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ABSTRACT
MetaMap is a widely available program providing access
to the concepts in the unified medical language system
(UMLS) Metathesaurus from biomedical text. This study
reports on MetaMap’s evolution over more than
a decade, concentrating on those features arising out of
the research needs of the biomedical informatics
community both within and outside of the National
Library of Medicine. Such features include the detection
of author-defined acronyms/abbreviations, the ability to
browse the Metathesaurus for concepts even tenuously
related to input text, the detection of negation in
situations in which the polarity of predications is
important, word sense disambiguation (WSD), and
various technical and algorithmic features. Near-term
plans for MetaMap development include the
incorporation of chemical name recognition and
enhanced WSD.

MetaMap1 is a widely available program providing
access from biomedical text to the concepts in the
unified medical language system (UMLS) Meta-
thesaurus.MetaMap arose in the context of an effort
to improve biomedical text retrieval, specifically the
retrieval of MEDLINE/PubMed citations.2 3 It
provided a link between the text of biomedical
literature and the knowledge, including synonymy
relationships, embedded in theMetathesaurus. Early
MetaMap development was guided by linguistic
principles which provided both a rigorous founda-
tion and a flexible architecture in which to explore
mapping strategies and their applications.4e6 A
system diagram showing MetaMap processing is
shown in figure 1. Input text undergoes a lexical/
syntactic analysis consisting of:
< tokenization, sentence boundary determination

and acronym/abbreviation identification;
< part-of-speech tagging;
< lexical lookup of input words in the SPECIALIST

lexicon7; and
< a final syntactic analysis consisting of a shallow

parse in which phrases and their lexical heads are
identified by the SPECIALIST minimal commit-
ment parser.7

Each phrase found by this analysis is further
analyzed by the following processes:
< variant generation, in which variants of all

phrase words are determined (normally by
table lookup);

< candidate identification, in which intermediate
results consisting of Metathesaurus strings,
called candidates, matching some phrase text
are computed and evaluated as to how well they
match the input text;

< mapping construction, in which candidates
found in the previous step are combined and
evaluated to produce a final result that best
matches the phrase text; and, optionally,

< word sense disambiguation (WSD), in which
mappings involving concepts that are semanti-
cally consistent with surrounding text are
favored.8

The evaluation performed on both the candidates
and the final mappings is a linear combination of
four linguistically inspired measures: centrality;
variation; coverage; and cohesiveness. The evalu-
ation process begins by focusing on the associa-
tion, or mapping, of input text words to words of
the candidates. Centrality, the simplest of the
measures, is a Boolean value which is one if the
linguistic head of the input text is associated with
any of the candidate words. The variation measure
is the average of the variation between all text
words and their matching candidate words, if any.
Coverage and cohesiveness measure how much of
the input text is involved in the mapping (the
coverage) and in how many chunks of contiguous
text (the cohesiveness). The four measures are
combined linearly giving coverage and cohesiveness
twice the weight of centrality and variation, and
the result is normalized to a value between 0 and
1000. Complete details of the evaluation process
can be found in the technical document, MetaMap
evaluation.9

MetaMap is highly configurable across multiple
dimensions, including:
< data options, which choose the vocabularies and

data model to use;
< output options, which determine the nature and

format of the output generated by MetaMap;
and

< processing options, which control the algo-
rithmic computations to be performed by
MetaMap.
The data options allow the user to choose the

UMLS data (eg, 2009 for the 2009AA release) for
use by MetaMap, and the desired level of filtering
to employ.
MetaMap’s relaxed data model uses:

< lexical filtering, which excludes most Metathe-
saurus strings mapped to a concept which are
essentially identical to another string for the
same concept; and

< manual filtering, which excludes unnecessarily
ambiguous terms, as determined by a detailed
annual study.
MetaMap’s strict model supplements the above

filtering regimen with:
< syntactic filtering, which excludes complex

expressions with underlying grammatical
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structure (eg, ‘accident caused by caustic and corrosive
substances’), which MetaMap would normally be unable to
find anyway because they span multiple phrases.
Typical output options include:

< hiding or displaying the semantic types or concept unique
identifiers (CUI) of all displayed concepts;

< hiding or displaying candidates or mappings, where
MetaMap will not even compute these elements unless
some other option requires them;

< generating XML output rather than the default human-
readable output;

< excluding or restricting output to concepts of specified
semantic types; and

< excluding or restricting output to concepts drawn from
specified vocabularies.
Some of MetaMap’s most useful processing options include:

< controlling the types of derivational variants used in lexical
variant generation (no variants at all, adjective/noun variants
only, or all variants);

< turning on and off MetaMap’s WSD module;
< term processing, which causes MetaMap to process each

input record, no matter how long, as a single phrase, in order
to identify more complex Metathesaurus terms;

< allowing overmatches so that, for example, the input text
medicine will map to any concept containing the word
medicine, medical or any other variant of medicine; and

< allowing concept gaps so that, for example, the text
obstructive apnea will map to concepts ‘obstructive sleep
apnoea’ and ‘obstructive neonatal apnea’, which are consid-
ered too specific for normal processing.
Note that the combination of the last three options (together

with hiding the mappings) is known as MetaMap’s browse
mode. It is generally used to explore the Metathesaurus both
broadly and deeply as opposed to the more normal mode in
which the ‘best match’ to the input text is sought. See the
Genre and task issues section below for more information
about browse mode. Details of all aspects of MetaMap
processing can be found in the technical documents at the
MetaMap portal.10

As mentioned earlier, the final phase of MetaMap’s lexical/
syntactic processing involves computing a shallow parse,
dividing the input text into phrases, which form the basis of
MetaMap’s subsequent processing. Each phrase’s human-read-
able output by default consists of three parts:
< the phrase itself;
< the candidates, a list of intermediate results consisting of

Metathesaurus strings matching some or all of the input text.
In addition, the preferred name of each candidate is displayed
in parentheses if it differs from the candidate, and the
semantic type of the candidate is also shown; and finally,

< the mappings, combinations of candidates matching as much
of the phrase as possible.
Most elements of human-readable output, whether default or

optional, can be shown or hidden based on MetaMap options. In
addition, by default MetaMap displays only those mappings
that receive the highest score. MetaMap’s default human-read-
able output generated from the input text obstructive sleep
apnea is shown in figure 2. In this example MetaMap identified
11 Metathesaurus candidates, the best of which received
a perfect score of 1000, and by itself formed the top-scoring
mapping. If all mappings had been requested, then several more
mappings including one consisting of the combination of ‘apnea,
sleep’ and ‘obstructive’ would have been displayed.
MetaMap possesses a number of strengths and weaknesses.

Among its strengths are its thoroughness, characterized by its
aggressive generation of word variants, and its linguistically
principled approach to its lexical and syntactic analyses as well
as its evaluation metric for scoring and ranking concepts. It is
also adept at constructing partial, compound mappings when
a single concept is insufficient to characterize input text phrases.
As evidenced by the above description of some of its options, it
is highly configurable; its behavior can be easily customized
depending on the task being addressed. Finally, because its
lexicon and target vocabulary can be replaced with others from
another domain, it has the property of domain independence.
One of MetaMap’s weaknesses is that it can be applied only

to English text. MetaMap’s English-centric nature is evident
throughout its implementation, not just in its lexical and

Figure 1 MetaMap system diagram.
HR, human readable; MMO, MetaMap
machine output; UMLS, unified medical
language system.
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syntactic algorithms. Also, a negative consequence of its thor-
oughness is that it is relatively slow. In its current imple-
mentation, it is not appropriate for real-time use; and it would
require a major fine-grained parallel re-implementation in order
to overcome this weakness. The efficiency enhancements
described below in the Algorithm tuning section, with rare
exceptions, allow MetaMap to process a given MEDLINE cita-
tion in well under a minute, although complex phrases, for
example:

‘from filamentous bacteriophage f1 PCR polymerase-chain reaction
PDB Protein Data Bank PSTI human pancreatic secretory trypsin
inhibitor RBP retinol-binding protein SPR surface plasmon
resonance TrxA E. coli thioredoxin’

can still require hours of computation because they generate
many hundreds of thousands of potential mappings. It is
examples such as this that make it clear that re-implementing
the MetaMap algorithm to process phrases in parallel would
not in general be sufficient to sanction the use of MetaMap for
real-time or high-volume applications. That would require sub-
phrasal parallelization, which for mapping construction repre-
sents a non-trivial challenge. Although MetaMap was originally
designed for tasks that can easily be accomplished using our
scheduler facility, which uses multiple servers to provide docu-
ment-level parallelization, it is likely that we will undertake
a fine-grained parallelization effort in the future.

Perhaps MetaMap’s greatest weakness is its reduced accuracy
in the presence of ambiguity. MetaMap employs a WSD algo-
rithm8 to reduce ambiguity, but it is clear that further disam-
biguation efforts will be needed to solve the problem
satisfactorily, especially as the Metathesaurus is becoming ever
more ambiguous. We return to this issue in the Conclusion.

After some experience with MetaMap, it became clear that it
could be applied to tasks other than retrieval, namely text
mining,11e13 classification, question answering,14 knowledge
discovery,15 and concept-based indexing,16e20 among others. In
addition, research efforts involving MetaMap have extended to
groups outside the National Library of Medicine (NLM).21e32

Requests for access to MetaMap from the biomedical infor-
matics community grew over the years, often coinciding with
particular research questions. Besides describing MetaMap in

general, a major purpose of this paper is to highlight some of
these research topics. We emphasize the challenges throughout
MetaMap’s development history and conclude with a discussion
of plans for future MetaMap extensions, including chemical
name recognition and enhanced WSD.
In order to provide more context for the paper, we note that

MetaMap has been used by NLM researchers and outside users
since 1994 and is currently available via web access, a down-
loadable Java implementation (MMTx), an application
programming interface, and most recently, a downloadable
version of the complete Quintus Prolog implementation of
MetaMap itself.10 MetaMap was originally developed using
Quintus Prolog, which is available from and maintained by the
Swedish Institute of Computer Science (http://www.sics.se).
Quintus Prolog provides an interactive, Emacs-based, source-
linked debugger, a C interface, incremental compilation, and the
ability to create runtime binaries which can be used without
a Quintus Prolog license. We are currently porting MetaMap to
SICStus Prolog, which offers better support for application
deployment under Windows. Finally, we note that MetaMap
and MMTx are two versions of the same program. MetaMap,
the original program, was developed using Prolog because the
language lent itself well to prototyping natural language
processing (NLP) applications. We created the Java-based
MMTx as a way to distribute MetaMap while separating
development from production efforts and because of its plat-
form independence and zero cost. We have since discovered that,
due to MMTx’s tokenization/lexicalization routines, the two
programs produce slightly different results despite concerted
efforts to reconcile them. We have also learned that almost no
MetaMap users modify the code for which they would incur
Prolog licensing fees. These factors make it unnecessary to
maintain two versions of the program; and as Prolog provides
a better development environment, we are phasing out MMTx
by freezing its implementation, limiting development to bug
fixes.

BACKGROUND
In order to better understand MetaMap’s role in the goal of
relating biomedical text to structured sources of biomedical
knowledge, it is useful to consider other biomedical mapping

Figure 2 An example of MetaMap’s human-
readable output.

Phrase: "obstructive sleep apnea" 

Meta Candidates (11): 

  1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or
       Syndrome] 

   901 Apnea, Sleep (Sleep Apnea Syndromes) [Disease or Syndrome] 

   827 APNOEA (Apnea) [Pathologic Function] 

   827 Sleep [Organism Function] 

   827 Obstructive (Obstructed) [Functional Concept] 

   827 Apnea (Apnea Adverse Event) [Finding] 

   793 Sleeping (Asleep) [Finding] 

   755 Obstruction [Individual Behavior,Pathologic Function] 

   755 Sleepy [Finding] 

   755 Sleeplessness [Sign or Symptom] 

   755 Obstruction (Obstruction within Medical Device) [Phenomenon or
       Process] 

Meta Mapping (1000): 

  1000 Obstructive sleep apnoea (Sleep Apnea, Obstructive) [Disease or
       Syndrome] 

J Am Med Inform Assoc 2010;17:229e236. doi:10.1136/jamia.2009.002733 231

Synthesis of research



programs as well as efforts to assess the degree to which
MetaMap succeeds in this goal. That is the purpose of the
following sections.

Related work
Over the years several researchers have developed programs to
map biomedical text to a knowledge source such as NLM’s
medical subject headings (MeSH) or, more recently, the UMLS
Metathesaurus. Examples of such efforts that predate MetaMap
include MicroMeSH,33 CHARTLINE,34 CLARIT,35 and
SAPHIRE.36 Each of these systems employed one or more of the
following features: lexical analysis, often using a specialized
lexicon; syntactic analysis; a mapping procedure accounting for
partial matching; and the UMLS Metathesaurus as the target
knowledge source, rather than a smaller source such as MeSH.
MetaMap’s contribution to this environment was that it
combined all of these features, emphasizing linguistic principles
throughout. Mapping tools developed subsequently to
MetaMap include those of Nadkarni et al,37 and Knowl-
edgeMap.38 These recent efforts have been applied to a variety of
applications and have achieved varying degrees of success,
depending both on how well they solve such NLP problems as
parsing, lexical variation and ambiguity resolution, as well as
how successfully they have been tailored to specific tasks.

Evaluation of MetaMap
Direct evaluation of MetaMap in which MetaMap’s perfor-
mance is compared with a manually constructed gold standard
of mappings to the Metathesaurus has almost never been
performed on a realistic scale. However, several indirect evalua-
tions have been performed over the years. Such evaluations
consisted of performing a specific NLP task first without
MetaMap results and then with them to see if the MetaMap
results improved task performance.

As MetaMap was originally developed in the context of
MEDLINE citation retrieval, the earliest evaluations consisted of
standard information retrieval experiments conducted using
MEDLINE test collections. One such experiment used the
Metathesaurus concepts found by MetaMap for each document
(MEDLINE citation) in a test collection.2 The documents were
then indexed without and with these concepts, and the results
were compared. This document indexing experiment resulted in
a performance improvement (as measured by 11-point average
precision) of a modest 4%, a result which is considered to be at
best barely discernable.

A second retrieval experiment focused on query expansion
instead of document indexing.3 It consisted of processing
MEDLINE test collection queries with MetaMap and
augmenting the queries with both the resulting Metathesaurus
concepts and the text of the phrases discovered early during
MetaMap processing. Augmenting each query with the combi-
nation of original query text, phrase text and Metathesaurus
concepts improved retrieval results, as measured by 11-point
average precision over baseline, by 14%, which was almost as
strong a result as the best published results at the time of 16%,39

which used document feedback, an automatic form of relevance
feedback, on a MEDLINE test collection. An even larger
improvement of 20% was obtained using document feedback at
the third Text REtrieval Conference (TREC) by the Cornell
group.40 Given the power of retrieval feedback, which was not
available with the retrieval engine we used for our experiment, it
is likely that our 14% result would have improved significantly if
we could have augmented our query expansion approach with
retrieval feedback.

Moving beyond simple MetaMap-enhanced retrieval, an
indexing experiment involving NLM’s medical text indexer
(MTI),16 18 was performed to compare MTI’s indexing effec-
tiveness against official, manually produced MEDLINE
indexing.41 (Note that MTI was referred to as the indexing
initiative system (IIS) at the time.) The experiment is relevant to
evaluating MetaMap as MetaMap is the basis of one of MTI’s
two foundational indexing methods, the other being a variant of
PubMed’s related articles facility.18 For the experiment, the
documents in several MEDLINE test collections were processed
by MTI. Standard retrieval experiments were performed using
only the document text as a baseline and then augmenting the
document text with either MEDLINE indexing or MTI’s
indexing. Augmented documents always improved performance
over the baseline; and in all but one case, the MEDLINE indexing
achieved better performance than MTI indexing. However, the
experiment showed that even though MTI indexing does not
have the coherence of manual indexing, it can still produce
retrieval results almost as good as those obtained with manual
indexing.
One example of an experiment comparing MetaMap with

another system was performed by Denny et al38 They developed
a system, KnowledgeMap, for the purpose of identifying
concepts in medical curriculum documents and compared
KnowledgeMap’s performance with that of MetaMap. They
found that on a collection of 10 curriculum documents,
KnowledgeMap outperformed MetaMap both on recall (82% vs
78%) and precision (89% vs 85%).
A final, more recent experiment42 compared MetaMap’s

concept identification ability with that of MGREP, a program
developed at the University of Michigan. The task for the
experiment was large-scale indexing of online biomedical
resources, and the two systems were compared on four docu-
ment sets ranging in size from 2 K documents to 99 K docu-
ments and for two entity types, biological processes and
diseases. MGREP is a much simpler program than MetaMap.
Rather than using significant linguistic analysis followed by
mapping construction from intermediate results, MGREP relies
on a comprehensive lexicon of terms of interest to recognize
concepts in text. With a couple of exceptions, MetaMap recog-
nized more concepts (occasionally several times more concepts)
in text. Not surprisingly, then, MGREP almost always outper-
formed MetaMap with respect to precision, an exception being
that MetaMap slightly outperformed MGREP for recognizing
biological processes in http://ClinicalTrials.gov. Recall, for which
the more thorough MetaMap would be expected to outperform
MGREP, was not reported because of the difficulty in computing
it for document collections of the size used in the study. Perhaps
just as significantly, MGREP was much faster in performing the
indexing task, almost two orders of magnitude faster in one case.
Because MGREP clearly outperformed MetaMap for the study, it
was chosen as the concept recognition tool for the production
indexing system. MetaMap’s inability to perform in real-time
situations mentioned earlier only confirms the decision.

RESEARCH-DRIVEN DEVELOPMENT
Virtually all MetaMap development has been driven by issues
arising naturally from research efforts. Some of these issues are
theoretically substantial and deep; others are practical and
straightforward. They include tokenization issues, output
formats, issues relating to text genre or application task, and
algorithm tuning. Examples of these issue types are discussed in
the following sections.
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Tokenization issues
Acronym detection
Most technical domains are heavily laden with acronyms and
abbreviations (AA), often accompanied by their definitions or
expansions:

The effect of adrenocorticotropic hormone (ACTH) and cortisone
on drug hypersensitivity reactions.

In analyzing such text, it is essential that subsequent occur-
rences of ACTH be analyzed as adrenocorticotropic hormone.
We have accordingly implemented AA detection in an algorithm
which is fundamentally the same, intuitive algorithm as that
described in Schwartz and Hearst.43 We try to match a potential
AA, which must be bracketed (eg, (ACTH)) with a potential
expansion, which must precede the AA in the same sentence (eg,
adrenocorticotropic hormone).

Because of the character-matching required, AA detection can
be computationally expensive when applied to long strings. In
order to streamline the logic, we have implemented a number of
efficiency rules which prevent erroneous attempts to match
potential AAs and expansions. Some typical rules include the
following:
1. AA cannot contain more than 20 characters.
2. Expansions must be longer than their corresponding AA.
3. Expansions cannot contain parenthesized text.
4. Single-word AA cannot contain more than 12 characters.
5. AA cannot begin with such, also or including.

For example, rule 1 prevents costly fruitless attempts to
identify an AA in the text bladder contractile dysfunction
(bladder decompensation).

Of course some AA do exceed 20 characters, so our algorithm
causes some false negatives, but the computational savings
outweigh the decrease in recall.

Non-standard input
A common problem for NLP systems is handling non-standard
or ill-formed input. In the case of MetaMap, MEDLINE/PubMed
citations contain numerous instances of sentence-ending periods
not followed by whitespace, which led to numerous false
negatives in end-of-sentence detection. For example, the abstract
of PMID 18011217 contains a passage with three such instances
in succession:

Diphtheria is a disease of childhood. Seventy per cent of all cases
and ninety per cent of all deaths occur under 15 years of age.More
boys than girls and more women than men have diphtheria.The
fatality rate is higher for males than for females.

We discovered over 50 000 such cases in the PubMed database,
and implemented a workaround, until the data can be corrected,
by assembling a list of the most common words found in this
non-standard context and forcing the tokenizer to create
sentence breaks in these special contexts.

Output formats
MetaMap’s default output is human readable and displays, for
each phrase in the input text, an intermediate list of candidate
Metathesaurus concepts matching (part of) the phrase, the
mappings formed by combining candidates matching disjoint
phrase text, and ancillary information, often optional, such as
concept CUI and their semantic types.
We have also developed other output formats, some at the

behest of our users: MetaMap machine output (MMO), XML
output and colorized MetaMap output, each of which is
described here.
MMO, the earliest alternative form of MetaMap output,

includes a superset of the information in human-readable output
and is formatted as Prolog terms. This format enables storing
MetaMap output for subsequent postprocessing by other Prolog-
based applications, thereby obviating the need for repeated
MetaMap analysis of input texts.
Because XML has become somewhat of a lingua franca for

internet-based information exchange, we have developed an
XML output format that presents the same data as MMO.
Consider the simple input text consisting of the single word
heart. To provide context, figure 3 contains the human-readable
output for heart.
MetaMap’s XML output for heart (greatly simplified and

compressed for expository conciseness) is shown in figure 4.
The figure shows that the XML data presented for each

concept include:
< the concept’s (negated) score: �1000;
< its CUI: C0018787;
< the matching UMLS string and preferred name for the

concept: ‘heart’ for both;
< the semantic type(s) of the concept: bpoc, the abbreviation

for ‘body part, organ, or organ component’;
< the UMLS source(s) in which this candidate concept appears:

including MSH (for MeSH); and
< positional information for utterances, phrases and concepts:

a start position of 0 and a span length of 5 for the single
utterance, phrase and concept in this simple example. Note
that the computation of such positional information was
crucial for developing colorized MetaMap output.
Colorized MetaMap output (MetaMap 3-D, or MM3D) is

designed to provide visual layers of information for the concepts
mapped by MetaMap in a body of text and was specifically
developed to display clinical text effectively. The initial version
of MM3D highlights all concepts using colors depending on
their semantic groupings (eg, concepts from the disorders group
are shown in light pink). Names of prescription drugs are also
linked to DailyMed.44 In addition, the program denotes
syntactic elements such as the head of each phrase using
underlining; and phrase boundaries in the text can be turned on
or off by the user as desired. Enhancements to MM3D will
concentrate on adding UMLS-specific information for each of

Figure 3 MetaMap’s human-readable output
for the input text ‘heart’.

Phrase: "heart" 

Meta Candidates (2): 

  1000 Heart [Body Part, Organ, or Organ Component] 

  1000 Heart (Entire heart) [Body Part, Organ, or Organ Component] 

Meta Mapping (1000): 

  1000 Heart (Entire heart) [Body Part, Organ, or Organ Component] 

Meta Mapping (1000): 

  1000 Heart [Body Part, Organ, or Organ Component] 
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the mapped concepts, incorporating negation information when
available, and possibly adding SemRep and MeSH information
when applicable.

Genre and task issues
Many MetaMap features have been developed because of the
genre of text to be processed or, more specifically, the tasks to be
performed on the text. Several such features are described here.
MetaMap options that implement a given feature are shown in
parentheses after the feature name.

Term processing (-z)
MetaMap normally expects input in the form of complete
sentences which are parsed into phrases and processed inde-
pendently. If, however, a user already knows the blocks of text
that should be analyzed as a unit (vocabulary terms, for
example), then term processing can be specified. The parsing
analysis still occurs to aid in evaluating results, but lines of input
text are not split into multiple phrases for separate processing.

Browse mode (-zogm)
An extension of term processing is MetaMap’s browse mode,
which is useful for determining how well a set of terms is
represented in the Metathesaurus. An example of such a need
was the large scale vocabulary test undertaken by NLM and the
Agency for Healthcare Research and Quality (AHRQ; formerly,
AHCPR) to answer coverage questions and to discover candidate
vocabularies for inclusion in the Metathesaurus.45 (Note that
a simplified implementation of browse mode called approximate
matching was actually used in the large scale vocabulary test
study.)
In order to find any Metathesaurus concept even remotely

related to an input term, browse mode augments term
processing (�z) with overmatches (�o) and concept gaps (�g).
Overmatches (eg, mapping medicine to ‘alternative medicine’,
‘medical records’, or even ‘nuclear medicine procedure’) are not
normally allowed by MetaMap because the results are generally
too semantically distant from the input. Similarly, although
MetaMap always allows gaps in the input text (eg, mapping
ambulatory heart monitor to ‘ambulatory monitors’), concept
gaps (eg, mapping obstructive apnea to either ‘obstructive sleep
apnoea’ or ‘obstructive neonatal apnea’) are not normally
allowed because gapped concepts are generally too specific. Note
that the computation of final mappings (�m) is suppressed for
browse mode because of the overwhelming number of final
mappings constructible from the large number of intermediate
concepts (see candidate identification in figure 1) normally
found. Browse mode is computationally expensive even without
mapping construction.

Negation (-negex)
Although detecting negated concepts may or may not be useful
for ad-hoc information retrieval, it is essential for properly
understanding clinical text. In particular, recognizing negated
concepts was essential in the context of the medical NLP chal-
lenge, sponsored by a number of groups including the Compu-
tational Medicine Center (CMC) at the Cincinnati Children’s
Hospital Medical Center. The challenge consisted of assigning
International Classification of Diseases, 9th Revision, clinical
modification (ICD-9-CM) codes to clinical text consisting of
anonymized clinical history and impression sections of radiology
reports. MetaMap was provisionally but successfully modified46

to detect negated predications in these reports using a simplified
version of the NegEx algorithm.47 MetaMap now implements
an extension of the complete NegEx algorithm.

Word sense disambiguation (-y)
MetaMap’s greatest weakness is arguably its inability to resolve
Metathesaurus ambiguity, that is, cases in which two or more
Metathesaurus concepts share a common synonym. For
example, the synonym ‘cold’ (equivalently, ‘cold’ or ‘COLD’)
occurs in six distinct concepts such as ‘common cold’, ‘cold
temperature’ and ‘cold sensation’. Until recently, we have relied
on a manual study of Metathesaurus ambiguity48 to suppress
word senses deemed problematical for (literature-centric) NLP

 <MMO> 
 <Utterances Count="1"> 
  <Utterance> 
   <UText>heart</UText> 
   <UStartPos>0</UStartPos> 
   <USpanLen>5</USpanLen> 
   <Phrases Count="1"> 
    <Phrase> 
     <PText>heart</PText> 
     <Tags Count="1"> 
      <Tag> 
       <Type>head</Type> 
       <LexMatch>heart</LexMatch> 
       <InputMatch>heart</InputMatch> 
       <POS>noun</POS> 
       <Tokens Count="1"> 
        <Token>heart</Token> 
       </Tokens> 
      </Tag> 
     </Tags> 
     <PStartPos>0</PStartPos> 
     <PSpanLen>5</PSpanLen> 
     <Candidates Count="2"> 
      <Candidate> 
       <NegScore>-1000</NegScore> 
       <UMLSCUI>C0018787</UMLSCUI> 
       <UMLSConcept>Heart</UMLSConcept> 
       <UMLSPreferred>Heart</UMLSPreferred> 
       <MatchedWords Count="1"> 
        <MatchedWord>heart</MatchedWord> 
       </MatchedWords> 
       <STs Count="1"> 
        <ST>bpoc</ST> 
       </STs> 
       <Sources Count="23"> 
        <Source>MSH</Source> 
       ... XML for other sources ... 
       </Sources> 
       <Spans Count="1"> 
        <Span> 
         <StartPos>0</StartPos> 
         <SpanLen>5</SpanLen> 
        </Span> 
       </Spans> 
      </Candidate> 
      ... XML for second candidate ... 
     </Candidates> 
     <Mappings Count="2"> 
      <Mapping> 
       <MapNegScore>-1000</MapNegScore> 
       <Candidates Count="1"> 
       ... XML for Candidate ... 
       </Candidates> 
      </Mapping> 
      ... XML for second mapping ... 
     </Mappings> 
    </Phrase> 
   </Phrases> 
  </Utterance> 
 </Utterances> 
 </MMO> 

Figure 4 MetaMap’s XML output for the input text ‘heart’.

234 J Am Med Inform Assoc 2010;17:229e236. doi:10.1136/jamia.2009.002733

Synthesis of research



usage. For example, the ‘cold’ synonyms in the three remaining
cold concepts (‘cold brand of chlorpheniramine-phenylpropa-
nolamine’, ‘cold therapy ’ and ‘chronic obstructive airway
disease’) are all suppressed for MetaMap processing. Unfortu-
nately, manual suppression only partly solves the ambiguity
problem (eg, ‘cold’ remains three-ways ambiguous). Even worse,
the problem is growing: the number of cases of ambiguity not
already suppressed by Metathesaurus editors rose from 26 084 in
the 2007AA release to 36 266 in the 2008AA release, an increase
of 39%.

The only long-term solution to an environment with signifi-
cant ambiguity is to implement some form of WSD. We devel-
oped a WSD test collection for Metathesaurus ambiguity49 and
have used it to test a WSD algorithm8 based on semantic type
indexing, which resolves Metathesaurus ambiguity by choosing
a concept having the most likely semantic type for a given
context.

Algorithm tuning
Two practical improvements to MetaMap’s algorithm include
the suppression of word variants that almost always lead to bad
mappings and a collection of efficiency modifications. The
former improves accuracy while the latter improves throughput.

Variant suppression
A recent improvement to our variant generation logic that has
increased precision is the suppression of variants of one and two-
character words. For example, in analyzing t-cell, we no longer
generate variants that produce the false positive candidates ‘TX’
and ‘TS’ from t. We implemented this change because of the
large number of false positives observed and in coordination
with a project to filter out Metathesaurus content beyond what
MetaMap already does.50 Ex post facto analysis has confirmed
that one-character words have five times more variants than the
average word, and two-character words have twice as many.

Efficiency modifications
When MetaMap was first implemented, the Metathesaurus
contained approximately 440 K concepts. No content-bearing
word (such as human, disease and protein) appeared in more
than 12 K concepts; consequently the relatively modest size of
the Metathesaurus did not impose significant computational
constraints. For example, caching results in simple data struc-
tures such as linear lists incurred no discernible performance
penalty. Since then, however, the number of concepts in the
Metathesaurus has grown to almost 2 M, a fourfold increase;
and now, over 100 content words each appear in at least 12 K
concepts.

Because this increase in the size and complexity of the
Metathesaurus was relatively gradual, the accompanying slow-
down in MetaMap’s throughput was not immediately notice-
able. This year, however, the Metathesaurus has grown to such
an extent that certain MEDLINE citations took an entire day to
analyze, and others failed because they required more physical
memory than the 8 GB installed on our workstations. We
therefore optimized MetaMap in three significant ways:
< caching results in AVL trees (self-balancing binary search

trees) rather than linear lists;
< expanding the scope of caching from a phrase to an entire

citation; and
< replacing a straightforward but inefficient call to Prolog’s

findall/3 all-solutions predicate with pure recursive code.
Our optimizations have met with excellent results: some

complex MEDLINE citations now run well over 100 times faster,

and none has yet exceeded our memory capacity. One infamous
citation, in particular, that used to require over 40 h of
processing can now be analyzed in under 2 min. In spite of these
dramatic improvements, further optimization will be required in
order to handle challenging cases such as the complex phrase
mentioned earlier.

CONCLUSION
This paper has described some of the history, most important
features, linguistic basis, architecture, and processing method-
ology of MetaMap, which has become established as one of the
premier applications for the identification of Metathesaurus
concepts in biomedical text. Because of our ongoing interaction
with our user community, MetaMap has over the years evolved
significantly with regard to functionality, implementation, and
distribution vehicles since its inception in the mid 1990s, and it
is currently used by many groups throughout the world in the
biomedical informatics community.
Some of the near-term plans for further MetaMap develop-

ment include:
< improving MetaMap’s ability to process clinical text in

conjunction with a project which creates UMLS Metathe-
saurus content views for various biomedical NLP purposes;50

< adding chemical name recognition based on Wilbur et al51 to
MetaMap’s higher-order tokenization capabilities; and

< enhancing MetaMap’s WSD accuracy by adding more WSD
algorithms and basing final ambiguity resolution on a voting
mechanism.
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