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ABSTRACT
Objective The rapidly growing volume of multimodal
electrophysiological signal data is playing a critical role
in patient care and clinical research across multiple
disease domains, such as epilepsy and sleep medicine.
To facilitate secondary use of these data, there is an
urgent need to develop novel algorithms and informatics
approaches using new cloud computing technologies as
well as ontologies for collaborative multicenter studies.
Materials and methods We present the Cloudwave
platform, which (a) defines parallelized algorithms for
computing cardiac measures using the MapReduce
parallel programming framework, (b) supports real-time
interaction with large volumes of electrophysiological
signals, and (c) features signal visualization and querying
functionalities using an ontology-driven web-based
interface. Cloudwave is currently used in the multicenter
National Institute of Neurological Diseases and Stroke
(NINDS)-funded Prevention and Risk Identification of
SUDEP (sudden unexplained death in epilepsy) Mortality
(PRISM) project to identify risk factors for sudden death
in epilepsy.
Results Comparative evaluations of Cloudwave with
traditional desktop approaches to compute cardiac
measures (eg, QRS complexes, RR intervals, and
instantaneous heart rate) on epilepsy patient data show
one order of magnitude improvement for single-channel
ECG data and 20 times improvement for four-channel
ECG data. This enables Cloudwave to support real-time
user interaction with signal data, which is semantically
annotated with a novel epilepsy and seizure ontology.
Discussion Data privacy is a critical issue in using
cloud infrastructure, and cloud platforms, such as
Amazon Web Services, offer features to support Health
Insurance Portability and Accountability Act standards.
Conclusion The Cloudwave platform is a new
approach to leverage of large-scale electrophysiological
data for advancing multicenter clinical research.

INTRODUCTION
The unprecedented rate of multimodal data collec-
tion across scientific, business, and social network-
ing domains is transforming research, education,
and decision-making through data-driven insights
and knowledge discovery tools.1–4 The large
volume of these datasets is their defining character-
istic, and the term ‘Big Data’ is often used to
describe both the data and different aspects of their
management.1 In addition to volume, the end users
are often concerned with the velocity of Big Data,

which describes both the high rate of data gener-
ation and the need for rapid analysis of data for
critical decision-making tasks.3 The importance of
business intelligence derived from timely interpret-
ation of huge volumes of data (eg, consumer
buying patterns) for actionable information is
widely appreciated.5 There is a growing need to
adopt a similar paradigm of ‘healthcare intelligence’
through near real-time processing of healthcare
data to support preventive care, personalized medi-
cine, and improved treatment outcome. Healthcare
intelligence can be derived from the increasing
amount of digital patient data exemplified by elec-
tronic health records, published literature, and
especially multimodal electrophysiological data.
In many critical care and neurological monitor-

ing applications, large volumes of physiological
data, including electroencephalogram (EEG) from
scalp and implantable intracranial electrodes, pulse
oximetry (SpO2), and electrocardiogram (ECG), are
collected. Together with sophisticated computing
approaches, these large datasets are enabling the
development of transformative concepts in studying
various health issues, including neurological dis-
eases.6 7 For example, continuous EEG, ECG,
blood oxygen levels, and video data are now rou-
tinely collected during 5-day admission of patients
in epilepsy monitoring units (EMUs). These data
are characterized by both the volume (eg, terabytes
(TB) of data per year) and velocity (eg, gigabytes
(GB) of data per month), but existing computa-
tional approaches for processing signal data (eg,
Neural Workbench8) are limited in their ability to
support collaborative multicenter research studies
in this domain. These tools often require the data
to fit into memory of a local desktop and lack the
ability to effectively leverage the growing capabil-
ities of distributed computing approaches (eg,
cloud computing and multicore processing).6 9

MapReduce is a popular programming frame-
work introduced by Google to address computa-
tional and storage challenges for web-scale data.10

Apache Hadoop is an open-source implementation
of the MapReduce framework, which can be used
to store large volumes of data on the Hadoop
Distributed File System (HDFS) and efficiently
process the data by repeating the two steps of
‘Map’ and ‘Reduce’ on thousands of computing
nodes.11 Hadoop has built-in support for auto-
mated data distribution, recovery from component
failures, balancing the computational load across
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different nodes, and parallel computation.10 11 In this paper, we
describe the Cloudwave platform, which provides a novel
approach to parallelize signal-processing workflows using
MapReduce. Cloudwave supports real-time user interactions over
massive-scale ontology annotated electrophysiological data in col-
laborative multicenter research studies.

BACKGROUND AND SIGNIFICANCE
Epilepsy is a chronic neurological condition that affects 65
million patients worldwide, making it the most common serious
neurological disease, with more than 200 000 new cases diag-
nosed each year.12 Patients with epilepsy have repeated seizures
that manifest as physical or behavioral changes, including
changes in electrical activity of the brain, which are captured in
EEG recordings, and heart rate variations, which are captured
in ECG recordings.13–15 The ECG data are a vital source of clin-
ical signs for seizure detection and for correlating effects of anti-
epileptic drugs on the autonomic nervous system.15 It is
increasingly being studied for use in automated seizure-detection
instruments.13 16 Heart rate changes in epilepsy patients are
measured before seizure (pre-ictal), during seizure (ictal),
between seizures (inter-ictal), and after seizure (post-ictal) to
identify a variety of conditions, such as cardiac arrhythmia and
conduction abnormalities.13

Identifying the QRS complex in ECG recordings, which is
associated with depolarization of the right and left heart ventri-
cles, can be used to analyze changes in heart rate —for example,
increases in heart rate (also called tachycardia) or decreases in
heart rate (also called bradycardia). About 75–80% of epilepsy
patients with temporal lobe epilepsy have tachycardia, while
bradycardia occurs more rarely in about 3% of the patients with
frontal lobe epilepsy.13 17 The intervals between two consecutive
heart beats, referred to as the RR interval time series, is used to
derive heart rate variability (HRV) for analyzing changes in
the two branches of the autonomic nervous system during sei-
zures.18 The interval between the Q and T features in ECG (QT
interval) has been found to be increased during epileptiform
EEG discharges and has been studied in the context of a poorly
understood phenomenon called sudden unexplained death in
epilepsy (SUDEP).19

Cardiac electrophysiology in SUDEP
SUDEP is defined as sudden, unexpected, non-traumatic, non-
drowning death of epilepsy patients (with or without an epilep-
tic seizure) where no other cause of death is found.20 About
5000 epilepsy patient deaths in the USA per year are classified
as SUDEP with an incidence rate of 1/200 for chronic epilepsy,
with the younger population being at 24 times greater risk of
death.21 22 Unlike many other disorders or diseases, the precise
mechanism of death in SUDEP is unknown, and there is little
understanding of the underlying risk factors that can be used for
intervention or treatment.19

The effects of seizures on cardiorespiration and autonomic
nervous system function are the two commonly studied aspects
for identifying previously unknown risk factors and to provide
greater insight into the potential mechanism(s) of SUDEP.15 19 23

For example, cardiac arrest during seizure is a known potential
mechanism for SUDEP, and, similarly to some other types of
epilepsy (discussed above), bradycardia and asystole during sei-
zures have also been studied in the context of SUDEP.19 A better
understanding of cardiac events and their correlation with
SUDEP may enable more active intervention in terms of both
seizure prevention and the management of cardiorespiratory
risk factors that are implicated in the disease.

The Prevention and Risk Identification of SUDEP Mortality
(PRISM) project
The PRISM project is a National Institute of Neurological
Diseases and Stroke (NINDS)-funded multi-institution collab-
orative project that is recruiting potential SUDEP patients across
multiple EMUs. It involves four EMUs located at the Case
Western Reserve University-University Hospital (CWRU-UH,
Cleveland), the Ronald Reagan Medical Center at the University
of California Los Angeles (UCLA), the Northwestern
University-Northwestern Memorial Hospital (NMH, Chicago),
and the National Hospital for Neurology and Neurosurgery
(NHNN, London, UK). The participating EMUs collect
large-scale electrophysiological data, including ECG and EEG,
over a 5-day period from the recruited patients for subsequent
signal analysis.

Electrophysiological Big Data in the PRISM project
About 964 patients have been processed in the CWRU-UH
EMU since January 2011 after the start of the PRISM project,
and about 116 of these patients have consented to participate in
the PRISM project (figure 1A). An average of 321 MB of elec-
trophysiological data is generated from recordings of a single
patient per day, and about 1.6 GB of data over a typical 5-day
admission period in the EMU. This has resulted in 9.5 TB of
total signal data collected in the CWRU-UH EMU and about
4 TB of data collected from patients recruited for the PRISM
project since 2011. The rate of data collection in the EMU is
increasing every year—for example, the volume of data at the
end of 2012 was 6 TB, but 9.5 TB of data had already been col-
lected by May 2013 (figure 1B illustrates the growth in total
data collected from all patients in the EMU and patients
recruited for the PRISM project). Hence, there is an acute need
to define efficient algorithms and develop an effective informat-
ics platform to manage this electrophysiological Big Data.

Related work
Management of Big Data is a challenging issue across the spec-
trum of translational medical domains, including whole-genome
sequencing data24 and construction of a network view of dis-
eases for drug development,25 especially in the context of preci-
sion medicine.26 Multiple computational solutions, such as
high-performance cluster computing, cloud computing, and use of
high-end graphics processing units (GPUs), have been explored in
addressing Big Data challenges in biomedicine.27 The well-known
BLAST framework has been implemented using a MapReduce
approach,28 and recent work by White et al29 has demonstrated
the effective use of large-scale web search logs for pharmacovigi-
lance. In addition, specialized GPU-based infrastructure has been
found to be significantly faster than traditional computing
approaches for studying intracellular signal-transduction networks
in the context of clinical outcomes and drug effectiveness.30

The GPU-based approach has also been successfully used for
implementing computationally intensive signal-processing algo-
rithms, such as ensemble empirical mode decomposition and
Hilbert–Huang transformation.9 More recent work has focused
on the use of the Amazon Elastic Compute Cloud (EC2) to
process ECG data from wireless monitoring devices.31 To the
best of our knowledge, Cloudwave is the first informatics frame-
work to design parallel algorithms for massive-scale electro-
physiological signal data management with an integrated
ontology-driven web-based visualization and query interface.
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METHODS
The Cloudwave framework aims to develop novel parallelization
approaches for signal processing algorithms to achieve two
primary objectives:
1. enable clinical researchers to have real-time interactions with

massive-scale electrophysiological Big Data through (a) effi-
cient computation of clinically relevant cardiac measure-
ments, and (b) scalable storage using high-performance
distributed file systems;

2. an ontology-driven web-based signal visualization and query
interface that mitigates terminological heterogeneity in signal
data annotation and improves data retrieval for use by clini-
cians and researchers.
Figure 2 illustrates the architecture of Cloudwave consisting

of (1) Hadoop-based storage and computation modules with a
semantic metadata access layer (figure 2A), and (2) an integrated
web-based interface module that uses the epilepsy and seizure
ontology (EpSO)32 for signal visualization and query (figure
2B). We describe the details of the design and implementation
of the Cloudwave framework in the following sections.

Dependency analysis of computational algorithms
for cardiac measurements
The ECG data of EMU patients are usually recorded with mul-
tiple electrodes to provide both reference and redundancy. The

ECG data together with electrophysiological data from other
channels (eg, EEG, blood oxygen measurements) are converted
into the European Data Format (EDF+), which is a widely used
standard for storage and exchange of electrophysiological
data.33 In the PRISM project, the four ECG channels are
extracted from an EDF file and processed to compute the heart
rate measurements. The two common cardiac measures used in
epilepsy clinical research are (1) RR intervals and (2) instantan-
eous heart rate (IHR) to detect tachycardia or bradycardia.
These two measures are derived from the time interval between
two consecutive heartbeats requiring the accurate detection of
the R-wave in one QRS complex and the accurate detection of
the R-wave in the next QRS complex.34 Cloudwave uses the
‘wqrs’ open-source single-channel QRS detector algorithm and
IHR algorithm developed by the PhysioNet project.34 However,
these algorithms were developed for sequential execution, and
several critical challenges need to be addressed to integrate them
into a parallel computational workflow (designing parallelization
approaches for sequential algorithms has been an active area of
computer science research for the past five decades35).

Cloudwave addresses these challenges in two phases: (1)
formal algorithm analysis of the cardiac-measurement workflow
to characterize its degree of parallelization based on the famous
Amdahl’s law35; (2) defining a new parallel algorithm for the
MapReduce model that can be implemented in the open-source
Hadoop environment. Cloudwave uses a ‘coarse-grained

Figure 1 (A) Total number of
patients admitted to the Case Western
University Hospital epilepsy monitoring
unit (EMU) and number of patients
recruited for the Prevention and Risk
Identification of SUDEP Mortality
(PRISM) project. (B) Cumulative growth
in volume of electrophysiological signal
data collected from all EMU patients
and PRISM project-specific patients.
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parallelization’ approach for formal dependency analysis of the
computational workflow36 (figure 3 illustrates the complete
workflow for computing cardiac measures), where each node is
considered as an atomic task (eg, QRS detection). Cloudwave
uses the three conditions of ‘flow dependency’, ‘anti-
dependency’, and ‘output dependency’36 to identify computa-
tional tasks that can be executed in parallel. The dependency
analysis reveals that the maximum length of the critical path37 is
three, spanning the tasks ‘EDF2MIT’, ‘WQRS’, and ‘IHR’,
which allows ‘RDSAMP’ and ‘ANN2RR’ tasks to be executed in
parallel. This dependency analysis is used to define an efficient
parallel approach that conforms to the iterative two-step
MapReduce framework.

In the second phase, Cloudwave introduces a new algorithm
for signal processing in the MapReduce programming model
(figure 4A) that defines (1) the suitable construct for signal data
partitions to achieve effective parallelization (eg, 10 min seg-
ments), (2) the set of computations that can be implemented
during the Map phases, and (3) the aggregation steps that cor-
respond to the Reduce phases. The MapReduce model operates
on discrete entities of <key, value> pairs (other parallelization
models such as Message Passing Interface require different data
structures). The Cloudwave algorithm defines the sample identi-
fier associated with each discrete signal measure as a ‘key’ and
the signal measure as a ‘value’ for the Map phase. In the Reduce
phase, the segment identifier is used as ‘key’ and the three sets
of R-waves, the RR intervals, and IHR measures as ‘value’

(figure 4B). This algorithm enables the Cloudwave platform to
efficiently compute cardiac measures, generate optimal-sized
signal segments for visualization, and support real-time interac-
tions for users with ontology-driven querying.

Implementation of the Cloudwave MapReduce algorithm
for electrophysiological signal processing
There is no existing support to store, access, and process ECG
data in Hadoop; hence we have developed a library of specia-
lized classes for both computations in MapReduce framework
and managing electrophysiological data in HDFS. These new
classes constitute an open-source Hadoop signal-processing
middleware layer that can be used by other software tools for
processing large-scale electrophysiological data. The Cloudwave
data-storage module uses HDFS, which is a high-performance
distributed file system, to address the need to store and manage
TBs of signal data over multiple machines in a cluster environ-
ment.38 HDFS has built-in support to store data reliably even if
some of the machines in the cluster fail and also effectively
balance the distribution of data to ensure efficient retrieval.

Use of HDFS enables Hadoop MapReduce to efficiently
deploy computational tasks near the location of the dataset and
reduces the need to transfer large datasets across a network.
Two new Cloudwave classes called CW_EDFRecordReader and
CW_EDFWriteable were defined to facilitate reading and
writing ECG data from the EDF files stored in HDFS.

The Cloudwave MapReduce computation module supports
the use of any cardiac measurement algorithms similar to the
open-source PhysioNet algorithms used in this paper, which can
be easily integrated as ‘pluggable’ resources using the
Cloudwave CW_ECGSignalWrapper class. Cloudwave imple-
ments the parallelization steps using four new classes:
1. CW_ECGSignalWrapper class, which implements three

methods corresponding to algorithms used for R-wave detec-
tion and calculation of RR interval and IHR values;

2. CW_ECGFileInputFormat class, which uses the
CW_EDFRecordReader class to access the ECG signal data
from the EDF files;

3. CW_ECGFileOutputFormat class, which uses the
CW_EDFWriteable class to transfer the results of the com-
putations as files to be stored in HDFS;

4. CW_ECGProcessor class, which implements the Map and
Reduce phases using the <key, value> pairs discussed above
under ‘Dependency analysis of computational algorithms for
cardiac measurements’.
These new classes together with user documentation for

deploying Cloudwave on Hadoop installations will be made
open source as part of the PRISM project. The Cloudwave com-
putation module effectively uses the parallelized computations
to perform near real-time signal-processing computations,
which allows clinicians to access analysis results more rapidly
than with traditional approaches (a comparative evaluation is
described in the Results section ). Cloudwave also enables bio-
medical signal-processing researchers to implement algorithms
on a large scale, which was previously not supported by desktop
computing approaches. Clinical researchers can query and visu-
alize the processed signal data using the Cloudwave ontology-
driven web-based interface.

The Cloudwave signal visualization and query interface
Traditional approaches to visualizing and querying electro-
physiological data use standalone software tools that are usually
deployed on desktop computers—for example, Nihon Kohden.8

These tools are not suitable for multicenter collaborative studies

Figure 2 Architecture of the Cloudwave platform consisting of two
components: (A) Hadoop-based storage and computation module with
semantic metadata layer; (B) ontology-driven signal query and
visualization module.
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that require researchers to simultaneously access, view, annotate,
and share datasets. To address these challenges, we developed
the web-based ontology-driven interface module in Cloudwave,
which enables researchers to collaboratively query and visualize
signal data from different EMUs.

The visual interface can selectively render one or more of the
four ECG channel data and also visualize the potential differ-
ences between a ‘reference channel’ and other ECG channels
(figure 5 illustrates the signal visualizer and montage builder). In
addition, the interface supports querying of signal data using

epilepsy-related events, such as onset of seizure, end of seizure,
and EEG suppression after seizure, which are modeled as ontol-
ogy classes in EpSO.32 EpSO is an epilepsy domain ontology
that models epilepsy types, seizure features, the electrode place-
ment scheme, and electrophysiological signal details using the
description logic-based Web Ontology Language (OWL2).39

EpSO reuses ontology concepts from the Foundational Model
of Anatomy,40 RxNorm terminological system,41 and the Neural
Electromagnetic Ontologies (NEMO)42 to model anatomy,
medication, and signal data metrics, respectively.

Figure 3 Cardiac measurement workflow implemented in Cloudwave to identify QRS complexes and compute RR intervals and instantaneous
heart rate (IHR) values from ECG signal data. bpm, beats/min; EDF, European Data Format; HRV, heart rate variability.

Figure 4 (A) Cloudwave MapReduce algorithm for cardiac measurements from the ECG data. (B) Implementation of the algorithm with specialized
Cloudwave classes corresponding to the Map phases and Reduce phases. EDF, European Data Format; HDFS, Hadoop Distributed File System; IHR,
instantaneous heart rate.
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EpSO addresses the critical challenge of terminological het-
erogeneity in signal data annotation by providing a well-defined
and formal reference schema for consistent description of clin-
ical events in signal data. These semantic annotations are used
in the PRISM project for both patient cohort identification in
the Visual Aggregator and Explorer (VISAGE) tool43 and signal
data querying in Cloudwave. Figure 5 illustrates the EpSO-driven
query composer, which allows users to select a variety of signal
event terms, which are subsequently used to query the signal
database. The query module uses reasoning over the EpSO class
structure (and ontology annotations) to (a) reconcile string mis-
match (eg, the acronym PSP maps to the term ‘PolySpike’) and
(b) expand the query expression to include subcategories of a
term (eg, ‘abnormal EEG patterns’ includes ‘epileptiform pat-
terns’, ‘slow activity’, and ‘special patterns’). In the next section,
we present the results of a comparative evaluation of Cloudwave
with traditional signal-processing approaches to illustrate the
advantages of the Cloudwave platform.

RESULTS
The PRISM project aims to enroll about 1100 patients across
the four participating EMUs, and the CWRU-UH EMU has
already recruited 116 patients. Cloudwave is being used to
process data from 111 of these patients. Table 1 describes the
characteristics of these patients. Female patients outnumbered
male patients (62% vs 38%), with a range of 17–77 years and
median age of 39 years. Most of the patients (75%) had focal
seizures, with either both hemispheres involved (21%) or left
(36%) or right (16%) hemispheres. Only 25% of the patients
had generalized seizures, and in other cases the origin of the
seizure could not be accurately determined. The majority of

patients (85%) were taking antiepileptic medication, with two
of these patients taking a neuroleptic drug (olanzapine).

During their stay in the EMU, 62 patients experienced a
seizure event (55%). The patient seizure classification shows
that 81 patients experienced an epileptic paroxysmal episode
(73%), and the others experienced a non-epileptic psychogenic
paroxysmal episode or an organic paroxysmal episode. Only a
small number of patients had HRVs (14%), which were com-
puted using a new algorithm developed as part of the PRISM
project. The HRV was always associated with an epileptic parox-
ysmal event, which potentially highlights the correlation
between epileptic seizures and autonomic functions. In addition,
none of the patients had asystole.

Comparative evaluation of cardiac measure computations
on Cloudwave and traditional standalone computing
infrastructure
The comparative evaluation was performed on (1) a desktop
computer with an Intel Core i7 2.93 GHz processor (16 GB
main memory and 8 MB cache), (2) a single-node cluster imple-
mentation of Hadoop on the same desktop computer configur-
ation, and (3) a Hadoop implementation on a multi-node cluster
with six nodes. In the multi-node cluster implementation, the
master node uses a dual quad-core Intel Xeon 5150 2.66 GHz
processor, while the other nodes use dual quad-core Intel Xeon
5450 3.0 GHz processors with 16 GB of memory, and the nodes
are connected by a 10 Gigabit Ethernet (GigE). The three
primary objectives of the comparative test are to evaluate:
1. the time taken to identify R-waves on a single 640 MB size

EDF file with subsequent computation of RR intervals and
IHR values;

Figure 5 Cloudwave web interface for querying signal data using epilepsy and seizure ontology (EpSO) concepts (marked as annotations such as
‘onset of clonic seizure’) and visualization (note that, during a seizure, the EKG3–EKG4 signal moves beyond the reference frame). The ‘montage
builder’ allows the clinician to create different combinations of electrodes.
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2. the time taken to identify the R-waves, and to compute the
RR intervals and IHR cardiac measure on the largest dataset
supported by the desktop computer with 3.2 GB of signal
data from five EDF files;

3. the impact of optimization approaches that divide the signal
data into 10 min segments for faster signal rendering on the
Cloudwave visualization and query interface.
Figure 6A shows that the multi-node Cloudwave implementa-

tion reduces the time required for computation by a factor of
3.8 (0.32 vs 1.2 min) for data from one ECG channel, and it is
one order of magnitude faster (4.8 vs 0.48 min) than the
desktop computer for data from four ECG channels. This dra-
matic improvement in performance is also seen as the size of
data increases to 3.2 GB from five EDF files, where the multi-
node Cloudwave implementation is 14 times faster for data
from one ECG channel than single-node implementation (0.42 vs
6.08 min) and 20 times faster than the desktop computer for
data from all four ECG channels (1.57 vs 32.45 min) (figure 6B).
We also note that the time required for computations on the
multi-node Cloudwave implementation increases only by a factor
of 3.7, although the number of channels increases by a factor of
4, which corresponds to the expected impact of parallelization
(figure 6B). Figure 6C illustrates the effect of a Cloudwave opti-
mization approach that divides the signal data into 10 min seg-
ments to support efficient visualization and query of ECG data
by minimizing the impact of network latency. The multi-node
Cloudwave implementation is 5.3 times faster (145 vs 27 s) and
18 times faster than the desktop computer for 36 segments of
data. Since the desktop computer did not support computations
on the signal dataset larger than 3.2 GB, we demonstrate the scal-
ability of Cloudwave to support larger sized data on the multi-
node cluster implementation in the next section.

Scalability of Cloudwave on multi-node cluster
Figure 6D illustrates the performance of Cloudwave implemen-
tation on the multi-node cluster in terms of time taken for com-
puting cardiac measures as the size of signal data increases from
3.2 to 12 GB of data for one to four ECG channels. It is clear
that Cloudwave easily scales to this dataset and takes only a
maximum of 3.3 min to complete the computations. This
Cloudwave implementation featured only six computing nodes
with a total of 50 GB disk space, which could accommodate
12 GB of data because of the Hadoop replication factor. We are
in the process of increasing the available disk space to 5 TB as
we continue to load all PRISM data into Cloudwave, which can
be easily supported because of the extensibility of Hadoop to
hundreds or thousands of nodes.44

DISCUSSIONS
Electrophysiological signal data are usually not mentioned in
discussions on biomedical Big Data, but they are playing an
increasingly central role in driving both patient care and clinical
research in neurological diseases and sleep medicine.7 A key
challenge for Big Data management is ensuring compliance with
patient privacy regulations and protection from unauthorized
access on cloud platforms.

Privacy on cloud platforms
Currently, Cloudwave has been deployed on a private cloud
computing infrastructure that is protected by institutional fire-
walls with secure access control. The PRISM signal data are
manually deidentified to remove all protected health informa-
tion. The Health Insurance Portability and Accountability Act
(HIPAA) privacy and security toolkit, as well as the HITECH
privacy subsection, describes a framework for managing the
security of electronic health information, especially a set of
‘safeguard principles’ to prevent unauthorized access or use.
Commercial cloud infrastructures, such as Amazon Web Services
(AWS) and Microsoft Windows Azure, support compliance with
both HIPAA security and privacy rules with standard-based data
encryption, access control, and auditing mechanisms.
Specifically, AWS EC2 supports the use of 2048-bit RSA key
pair generation, allowing system administrators to create user
groups with distinct levels of access and restrict network traffic
to EC2 instances using customized rules.45 In addition, data
stored on the AWS Simple Storage Service (S3) can be encrypted
using standard techniques, and fine-level access control can be
maintained using an access control list for each S3 ‘object.’45

Cost–benefit analysis of the ‘pay-as-you go’ model
in cloud computing
Both AWS and Windows Azure have a flexible cost structure
with a ‘pay-as-you-go’ pricing mechanism, which makes it suit-
able for use by different categories of applications. The multi-
node Cloudwave installation was deployed within a preconfi-
gured high-performance computing (HPC) environment at
CWRU. In addition, the CWRU HPC personnel estimated the
Cloudwave usage cost to be comparable with the EC2 on
demand ‘large’ and ‘extra large’ instances of US 24 cents and
48 cents/h, respectively.46 The storage cost for Cloudwave was
also estimated to be comparable to the AWS Elastic Block Store
at US 10 cents/GB for 1 month, but without the additional data-
transfer cost (download bandwidth) associated with AWS that
may significantly increase the total user cost.46

Table 1 Characteristics of patients enrolled in the PRISM project

Characteristic Patients

Number Percentage

Sex
Female 69 62
Male 42 38

Age (years)
Median 39
Range 17–77

Seizure classification (patients experienced seizure during admission)
Epileptic paroxysmal episode 81 73
Non-epileptic psychogenic episode 8 7.3
Organic paroxysmal episode 3 2.7
Other (paroxysmal episode) 19 17

Medication
Antiepileptic 94 85
Neuroleptic 2 1.8
Antidepressant 1 0.2

Cardiac events
HRV 16 14
Asystole 0

Etiology
Genetic 7 6
Structural 23 21
Unknown 81 73

HRV, heart rate variability; PRISM, Prevention and Risk Identification of SUDEP
Mortality.
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CONCLUSIONS
Electrophysiological signal data are increasingly characterized by
both massive volume and high velocity, as they play a greater
role in supporting patient care and clinical research. In this
paper, we present the Cloudwave platform, which addresses the
three primary requirements of electrophysiological Big Data: (a)
to reliably store a large volume of signal data; (b) to efficiently
perform complex ECG signal-processing computations for real-
time user interactions; (c) to support ontology-driven web-based
visualization and query access for collaborative research. In con-
trast with traditional desktop-based signal-processing
approaches, Cloudwave shows a dramatic reduction in the time
required to perform computations over increasing volumes of
signal data. Cloudwave is a flexible and scalable platform for
supporting clinical research studies using massive-scale signal
data in multiple disease domains.
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