated using a
log-likelihood loss function, with lower values indicating better
performance. Thus, the BN with the least expected loss was
chosen as the ideal network.

To construct the BN, all seven variables from the mixed
dataset containing 741 patients, comprising 151 with sepsis and
590 non-sepsis controls, were used as features in the model
(figure 1). The five measurement variables are time series data
that were summarized for each patient using the mean (BN1) or
median (BN2) values. Since each variable is summarized by a
centrality measure, temporal variations of the time series are
attenuated, giving a static BN. The discretization of the three
SIRS variables was performed using the thresholds provided by
the SIRS criteria. To discretize MAP, a 70 mm Hg threshold was
used and lactate level discretization was performed with the
high (≥4 mmol/L) or low (<4 mmol/L) threshold used by Rivers
et al,6 resulting in 125 patients with high lactate levels. Finally,
the strength of the arcs within the networks was calculated
using the bootstrap-based inference method31 to provide a com-
parison between the BN1 and BN2 structures, in which the arc
strengths ranged between 1 (strongest) and 0 (weakest).

Mortality prediction
For prediction of mortality, the five measurement variables were
summarized by a pair of summary statistics containing a
measure of centrality and dispersion. The pairs used were the
mean and SD, median and mean absolute deviation (MAD), and
median and IQR. In total, 10 features were considered for the
mortality prediction, which represent the five measurements by
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a summary statistic pair. As a consequence, although temporal
information is reduced, some variation is preserved in the dis-
persion measure. Principal component analysis was also used to
assess whether linear transformation of the feature space and
dimensionality reduction can be achieved in this case.32 A filter
method was applied using the area under the receiver operating
characteristic curve as a ranking criterion.33

In SVM classification, the training feature vectors are mapped
to a higher dimension space, in which the SVM determines a
linearly separating hyperplane given by a maximal margin.34

The mapping procedure can be accomplished by kernel function
such as a linear, polynomial, or radial basis function (RBF). For
this study, the RBF kernel was chosen, since it can handle non-
linear interactions between class labels and features.
Furthermore, in certain combinations of the penalty and kernel
parameters, the linear and sigmoidal kernels match the perform-
ance of the RBF kernel.35

For the SVM classification, the optimal operating point was
estimated by varying the C (penalty parameter in the error
term) and γ (kernel) parameters using a grid search for each
combination of feature selection and dimension reduction with
a 10-fold cross-validation.35 NB classification is a probabilistic
classifier where, for a given a dependent output class (in this
case mortality), the probability of the output class occurring can
be predicted using Bayes theorem, with the assumption that the
10 input features described above are independent of each
other.36

For both classification methods, two datasets containing mor-
tality as the output target were used (figure 1), where one con-
tained a mixture of patients with and without sepsis (741 mixed
patients consisting of 590 non-sepsis controls/151 sepsis; death
rate 261/741) and the other contained patients with sepsis only
(151 sepsis patients; death rate 52/151). Analysis of the mixed

versus the sepsis-only dataset would highlight any classification
changes between the groups. In analyzing the sepsis-only
patients, the sepsis classification is used as a priori information
to further delineate the patients.

The mortality classification was performed with the 10-fold
cross-validation MATLAB37 using the native toolboxes for the
feature selection, principal component analysis, and NB, and
the libsvm toolbox for SVM.35 The combinations of dimension
reduction and feature selection used with the classifiers are sum-
marized in table 1.

Lactate level prediction
Prediction of the lactate level was performed with the classifica-
tion algorithms of NB, clustering using GMM, and HMM. All
three algorithms used the initial 741 patient dataset (590 non-
sepsis controls and 151 patients with sepsis) containing the vital
signs and WBC as inputs, while the target output was the lactate
level for each patient, which was discretized in the same manner
as in the BN structure learning section with the cut-off points of
high (≥4 mmol/L) and low (<4 mmol/L) used by Rivers et al.6

The GMM performs clustering over the three vital signs and
WBC through the estimation of Gaussian mixing parameters by
employing the expectation-maximization algorithm.38 In our
case, the GMM is assumed to be composed of two mixtures,
one for high lactate level and the other low. The HMM provides
the probability distribution of a set of hidden states and the
observations generated over time through a Markov chain.38 In
our study, the hidden states of high or low lactate levels were
estimated from the observed vital signs and WBC. Both the
GMM and HMM algorithms were initialized by mean and
covariance estimates from the input of the vital signs and WBC.

The mean and SD were used to summarize the three vital
signs and WBC, similar to the mortality prediction model, but

Figure 1 Processing pipeline of electronic health record (EHR) sepsis database. The processing pipeline has four main components, (1) database
preprocessing, (2) Bayes network structure learning, (3) mortality prediction with support vector machine (SVM) and naïve Bayes (NB), and
(4) lactate level prediction with NB, Gaussian mixture model (GMM), and hidden Markov model (HMM). The variable number of patients used in
lactate level prediction is given in tables 2 and 3. MAP, mean arterial pressure; WBC, white blood cell count.
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Table 1 Classification using 10-fold cross-validation of mortality among patients with and without sepsis with either feature selection, dimension reduction, or both.

Preprocessing applied

Data type

Mean and SD Median and MAD Median and IQR

ACC F SN SP AUC ACC F SN SP AUC ACC F SN SP AUC

SVM
Patients with and without sepsis (n=741)

# FS 7 0.715 0.811 0.944 0.295 0.713±0.047 0.706 0.805 0.935 0.284 0.692±0.043 0.706 0.795 0.883 0.379 0.689±0.039
5 0.704 0.805 0.940 0.272 0.685±0.044 0.704 0.804 0.938 0.276 0.692±0.035 0.711 0.809 0.944 0.284 0.709±0.033
3 0.704 0.809 0.969 0.218 0.644±0.054 0.700 0.806 0.963 0.218 0.659±0.031 0.688 0.797 0.946 0.215 0.654±0.050

# PC 7 0.713 0.809 0.942 0.291 0.686±0.054 0.709 0.799 0.892 0.372 0.693±0.044 0.711 0.803 0.910 0.345 0.682±0.033
5 0.704 0.808 0.963 0.230 0.669±0.046 0.711 0.809 0.946 0.280 0.693±0.035 0.700 0.803 0.944 0.253 0.641±0.088
3 0.694 0.803 0.965 0.195 0.639±0.036 0.699 0.803 0.948 0.241 0.677±0.045 0.680 0.796 0.963 0.161 0.653±0.043

# FS, # PC 10, 10 0.721 0.807 0.900 0.391 0.692±0.031 0.711 0.804 0.913 0.341 0.701±0.038 0.700 0.801 0.929 0.280 0.701±0.051
7, 5 0.684 0.798 0.960 0.176 0.634±0.033 0.684 0.794 0.942 0.211 0.638±0.027 0.691 0.801 0.958 0.199 0.654±0.040

Sepsis-only patients (n=151)
# FS 7 0.702 0.809 0.960 0.212 0.629±0.120 0.715 0.814 0.949 0.269 0.639±0.083 0.709 0.812 0.960 0.231 0.630±0.106

5 0.715 0.814 0.949 0.269 0.653±0.082 0.702 0.805 0.939 0.250 0.683±0.121 0.722 0.821 0.970 0.250 0.624±0.101
3 0.735 0.826 0.960 0.308 0.679±0.082 0.728 0.821 0.949 0.308 0.726±0.045 0.722 0.817 0.949 0.288 0.659±0.128

# PC 7 0.715 0.817 0.970 0.231 0.641±0.104 0.722 0.819 0.960 0.269 0.645±0.084 0.715 0.815 0.960 0.250 0.594±0.119
5 0.702 0.812 0.980 0.173 0.578±0.081 0.702 0.809 0.960 0.212 0.601±0.096 0.715 0.814 0.949 0.269 0.641±0.104
3 0.656 0.785 0.960 0.077 0.484±0.143 0.702 0.807 0.949 0.231 0.613±0.090 0.695 0.808 0.980 0.154 0.567±0.119

# FS, # PC 10, 10 0.722 0.817 0.949 0.288 0.642±0.108 0.748 0.830 0.939 0.385 0.683±0.119 0.702 0.809 0.960 0.212 0.613±0.109
7, 5 0.695 0.808 0.980 0.154 0.621±0.111 0.695 0.808 0.980 0.154 0.588±0.123 0.68 0.80 0.96 0.15 0.620±0.119

NB
Patients with and without sepsis (n=741)

# FS 7 0.673 0.787 0.929 0.203 0.609±0.037 0.671 0.778 0.892 0.264 0.629±0.048 0.687 0.785 0.883 0.326 0.632±0.047
5 0.679 0.790 0.933 0.211 0.643±0.049 0.688 0.795 0.931 0.241 0.647±0.053 0.677 0.784 0.902 0.264 0.636±0.031
3 0.669 0.785 0.929 0.192 0.613±0.061 0.673 0.787 0.933 0.195 0.623±0.046 0.672 0.784 0.921 0.215 0.630±0.053

# PC 7 0.691 0.795 0.927 0.257 0.653±0.046 0.706 0.802 0.921 0.310 0.665±0.041 0.692 0.790 0.892 0.326 0.653±0.032
5 0.676 0.788 0.931 0.207 0.644±0.041 0.692 0.798 0.935 0.245 0.649±0.038 0.673 0.781 0.900 0.257 0.639±0.052
3 0.660 0.782 0.944 0.138 0.621±0.040 0.676 0.786 0.921 0.226 0.648±0.042 0.656 0.777 0.923 0.165 0.642±0.032

# FS, # PC 10, 10 0.696 0.797 0.921 0.284 0.652±0.031 0.683 0.782 0.879 0.322 0.654±0.071 0.692 0.787 0.875 0.356 0.666±0.037
7, 5 0.663 0.780 0.921 0.188 0.602±0.044 0.672 0.781 0.904 0.245 0.610±0.030 0.667 0.777 0.898 0.241 0.595±0.034

Sepsis-only patients (n=151)
# FS, # PC 7 0.689 0.798 0.939 0.212 0.554±0.123 0.689 0.789 0.889 0.308 0.624±0.106 0.715 0.809 0.919 0.327 0.618±0.130

5 0.642 0.771 0.919 0.115 0.537±0.087 0.656 0.768 0.869 0.250 0.583±0.096 0.669 0.779 0.889 0.250 0.587±0.106
3 0.649 0.774 0.919 0.135 0.560±0.074 0.662 0.773 0.879 0.250 0.594±0.108 0.642 0.759 0.859 0.231 0.578±0.084

# PC 7 0.675 0.784 0.899 0.250 0.597±0.104 0.669 0.773 0.859 0.308 0.635±0.067 0.695 0.791 0.879 0.346 0.638±0.090
5 0.669 0.786 0.929 0.173 0.564±0.105 0.669 0.779 0.889 0.250 0.592±0.090 0.642 0.769 0.909 0.135 0.534±0.126
3 0.662 0.788 0.960 0.096 0.557±0.099 0.636 0.764 0.899 0.135 0.577±0.065 0.636 0.764 0.899 0.135 0.559±0.075

# FS, # PC 10, 10 0.689 0.795 0.919 0.250 0.593±0.136 0.715 0.805 0.899 0.365 0.635±0.086 0.709 0.798 0.879 0.385 0.660±0.050
7, 5 0.669 0.788 0.939 0.154 0.628±0.079 0.669 0.779 0.889 0.250 0.617±0.122 0.642 0.761 0.869 0.212 0.551±0.086

ACC, accuracy; AUC, area under the receiver operating characteristic curve; F, harmonic mean of precision and recall; FS, features selected; MAD, median absolute deviation; NB, naïve Bayes; PC, principal components; SN, sensitivity; SP, specificity; SVM,
support vector machine.
The cells highlighted in bold indicate the highest five performances achieved for each summary statistic pair.
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the median/MAD and median/IQR pairs were not investigated.
These two pairs were not investigated because the BN structure
learnt based on the median did not show sepsis as conditionally
dependent on the lactate level.

In MATLAB and with cross-validation, the GMM classifica-
tion was performed using the built-in native toolboxes and soft-
ware from Zhong et al,39 and the HMM classification was
performed using a publicly available software toolbox.40

Time-binning and thresholding
Before applying the lactate level classification algorithms, the
data were preprocessed to compare patients at similar time
points for each measurement. The patient data were analyzed
using three separate preprocessing schemes: (1) the patient data
represented by the summary statistics only (no time-binning or
thresholding), (2) the patient data thresholded by the number of
points per measurement per patient, and (3) the patient data
that was time-binned and then thresholded by the number of
points per measurement per patient. The thresholds for the
number of measurements were set at the first and fifth centiles,
the 99th and 95th centiles, and 1.5 times the IQR. Thus,
patients with or without an overabundance of measurements at
the specific time bin for any of the vitals, WBC, or lactate were
removed before the application of the classification algorithms.
As a result, errors due to mismanagement of vital sign and
laboratory measurements were mitigated. The time bins were set
at bin widths of 6, 12, and 24 h, with two bins for each width.

Owing to time-binning and thresholding, the number of
patients inputted into the algorithms varied; the number of
total, high-lactate, and patients with sepsis remaining is summar-
ized for each preprocessing scheme in tables 2 and 3. Averaged
across all time-bin and thresholding combinations, the number
of total patients is 347.4±248.5, high-lactate is 63.1±38.9, and
sepsis is 74.9±46.6. The 10-, seven-, five-, and threefold cross-
validations were performed for each classification when there
was sufficient data remaining after the preprocessing.
Furthermore, to concisely assess the viability and effects of time-
binning and thresholding on the mortality prediction, the
overall top five time-binning and thresholding combinations and
the top combination in the first 24 h time bin in the lactate level
prediction were used as features during SVM training.

Performance evaluation
The following metrics were calculated to assess performance of
the classifiers in the cross-validations: accuracy (ACC, propor-
tion of true results), F-measure (F, harmonic mean of precision
and recall), sensitivity (SN), SP, and the area under the receiver
operating characteristic curve (AUC) using vertical averaging.41

The AUC was calculated for its ability to evaluate the average
specificity for the full range of sensitivities.42 Thus, the best per-
formance was defined as that having the highest AUC followed
by the highest accuracy (in the case of a tie). The positive/nega-
tive classes for mortality and lactate level predictions are defined
as alive/deceased and low/high, respectively.

RESULTS
The results for each analysis technique described above in the
processing pipeline are summarized below.

Bayesian network structure learning
For both BN1 (mean data) and BN2 (median data) network
structures, the AIC scoring criteria provided the goodness-of-fit
estimate with the least loss. Consequently, the structure provided
by AIC was the preferred network structure for both types of
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Table 3 Prediction of high and low levels of lactate with time-binned and thresholded vital signs and white blood count, using the summary statistics of mean and SD with the NB, GMM, and HMM
classifiers

Bin hours Threshold centile

Classification method (10-fold CV)

Patients*

NB GMM HMM

ACC F SN SP AUC ACC F SN SP AUC ACC F SN SP AUC

1st 24 5th 280/86/80 0.604 0.715 0.717 0.349 0.528±0.065 0.800 0.854 0.845 0.698 0.833±0.071 0.625 0.673 0.557 0.779 0.716±0.068
95th 580/91/111 0.671 0.794 0.751 0.242 0.493±0.069 0.826 0.900 0.924 0.297 0.793±0.038 0.557 0.668 0.529 0.703 0.674±0.064
5th, 95th 187/50/54 0.727 0.826 0.883 0.300 0.495±0.105 0.850 0.900 0.876 0.780 0.922±0.047 0.765 0.824 0.752 0.800 0.812±0.089
1st 292/90/80 0.627 0.723 0.703 0.456 0.565±0.061 0.757 0.827 0.842 0.567 0.818±0.058 0.640 0.703 0.614 0.700 0.723±0.085
99th 698/121/141 0.567 0.699 0.610 0.355 0.489±0.048 0.814 0.892 0.929 0.264 0.702±0.032 0.447 0.532 0.380 0.769 0.613±0.058
1st, 99th 264/76/74 0.682 0.779 0.787 0.421 0.567±0.090 0.750 0.827 0.840 0.526 0.830±0.051 0.640 0.704 0.601 0.737 0.716±0.080
±1.5IQR 578/87/108 0.562 0.697 0.593 0.391 0.486±0.071 0.829 0.900 0.910 0.368 0.767±0.034 0.493 0.610 0.466 0.644 0.652±0.061

2nd 24 (48 h) 5th 123/24/29 0.797 0.879 0.919 0.292 0.728±0.13 0.951 0.969 0.950 0.958 0.991±0.014 0.870 0.914 0.859 0.917 0.940±0.061
95th
5th, 95th 64/10/11† 0.781 0.873 0.889 0.200 0.578±0.264 0.953 0.971 0.944 1.000 1±0 0.891 0.931 0.871 1.000 0.965±0.032
1st 124/24/29 0.806 0.885 0.920 0.333 0.732±0.101 0.944 0.964 0.940 0.958 0.990±0.020 0.855 0.905 0.860 0.833 0.883±0.102
99th 700/27/135 0.917 0.956 0.941 0.333 0.651±0.143 0.944 0.971 0.960 0.556 0.866±0.053 0.696 0.815 0.695 0.704 0.74±0.086
1st, 99th 101/20/21 0.802 0.884 0.938 0.250 0.694±0.135 0.990 0.994 0.988 1.000 1±0 0.950 0.969 0.963 0.900 0.906±0.126
±1.5IQR

1st 12 5th 177/61/49 0.646 0.752 0.773 0.360 0.543±0.065 0.808 0.852 0.845 0.738 0.894±0.047 0.718 0.769 0.716 0.721 0.800±0.053
95th 567/87/106 0.647 0.776 0.726 0.220 0.492±0.046 0.832 0.904 0.929 0.299 0.741±0.059 0.580 0.702 0.583 0.563 0.634±0.067
5th, 95th 88/20/27‡ 0.75 0.845 0.882 0.300 0.718±0.14 0.977 0.985 0.971 1.000 0.999±0.001 0.875 0.913 0.853 0.950 0.941±0.087
1st 184/64/49 0.598 0.702 0.725 0.359 0.595±0.111 0.918 0.938 0.942 0.875 0.962±0.030 0.832 0.870 0.867 0.766 0.865±0.051
99th 701/136/140 0.665 0.785 0.758 0.279 0.532±0.039 0.796 0.879 0.919 0.287 0.702±0.048 0.552 0.659 0.536 0.618 0.601±0.059
1st, 99th 159/53/42 0.591 0.683 0.660 0.453 0.613±0.1 0.855 0.888 0.859 0.849 0.954±0.024 0.780 0.821 0.755 0.830 0.842±0.057
±1.5IQR 637/107/129 0.732 0.840 0.845 0.168 0.515±0.057 0.826 0.898 0.923 0.346 0.742±0.026 0.611 0.725 0.617 0.579 0.648±0.050

2nd 12 (24 h) 5th 116/24/37 0.698 0.817 0.848 0.125 0.409±0.155 0.957 0.972 0.946 1.000 0.997±0.0158 0.845 0.897 0.848 0.833 0.866±0.11
95th
5th, 95th
1st 118/24/37 0.686 0.808 0.830 0.125 0.351±0.133 0.95 0.967 0.947 0.958 0.995±0.01 0.856 0.903 0.840 0.917 0.900±0.096
99th 687/23/135 0.904 0.949 0.929 0.174 0.474±0.169 0.952 0.975 0.964 0.609 0.903±0.058 0.884 0.937 0.898 0.478 0.842±0.059
1st, 99th 98/16/30‡ 0.541 0.662 0.537 0.563 0.546±0.16 0.959 0.975 0.963 0.938 0.996±0.01 0.857 0.910 0.866 0.813 0.855±0.13
±1.5IQR

1st 6 5th 65/25/20† 0.523 0.635 0.675 0.280 0.482±0.11 0.923 0.937 0.925 0.920 0.979±0.043 0.831 0.853 0.800 0.880 0.892±0.060
95th 478/76/73 0.638 0.763 0.692 0.355 0.513±0.083 0.849 0.912 0.933 0.408 0.778±0.037 0.521 0.624 0.473 0.776 0.655±0.076
5th, 95th
1st 65/25/20 Same as 5th Same as 5th Same as 5th
99th 658/129/130 0.561 0.690 0.607 0.372 0.473±0.061 0.781 0.867 0.887 0.349 0.73±0.033 0.485 0.579 0.441 0.667 0.608±0.082
1st, 99th 43/13/15§ 0.442 0.586 0.567 0.154 0.436±0.193 0.884 0.912 0.867 0.923 0.964±0.063 0.837 0.873 0.800 0.923 0.931±0.144
±1.5IQR

2nd 6 (12 h) 5th 75/22/19† 0.733 0.825 0.887 0.364 0.668±0.080 0.947 0.963 0.981 0.864 0.976±0.015 0.827 0.869 0.811 0.864 0.900±0.684
95th
5th, 95th
1st 80/23/19† 0.775 0.855 0.930 0.391 0.658±0.175 0.925 0.947 0.947 0.870 0.967±0.030 0.800 0.846 0.772 0.870 0.824±0.094
99th
1st, 99th
±1.5IQR

For each classifier the cells highlighted in bold indicate the top five performances for the lactate level prediction. Blank rows indicate that the classification was not performed owing to insufficient data.
*Patients column indicates the number of total/high-lactate/sepsis patients.
†Indicates fivefold CV; ‡indicates sevenfold CV; §indicates threefold CV.
ACC, accuracy; AUC, area under the receiver operating characteristic curve; CV, cross-validation; F, harmonic mean of precision and recall; GMM, Gaussian mixture model; HMM, hidden Markov model; NB, naïve Bayes; SN, sensitivity; SP, specificity.
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data (figure 2); the log-likelihood loss was 4.076 for BN1 and
3.942 for BN2. In a Wilcoxon signed rank test for all four
scoring criteria for both BNs, there was no significant difference
(p=0.125) between the network scores.

The network structure learnt for both BN1 (figure 2A) and
BN2 (figure 2B) shows that both the WBC and temperature,
which are both part of the SIRS criteria, are conditionally
dependent on the in-hospital risk of mortality. Additionally,
mortality, sepsis, and MAP levels in the BN1 structure are con-
ditionally dependent on the lactate levels. However, for BN2
the lactate level has an indirect path to sepsis occurrence
through MAP. In both BNs, lactate level is the only conditionally
independent variable. The common arcs in both BNs did not
show a statistically significant difference (Wilcoxon signed rank
test, p=0.313). In BN1, the arc pointing from MAP to mortality
was the strongest arc (strength=1.000). The strongest arc in
BN2 points from the lactate levels to mortality
(strength=0.995); in BN1 this was the second strongest arc
(strength=0.985).

Mortality prediction
Table 1 summarizes mortality prediction performances for each
summary statistic pair using the SVM and NB classifiers. The
best prediction of mortality (AUC=0.713±0.047, ACC=0.715,
F=0.811, SN=0.944, SP=0.295) among the mixed dataset of
patients with and without sepsis was provided using SVM (C=8
and γ=0.25) with the top seven features (mean lactate, mean
MAP, SD of RR, mean temperature, mean WBC, SD of lactate,
and SD of MAP) summarized by the mean/SD pair. Among the
sepsis-only patients, the best prediction of mortality
(AUC=0.726±0.045, ACC=0.728, F=0.821, SN=0.949,
SP=0.308) was again provided by SVM (C=4 and γ=0.25)
using the top three features of (1) median lactate levels, (2) the
MAD of RR, and (3) median MAP (figure 3).

An analysis of variance (ANOVA) with 2 (classifier type)×2
(patient group)×3 (summary statistic pair) between-subjects
factors showed that there were no significant interactions among
the factors, provided by the AUC performance data in table 1.
However, there was a significant difference between the SVM
and NB mortality classifications (F(1,91)=32.85, p<0.001),
where the SVM had a higher mean AUC (mSVM=0.651 vs
mNB=0.613). The mean AUC provided by the sepsis-only group
(msepsis=0.655) was also significantly higher (F(1,91)=49.10,
p<0.001) than for the mixed group of patients (mmixed=0.609).

A significant difference among the summary statistic pairs
(F(2,91)=3.67, p=0.0293) on the AUC performance was found
at the α=0.05 level. Further Tukey post-hoc tests on the
summary statistic pair factor showed that the significant differ-
ence was between the mean/SD and median/MAD pairs, which
had the higher mean AUC (p=0.0236, α=0.05, mmean/

SD=0.622 vs mmedian/MAD=0.630).

Lactate level prediction
The lactate level prediction by the NB, GMM, and HMM classi-
fiers using the thresholded and time-binned with thresholded
data are summarized in tables 2 and 3, respectively, where the
top five performances are highlighted for each classifier. The
best overall lactate level prediction (AUC=1.000±0,
ACC=0.990, F=0.994, SN=0.988, SP=1.000) was obtained
with the second 24 h time bin when the vital signs and the
white blood cell measurements were thresholded at the 1st and
99th centiles (table 3, figure 4). Without any thresholding or
time-binning (table 2), GMM provided a reasonable lactate level
prediction (AUC=0.759±0.031, ACC=0.837, F=0.906,
SN=0.943, SP=0.312). For NB (AUC=0.732±0.101,
ACC=0.806, F=0.885, SN=0.920, SP=0.333) and HMM
(AUC=0.965±0.032, ACC=0.891, F=0.931, SN=0.871,
SP=1.000), the best results were also provided with the second
24 h time bin when the measurements were thresholded at the
1st centile, and the 5th and 95th centiles, respectively (table 3).

In an one-way ANOVA, using the AUC performance data in
table 2 and the classifier type as the between-subjects factor, a
significant difference was shown between the classifiers (F(2,21)
=38.12, p<0.001). The Tukey post hoc test showed that the
GMM classifier had the highest mean AUC (mGMM=0.794,
mHMM=0.709, mNB=0.664; all comparisons p<0.05). After an
ANOVA with a 3 (classifier type)×3 (time) between-subjects
factors, with the AUC values in table 3, a significant difference
among the three classifiers with respect to the performance was
shown (F(2,82)=73.41, p<0.001). There was no significant
interaction between time bins and the classifiers. Additional
Tukey post-hoc tests showed that the GMM classifier had the
highest mean AUC, followed by HMM (mGMM=0.889,
mHMM=0.791, mNB=0.553; all comparisons p<0.01).

Time-binning and thresholding for mortality prediction
Mortality prediction for patients with and without sepsis using
SVM was applied to the top five time-binned and thresholded

Figure 2 Bayesian networks from the five clinical measurements and two outcomes. (A) The Bayesian network structure determined from the
mean of the five clinical measurements. (B) The Bayesian network structure from the median of five clinical measurements. On each directed arc,
the strength of the arc is indicated, ranging from 0 to 1, with 1 being the strongest. MAP, mean arterial pressure; WBC, white blood cell count.
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combinations obtained from the lactate level prediction. The
best mortality prediction, albeit very poor, was given by the
second 24 h time bin with the vital signs and the WBC measure-
ments thresholded at the 1st and 99th centiles (AUC=0.553
±0.107, ACC=0.604, F=0.747, SN=0.937, SP=0.0526). The
other four predictions, which were also poor, had a mean AUC
of 0.515±0.0265. In the first 24 h time bin thresholded at the
5th and 95th centiles, the prediction (AUC=0.512+0.151,
ACC=0.636, 0.778, SN=0.952, SP=0) was again much worse
than the mortality prediction without time-binning.

DISCUSSION
The BN learnt for both the median and mean summarization of
the patients’ measurement variables showed that our database
reinforces the key clinical finding that serum lactate levels are
associated with increased mortality risk in sepsis.6 22 Also, in
both BNs we confirmed that risk of mortality is conditionally
dependent on MAP, which was shown to be independently asso-
ciated with mortality in sepsis.43 Interestingly, the lactate levels
were conditionally independent of the vital signs, WBC, and
MAP, although we were able to predict it through GMMs and

Figure 3 The receiver operating
characteristic (ROC) curve showing the
discriminability of sepsis-only patients
using the support vector machine
(SVM) with only three features. The
ROC curve showing the discriminability
of the best prediction of mortality
(area under the ROC curve (AUC)
=0.726±0.045, accuracy=0.728,
F=0.821, sensitivity=0.949,
specificity=0.308) was provided by
SVM (C=4 and γ=0.25) using the top
three features of (1) median lactate
levels, (2) the mean absolute deviation
of respiratory rate, and (3) median
mean arterial pressure. RBF, radial
basis function.

Figure 4 Cluster membership scores
for clustering using Gaussian mixture
model (GMM) in the second 24 h time
bin. Cluster membership scores of
patients’ lactate levels indicate the
posterior probability of assigning high
or low lactate levels for each patient. A
sharp delineation (the presence of few
0.5 probabilities) between the high
and low lactate levels indicates good
separation. The cluster membership
score of the second 24 h time bin with
the vital signs and white blood cell
count measurements thresholded at
the 1st and 99th centiles is shown
(area under the receiver operating
characteristic curve (AUC)=1.000±0,
accuracy=0.990, F=0.994,
sensitivity=0.988, specificity=1.000).
This is the best performance of lactate
level prediction.
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HMMs. Nonetheless, in both of the BNs, three of the clinical
measurements were conditionally dependent on mortality,
which is reflected in the success of our SVM and NB classifica-
tion of mortality risk.

This study demonstrates the feasibility of using SVM classifi-
cation with feature selection to predict mortality risk for
patients with sepsis. With only the three features (median lactate
levels, median MAP, MAD of RR) the highest accuracy and dis-
criminability achieved were 0.73 and 0.73 AUC, respectively.
This result is comparable to that of Ribas et al.44 In their study
logistic regression with factor analysis was employed to achieve
an accuracy of 0.78 and discriminability of 0.75 AUC with 156
ICU patients with severe sepsis. The key difference between our
work and that of Ribas et al44 is the nature of the observations.
In our SVM model, only a summary statistic pair of the three
SIRS criteria, lactate level, and MAP was necessary to perform
satisfactory classification. Ribas et al44 performed their final
classification with considerably more clinical variables, including
the number of dysfunctional organs, mechanical ventilation,
APACHE II score, and resuscitation bundles. These variables are
all derivatives of aggregate scoring systems used in hospital
intensive care settings and are generally not available in
non-ICU settings.44 As the majority of sepsis cases are initially
identified in non-ICU settings (emergency department or hos-
pital ward), and rapid risk stratification is essential to treatment,
our approach has significantly broader potential applicability.
Since aggregate scoring was not used as input data in this study,
our input data may be more specific to an individual patient’s
dynamics. Moreover, the aggregate scoring systems combine
many sources of test information, which may greatly reduce the
temporal aspects of the data.

Langmead13 predicted the risk of mortality in patients with
sepsis using dynamic BNs with an accuracy of 0.93. For that
analysis, synthetic data were used, which limits applicability to
clinical situations. Nonetheless, using SVM on their synthetic
sepsis data, they achieved an accuracy of 0.81 (discriminability
not provided). Furthermore, Kayaalp et al14 achieved a discrim-
inability of 0.83 (accuracy not provided). Traditional logistic
regression with standard scoring systems has provided the fol-
lowing performances: 0.86 AUC with APACHE II,45 0.88 AUC
with APACHE IV,46 0.77 AUC with SAPS3 PIRO,47 and 0.70
with PIRO.48 We demonstrate that by focusing on routinely
available clinical data, we can achieve a feasible level of accuracy
and predictability for mortality. Through pairing of the measure
of centrality and dispersion, we have a unique method to
capture the salient temporal dynamics of the patients’ state.

However, a limitation of the mortality prediction presented in
this study is that it is retrospective and when a prediction is
made in the first 24 h time bin, thresholded at the 5th and 95th
centiles, a poor discriminability of only 0.51 AUC is achieved.
This may be due to the fact that the necessary temporal features
in the time series are not captured. For the 151 patients with
sepsis in the mortality prediction model, the average hospital
length of stay was 13.5±19.2 days, which is a significantly
longer time than the 24 h used for time-binning, indicating that
there may be an ideal length of time that could optimize the
mortality risk prediction by highlighting the significant features
of the time series.

A significant finding of this study is that lactate levels can be
predicted with high discriminability when the time scale and fre-
quency of the measurements are considered. Specifically, when
the time bins were divided into widths of 6, 12, and 24 h the
performance of the GMM, HMM, and NB classifications of the
lactate levels improved (table 3), even though the ANOVA did

not show significant differences for time factor. Also, it was
shown that when only the number of measurements was thre-
sholded using centiles, the accuracies and discriminabilities
increased compared with the results when no thresholding was
applied (table 2). There have been recent efforts to use the tem-
poral variability of patient treatments to increase the predictive
power of decision support systems.49

For the first time, this study introduces the prediction of
serum lactate levels from patient vital signs and WBC. The
ability to predict lactate levels holds the promise of potentially
identifying accurately septic patients at high risk of short-term
mortality, while limiting needless testing of low-risk patients.
Current guidelines call for lactate testing on all patients with
sepsis and there is evidence that non-compliance with these
guidelines increases mortality risk.50 Lactate testing is routinely
performed in the ICU, but because testing all patients with sus-
pected sepsis lacks specificity, its use has been limited in emer-
gency departments.23 Non-compliance with the guideline may
also be influenced by long processing times for laboratory
studies in busy emergency departments.51

There has been recent interest in point-of-care (POC) lactate
testing in the emergency department to alleviate the burden of
processing time. Recently, it was shown that POC testing
decreased the mean time between triage and lactate measure-
ment from 2.5 h to 1.4 h.52 However, strong evidence about the
ability of POC testing to determine high lactate levels
(≥4 mmol/L) is lacking since only three of the 24 patients had
raised lactate levels. Nonetheless, using our GMM in the 1st 6 h
time bin, thresholded at the 5th centile, we were able to predict
with a discriminability of 0.98 AUC (table 3) the 23 patients
with high lactate levels from among 65 patients, who included
20 patients with sepsis, demonstrating the capabilities of our
method. Furthermore, Karon et al53 demonstrated that POC
measurements have a tendency to shift away from the serum
lactate laboratory measurement starting at the ≥6 mmol/L level.

The main limitation of the lactate level prediction with GMM
and HMM is that the algorithms require reasonable separation
between features of the control and target groups to initialize
the probability distributions used to parameterize the classifiers.
This can become a problem when aligning patients according to
time and a patient does not have data pertaining to that particu-
lar time. If sufficient patients are accumulated, a sparse dataset
will form with correlated control and target groups. To circum-
vent this issue, we focused on patients with measurements at the
times of interest. Another possible way to resolve this problem
is to include the patients who have incomplete records and
perform multiple imputation, which has been shown to provide
unbiased estimates of missing data.54 The benefit of imputation
is that we would be able to include patients who might have
relevant features for analysis, but who were excluded owing to
errors in data collection or recording, which is common in clin-
ical practice. For future analyses we will extend our models to
include incomplete records with imputation and we expect the
models to remain predictive, given our focus on centrality and
dispersion measures.

Overwhelmed clinical systems are stressed with needless
testing and patients may be exposed to high-risk interventions
that may not benefit them. A dynamic decision support system
that accurately predicts hyperlactatemia could focus limited
resources, avoid ‘alert fatigue’ that may accompany decision
support systems, and decrease procedural complications for
patients. The success of our lactate classification could be
extended by including the predicted lactate levels with the mea-
sured vital signs to predict either mortality or sepsis.
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CONCLUSION
Clustering with GMM can be used with patient vital signs to
predict serum lactate levels with high discriminability.
Additionally, SVM classification with feature selection can be
used to predict mortality risk for patients with sepsis when the
patient’s measurements are summarized by a pair of summary
statistics. The results demonstrate the importance of implement-
ing timely and accurate recording systems in hospitals for the
objective collection of patient data. Rather than collecting more
data, premeditated collection of measurements at synchronous
times can preserve important events and features of a patient’s
state. In future studies, the age and sex variables with increased
observations within the 6–12 h time scale will be included in
the analysis to analyze the early dynamics of lactate levels and
mortality risk among patients with sepsis. Overall, the new ana-
lyses presented in this study demonstrate the promise of predict-
ing serum lactate levels, which may facilitate sepsis risk
assessment and improve compliance with therapeutic guidelines,
which significantly decreases mortality risk.
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