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MATHEMATICAL MODELING OF SEMICONDUCTOR LASERS
XINFU CHEN* aAND AVNER FRIEDMAN{

Abstract. In semiconductor lasers the electrostatic potential ¢ is harmonic function both in the p-
region 2, and in the n-region 5, ; however, across the photoactive layer I' separating these regions both
and its normal derivative experience jumps which are determined implicitly by a system of differential and
functional equations on T'. It is proved that the mathematical formulation of the problem is well posed,
i.e., it has a unique solution for the range of parameters which occur in the physical problem.
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§1. The mathematical model. In this paper we study the mathematical aspects of a
coupled electrical and optical model for conversion of electrical energy into coherent optical
energy by solid state device. The model, described in [4], consists of a semiconductor diode
with a thin photoactive layer separating the p- and n- regions. Simplifying to 2-dimensions,
such a device is (quite crudely) described in Figure 1, where §,, is the p-type semiconductor
and Q, is the n-type semiconductor.
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The electrostatic potential is denoted by ¢, in 2, and by ¢, in ,. We apply Ohmic con-
tact: OnT'y = {(z,b); |z| < d} voltage V is applied (V > 0)andon Ty = {(z, —¢); |z| < e}
the prescribed potential is 0. The device produces a laser beam at the active layer I". For
simplicity it is assumed that the active layer has negligible width. Thus

Q,={-a<zr<a0<y<b}, Q,={-a<z<a—-c<y<0},

and

V(oepVep) =0 in Q,,
V(eaVpn)=0 in Q,,

where 0,0, are the conductivities in 2, and €, respectively; we shall henceforth assume

that o,, 0, are constants. The boundary conditions on 9(2, U Qn) are:

pp=V on Iy,
Yn =20 on Iy,

o
_8—712:0 on OQP\(I‘UI‘I),
Opn
(;’; =0 on 0Q,\(T'UT,)

where I' = {(z,0); —a < ¢ < a} and 0/0n is the normal derivative.

On the active layer T",

op—pn=¥n—¥p,
1 0
EaJ—Gp—Up,
1 0
- a_ n:Un“ n
q(?zJ ¢

where ¢ = unit charge per particle, ¥p, G, U, are respectively the quasi-Fermi level, the
generation, and recombination for holes, and ¥, G, U, are similarly defined for electrons.

Denote by p and n the hole and electron number densities. Then, on T,

E,-¥, _ v, — E.
P—NvF1/2(T>,n—NcF1/2< LT >
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where

(e o]
Eyj(2) = /—L dn (Fermi function) ,

1+ en—*
0
ov ov,
']P :P#p# ) Jn =Nln oz ’
_Jp _ % 9

P7gt gt 9y
Gn:]_n:ﬁ 89071
qt gt Oy

1
Up - Un = Utrap +Uspon +Ustim - ;_' f(p’n) )
p=n+Ng —Nj (Ng>Nj).

(t = thickness of the active layer),

The function Fj/,(2) satisfies:
(1.1)

F{/Q(z) >0, Fyjp(2)~const.e” ifz <0 and |z]large, F}/5(2) = 00 if 2z — oo .
For simplicity we shall take

(1.2) Fijp (z) =€

however, all our results extend to the case of any function Fj/, satisfying (1.1).

Assuming (1.2) we then have
p= N,e T = ﬁv e_q’p/kT

where k is the Boltzmann constant and T the absolute temperature, and similarly

n = NeVr/*T

Eliminating ¥,, ¥, we get the following relations on I':

pn
<Pp—<pn=log]\~/, = ,

c n

p:n+Na"—Nd+,

0
(KT) paw = =22 £ 4+ L f(p,m) ,

ppt Oy pp
_ On O0pn q
(kT) Nzz = it Oy lint f(pa n) .
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Set

:\/ﬁc~vﬁ, n = ciVo 1,
r=aZ, y=ay,
. 1 — = [~
f(r) = —= = f(\/ cN,,p,\/ chn)l NNt
NN, p=ht =t
v N¢ Ny
Then
©p — pn =log (i + B) ,
R Opp
ez = —Ap —== 99 2+ B, f(#),
Opn
fl;ii = A a(PA +an(n) )
where
— N+ opa 4 ona ’
\/ N N up\/Nch tkT pn\/ NcN, tkT
2
B = .
P ,ukaT UnTkT
Since typically (see [3])
op =8, 0, =200 —1000, pp =300, p,=4000,
¢g=16x10""", 7=10"7, a=10"2%2, ¢t=10"°
N.=47x10", N,=7x10"®, N7 -N}=3x10"7, kT =0.26

in CGS units, we find upon assuming that N, N, are of the same order of magnitude as

N, and N, respectively, that

3

By slight change of notation we then get, after dropping

A,=6x10"1" | A,=55x10""¢ (if 0,,=1000) B,=2x10"'%, B,=1.6x10"17.

“ 77 everywhere, denoting

b/a,c/a,d/a,e/a by b,c,d,e, and designating the transformed domains (2,2, again by

Qp, Qp:

(1.4)
(1.5)

App =0
Ay

in Qp,

n=0 in Q,,



(16) QOP(CC,O) - <pn(x,0) = logn(n + 1) ’ -l<z< 1,

(1.7) Ngr = —Apa—g-o?f(m,O) + Bpf(n), —-l<z<l,
Opn

(1.8) Ngp = —AnTy- (z,0)+ B,f(n), —-1l<z<l,

(1.9) ny(-1)=n,(1)=0,

(1.10) op(z,b) =V, lz| <d,

(1.11) on(z,—c) =0, lz] <e,

(1.12) %fnﬂ =0 on OQ,\(TUT,),

(1.13) %n _ 0 on 8Q\(TUT,) ;

on

here we have taken for simplicity g = 1.

The following formula for f(n) was given in [4]:

7’22

2n +1

(1.14) f(n) = ap + ain + azn’® + as , a; positive constants.

In the sequel we shall not require the special form (1.14). All we shall assume is that
(1.15) f(s) e C0,00), f(0)>0, f'(s)>0.

An important feature in (1.7), (1.8) is that
(1.16) Ay, A, , B, and B, are “very small”

(in fact, smaller than 2 x 1071%) and that

B _op).

P n

(1.17)

th[::h

For more details on the physics of the problem we refer the reader to [4], as well as to
[3] and the references in both articles.

The present authors became interested in the problem after a talk given at the IMA
by John Spence from Eastman Kodak and subsequent discussion. This was reported in [1;
Chap. 13] together with some computations carried out by J. Spence and Keith Kahen
(from Eastman Kokak). (The numerical values of 0, 0, were misquoted in [1]; this resulted
in incorrect order of magnitude for the quantities in (1.3)).
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§2. A special case. In this section we assume that
(2.1) D= {(bho), lel <1}, T3={(-c,a); |o| <1}.
We then look for a solution independent of z:
(2.2) ¢ =¢(y) , n=const.

where ¢ = ¢, in Q,, ¢ =, in Q.
We easily find that

(2.3) SOZ{VJrKl(y—b) if 0<y<b,
Ky(y+c¢) if —c<y<0
where 5 B
K = A—: f(n), Kz == f(n)
and (1.6) becomes
(2.4) n(n +1) = eV =(Eib+Kae) _ V= (T +555) 1)

THEOREM 2.1. There exists a unique solution n > 0 of (2.4); it provides a unique
solution to (1.4)—(1.13) of the form (2.3).

Proof. Denoting the right-hand side of (2.4) by g(n) we have, by (1.15):
n(n+1) —g(n) is monotone increasing in n ,

negative when n | 0 and +o0o when n T co. Hence (2.4) has a unique solution.

The solution ¢(n) has a jump logn(n + 1) at y = 0; consequently,

-1 B,b B, -1
©(04) > ¢(0—) if n> V5 , orequivalently V > ( P4 c> f <\/5 ) ,

2 4, T4, )
, V5 —1 B,b  Bpc V5 —1
e(0+) < p(0—-) if n< 5 o V< (71: + A_n> f 5 ;
and
_ V5 —1 Byb  Bpc V5 —1
0(04+) = p(0—) if n= 5 o V= (A—p + . ) f 5



§3. The general case: reformulation. In this section and in the following one
we consider the system (1.4)-(1.13) in the general case. We shall prove existence and
uniqueness by a method which is quite general and can be extended to other systems.
We do not wish however to formulate here the most general conditions; instead, we shall
indicate the generality of the method by setting up more general notation. In §4 we shall
discuss one important generalization.

We write ; = Qp, 3 = Q, to indicate that the method can be applied to more
general domains, although we shall carry out the details only for the rectangular domains
2,8, as above. We further set ¢; = ¢,, Y2 = ¥n, Lipr = Apy, Lypy = Apy,

Si =3\, Sp = 0Q,\T,

and denote by B;, B; the boundary operators:

0
31901:—5% on S\I', Bip1=¢1 on Iy,

0
32802:'5(%2 on S3\I'y, Bypy =93 on Iy,

[

=

u=n, =4, a=

ha(u) = Z# f(u)

ha(u) = ﬁ— fu)

hs(u) = logu(u + 1) ;
Lu=4"(z), -1<z<1,
Bu=u' at z=41.

Then the system (1.4)—(1.13) can be written in the following form:

(3.1) 01 € H3 ()N HYT) , @2 € H*(Q2)N HY(T), u € HX(T)
(3.2) L,‘(p,' =0 in Q,‘ s
0

(3.3) Lu = 6% +ehi(u) on T,
(3.4) B,‘(pi = g,'(.’l?) on S,' ,
(3.5) 01— 2 = hg(u) on T,

0 0
(3.6) —52—1 — 0—3%2- = —hy(u) + ahy(u) on T,
(3.7) Bu=0 on 0T



where the normal n on I' points into 25, and

gi=V on Ty, ¢=0 on S5\I'1,

3.8
(3:8) go=0 on S;.

Here ¢ is a very small number (< 6 x 10717) and @ = O(1). The heights b, ¢, of 1, Q,, as
well as b/c, ¢/b are also O(1), and so are the lengths 2d,2e of I'; and T'y respectively.

In the sequel we shall use the fact that the boundary conditions (3.4) satisfy the “con-
sistency” condition at the endpoints (£1,0), i.e., by reflection one can deduce regularity
of solutions in Q; (or ;) at these corner points.

Our main result (to be proved in §4) is:

THEOREM 3.1. For any large positive number M there exists an g > 0 depending on
M such that if —eg < € < €¢ then the systems (3.1)—(3.8) has a unique solution (1, p2,u)
with

(3.9) — <u(@)< M.

The proof consists of several steps. We begin by introducing the solution ¢? of

Lip? =0 in Q;,

. 0—- . .
(3.10) Bigi=gi on 5i,
%:0 in T, i=12.
n

Due to the consistency of the boundary conditions (+1,0), the solution ¢! satisfies:
(3.11) @) € H*(Q;) .

Actually, from the special assumptions (3.8) we see that

(3.12) A=V, 03 =0.

For any u € H'(T'), u > 0 on T we can solve the system

Liw,-:0 in Qi,,

(3.13) B,w, = 0 on Sl 5
%% hw), 22 h(w) on T
6n = nilu), 6n = 2{U on .

We note by (1.15), that
(3.14) hi(u) >0, Ri(u)>0 for u>0 (:=1,2).
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Since u € H!(T'), u(z) is bounded. By the maximum principle
(3'15) w; >0 in Q;,

and, by elliptic regularity,

(3.16) w; € HY(Q;) and w; € H*(Q:\N;)
where N; 1is any neighborhood of OT'; .
Writing w; = w;(u), we set

(3.17) pi =) + (=D wi(u) +4i (1=1,2).
Then the system (3.1)-(3.7) can be rewritten as a system for (1, %2, u):

Liy;=0 in Q,;,

i
Lu = 5_8—; on I',
(3.18) Bipi=0 on S;,
6—1/)1- = oz% on T
on on ’
Bu=0 on 0T,
and
(3.19) Y1 — by = 03 — ) + (wa(u) + w1 (u)) + ha(u) = F(u) ;

F(u) is a function of z and depends on u in a nonlocal way. Note that F(u) € H(T).

Let (v1,v2) be the solution to

L,‘U,‘ =0 1in Q,‘ y
Bivi =0 on Sz' ,
(3.20) dv; vy

=a— on I,

On on
v1 —ve =F(u) on T.

We can construct (v1,v2) uniquely as a solution to a variational problem. Further, by
working with v; and with 03(z,y) = va(z, —y) in £4-neighborhood of I' and applying H*
elliptic estimates to v; — v2 and vy + a¥s [2; p. 201 and p. 202], we get

v1,v, € HY(T)
V1,09 € H3? in - neighborhood of T'.

9



It follows that

3v1 2
B € L*(T) .
We define the operator A from H?(T') into L?(T) by
31)1
21 _ v
(3.21) Au o

Comparing (3.20), (3.21) with (3.18), (3.19) we see that (11,2, u) is a solution of (3.18),
(3.19) if and only if u is such that

Lu=¢A(u) in T,

(3.22)
Bu=0 on Or.

When ¢ = 0 we get

Lu=0 in T,
(3.23)
Bu=0 on 0T,
and
(3.24) the only solutions of (3.23) are multiples of up = 1.

Any function u € H'(T') can be written in the form
U = Mmug + €V

where m is constant and (v, uo)r2(ry = 0. The problem (3.22) (for v > 0) can be written

in the form

mug+ev>0 on I, wve HY(D), (v,u0)r2(ry =0,
(3.25) Lv=A(mug+ev) on T,
Bv=0 on OI.

In the next section we prove that this problem has a unique solution.
§4. Proof of Theorem 3.1. We begin with several lemmas.
LEMMA 4.1. Let (U}, UYJ) be the solution to

L,'UiO:O in Q,‘,
B,'UiO:O on Si,

(4.1) auL Uy
0 % D

10



Then, for any v € H(T),

(4.2) (A(mug +€v) , ug) = — (F(muo + ev), 68—01;{))

where (, ) =(, )L (T -

Proof. By (3.21), the left-hand side of (4.2) is equal to

91 Y = (8 o _yo
<6n ’“")‘(an’Ul“U2
_ (% o vz 7o
() e (3
0 0
= — (vl, -%[-]ni) + a (vz, a—;{f—) (by Green’s formula)

ou? ou?
= — (vl — Vg, 0711) = — (F(muo +€’0), ‘0—7_:>

by the last equation in (3.20).

Notice that the functions U are in C1(Q;\T;).

2

LEMMA 4.2. The functions U]Q satisfy:

ou? —
J
(4.3) o >0 on T.

Proof. Set

W — U{)_U(] in Ql
U in T,.

Since ug =1,

(4.4) AW =0 in QUQ,;

further

(4.5) W is continuous across I |
owt ow~-

(4.6) Y, on r

11



where W+ = Wi, , W~ = Wlg,. If W takes minimum at a point of T, then, by the
maximum principle (noting that n points from £, into €2;),

ow+ oW~

on <0, on >0

at that point, a contradiction to (4.6). We conclude that W must take its minimum in
2, U, at the boundary, and since W = 0 on I'y, W = —1 on I'y whereas 0W/0n = 0

elsewhere in 0 (§2,US2), it follows that the minimum is attained on I';. Further,

8_W<0 on I'.
Oy

Similarly W takes its maximum (=zero) on I'; and

6_W<0 on FQ.
Oy

Further, 8W/dy = 0 on the horizontal part of 8(Q; U Q2)\(T; UT;) and

0 <8W
Oy

an —) =0 on the vertical part of 9(Q; UQy)\(T; UT,) .
n

We claim that

oW+

(4.7) 5

<0 on T,

and this of course establishes the assertion (4.3). Indeed, if (4.7) is not true then OW™ /9y
(or OW ~/0y) must take nonnegative values on T, and in fact it attains its nonnegative
maximum in €; (or Q) at a point (z,0) of T. By (4.6), the same is true of W~ /dy (or
W /8y). Hence, by the maximum principle,

2w+ PwW-

oy? <O,—5y—2—>0 at (1'0,0),

and consequently &2W*/9z? > 0, 8°W~ /8z? < 0 at (z0,0). (If 2o = 1 then since we
can extend W by reflection across z = %1, the maximum principle can still be applied).
This contradicts the fact that

Wt (z,0) = W (z,0) .
LEMMA 4.3. There exists a unique positive constant my such that
(48) (A(mouo), UO) =0.

12



Proof. In view of Lemma 4.1, (4.8) is equivalent to

ouy
From (3.13), (3.14) it is clear that
w;(mug) is strictly increasing in m .

Hence, by (3.19),

0 1
(4.10) — F(muo) > — +

I >0.

m+1

Also, F(mug) — —oo if m — 0 and F(mug) — oo if m — oco. Recalling also (4.3), the
assertion (4.9) follows.

LEMMA 4.4. There exists a positive constant My such that
£ usliem < — ey < =
oo — w2l e —
then moup +u; >0inT (j =1,2) and
(411) ”A(mouo 4 ul) — A(mouo + UZ)HL"’(F) S CM()”U] — U‘Z”Hl(I‘)

where C' is a constant independent of M.

The proof follows from the dependence of the w;(u) on u (cf. (3.16)):
[[wi(mouo 4 u1) — wi(mouo + ua)l[m2(@i\Ny) < Cllua — w2l -

LEMMA 4.5. If M, is sufficiently large then

d 1
(4.12) %(A(mu() +u),up) < ~iL

provided mug +u >0 on T and |[u|pe(ry < 37 -

The proof for u = 0 was already established above (following (4.9)). The proof for
u # 0 is the same.
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THEOREM 4.6. For any large positive number M (M > M) there exists an €9 > 0
depending on M such that if —eq < € < €¢ then (3.25) has a unique solution satisfying

lv]|Loeqry < M .

Since (3.25) is equivalent to (3.1)—(3.7), the assertion of Theorem 3.1 follows from Theo-
rem 4.6

Proof. Introduce the set
X={ueH(T), (v,u0) =0, |lullzer) <M, ||ullmr) < M}
in H(T"). We define a map G : X — H?*(T") as follows: & = G(v) if ¥ is the solution of

Ly = A(mug +ev) in T,
(4.13) Bt=0 on OrI,
(6,u0) =0

where m = m(v) is defined as the solution of
(4.14) (A(mug +ev), up)=0.
In order to justify this definition we note, by Lemmas 4.3, 4.4, that
[(A(moug + €v), ug)| < Coellv||mr(ry -
Recalling Lemma 4.5 we deduce that there exists a solution to (4.14) with
|m —mo| < ce.

The solution is unique in the set of all positive number m such that mug +eu > 0 on .

From (4.14) it follows that the right-hand side of the elliptic equation in (4.13) is
orthogonal to the eigenfunction uy of the homogeneous problem. Hence, by Fredholdm
alternative, (4.13) has a unique solution v. Clearly

lv]| 2y < Cl|A(mug + ev)|| L2y
< C(mo + |m — mo| + |lev]|2) < M

if M is large enough. Thus G maps X into a compact subset.

We next show that G is a contraction. We begin with

[Gv1 — Goz|l g < CllA(mauo + ev1) — A(mauo + ev2)[ 2

4.15
(4.15) < C(lmy — ma| +¢llvr — v2|lH1 (1)) -

14



Since

(A(mqug + €v1),uo) = (A(mauo + €v2),u0) =0,
we have
|(A(maug + €v1), up)|

= |(A(maug + €vy),up) — (A(maug + €va), up)]
S CM()“(:"Ul — 61)2||H1

by Lemmas 4.4, so that by Lemma 4.5

[my —ma| < CMZ|levy — evg||gn -
Using this in (4.15) we conclude that

|Gve — Gua|| g < Che|lvy — ve || g

for some constant C; independent of €. Hence, if ¢ is small enough G maps X into X
and is a contraction. It follows that G has a unique fixed point in X, and the proof of
Theorem 4.6 is complete.

Generalizations. In the actual model of the semiconductor laser, the conductivity
0, is not a uniform constant (see [4]). Indeed, there is some Q,-neighborhood R of T,
such that

(4.15) 011, in R
o g, =
? I in Q\R

where a]’; are constants and 011, > 012,. The potential ¢, satisfies

(4.16) V. (6,Vpp)=0 in Q,.

We can now proceed similarly to the proof of Theorem 3.1. The only difficulty arises in
the proof of Lemma 4.2; if the assertion (4.3) is valid then the rest of the proof extends
without changes, provided we replace Ay, = 0 by (4.16).

By simple continuity argument, (4.3) remains valid if R lies in a “small” neighborhood
of I';. Otherwise, the proof cannot be extended; one can however proceed to verify (4.3)

numerically

15



REMARK 4.1. The shape of the function u(z) (or n(z) is the notation of §1) is impor-
tant for determining the intensity of the laser. Some numerical work was carried out by

J. Spence and K. Kahen (see [1; Chap. 13]) in the case (4.15). Our results for the case
where 0, = const. in §, show that

n(z) = const . + ev(z) .
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