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ABSTRACT

Objective Negation is a linguistic phenomenon that
marks the absence of an entity or event. Negated events
are frequently reported in both biological literature and
clinical nates. Text mining applications benefit from the
detection of negation and its scope. However, due to the
complexity of language, identifying the scope of negation
in a sentence is not a trivial task.

Design Conditional random fields (CRF), a supervised
machine-learning algorithm, were used to train models
to detect negation cue phrases and their scope in

both biological literature and clinical notes. The

models were trained on the publicly available BioScope
corpus.

Measurement The performance of the CRF models was
evaluated on identifying the negation cue phrases and
their scope by calculating recall, precision and F1-score.
The models were compared with four competitive
baseline systems.

Results The best CRF-based model performed
statistically better than all baseline systems and NegEx,
achieving an F1-score of 98% and 95% on detecting
negation cue phrases and their scope in clinical notes,
and an F1-score of 97% and 85% on detecting negation
cue phrases and their scope in biological literature.
Conclusions This approach is robust, as it can identify
negation scope in both biological and clinical text. To
benefit text mining applications, the system is publicly
available as a Java APl and as an online application at
http://negscope.askhermes.org.

Negation is a linguistic phenomenon that marks
the absence of an entity or event. Negated events
are frequent in both biological literature and clinical
notes; two examples are shown below:
(1) By contrast, the expression of other adherence-
associated early genes, such as IL-8 and IL-1pB, was
not up-regulated in PBMC of tuberculous patients.
(2) No radiographic abnormality seen of the chest.
It is essential for a text mining application to
identify negation.! For example, in sentence (1), the
author indicates that the upregulation of genes IL-8
and IL-1 in tuberculous patients did not occur. Simi-
larly, in sentence (2), the report indicates that
abnormalities in the chest of the patient are absent.
To not account for negation in these sentences
reverses the polarity of the information and can result
in inaccurate and potentially harmful information.
Due to the importance of this issue, the task of
negation detection is actively researched, but is
ignored by many current biomedical text mining
approaches. Negation detection is not an easy task.
Although certain cue terms (eg, ‘not’, ‘no’ and
‘without’) are commonly used in negated state-
ments, identifying negated statements merely

based on the presence of the cue terms may lead to
false results. Two examples are shown below:

(8) Thus, signaling in NK3.3 cells is not always
identical with that in primary NK cells.

(4) This does not exclude the diagnosis of pertussis.

In sentence (8), although the negation cue term
‘not’ appears, it is not being used to negate the
observation of signaling in NK3.3 cells being iden-
tical to that in primary NK cells. Rather, the
authors apply the negation to argue that these
signaling events are identical in both cells only
sometimes (ie, not always). Similarly, in sentence
(4), the clinician indicates that it is unclear if the
patient was diagnosed with pertussis, but not that
pertussis is necessarily absent.

Furthermore, the use of a negation cue in
a sentence might not apply to the entire sentence;
rather, its scope might be limited to only a part of
the sentence. This can be seen in the following
example sentences in which the negation scope is
marked in square brackets and the negation cue is
in boldface:

(5) PMA treatment, and [not retinoic acid treat-
ment of the U937 cells] acts in inducing NF-kB
expression in the nuclei.

(6) Less well defined opacity in the superior
segment of the right lower lobe [which was not
seen on prior studies].

In sentence (5), the proposition that retinoic acid
treatment of U937 induces NF-kB expression in the
nuclei is negated, whereas the proposition that
PMA treatment induces NF-kB expression in the
nuclei is not. Similarly, in sentence (6), the clinician
indicates that the observation that opacity in the
superior segment of the right lower lobe of lung is
less well defined is present, but was not observed
earlier. A system that identifies negation must thus
identify the scope of negation or the results will be
misleading.

Therefore, negation detection is a challenging
research task, and we propose that the task of
information extraction needs to add negation
detection in addition to relation identification. We
report here on the development of a supervised
machine-learning system called NegScope that
identifies biomedical sentences that contain nega-
tion and marks the scope of negation in such
sentences.

RELATED WORK

Most existing work in biomedical and clinical
negation detection classifies an entire sentence as
negated or not and ignores negation scope. In the
clinical domain, rule-based approaches have been
developed for negation detection. For example,
Chapman e al* developed the NegEx system to
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identify the negation of target findings and diseases in narrative
medical reports. The current version of NegEx utilizes 272 rules,
which are matched using regular expressions. The reported recall
of the system was 95.93% and precision was 93.27%, and it
attained an accuracy of 97.73%. A similar system, Negfinder,
was developed to identify negated concepts in medical narra-
tives.® The system first identifies negation markers in the
sentence using regular expressions. These words are then passed
to a parser that uses a single-token look-ahead strategy to
identify negated concepts. The reported recall and precision of
the system was 95.27% and 97.67%, respectively. Along the
same lines, Elkin er a/* developed a system to identify the
negation of concepts in electronic medical records. The system
was built by identifying textual cues for negation in 41 clinical
documents, and the reported recall and precision of the system
was 97.2% and 91.2%, respectively.

Supervised machine-learning approaches have also been
developed for negation detection. Auerbuch et al° developed an
algorithm to automatically learn negative context patterns in
medical narratives. The algorithm uses information gain to learn
negative context patterns.

A hybrid approach that classifies negations in radiology
reports based on the syntactic categories of the negation signal
and negation patterns was developed by Huang and Lowe.®
Thirty radiology reports were manually inspected to develop the
classifier, and the classifier was validated on a set of 470 radi-
ology reports. Evaluation was conducted on 120 radiology
reports, and the reported recall and precision was 92.6% and
98.6%, respectively.

In the genomics domain, a rule-based system was developed
by Sanchez-Graillet and Poesio” to detect negated protein—
protein interactions in the biomedical literature. The system was
built using a full dependency parser. Hand-crafted rules were
then used to detect negated protein—protein interaction. An
example rule reads as follows: if cue verb, such as ‘interact’, is an
object of ‘fail’, ‘Protein A’ is subject of fail, and ‘Protein B’ is
object of interact, then there is no interaction between ‘Protein
A and ‘Protein B’. Evaluation was conducted on 50 biomedical
articles, and the best recall and precision reported was 66.27%
and 89.15%.

Morante and Daelemans® developed a two-phase approach to
detect the scope of negation in biomedical literature. In the first
phase, negation cues were identified by a set of classifiers, and in
the second phase another set of classifiers was used to detect the
scope of the negation. The system performed better than the
baseline in identifying negation signals in text and the scope of
negation. The percentage of correct scope for abstract, full-text
and clinical articles was 66.07%, 41% and 70.75%, respectively.

Figure 1 Example of a sentence used
for training after it was replaced with its
part of speech tags. The underlined

word is the cue word in the sentence,

Original Sentence

while the words in italics represent the /

scope of negation. In the first step, all
words except the cue word (underlined)
were replaced with their part of speech
tags. The cue word was either not
replaced (bottom left) or replaced with

a custom tag ‘CUE’ (bottom right). Other
tags are CC, coordinating conjunction; DT,
determiner; IN, preposition; JJ, adjective;
NN, singular noun; NNS, plural noun;
VBD, past tense verb;

VBN, past participle verb.
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DT NN VBD NN NN IN DT NN NN CC VBD not
VBN IN JJ NNS IN NN NNS.

Most systems reported above were developed to detect nega-
tion in either clinical notes or biomedical literature. In contrast,
our system was trained on annotations from a large corpus of
both clinical and biomedical texts, and therefore its ability to
detect negations in both the medical and genomics domain is
robust. Such a cross-domain negation detection system will also
assist text mining systems that require the analysis of both
clinical data and primary literature; an application example
being the clinical question answering system AskHERMES?
that we are now developing. Furthermore, while the previous
systems detect negation in a sentence, most of them do not
detect the scope of negation. Ignoring the scope of negation can
be potentially misleading, as only some clauses in the sentence
might be negated, but other clauses offer non-negated infor-
mation. The NegEx? system makes use of simple rules to detect
negation scope boundaries, but due to the complexity of
language, the scope identified may not be correct. We thus report
on a machine-learning approach to detect both negation and its
scope here.

Finally, except for the NegEx system, none of the previous
systems is available for general use. To our knowledge, NegScope
is currently the only implemented system that is publicly
available and detects both negation and its scope in both
biological literature and clinical notes.

METHODS

We briefly describe our methods in this section; the detailed
version is available as supplementary material (available online
only, at www.jamia.org). In general, our systems were built by
training a supervised machine-learning algorithm known as
conditional random fields (CRF) on the BioScope corpus. We
created training and test data for biological and clinical
sentences, and used them for training and evaluation, respec-
tively. We also evaluated our systems on a test set used to
evaluate NegEx.?

We trained CRE' "% models on the BioScope training data to
identify negation cue phrase and scope, and call them NegCue
and NegScope, respectively. For NegScope, we also used
a backoff smoothing model'* by replacing non-cue phrase words
with part of speech tags' (figure 1). Cue phrase words were
either not replaced (ie, the original cue words were retained) or
were replaced with a custom tag ‘CUE’ (figure 1).

For comparison, we developed two baseline systems Base-
lineCue and BaselineScope, which detect negation cue phrase
and scope, respectively. BaselineCue incorporates a negation cue
phrase dictionary that was obtained by extracting negation cue
phrases from the training data. It then looks up the dictionary
for identifying cue phrases in the testing data. BaselineScope

This effect required surface expression of the CD45 PTPase and was not observed in CD45-deficient variants of Jurkat cells.

|

DT NN VBD NN NN IN DT NN NN CC VBD not VBN IN JJ NNS IN NN NNS.

N

DT NN VBD NN NN IN DT NN NN CC VBD CUE
VBN IN JJ NNS IN NN NNS.
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However, these genes are not constitutively active in B lymphocytes, suggesting
that other regulatory mechanisms must play a role in determining the patterns of
expression.

However, these genes are not constitutively active in B lymphocytes, suggesting
that other regulatory mechanisms must play a role in determining the patterns of

expression.

However, these genes are [not However, these genes are [not
constitutively active in B lymphocytes], constitutively active in B lymphocytes,
suggesting that other regulatory suggesting that other regulatory
mechanisms must play arole in mechanisms must play a role in
determining the patterns of expression. determining the patterns of expression].

Figure 2 An example showing the method in which BaselineScope
marks the scope of the sentence. The negation cue is first identified
using BaselineCue. BaselineScope then marks the scope of negation as
the text from the negation cue to the first comma or period (left), or the
first period (right).

marks the scope from the beginning of a cue phrase identified by
BaselineCue until the first occurrence of a comma or a period
(figure 2). Another baseline system is NegEx,? which is currently
the only negation system made available to the public.

We evaluate all systems by calculating recall, precision, F1-
score and accuracy. For every word in the test sentence, if both
the original annotation and tested system marked the word as
a part of a cue phrase or scope, then the word was counted as
a true positive; if the original annotation only marked the word
as a part of the cue phrase, then the word was counted as a false
negative; if only the tested system marked the word as a part of
the cue phrase, then the word was counted as a false positive;
and if neither the original annotation nor the tested system
marked the word as a part of the cue phrase, then the word was
counted as a true negative.

We also calculated the percentage of the correct scope (PCS) to
evaluate the performance of scope predicting systems. If for
a sentence, none of the words were marked as false positive or
false negative, then we consider that the system had correctly
predicted the scope of the sentence. For sentences with no
negation, the system correctly predicted the scope of the
sentence only if it indicated that there was no scope of negation.

We also evaluated all systems on the NegEx test data. The
NegEx test data do not mark the scope of negation, but mark
the negation status of a target entity (figure 3). The publicly
available version of the NegEx system can mark the negation
status of a target entity in a sentence. To evaluate our system on
the NegEx test data, we first marked the scope of negation of the
sentence using the system and then checked if the target entity
was a part of the negation scope. If it was, we marked the
negation status target entity as ‘negated’; if not, we marked it as
‘affirmed’. We obtained the recall, precision, F1-score and accu-
racy for all systems.

RESULTS

Table 1 shows the performance of three systems—NegCue,
BaselineCue and NegEx—for predicting negation cue phrases in
the clinical subcorpus, biological subcorpus, and combination of
both clinical and biological subcorpora. Table 2 shows the
performance of three systems—NegScope, BaselineScope and
NegEx—for negation scope detection.

The results show that NegScope performed better than both
BaselineScope and NegEx and the differences were statistically
significant (p<0.001%, t test, two-tailed). We calculated the
micro-average, the sentence-level average performance of a cate-
gory, of Fl-score for every system. We explored two models for
training and testing. In the first model, systems were trained and
tested separately on biological and clinical data. This model has
resulted in an Fl-score of 87.60+2.35% and 79.44%3.0% for
NegScope and BaselineScope, respectively. In the second model,
we merged biomedical data with clinical data, and trained
NegScope and BaselineScope on the merged data. This led to
decreased performance for NegScope but increased performance
for BaselineScope—=84.08% and 79.99% Fl-score, respectively.
While the performance difference of BaselineScope between the
two models was not statistically different (p=0.67), the difference
of NegScope between two models was statistically significant
(p=0.002).

The performance of our systems and the NegEx system in
predicting the negation status of target conditions in the NegEx
test set is shown in table 3.

When we tested the performance of NegScope and Base-
lineScope on the NegEx testing data, we observed that many
false negative instances contained the words ‘denied’ and
‘denies’. This is because in the BioScope training data, there were
no examples of negated sentences that used these words as
a negation cue phrase. For example, in the test sentence ‘Denied
any HEADACHES’, the tested entity ‘headaches’ is negated, but
our training data contained no cases in which ‘denied’ appeared
as the negation cue. In order to overcome the inability of our
systems to identify cue phrases ‘denies’ and ‘denied’, we
manually added these cue phrases to the set of cue phrases
identified by the baseline system (BaselineCue). We could not
manually add these cue phrases to the CRF system that iden-
tifies cue phrases (NegCue) because we would have to create
specific training sentences for the system to learn these phrases.
As only the baseline system could be modified, we were only
able to test the performance of NegScope when the cue phrase
was identified by BaselineScope. The performance of these
systems is shown in table 4.

DISCUSSION
We have developed CRE-based models to predict the scope of
negation in biomedical sentences. We compared these models

Figure 3 Examples of instances in the Condition | sentence negation_status | temporality experiencer
NegEx test set. (negated, (historical, (patient,
affirmed, recent, other)
possible) hypothetical)
edema Extremities reveal no peripheral cyanosis or | Negated Recent Patient
EDEMA.
CHEST: 1. SURGICAL CHANGES RELATED TO Affirmed Recent Patient
THYMOMA RESECTION INCLUDING
ELEVATION OF THE RIGHT
HEMIDIAPHRAGM CHEST:
Smokes The patient SMOKES CIGARETTES. Affirmed Historical Patient
cigarettes
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Table 1 Performance of NegCue, BaselineCue and the NegEx systems at identifying negation cue phrases in the BioScope testing set

Clinical sentences Biomedical sentences Both clinical and biomedical sentences

Neg Cue BaselineCue Neg Ex Neg Cue BaselineCue Neg Ex Neg Cue BaselineCue Neg Ex
Recall 96.24+2.05 96.92+2.31 94.61+2.69 95.74+2.34 99.37+1.44 80.113.47 93.80+2.26 98.98+1.14 84.213.91
Precision 99.27x1.17 87.43+8.33 74.43x7.97 97.31x2.0 72.79+3.43 88.87+4.82 97.38+0.57 91.33+2.69 84.26+3.50
F1-score 97.72+:1.48 91.76+5.03 83.11+5.34 96.50+1.7 83.98+2.28 84.20+3.28 95.55-1.38 94.99+1.84 8417271
Accuracy 99.74+0.16 98.99+0.58 97.79%0.63 99.86--0.07 99.20*0.11 99.37%0.13 99.800.07 99.760.09 99.29+0.12

Value after '+’ indicates SD. Values in bold represent the best performance.

with baseline systems, which use dictionary lookup, and NegEx,
which makes use of regular expressions and rules to mark the
cue phrase and scope of negation in a sentence. Our results
indicate that models using CRF for the detection of scope of
negation in biomedical sentences perform better than models
based on the use of dictionary lookup and NegEx (p<0.001,
t test, two-tailed). Our system can be used to detect negation
and its scope in both biological and clinical text.

Negation cue phrase detection

For detection of cue phrases, we observed that the F1-score and
accuracy of NegCue is slightly better than BaselineCue; however,
the difference was not statistically significant (F1-score p=0.45;
accuracy p=0.28, t test, two-tailed). The recall of BaselineCue is
significantly better than that of NegCue (p<0.0001, t test, two-
tailed). This is because BaselineCue collects all phrases that have
been seen as a cue for negation and marks any such phrase in the
sentence as a negation cue, without considering the context in
which it appears. BaselineCue thus achieves a lower precision
than the CRF system, which lowers its Fl-score and accuracy.
NegCue’s performance was significantly better than NegEx’s
performance. This was because NegEx’s rules were generally
longer that the cue phrases identified in the BioScope corpus. For
example, in the sentence ‘No signs of tuberculosis’, the cue
annotated in the BioScope corpus was ‘no’, whereas the NegEx

rule that matched was ‘no signs of’. Moreover, certain cue terms
such as ‘unable’ and ‘lacked” were not present in NegEx’s dictio-
nary of negation triggers.

Negation scope detection

At the task of detecting negation scope, we noticed that the
average Fl-score of NegScope trained specifically for biological
and clinical text was better than the Fl-score of NegScope
trained on the combination of biological and clinical text. This is
because there are several differences in biological and clinical
text. For example, biological sentences from articles published in
journals are generally grammatically well formed, whereas many
sentences from clinical notes are not (eg, ‘Normal two views of
the chest without focal pneumonia.’).

We found that the NegScope system performed better than
the BaselineScope system (Fl-score p<0.001; PCS p=0.003,
t test, two-tailed) and NegEx (p<0.001, t test, two-tailed).
Within NegScope, we found that smoothing the data by
replacing words with part of speech tags improved the F1-score
(p=0.01, t test, two-tailed). However, the smoothing in which
the cue words were replaced with ‘CUE’ did not improve the
performance. Leaving the cue words as is resulted in slightly
better performance than replacing them with the custom tag
‘CUF’, but the difference was not statistically significant (F1-
score p=0.63, t test, two-tailed).

Table 2 Performance of NegScope and BaselineScope at predicting the scope of negation

NegScope BaselineScope Negex

Features used Words Part of speech Part of speech Part of speech Part of speech Words Words Words
Cue identified using - NegCue NegCue BaselineCue BaselineCue BaselineCue BaselineCue -
Cue phrase replaced — No Yes No Yes — - —
Scope limited by — — — — — Comma and period Period only —
Both biological and clinical sentences used for training and testing
Recall 76.27+2.66 82.09+2.30 81.40+2.03 85.13+2.57 84.56+2.32 83.68+3.04 89.17+2.48 71.7£5.14
Precision 88.36+3.65 86.26+3.29 86.07+3.66 82.37+3.22 81.76+3.72 76.69+3.34 57.94+3.67 64.5+4.99
F1-score 81.79+1.64 84.081.94 83.63+2.12 83.68+1.90 83.08+2.09 79.99+2.59 70.16x2.70 67.79+3.0
Accuracy 94.31+0.64 94.79+0.77 94.66+0.82 94.42+0.94 94.22+0.96 92.97+1.19 87.31+1.35 88.62+1.26
PCS 84.21+1.74 83.79+2.25 83.93+2.22 82.65+2.41 82.65+2.27 80.89+2.50 76.0+2.36 74.62+2.46
Biological sentences used for training and testing
Recall 73.72+2.39 84.07+3.84 81.76+3.59 87.27+3.82 85.94+3.70 84.62+3.74 90.36+2.65 72.67+3.84
Precision 85.53+5.02 84.74+3.47 82.74+4.03 71.76+4.04 69.69+3.33 67.50+4.58 51.12+3.66 63.81+4.69
F1-score 79.09+2.40 84.37+3.25 82.13+2.01 78.711+3.41 76.90+2.61 75.02+3.56 65.23+3.26 67.84+3.36
Accuracy 93.20+0.77 94.61+0.96 93.81+0.69 91.80+1.23 91.02+1.04 90.20+1.20 83.16+1.96 87.96+1.57
PCS 80.26+1.61 80.99+2.36 79.18x2.11 7412214 72.78%1.8 72.31+2.24 66.37+2.84 70.56+2.09
Clinical sentences used for training and testing
Recall 93.68+2.40 94.99+3.02 95.18+2.74 95.30+3.01 95.49+2.71 93.75+2.23 96.00+2.42 85.94+6.93
Precision 95.25+4.61 94.74+4.23 94.07+4.91 85.98+9.11 85.37+8.78 85.73+10.10 82.14+8.97 90.81+5.26
F1-score 94.37+1.97 94.82+3.04 94.57+3.32 90.26+6.26 89.99+5.85 89.34+6.56 88.31+5.79 88.07+4.07
Accuracy 96.88+0.93 97.07+1.84 96.87+2.09 94.33+3.23 94.12+3.11 93.82+3.29 92.95+2.86 93.58+1.73
PCS 95.83+1.66 96.062.12 95.49+2.07 92.25+3.99 91.67+3.20 91.21+3.12 91.55+2.77 88.90+2.14

Value after ‘=" indicates SD. Values in bold represent the best performance.

PCS, percentage of the correct scope.
J Am Med Inform Assoc 2010;17:696—701. doi:10.1136/jamia.2010.003228 699
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Table 3 Performance of NegScope, BaselineScope and the NegEx system on the Negex testing data. NegScope and BaselineScope were trained on

both biological and clinical sentences

NegScope BaselineScope NegEx
Features used Words Part of speech Part of speech  Part of speech  Part of speech ~ Words Words —
Cue phrase identified using  — NegCue NegCue BaselineCue BaselineCue BaselineCue BaselineCue —
Cue phrase replaced - No Yes No Yes - - -
Scope limited by - — — - - Comma and period Period only —
Both biological and clinical sentences used for trainining
Recall 75.3+6.86 67.897.30 67.11x8.34 81.13x5.25 83.83+4.93 75.94+5.79 85.24+4.77  96.27+3.08
Precision 90.48+3.57  97.21+2.87 96.48+3.77 90.54+2.68 87.16x3.51 78.9+4.88 76.22+4.39  95.43+2.02
F1-score 82.12+x530  79.79+5.64 78.99+6.81 85.53+3.76 85.42+3.82 71.29+4.41 80.44+4.13  95.82+1.91
Accuracy 93.35+1.57  93.06+1.38 92.8+1.75 94.4+1.20 94.15+1.34 90.87+1.46 91.5+1.59 98.27+0.78
Clinical sentences used for training
Recall 36.88+5.42  58.52+6.48 70.33+5.93 59.13+6.53 72.0+5.76 63.616.77 80.06+5.37  96.27+3.08
Precision 9459543  96.59+2.72 95.07+3.03 93.36+2.36 91.64+2.38 80.46+6.14 81.59+3.87  95.43+2.02
F1-score 52.92+6.10  72.73+5.32 80.72+4.41 72.22+4.99 80.55+4.17 70.99+6.28 80.78+4.39  95.82+1.91
Accuracy 86.53+1.79  91.04+1.48 93.18+0.94 90.7+1.46 92.93+0.94 89.35+2.06 92.21+1.45  98.27+0.78

Value after ‘*" indicates SD. Values in bold represent the best performance.

When comparing the BaselineScope systems, a better perfor-
mance was observed when both the commas and periods were
used to mark the end of scope. As expected, the baseline system
that used only periods to mark the end of scope achieved a better
recall (+5%) than when commas and periods were used;
however, the decrease in precision was 19%, which decreased the
overall Fl-score by 9% (p<0.0001, t test, two-tailed).

In analyzing the cases that were not correctly annotated by
NegEx, we found that many errors occurred because NegEx
assumes that the cue appears at the beginning or the end of the
scope. For example, in the sentence ‘In A20 B cells, the TNEF-
alpha gene is not regulated by NFATp bound to the kappa 3
element’, the cue ‘not’ was correctly identified by NegEx and it
marked the scope from the cue to the end of the sentence.
However, the scope in the gold standard was ‘the TNEF-alpha
gene is not regulated by NFATp bound to the kappa 3 element’,
whereas the scope identified by NegEx was ‘not regulated by
NFATp bound to the kappa 3 element’. False negative errors
were seen when the cue phrase was not detected by NegEx.
NegEx exhibits especially poor performance on biological
sentences, which is expected because it was not designed for
biological literature.

In analyzing the cases in which NegScope did not identify the
scope of negation correctly, we found that the errors could be
classified into three categories: (1) type I error (false positive):
the model assigns scope when none exists (ie, it is a non-negative
sentence); (2) type II error (false negative): the model assigns no
scope when one does exist (ie, it is a negative sentence); and (3)

boundary errors: the model correctly assigns negative polarity to
the sentence, but it assigns a different boundary than that
assigned in the testing data. In 2801 sentences, we observed 20,
49, and 386 type I, type Il and boundary errors, respectively. We
present an analysis of each error type along with examples in the
supplementary material (available online only).

Despite these errors, our system achieved a strong perfor-
mance in scope detection (84.08% F1-score), which makes it
suitable to be used in conjunction with other text mining
applications in both biological and clinical domains. We show
two examples in which NegScope correctly determined the
scope of negation whereas BaselineScope did not. In the first
sentence, the correct scope is marked by square brackets, and in
the second sentence there is no negation scope even though the
sentence includes the frequently used negation cue phrase ‘not’:
> In A20 B cells, [the TNF-alpha gene is not regulated by

NFATp bound to the kappa 3 element].
> These data suggest that interferon regulatory factor 1 not only

triggers the activation of the interferon signal transduction

pathway, but also may play a role in limiting the duration of
this response by activating the transcription of IRF-2.

For the first example, the BaselineScope system incorrectly
excluded the phrase ‘the TNF-alpha gene’ from the scope of
negation, but the entire scope was correctly identified by the
NegScope model. In the second example, the NegScope system
did not mark the sentence, as there is no scope of negation, but
the BaselineScope system marked the scope from ‘not’ to the end
of the clause.

Table 4 Performance of NegScope, BaselineScope and the NegEx systems on the NegEx testing set when additional cue words were added to the

dictionary
NegScope BaselineScope NegEx

Features used Part of speech Part of speech Words Words -

Cue phrase identified using BaselineCue BaselineCue BaselineCue BaselineCue —

Cue phrase replaced No Yes - - -

Scope limited by - — Comma and period Period only -

Recall 92.73+3.08 95.85+2.73 85.79+3.60 97.48+2.22 96.27+3.08
Precision 91.66+2.25 88.64+2.89 80.95+3.89 78.61+3.65 95.43+2.02
F1-score 92.17+2.30 92.08+2.33 83.2+2.30 87.0+2.76 95.82+1.91
Accuracy 96.8+0.77 96.63-0.86 92.89:0.80 94.02=1.11 98.27+0.78

Value after '+’ indicates SD. Values in bold represent the best performance.
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As shown in table 4, NegEX2 performed best (F1-score 95.82%).
NegScope had a Fl-score of 85.53%. Adding two cue phrases
(‘denied’ and ‘denies’) to the dictionary, the F1-score increased to
92.17% (difference with NegEx’s F1-score was statistically signif-
icant at p=0.001, t test, two-tailed), which indicates that
NegScope is robust and it can attain a good performance on
different data without major adaptations. Although the F1-score
of the modified NegScope system is still not as high as the F1-score
of the NegEx system, it may still be useful for practical purposes.
Details of all three system’s performance are described in the
supplementary material (available online only, at www.jamia.org).

Limitations

The NegScope was trained on the BioScope corpus, and there-
fore the quality and the size of the annotation impact
NegScope’s performance. In addition, like all other NLP systems,
NegScope faces the complexity of natural language. An example
is the cue term ‘allergy’. Consider a dummy sentence ‘the
patient is allergic to DrugX’. If the task is to identify the
medications that were given to the patient, then ‘allergic’ is
a negation cue phrase. In other tasks, allergic may not be
considered a negation cue phrase. For example, if the task is to
determine if a clinical condition was negated, then allergy to
DrugX is the clinical condition and it is not negated. NegScope
cannot perform such task-specific negation detection, if the
annotated data do not fall into the task requirement.

Comparison with another CRF-based approach

A CRF-based approach was used by Morante and Daelemans® to
identify scope in biomedical literature. Similar to our approach,
their system was also trained on the BioScope data. In
comparing their reported results with our results, we noticed
that our system performed better than their system. This could
be due to the difference in the training data used; Morante and
Daelemans® used only the abstract subcorpus for training.
Surprisingly, our system’s overall performance (PCS ~84%) was
also better than their system’s performance on the abstract
subcorpus (PCS ~67%). This could be due to the difference in
the size of the training data or the features used for selection.
Unfortunately, the system of Morante and Daelemans® is not
publicly available, so we were unable to test the performance of
their system on the same test sets as our system was tested on.

CONCLUSION AND FUTURE WORK

We have created several CRF-based models that can automati-
cally predict the scope of negation in biomedical literature.
These models can also be used to predict the negation status of
a target entity in the sentence. The choice of which model to use
depends on the task at hand. For predicting the scope of nega-
tion, we recommend using a CRF-based model that identifies
cue phrases using a CRF-based cue phrase identifier and replaces
non-cue phrase words with their parts of speech. However, to
test the negation status of a target entity in the sentence, we
recommend using a CRF-based model that identifies cue phrases
from a dictionary of possible cue phrases. More importantly, the
models we have trained are robust and perform well in detecting
negation in both biomedical and clinical documents. An online
version of the negation scope detector is available at http://
negscope.askhermes.org. The system is also available as a Java
API from this link.

J Am Med Inform Assoc 2010;17:696—701. doi:10.1136/jamia.2010.003228

Any annotated corpus has size limitations, and unseen data
encountered by a system trained on such a corpus will hurt the
system’s performance. In future work we may explore methods
for automatically identifying negation cue phrases from a large
corpus, including contextual similarity, which is commonly used
for identifying semantically related words or synonyms.'® 7 We
may also explore bootstrapping'® or co-training approaches'”
that partly overcome the limitations of training size.
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