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Abstract

The paper considers the effect of rate state - dependence and curvature on detonation
velocity and detonation structure in the quasi - steady quasi-onedimensional limit. Exten-
sions of prior results of Bdzil and Stewart as well as the correct analysis of the problem for
Arrhenius kinetics, originally considered by Wood and Kirkwood, are given. New formulas
for large activation energy are obtained. The latter half of the paper provides a derivation
of the relevant front evolution equations and of the simplified asymptotic equations using
Whitham’s shock ray coordinates.
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1 Introduction

The history of the relation between detonation velocity and the radius of
curvature of the detonation shock has its origins in the work of Wood and
Kirkwood, [1]. In their classic paper they considered the central streamtube
for a steady, curved detonation with a locally symmetric detonation shock.
The analysis is a structure analysis of a quasi-one-dimensional ZND detona-
tion and assumes that the shock has weak curvature and is traveling close
to the Chapman Jouguet (CJ) velocity. In particular, they showed that the
wave had to obey a “generalized Chapman-Jouguet condition” at a point
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imbedded in the reaction zone behind the detonation shock. In the language
used here this condition is derived by finding the common zeroes of the ther-
micity and sonic functions. For simple exothermic reactions, the generalized
CJ - condition is satisfied only for diverging waves.

Having reduced the problem to solving the ODE’s through the reaction
‘zone, which must satisfy the shock boundary conditions and the generalized
CJ condition, Wood and Kirkwood attempted to illustrate a specific example
of the detonation velocity - curvature relation by choosing a depletion rate
law with Arrhenius kinetics, namely

R~ (1-2) e ®/AT, (1)

where A measures the extent of reaction, (A = 1 at completion). An ad hoc
analysis followed where a discontinuous, square wave structure was assumed
with the conclusion that the relation between the normal detonation shock
velocity, D,, and the curvature, x was linear. (However, their result for the
difference D,, — D¢y is multiplied by an undetermined ’constant’, which can
be inferred to be a function of the curvature, but it is not explicitly given,
nor is it clear how to identify it from their analysis.) An exact analysis of
their equations was not given.

Nevertheless, their work represents a fundamental contribution to detona-
tion theory because it demonstrated that a relation between the detonation
velocity and the curvature might exist and showed a theoretical pathway
which has finally led to a rigorous derivation of the result.

In 1981, Bdzil, [2], considered the problem of a steady-state detonation
propagating down the axis of a cylindrical stick of finite radius. His pertur-
bation analysis was based on the assumption that the length scales of the
detonation geometry are much larger than a typical reaction zone thickness.
The result was a second order differential equation for the shock locus which,
when solved subject to a confinement boundary condition, provided a rela-
tion between the axial, steady detonation velocity and the charge diameter.
This was the first systematic derivation of the diameter effect observed in
condensed phase explosives. His calculations in [2] used a special rate law,
chosen somewhat for analytical convenience. Although it was not explicitly
stated in this paper, the equation for the shock locus is equivalent to a linear
relation between the normal shock velocity and the local shock curvature.



Stewart and Bdzil published a paper in 1988, [3], where they demon-
strated that a quasi-steady relation between D, and k exists and that the
functional form of the relation depends in detail on the equation of state and
the rate law. In some cases the D, — k relation is linear, but for » = 1 and
E* = 0, (say), the leading order correction to the detonation shock velocity
is logarithmic. This result has led to evolution equations that predict the dy-
namics of motion of the detonation shock for a class of important detonation
flows.

This paper extends some of these results obtained previously by Stewart
and Bdzil and considers the case of Arrhenius kinetics in detail. We also
extend the accuracy of the results, providing new formulas for 1/2 < v < 1.
In the second half of the paper we give a careful derivation of the equations of
motion in terms of front attached coordinates. The equations are analyzed to
justify the quasi-onedimensional quasisteady approach for diverging waves.
They also provide the basis for further theoretical developments.

Motivation for this work comes from several sources. First, the D,, —«& re-
lation has been recognized as the basis for a new principle of explosive design
called Detonation Shock Dynamics by Bdzil and Stewart after Whitham’s
Geometrical Shock Dynamics, [4],[5],(6],{7]. This is very much a practical
concern as the method of Detonation Shock Dynamics may reduce the time
and effort required to design explosive components. It is asserted that the
D, — & relation is an intrinsic property of the explosive and hence directly
measurable by experiment. Thus our present calculations are important for
the purpose of cataloging how different assumed forms of the rate law gen-
erate different D,, — k curves.

A second motivation for this work is for enhanced theoretical understand-
ing of multidimensional detonation within the context of a standard model
problem of gas-phase detonation, the Euler equations with an ideal equa-
tion of state and a single exothermic reaction with Arrhenius kinetics. The
solutions given here represent steady and a certain class of unsteady, multi-
dimensional solutions. Also, the steady solutions are the basis for further
systematic linear stability studies, following Lee and Stewart [8].

In Section 2., using the end results of Sections 5.-7., we give the relevant
formulation of the divergent detonation problem which is essentially equiv-
alent to that posed originally by Wood and Kirkwood. Section 3. derives
the asymptotic results based on the formulation in Section 2. for a rate



law with a general and unspecified state-dependent rate constant. Section 4.
considers the particular form of the formulas for an Arrhenius rate constant
and examines the relative effects of the increased depletion dependence, v,
and rate state-dependence. Explicit formulas are given in the limit of large:
activation energy. Sections 5.-7., in detail, illustrate all the assumptions used
to derive the equation set of Section 2. Starting from Whitham’s shock ray
coordinates, [9], in Section 5., we provide special results for two dimensions
in Sections 6,7. We explain the front evolution equations under a D,-x law
in the shock ray coordinates in Section 6. and give a justification of the
quasisteady quasi-onedimensional equations of Sections 2.-4. in Section 7.

2 The reduced problem

The governing equations are the Euler equations with reaction, written in a
shock-attached intrinsic coordinate frame. Section 5. uses Whitham’s shock
ray coordinates. The approximations used in our analysis assume that the
detonation shock travels along its normal at a velocity close to the CJ value
and that its radii of curvature are very large compared to a typical reaction
zone thickness. It is assumed that the flow is nearly 1-D and quasi-steady.
Restrictions are placed on this theory in the sense that the terms neglected
must be uniformly small. Estimates for the various terms in the full governing
equations are given in Section 7.

To the order needed for our analysis, the (dimensional) equations are
consistently written as,

%’% + kp(u + D) =0, 2)
w3 %%f; —o, 3)
ug—i —r (5)



In the above, p ,u, D,, P, E, A and r represent the density, normal particle
velocity relative to the shock, the normal detonation velocity, pressure, spe-
cific internal energy, reaction progress variable and the reaction rate. The
variable «, is the sum of the principal curvatures of the detonation shock
surface. The variable n is essentially the distance normal to the detonation
shock.

The governing equations required for this section are completed by spec-
ifying the equation of state E(P,p, ) and the rate law, r(P, p,A). Here we
take F to correspond to a polytropic fluid, or an ideal gas, thus

E=—L2F_or and  r=k@p0-)), (6)
y=1p
and later we take K = ke~®"/%T for Arrhenius kinetics. In equation (6), Q is
the specific heat of reaction, 7 is the polytropic exponent, K and k are rate
constants, v is a depletion exponent and E* is an activation energy. The
temperature T is identified by an ideal thermal equation of state, so that
T = P/pR. The sound speed is ¢* = yP/p.

To these equation we add the strong shock relations

—p—Dn = P4Uy, P+ = p'—Dﬂ(u+ + D'n)’

.D2 P+ U2
—= E,+—= 4+t Ay =0. 7
The ” —” subscript refers to the state ahead of the shock, the ” +” subscript

to the state behind the shock. We have used the strong shock approximation,
which simplifies the shock relations, and neglects the terms proportional to
P_, relative to the shock pressure. One can show that the total enthalpy is
conserved throughout the structure,

c? v’  D?

(7_1)+Q(1—A)+7——2‘+Q- (8)

In the strong shock approximation, [3], the following formula for D¢ holds,

H =

D%, =2Q(* —1). (9)



" In order to simplify the subsequent discussion we scale the density, with
p_, the pressure with p_D%; and the velocity with Dgy. A natural length
scale for plane detonation is the 1-D reaction zone thickness which can be
represented as a characteristic reaction time, £, times Dgy. Thus the char-
acteristic length is Dgjt.. It will turn out that the natural choice for ¢, is
proportional to the inverse of the reaction rate constant evaluated at the
end of the reaction zone near the sonic point. This characteristic time arises
naturally when the generalized CJ condition is imposed. An explicit repre-
sentation for £, is given in section 2.1, (22).

Another characteristic length is related to the (reference) curvature .
The inverse of the reference curvature is typically the width of a confining
tube or is of the dimension of the combustion device. The ratio of these
disparate lengths defines a natural perturbation parameter

6 = (Degte)ro << 1, (10)

and the assumption of small curvature is then explicitly written as

Dgjter < 6 << 1. (11)

Thus, the dimensionless curvature, &, that appears in the following equations
can be used as an expansion parameter and its size is directly controlled by
6. Note that the reaction zone length is usually quite small on a laboratory
measurement scale, so that considerable or even strong curvature on the scale
of the combustion device is not necessarily excluded by our discussions.
The governing equations, are unchanged under this scaling and from now
on quantities are considered to be dimensionless: dimensional quantities will
be referenced with a tilde superscript. The reaction rate that appears is
r = i.. Equation (4) can be replaced by equation (8) which is rewritten as
vy P u? D?
(—7‘_—1)‘;+—2——q)\—'§—, (12)
where

~

Q 1
D?;J 2(72 - 1).

The shock conditions, solved explicitly in terms of D,, are

q (13)
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(v—1) v+1
- D, , = )
(v+1) S

The problem posed by (2), (3), (12), (5) and (14) is essentially in the same
form as that posed by Wood and Kirkwood.

Instead of solving the problem in the wave coordinate, the problem is
conveniently reduced to the analysis of a single equation in the u — X phase-
plane. (This form of the presentation can first be found in Fickett and Davis
[10].) In Section 5. a more general version of this master equation is derived
which includes all terms due to unsteadiness and multidimensionality. One
can simply derive this equation by differentiating (12) and eliminating P and
p explicitly in terms of u and A, thus obtaining

du _ufg(y =1)r —c’k(u+ Dy)] _u¢

dx r(c? —u?) “rg’ (15)
where
-1
2=l 5 ) [D? —u? +2¢)], (16)
with the shock boundary condition given by (14a).
In what follows, we define the thermicity locus by
¢ =q(y - 1)r —c*k(u+ D,) =0, (17)
and the sonic locus will be defined by
n=ct —u*=0. (18)

(The definitions of thermicity and the sonic loci differ slightly from those
found in Fickett and Davis, but share the same zeroes.)

In general, solutions to the above problem become singular near a sonic
point, n = 0. For solutions to be admissible, ¢ and 7 have to pass through
a common zero which exists only if there is a particular relation between D,
and k. We derive this relation explicitly by asymptotics in k. Anticipating
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that u + D,, is positive throughout the reaction zone, we observe that a zero
of ¢ can only appear if « is positive, i.e., in a diverging wave. For converging
waves, the present approach is not directly applicable. For a discussion of
the converging wave problem, the reader is referred to Klein, [11].

2.1 The location of the critical points in the u-)\ plane
(the generalized CJ condition)

An admissible solution of (15) must satisfy both the shock boundary condi-
tion and the critical point criterion, that  and ¢ vanish simultaneously. For
arbitrary pairs of D, and & the differential problem is overdetermined. Both
conditions are satisfied only if a relation, D, = D,(x), between the curva-
ture and detonation speed exists. That such a relation always exists is not
proven. When it does exist, the relation depends on the particular form of
the energy function, E(P, p, A), and of the reaction rate function, r(P, p, A).

The critical points of (15), in the u-A plane, define the generalized CJ-
condition described by Wood and Kirkwood [1], although equation (15) does
not appear there. In the u-A plane, the task is to integrate from the shock,
through the critical point that is imbedded in the reaction zone. If we think
of D, as being fixed (say), then the starting point of an integration and the
trajectory of the solution will be determined, but unless & has a specific value,
the trajectory will not pass through the critical point. Ensuring that it does
so, determines the D, — & relation (also see Fickett and Davis’ discussion of
slightly divergent detonation in the u? — X plane, [10]).

Recall that the critical points are defined by the roots of the thermicity
and sonic parameters, ¢ and 7, respectively. Consequently, if x << 1 then
r << 1 and hence (1 — ) << 1 and the critical points must be near the
line of complete reaction, A = 1, and hence near the plane CJ state. Given
k and D! = D, — 1, one can determine the location of the critical point in
the u — ) plane to leading order from (17) and (18). First the thermicity
condition, ¢ = 0, yields '

1/v
Cz(u+Dn)] ICI/U + = s‘nl/ll +.... (19)

gy -1)K

The value of u? at the critical point is then obtained from the sonic

’\::r=(1_’\)cr=[
cJ
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condition (¢* — u?)e = 0 and from the expression, (16), for the speed of
sound. We find

2 ~1
cz’zuz’:(vll)?“?rﬂl) e +1) GaTEY TONND (2

Using the leading order values of the solution to evaluate s. shows

2 1/v
o= |— (21)
(v +1)*Key

So far, the parameter K¢; appears and is the value of the dimensionless
rate constant, K = K t., evaluated at the CJ end state. For convenience, we
choose the time scale so that s, =1, i.e., we let

2 . 2 2

2y
Kcy=+—— or t. =
(v+1)? (v+1)?

In this way, the inverse of the reaction rate constant evaluated at the CJ end
state is the natural time scale, {., mentioned below (9).

Notice that the order of X is a noninteger power of x unless 1/v is
integer. Also, the order of A, satisfies the estimates

KCJ (22)

k>>k2>> kYY) for 0<v<1/2
k>> kY >> k2, for 1/2<v <], (23)

suggesting that a straight-forward expansion in terms of integer powers of «
might not be second order accurate in the latter regime for v. In fact, we
will show that it is necessary to perform a multiple power expansion in order
to follow the solutions through the critical point.

3 Asymptotic analysis

3.1 The Main Reaction Layer

The flow behind the detonation shock breaks into two layers, a main reaction
layer (MRL) in which most of the combustion occurs and a region very near
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the sonic point and near reaction completion which we call the transonic layer
(TSL), (See [3] for » = 1 and [11]). In the following, we adopt the convention
that a capital U will be used to represent the velocity in the MRL while a
lower case u will be used in the TSL. When no distinction is necessary, u will
be used.

In the regions of the u — A plane, where the curvature term in (15) is small
compared to the chemical source term, the leading order structure is that of
a plane CJ - ZND wave. The plane CJ solution is conveniently expressed in
terms of the variable

£=+1-) (24)
and is given by

v —£ 1+¢
X2 PEy=—, 0 =-—, 25

where the distribution of the reactant is found from the integral of the rate
equation,

u(f) = —

ne [ o4 (26)
¢ T(P,p,l _22)

In the MRL, the leading order approximation of the velocity, v = U,
follows from an integration of (15) neglecting the curvature and using the
shock condition. Notice that the rate function drops out of this calculation.

Next we construct the first order correction to this solution in the MRL.
The shock boundary conditions require that the largest perturbations of u =

U and D, be comparable. Thus the MRL expansions must take the form

u=UOW+0U'+..., D,=14+D' +..., (27)

where U®©) is given by (25a). The asymptotic orders of U’, D!, as & — 0
~ are not yet specified. As we will see, they will ultimately be determined by
matching the solutions in the MRL and TSL.

We insert these expansion into equation (15) and the shock condition
(14a) to obtain a differential equation for U’. The effects of small curvature,
relative to the leading perturbations in the MRL are uniformly accounted for,

10



so long as k/U’' ~ O(1) or smaller, as K — 0. Thus we obtain the following
problem,

' v oo =l o f (=004 8) K9(0)
a " t(y-0) " — L(y-=-0 " A(v+1) 2z KO)(¢)’
’ 7"‘1 ]
= X7 D at b= 28
U o at 1, (28)

with the solution given by

) e () [rod

where

(e
F(e) = KO (2)/K©(0)’

In general, the approximation u = U© + U’ 4+ O(U"?) is not uniformly
valid as (£ — 0). The first obvious improvement is to eliminate the strongest
singularity proportional to 1/£ by choosing D!, = —« J3 F(£) df. The behav-
ior of U’ then depends on the limit

(30)

% [/: F(é)dé—/ol F(o) de] —0@™)  as  (£—0).  (31)

For 0 < v <1/2, U’ is bounded, but for 1/2 < v < 1 the solution diverges as
¢ — 0. This divergence can only be resolved by matching with the bound-
ary layer solution of the TSL near £ = 0. In this layer, the order of the
perturbation changes.

For the case of simple depletion, » = 1, the integral that would normally,
define the leading term in D,, i.e., f} F (é)dé, diverges logarithimically as
¢ — 0. Even in the MRL, the leading order correction is no longer O(«).
The case of v = 1, for a constant rate coefficient was analyzed in [3] and the
generalization is given in Section 3.4 below.
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3.2 The transonic layer expansion scheme

Since we assume the detonation to travel at nearly the Chapman-Jouguet
velocity, the state at the end of the reaction zone is close to CJ conditions.
From considerations of the leading order matching of solutions in the MRL
and the TSL, we can motivate the following structure argument for the so-
lution in the TSL of the form,

u=_7%i+g@wmgyh“, D, =1+ o(g), (32)

where

=1 — h(k)s, (33)

and g(x) and h(x) are as yet undetermined gauge functions. By comparison
with (19) the location of the critical point isat s =s* =1,if h = &,

By inserting the above expansions in (15), one obtains the following equa-
tion for ul®

uw“@=(i) L P— %25} (34)
ds g?) 2ty + 1P (y+1)2r
Unless h/g? = O(1), (the constant of proportionality we can choose to be
one) and «/r is at most O(1) in the TSL, it is not possible to match the
corresponding TSL expansion (32) with the limiting form of the MRL ex-
pansion. This argument suggests a relation between the thickness of the
TSL and the size of the perturbation. Also the order of the perturbation of
detonation velocity, is smaller than the u - perturbation, i.e., as long as D,
is o(g), it does not enter the TSL structure through O(g). In contrast, the
perturbations of D, and U are comparable in the MRL layer, since the MRL
solution must satisfy the shock relations at [ = 1. Note that the outer limits
of the inner TSL solution will induce higher order terms that must be in the
MRL expansion, thus dictating the form of the MRL expansions.

Thus the natural choice for the scaling function for the TSL is (h/g?%) = 1.
The size of h and ¢ in terms of « is then obtained by requiring that the

curvature and chemical source terms in the Master equation directly compete
in the TSL, which is guaranteed if h = /¥, and &/r = O(1). Then the outer
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limit of the TSL expansion generates a term that matches with the 1/¢27!
of the inner limit of the MRL expansion. Thus, the appropriate scalings are

h(k) = k'Y and  g(k) = &%, (35)

3.3 The regime 0 < v <1

According to the discussion in section 3.2, if we seek a solution in the tran-
sonic layer of the form

w= —g () ol ), (36)

where

s =" (1-)), (37)
then (34) becomes

Jut/i?® 1 ( 1)

5 "\ Tw (38)
Since (c? — u?)(/?) ~ u(1/2¥) the critical point is defined by
WM =0  at  s=1. (39)
The solution for u(1/?) is
' 1 siv —1]?
(1/2v) () = -1 - - .
u (s) P [s T ] (40)

To match the TSL and the MRL solutions, we replace s with £, using the
definition s = k~1/*£2, to obtain the large-s limit of the TSL solution, and
compare with the small - £ limit of the MRL solution. In particular we find,
starting with the TSL solution that

. 04 1 K 1
Iim = —— —_|f -
s——ooou 7+1+’7+1[ 2(1—V)£2"_1
KMy 1 X
L /2v -2y -2
+ —————2(1_y)e+1€ O(s™,s )]. (41)
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The small-£ version of the MRL solution is

ImU = —— 5+ 7 |47 Dn+n/0 F(b)dé
K 1 ' 2-2v
20 —7) P + O(D;,, &, k€ )] . (42)

We observe that the term proportional to 1/¢2*~1, which is generated from
(31), automatically matches a corresponding term in the TSL expansion.
Comparison of all terms proportional to 1/£ reveals that the detonation speed
perturbation is given by (writing out F(£) from (30))

/\2 p1-2v
D' — —n 1 (142)%*¢ dipel Y
" o KO(2)/K©)(0) 2(1 -v)
which is valid up to order O(x?). Notice that the correction to order O(x!/¥)
could have been neglected entirely when v < 1/2. The leading order correc-
tion to the detonation velocity, which is linear in the curvature, is the result
originally obtained by Stewart and Bdzil, in [3]. As we let » — 1, the first
as well as the second term in D/, diverges and a modification of the solution
with the introduction of logarithmic terms is required.

(43)

3.4 The regime v =1

Here we give the simple depletion result, which extends the results of Stewart
and Bdzil when v = 1. As v — 1, the description in the TSL becomes singular
as apparent from (43). Equation (38) shows the resolution since when v =1,
logarithms are produced by the solution. It is easy to argue that if the TSL
expansion is given by (36) with v = 1, then the outer limit of the TSL induces
an expansion in the MRL of the form

U=g—:l+fslnnU(1“)+xU(l)+... ,
7+1

Dn=1+klngkD®™ 4+ kDM 4 ... (44)

The derivation in section 3.1 is general enough that we may simply insert
D! = klnkDI) + kDY + ... into (29) to obtain the desired result. For the
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purpose of matching to the TSL we need the limit of the MRL solution as
£ — 0, which is

L—~ klnk pin)
TERR RV

K L LA+0? (KO0
v gt [ e [ (o 1) )
+ O(xlnk). (45)

The TSL expansion (using the solution found by setting v = 1 in (38) for
u/2) is

u= "?ZIT R ——ls—1-1In ($)"? + O(k1Ink), (46)
which leads to the large-s representation of the velocity
12 11
R A Vi X _-Aas =
u = 7+1+n 7+1(1 5 ~ 55 +O([lns/s] )) (47)

Rewriting this last result, using s*/2 = k~'/2¢, we find

_£—7+ 1 klhn(k) &
T+l 2(y+1) ¢ £y +1

In
; { +1n(0)} +0(x 352)) (48)
Comparison of the the MRL and TSL expansions reveal that the logarith-
mic term & In(£)/£ is automatically matched and that the detonation speed
perturbation is

et [ (S

This extends the result given by Stewart and Bdzil to include additional
reaction rate, state-dependence. In their work the rate coefficient, K, was
constant, in which case the integral contribution to order « in (49) does not
appear.

A remark on the matching procedures for the regimes v < 1 and v =1
is in order: For v < 1, we needed only the leading order perturbation u{/2)
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in the TSL to match all the diverging terms, as £ — 0, from the first order
MRL solution. Similarly, the first order MRL solution was sufficient to cover
all the divergences of u/?) as s — oco. A detailed calculation shows that
the situation changes for » = 1. To match a xInZ - divergence in the MRL
solution, one needs perturbations of order xIn« and «In s in the TSL. While
the first term is straight forwardly derived form the a linearized version of
(38) with v = 1, the latter requires a second order solution in the TSL. It
suffices to say tha,t result of this analysis do not change the leading order
results for D, ().

3.5 Summary

In this section we summarize the results of section 3. by listing the formulas
for D, and the 2-2 composite expansions, [12], accurate to O(k) for the
particle velocity u for the various cases considered. First define the integrals

o-2(1 4 1) A+ (KO(0)
L) = / I(O)(l)/K(o)(O)dl, L) = /t ( —l)dl,

14 KO)(1)
(50)
then we have found,
0<vkl
=1 — 1/v 2
D,=1—-kL{(0)+« 2(1 " + O(£%), (51)
l— K1/2u sl=v — 1 1/2
© = =7 11— /2
¢ 7+1+7+1{[s : 1-V] ’
£ |1 It 1 v v
bl — Y
TS {10 - 201+ 7|~ o

- I,(9). (52)

7(7 y(y+1)

for k1% < £ < 1.
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klnk

D,=1+ - kB3+ L(0)]+... (53)

B 1/2
w9 = E___7 + ® {[S 1 1n3]1/2 _ 81/2}
y+1 y+1

ol ey

Y
kln nm. (54)

for k12 < ¢ < 1.

4 Arrhenius kinetics

A standard model for the state-dependent rate is that of Arrhenius kinetics.
A dimensional Arrhenius reaction rate constant is given by

K = ke E/RT, (55)
The dimensionless activation energy is defined as § = E*/RT, based on
the characteristic temperature, T, = D% ;/ R, which is on the order of the
shock temperature. Thus the rate constant at the end of the reaction zone is
K = kexp (=0/T¢y), where Tc; is the dimensionless temperature at the end
of the reaction zone. According to the formulas of Section 3.5, the rate state
- dependence of our results appears through the integrals I;(!) and I5(!). In

these expressinos, K must be evaluated with the leading order temperature
T©), which is given by (now dropping the scripts)

1 1)?
) (v-0(1+0
Thus the formula for the scaled rate constant, K, is
K= 2 ro-ure) (57)

T (1)
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and the integrals I;(¢) and I>(£) become

1
Il(£)=./; el-Zu(l+£)260[1/T(l)—l/T(0)]d£, ‘ (58)

) |
L) = l (14 £)? [SW/TO-1TON 1] gp . (59)

The formulas of Section 3.5, now can be analyzed in detail as the param-
eters, v,0 and ~ are varied. Variation of v formally corresponds to changing
the reaction order, while a change of @ varies the temperature sensitivity
of the reaction. Changing « corresponds to changing the equation of state,
which in turn affects the thermodynamic variables like the temperature. We
will give a complete discussion below, but we temporarily turn to the limit
of large activation energy.

4.1 Large activation energy

When the activation energy, 0, is large, an analysis of the steady 1-D struc-
ture shows that there is a well defined induction zone preceding the main
reaction zone. The inverse temperature has the property that its global
maximum (temperature minimum) occurs at the shock for 1 < 4 < 2. The
spatial structure of the detonation wave reflects this property. In the large
activation energy limit, if 1 < 4 < 2 the spatial structure is an induction
zone followed by a relatively thin reaction zone, in which the reaction goes
nearly to completion.

For v > 2 the temperature at the complete reaction point in the 1-
D steady structure is less than the shock temperature. In this case the
structure, as measured on the shock-defined induction length scale, consists of
an induction-zone, followed by a thin reaction zone, which freezes, i.e. slows
exponentially as the temperature decreases below the shock temperature.
This has the effect of spreading the reaction zone over exponentially many
induction zone lengths.

These statements can be easily understood by simply noticing the pro-
found qualitative effect that changing 4 has on the temperature distribution.
Figure 1. shows a plot of T'(£) versus £ for varying 4. Note that ¥ > 2 is not
a common range for gas phase detonations. The range may have physical
significance for condensed phase explosives if it is interpreted as mimicking
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the effects of a complex equation of state of a dense fluid and its interaction
with endothermic processes which slow the reaction at the end of the reaction
zone.

Bdzil, {13], has pointed out that for an ideal caloric equation of state,
(0E/0p)r =0, an ideal thermal equation of state, P = pRT, and constant
specific heats, v must be restricted to the range 1 < v < 5/3 in order to
guarantee a formulation consistent with thermodynamics. Thus, values of
v > 5/3 should be interpreted with caution.

In the range, 1 < v < 2, large activation energy asymptotics reduces
to finding approximations to (58,59) as § — oo which is a straightforward
exercise in integral asymptotics using Laplace’s method. Therefore, the de-
tails are not given here. The asymptotic evaluation of (58,59) is completely
dominated by the contribution to the integrals near the shock, i.e. at I =1,
and one finds to a first approximation that

6(1/T(1)-1/T(0)) 1 —1)2 3=y )(v+1)2 ,
L(8) ~ I(8) ~ £ 6O -1 ) ot . (60)

0 (3 =) (y+1)?
where
1/T(0) — 1/T(1) = é?;r_li; 7 ; 2 (61)

Even though in I;(€) there is an enhanced contribution near £ = 0, it is still
exponentially small in comparison with the contribution to the integral near
the shock. To leading order one finds

16(y — 1) €f/T(W-1/7(0)]

G-y +1)? 0

Because of our choice of scales for this paper, the above formulae contain
the activation energy scaled with respect to T = D%;/R. If the one - di-
mensional steady state shock temperature, T, had been used instead, (as has
been the convention in other studies using activation energy asymptotics)
then the shock scaled activation energy,

11(0) ~ 12(0) ~

(62)

k)

_(r+1)?
%=’
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would have appeared. Since the main contribution to the integrals is found
at the shock, 6, is the natural large parameter. Especially for values of v -
close to one, the value of § needed to obtain a good asymptotic estimate can
be as small as 1. Also it is worth pointing out that in expression (60), the
appearance of (£ — 1) in the argument of the exponential function reflects
the existence of the induction zone near the shock.

To illustrate the interpretation of our formulas for the D, — « relation
when the activation energy is large we introduce the induction length scale

_ Dgy fITM
T EF 0
The relation between the curvature x scaled with respect to l~c and the cur-
vature k; scaled with respect to [; is

(64)

i S/T(W)-1/T(O)]
Ki = =K = k= G(0)«k. (65)
l 0
For v < 2, G() is exponentially large as § — oco. Since I;(0) ~ I(0) are
proportional to G(f), using the above formula with equation (62) in (51)
shows that

D, =1 — ki A(y) + 61" ———GO) V" + ..., (66)

2(1 v)
for 0 < v < 1 where A(v) = [16(y — 1)3)/[(3 — 7)(v + 1)?]. Notice that
the O(k'/*) term has exponentially small influence in comparison to the
O(k) term. One can conclude that for large activation energy effects due to
changes in the depletion exponent are not very important in determining the
leading order behavior of the D, — k relation. Since the limit detonation
structure for large activation energy is a square wave, our result verifies the
leading detonation speed correction to be linear in x as was anticipated by
Wood and Kirkwood, [1].

In the next section we no longer restrict to large activation energy, but
consider numerical evaluations of the formulae in Section 3.5.
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4.2 Parametric dependence

The effect of curvature and rate state - dependence, according to this paper,
has two profound effects, one on detonation velocity and one on the actual
structure of the detonation.

The simplest way to illustrate the changes in the detonation velocity
with state dependence is to examine how the coefficient I;(0) changes as
v,7 and @ are varied. The second coefficient I5(0) essentially follows I;(0).
Figure 2a., shows the variation of I;(0) with 6 for v = 0.5 fixed and for
v =1.4,1.7,2.0 and 2.3. The value of I;(0) is independent of v for # = 0.0
since dependence on v is felt only through the temperature dependence in
the integral. For a fixed activation energy, lowering v towards 4 = 1 increases
I,(0), (corresponding to a D,, — & relation that is more sensitive to changes
in the curvature), while increasing « has the opposite effect. Notice that the
activation energy based on the shock temperature is 8, = (y+1)?/2(y—-1) =
7.20, for v = 1.4. So, as 7 — 1 for fixed 0, the large activation energy results
of the last section hold and the effective activation energy is large. For fixed
7 below a value of approximately 1.7, increasing 6 has the effect of increasing
I,(0) and hence the curvature sensitivity. While for 4 above this critical
value, the curvature dependence is decreased initially with increasing 6, but
for 6 sufficiently large, the asymptotic dependence of I;(0) is once again
observed and I;(0) increases with increasing 6 according to the asymptotic
result. These effects are also seen in other figures discussed below.

Figure 2b. shows the variation of I;(0) with «, for fixed activation en-
ergies, § = 0.0,0.5,1.0 and 2.0 and fixed depletion exponent, v = 1.0, and
a comparison with the asymptotic result of the last section evaluated with
0 = 2.0 is shown. Again for # = 0.0, [,(0) is independent of v, and the figure
clearly shows the trends of changing vy mentioned above. For larger values of
7, I;(0) is less sensitive to changes in 8 than for smaller ones and at vy = 1.75,
I,(0) is essentially independent of §. This is near the point where T'(1) —T'(0)
changes sign. Importantly, this figure suggests that v — 1 with § — 0 is an
interesting distinguished limit of the equations of this paper. We have not
explored this in detail, to date. The asymptotic comparison appears to be
accurate over the entire range of 4 evaluated for § = 2.0, even though the
effective value for large 6 is decreasing with increasing 7.

Figure 2c. shows the variation of I;(0) with v for fixed v = 1.4, and
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activation energies § = 0,1.0,2.0. The value of I;(0) appears relatively in-
sensitive to changes in v until v — 1. Recall that when v = 1 the asymptotic
structure of the formulas change and the variation of I;(0) reflect this. For
large values of v, I;(0) is less sensitive to changes in § as is also seen in Figure
2b.

Figures 3a-d show D, — & curves as various parameters are changed.
Figure 3a shows a D, — & curve for v = 1.4, § = 0,.5,1.0,2.0. The curves
reflect the exponential sensitivity on the activation energy. Figure 3b. shows
similar results except that the value of v has been changed to 2.0. We find, as
mentioned above, that increasing the activation energy, with larger v, causes
the detonation velocity to have a smaller curvature sensitivity, i.e. the trend
is reversed from that shown in Figure 3a.. Similar behavior is seen if the
activation energy is fixed and v is decreased towards one. In that case, the
reaction zone lengthens exponentially.

In contrast, the sensitivity to changes in v, for fixed 6 is less at smaller
~ and greater for larger values of 4. Figure 3c. shows a D, — & curve for
4 = 14,0 = 1.0 with » = 0,0.3,0.6,0.9,1.0. The variation between the
curves as v changes is reasonably small, and the logarithmic dependence of
D, — & as k — 0 for v = 1.0, cannot be seen on the scale of the plot. Figure
3d. shows a similar plot for the same parameters except that v = 2.0. The
relative variation as v changes is much greater than that of Figure 3c., and
the logarithmic dependence of the D, — & can be clearly seen for v = 1.0.

Next we turn to rate state and curvature effects on the detonation struc-
ture as computed from our composite expansions. To calculate the spatial
dependence of our results, we substituted u{ for u in equations (52,54) into
formula (26) resulting in an integral expression for n which has the accuracy
of the composite expansion. Note that the pressure profile and density profile
roughly follow that of u{®). The distribution of A reflects the heat released
throughout the structure.

Figure 4a. shows representative plots of A and u(9, versus n, for v =
1.4,v = 0.5 and = 0.0,0.5,0.75 and « = .02. The effect of increasing 6 is
to lengthen the reaction zone. This is generally true for all fixed values of
v and 4. Also, as 0 increases from zero, the profiles first develop an inflec-
tion point and then concentrate their steepest gradients near the end of the
(lengthening) reaction zone. This is coonsistent with the fact that Arrhenius V
kinetics lead to a square shaped profile in the limit of large activation energy '
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(Shock - Reaction Zone - Fire).

Figure 4b. shows one of the effects on the structure due to the inclusion of
curvature in the structure calculation. The representative spatial structure
is calculated for v = 1.4,0 = 1.0 and v = 0.6 and for values of x = 0.0
and .01. The value x = 0.0 corresponds to the plane, one - dimensional
structure and also the lowest order approximation to the wave structure,
while k = .01 corresponds to a curved detonation and includes higher order
terms. An important feature is the dramatic lengthening of the reaction
zone that appears when curvature related terms are retained in the spatial
structure of the detonation. This lengthening, all by itself, has important
dynamical implication for multi - dimensional numerical simulation.

The numerical rule of thumb for wave propagation problems requires that
all dynamically significant features of the flow must be spatially resolved in
order to calculate the correct dynamics. In this case we’ve shown that the rear
of the reaction zone, in curved detonation may have an extended tail in which
significant heat is released. Proper numerical calculation in a simulation will
require resolution of this tail region.

Figure 4c. shows a representative effect of the inclusion of curvature
terms on the reaction zone length as v is varied with § = 1.0,y = 1.4 and
k = .01. The variation of the length of the reaction zone, while significant,
is not dramatic over the range of values of v considered. This is in contrast
to the qualitative shape of the structure of the reaction zone observed as v
is changed. At low values v < 1/2, the reaction rate is essentially depletion
independent (v = 0.0) and terminates in a cusp. For higher values of v an
inflection point emerges and a reaction tail involving relatively small rest
heat release develops. The transonic layer (TSL) introduced in our matched
asymptotic analysis establishes in this tail region (see also [11]). As v — 1,
the reaction tail extends to infinity. Figure 4d. shows results similar to those
of 4c., but with v+ = 2.0 and « = .05. Once again the qualitative shape
changes with increasing 4. The results in both of these figures can essentially
be understood from the one - dimensional structure.

In summary, for the specific case of one step Arrhenius kinetics, we have
presented a useful set of approximations for large activation energy which
give explicit forms for the D,, — & relation and also can be used to calculate
the spatial structure of the reaction zone, essentially analytically. We have
evaluated the D,, — & relation’s dependence on the parameters of the equation
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of state, namely <, and the kinetics parameters v and §. Equation of state
parameters, like 4, can mimic the effect of changing kinetics parameters
through their influence on the temperature dependence.

At large activation energies, the D, — « relation is extremely sensitive to
changes in the curvature. For fixed, nonzero 6 and 4 — 1, this is also the
case. For fixed v above or below some threshold, increasing and decreasing ¢
can produce opposite trends in the sensitivity of the D, — & curve. For very
large 8, the reaction zone consists of an induction zone followed by the main
reaction layer. The exponential sensitivity, as § — oo, of the D,-« relation
can be removed by introducing the curvature k; scaled with the induction
length. Under this scaling, the leading perturbation in terms of «; and 1/6
is linear in ;. Thus we find, from a systematic analysis, the linear D, -«
correction that Wood and Kirkwood had anticipated.

In the last three sections we provide the analytical background for the
developments in Sections 2.-4. Section 5. introduces Whithams shock ray
coordinates, [9], which serve both the description of the detonation shock
evolution and a convenient representation of the governing equations.

In Section 6. we derive further results for two dimensions. In particular,
we discuss the front evolution equations given a D,-x law. We provide a
formulation consistent with the ray coordinates and point out the parallel
between the present approach for weakly curved detonations and Whitham’s
Shock Ray Theory.

The goal of Section 7. is to justify the quasi-onedimesional, quasisteady
approximations of Sections 2.—4.

5 Front attached coordinates

5.1 The Shock Ray Coordinate System

Here we perform a time dependent transformation from physical space, (x,t),
to the variables (¢, (, 7), where

¢ and  (=(¢¢") (67)

are spatial coordinates to be defined shortly and
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T

t. (68)

In analogy to Huyghens’ principle, orthogonal trajectories of successive
shock surfaces, called the ‘shock rays’, serve as coordinate lines of the normal
coordinate, £. With each point x on a shock ray, one associates a unit normal
vector, n(x), and a scalar wave speed, D(x), follows: n(x) is the unit tangent
to the shock ray at x and D(x) is the value of the front normal velocity, D,
in x at the instant when the detonation shock passes the point.

Let x = Xo(() parametrize the initial shock surface, then (' (i = 1,2)

label the shock rays emanating from this reference front, so that

¢ = const along shock rays. (69)

We specify the normal coordinate ¢ by:

i) At any given time, 7, the arclength, ds, of a line element on a shock ray
at a point X is given by

-

ds = D(x) dé . (70)

i) A point x(¢,(,7) with (¢,{) = const moves in time along a ray at the
speed D, i.e.,

A

ds = D(x) dr . (71)

1) £ =0 on the detonation shock.

It follows from 1) and :) that

ox ox .
gz(f,ﬁﬂ) = 5-(6,67) = (Dn)(x(¢,¢,7)) (72)

and that all metric functions associated with the coordinate transformation
will depend only on the combination of variables ({,{ 4+ 7). For example,
x(&,¢, 1) =x(¢,E+7), n(f,_g:,*r) = n((,€+7) etc. In particular, ﬁ(O,C, T) =
D,(¢,7) is the actual detonation shock speed at time 7. The ¢* (i = 1,2)
are a set of tangential coordinates in the surfaces £ = const.
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5.2 The metric

(For the differential geometry used below, the reader may confer Struik [14]
and Millman and Parker [15].)

In the following, we let upper and lower roman indices cover the range
{1,2}, while greek indices cover {0,1,2} and we use the summation conven-
tion for the respective ranges of the indices. For convenience, we define

C=¢. (73)

The vectors

8 ) ax
Bo=gp =(DOn)(GE+n)  and  gi=gn(GE+n) (1)

form the local covariant basis, {go,g1,82}, associated with the mapping
(¢,¢) — x. The covariant basis determines the covariant metric coefficients,

o =(@g)=( 2. (35)

The yet unknown coefficients (gi;), (3,7 = 1,2) characterize the transverse
parametrization. The zeroes in (75) arise because the rays are orthogonal
trajectories of the shock surfaces so that (go ~n L g;).

Associated with the covariant basis, {g, }, is its dual, {g"}, the contravari-
ant basis. It is defined by

g'-g =6, (76)

where 8%, is the Kronecker Delta. An alternative but equivalent definition of
the contravariant basis is given by

P=grad§) = (Fn)GE+7)  and  g=gnd). ()

The reader may verify that (74), (76), and (77) are consistent. For later
reference, we notice that the Jacobian determinant of the coordinate mapping
is,

J =go- (g1 x g2)=1/det(g,,) =D A, with A= \/det(g;;) . (78)
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The Jacobian relates volume elements in physical space to volume elements
in the coordinate space through dV = J d¢d(* d¢®*. The physical meaning
of A as a ray tube area function will become clear later in Section 6.

5.3 The velocity field
The velocity relative to the moving coordinate frame, i.e., relative to a point
(&,() = const is

v=0v'g, =un+v'g, (79)

where the {v“} are the contravariant velocity components. Notice, that
00 = u/ D is the contravariant normal velocity coordinate, while u is the
physical value of normal velocity relative to the shock attached reference
frame. Recalling (72), we write the velocity in an inertial frame as

v = (u+ D)n +'g; . (80)

5.4 The transformed governing equations

The reactive Euler equations which govern the detonation phenomena are:

DP : ab _
,DT+pd1v(_vl ) =0

Db 1
D +;grad(P) = 0
DE_»2Dr _
Dr  p*Dr
DA

The previous subsection defined the nomenclature needed to express the

differential operators in these equations in terms of the new coordinates.

Here we summarize the results of these transformations. Some relations that

are special to our particular choice of coordinates are derived in appendix(A).
The gradient operator reads

27



, 0 1 0 , 0
grad-gaCu—Dn%+ o (82)

as a consequence of (77). The particle time derivative (App. A.1) is

D 0 ud ; 0
Droar T paE T’ 60 (8

Applied to the velocity in an inertial frame, v'* in (80), this operator yields
the acceleration

Dvlab D . D 1
5 = "t D e
. u . On on
+ (u+D) {(1+ )66 60}
B u agt %
+ v [(1+ ) 3 +v]3C’} (84)

The derivation uses the fact mentioned below (72) that the metric functions
depend on (¢,7) only via (£ + 7).
The flow divergence, as derived in appendix A.2, is

div(v*h) = (u +D)+k(u+ D) + (85)

TG D (v .
Using (82)-(85), we rewnte the governing equations, thereby collecting on
the right hand sides all terms that have been neglected in (2) - (5).

The mass conservation equation, (81);, becomes

dp

uaP (u+D)+pn(u+D) (gi+vi6§' JB('(J )) . (86)

Dot D3€

The momentum equation, (81), reads

Dvla.b
Dt

with the left hand side from (84) and the gradient evaluated according to (82).
Of interest for our discussion are the normal and tangential components of

= —l Ta '
=8 d(P) (87)
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this vector equation. Scalar multiplication by n and g' and some algebra
using (144) in App. B.1 and the orthogonality of n and the {g;} yields

D -, 1P u\ ;0D ;. On
— —_—— = - - ' T ! y * ; 88
A R T (1 )”act””g’ o
and
Dv? A vivked . 9gi
o + 2(u+D)ve ag+ VB Gk
1 ;0P (u+D)* 0D
i R (89)

In sections 2.-4. we are interested only in first order approximations and
do not need to solve the transverse momentum equation. We go back to (89)
only in section 6.2 below where we analyse the two-dimensional case and
obtain estimates for the tangential velocities, v'. These are needed to justify
the quasi-onedimensional, quasisteady approximation in sections 2.—4.

The energy and reaction progress equations, (81)c,d, are written solely
in terms of particle time derivatives and thus remain unchanged under the
transformation. With the understanding that D/Dr is the operator in (83)
we obtain

udE Pudp ) OE P 0p
B3 ppa = (oo lar ), 00
o\ ox 0\
u aé T(p,p, ) - - ( + ac ) (91)

Sections 2.—4. focus on asymptotic solutions to the Master equation, (15).
One obtains a generalized version of this equation from the energy equation
by replacing

DE DP Dp DA
T \Ps Py A Ep— E Exy— 2
oy (PP A) = Ep=— + D+AD (92)

and inserting appropriate expressions for D(P, p, A)/ D7 using the mass, nor-
mal momentum and reaction progress equations. The result is
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(c - ug)—g—%? + [nc’(u + D) - czo‘r] = h.o.t. (93)

where h.o.t. abbreviates all terms that are neglected in (15). Its precise form
is:

Ou 19P 9

h.O.t. = u-a—‘r'—;-é?—-:fé-c—i(;]v)
. 18D 1 ;0u® Dv
. 2 __ .2 _ i Tl __”_
(¢ v —uD)F 5+ 5V 56 T o
0D . D
+ UU'EC—,.—*-DV! .b;, (94)

where vy = v'g; is the velocity component in the tangential direction and
2. —Ex _ 1
o = = .
pE,  2(y+1)
2

The speed of sound appears in the derivation through the expression c* =

—(E, - P/PZ)/EP'

(95)

6 Front evolution in two dimensions

Here we are interested in the overall evolution of the detonation surface,
but not in resolving the structure of the thin reaction zone. The appropri-
ate scaled coordinates measuring on the length scale of a typical radius of
curvature are

(.67 =8(6,¢m), (96)
where § is a typical value of the nondimensional curvature, i.e.,
1
f£=3n=0(1) as 6—0. (97)

In two dimensions, the co and contravariant bases reduce to
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R R 1 1
{go,81} = {Dn, At} and {go,gl} = {E n, Zt} , (98)

where t is a unit tangent vector pointing towards increasing (. The length,
A, of g; determines an arclength increment along a surface £ = const via

ds = Adl . (99)

The two functions (D, A)(é,f + 7) completely describe the metric of the ray
coordinate system. We note that D corresponds to Whitham’s Mach number,
M, while A is his ray tube “area function”.

Basic differential geometric calculations using (98) and (137), (142) in

appendix A.2 show that A evolves along a shock ray according to

1 9A

AD 9

(see also Whitham’s eq.(8.48), [9].) This relation is also valid in three di-
mensions provided A is defined by (78)b.

=k (100)

6.1 Whitham’s approach for inert shocks

The normal n is, in two dimensions, uniquely defined by the angle 6 with
respect to a fixed reference line, say the x-axis of a Cartesian frame, i.e.,

n=cosfi+sindj. (101)
The relation for changes of n along the shock line becomes
1 6
A0¢ 0s A0¢
and we find
90 104
il (103)
¢ D 9¢

from (100). On the other hand, 8 is also the angle of t with respect to the
y-axis and from symmetry considerations regarding the respective roles of

(E,D) and (Q:, /i) one concludes that
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2 _ 10D
ot Aol

Whitham derives a differential equation relating the area function A and the
front velocity D from his semi-heuristic characteristic rule:

(104)

G )99 104
Ao

With G(D) a known function, this equation integrates to a relation A= A(D)
if the initial parametrization is chosen such that A(C ,0) = 1. Inserting this
in (103) and (104) yields a hyperbolic 2 x 2-sytem of equations for § and
f), which intrinsically, i.e., without reference to the flowfield, describes the
shock evolution.

(105)

6.2 Detonation Shocks

Consider now the asymptotic weak curvature detonation theory. Instead of
an “area rule” A = A(D), we have a coupling D = D(&). Choosing & as a
basic dependent variable and eliminating D, (see App. B.1), we obtain

0k |.. 18
% [ D(/c)-i-(A A) D(& )] (106)

Together with (100) this relation forms the desired system of equations for
the evolution of the metric functions &, A on the 7 time scale. An equivalent
equation was derived in [5]. Recall that the detonation speed-curva.ture
relations derived in sections 2.—4. may be written as

D(#) =1 - 8 D*(&,6) + o([6*]) (107)
for all 0 < v < 1, if we define

5 = { 6 for r<l1 (108)

6In(1/8) for wv=

Here, we require that
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D*(#,8)=0(1) as (§—0), (109)

but allow for an explicit dependence on é of D* to account for the two-gauge
function expansions in (43) and (49) for D;,.

With D — 1 = 0(6*) < 1, the second derivative in (106) is negligble
unless the typical tangential length scale is small. Tangential variations of
the front geometry play a significant role in the curvature equation only if
they depend explicitly on the stretched tangential variable

p 6
= 110
== (110)
In that case, (k,/i) obey
0A _ iAD
73
Ok  .ap, 10 0 D
gf_ = —K D+Za (-—-5- (n,&)) (111)

to leading order. This system replaces Whithams equations in the theory for
weakly curved diverging detonations. '

It was also found earlier by Bdzil and Stewart, [16], in a different ap-
proach, that the D-« relation of the asymptotic theory leads to a parabolic
behavior of the surface dynamics. This is in contrast with Whitham’s hyper-
bolic shock dynamics model.

Given smooth initial data for (A, &) the system (111) describes the evolu-
tion of the shock geometry on the 7-time scale. Since the present asymptotic
theory is restricted to diverging waves with & > 0, [11], the area function,
A, will continously increase, thereby diminishing the influence of the dlffu—
sive term in (111)b. Asymptotically, this leads to D ~ 1, 0A)0¢ ~
and 0k/0% = —&? for the curvature at £ = 0. This system is equlvalent to
Huyghens’ principle which predicts smooth solutions for all times for diverg-
ing waves. Thus, we expect solutions to (111) to be smooth as well, although
the nonlinearity in the diffusion-like term, induced by D* = D*(%,6) might
deserve a detailed analysis for particular functions D*(:,-).
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As long as the solutions are smooth in the (z,7)-variables we can as-
sess the order of magnitude of the metric terms in (86)-(93) needed for a
justification of the reduced equations. This will be one topic of section 7.

7 Justification of the simplified asymptotic
equations

To acchieve the goal of this section, we go back to the transformed governing
equations of section 5. We assess the metric functions, such as (1/J)8J/8¢
or g#-On/d¢, the tangential velocities, {v'}, and their tangential derivatives.
From this we derive a posteriori estimates for the accuracy of our approxi-
mations, that is, given the results of sections 2.—4. and the front propagation
law, we show that the neglected terms all contribute to higher than first order
in a small curvature expansion.

7.1 An estimate for the transverse velocities

The estimate of the tangential velocity component, v!, uses a transforma-
tion of the tangential momentum balance. Using the two-dimensional result
(1/A)on/d8¢ = &t, (98) and (102) the metric terms in the tangential mo-
mentum balance (89) become

(112)

vgi.a“ 1; ik i O8i _ (1)2:16‘4.

— =v K and v'v 2
o & e
For convenience, we recall (100), namely BA/8E = RAD. Then, by multiply-
ing (89) with A and adding,

DA
DF

to the left-hand and right-hand sides, respectively, we arrive at

(Avl)( (u+ D)+ o' %%%) (113)

—(Av1)+n(u+D)(A v') = —p—-—A+ ———-—-—-— (114)



Given the solutions (fc,/i) and (P,p,u) to the wave propagation problem
in section 6.1 and to the detonation structure problem in sections 2.-4., re-
spectively, this is an ordinary differential equation for (Av!) along a particle
path. The exact solution, taking into account that v! =0 at the shock, is

. o[ D) 18D
(Avl) =e? P/ e’ [_’La—{)- + (u +,\ ) TaA di', (115)
0 pA 0 D Ad(
where
I L 2 Al
o ="[ k(u+ D)dt", - (116)

and ™ denotes integration along a particle path. Next we observe that
(A, D) ~ const within MRL and TSL to order O(6*), because (A, D)depend
on ¢ only through the combination é + 7, and the thickness of the layers
in terms of £ is no larger than O(6*) as (6 — 0). Using the quasisteady
composite solutions for the detonation structure in section 3.5 one can derive
an explicit representation for (/i v!) valid throughout the subsonic region of
the detonation structure. However, here we are mainly interested in an order
of magnitude estimate:

Observing that (i) the thickness of the subsonic region is of order O(6*),
that (ii) particles pass by at an order O(1) velocity, that (iii) the strongest
transverse pressure gradients occur in the transonic layer for v =1,

oP 62 opt/? 1
% =0 (@ o) = (i) oo

and that (iv)
oD & dD*

Gk
we find that the solution in (115) yields

+.--=0([6In(1/8)?), (118)

(Av!) = O((86*)/%) = O((6n**(1/6))  for (v=1). (119)
For v < 1 the estimate is even stronger, namely (Av') = 0(6%[%“]).
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7.2 Error terms in the governing equations

In this section, we compare the terms neglected with the smallest terms kept
from the transformed governing equations (86)—(93). The estimates assume
that the matched asymptotic solutions are of the following form when written
in terms of the variables (¢,(,7):

F(&,¢7) = FOE) + 8 (6,276 +O(8])  in MRL (120)

and

F6,¢,7) = foy + 8/ fUP)(§726,2,#) + O(6")  in TSL. (121)

Here f stands for (p,p,u) and @ = 1/v —1 for » < 1 and we use the notation
for §* as in (107).

We recall that the solutions were originally obtained in terms of the reac-
tion progress variables £ = /1 — X and s = k~1*(1 — X), respectively. Since,
in general, A = A(¢,{,7), it is not trivial that the representations in (120)
and (121) are valid. They imply that the reaction progress equation is solved
to first order accuracy by the inverse solutions

£ = €O + 6°¢* (6, 2,7 6) + O([6*)*)  in MRL (122)

and

£ =& + 6%, (s,2,7;6) +0(6%)  in TSL. (123)

Given the results of sections 2.-4., one can construct such solutions a poste-
riori by straight-forward but tedious calculations.

We emphasize that ¢ = £(©)(€) being independent of z, T requires that the
reaction rate is not extremely sensitive in the sense of a distinguished limit of
the curvature and the sensitivity parameter of the rate function. For example,
with an Arrhenius reaction rate, as considered in section 4., a limit «;0, =
O(1) as k; — 0 for curvature and activation energy is excluded. (see (65)
for the definition of x;.) In such a regime, the main reaction layer thickness
changes by order O(1) due to the curvature induced perturbations and the
appropriate Ansatz for ¢ is £ = £©(¢,x(2,7)). Buckmaster [18] studies a
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curvature-activation energy limit for overdriven waves. He points out that
the reaction zone structure remains quasisteady if the long time variable, 7, is
the only relevant time variable in the process, but that, for sufficiently short
tangential characteristic lengths, the changes of the induction zone thickness
induce transverse waves in the burnt gases. This is an inherently unsteady
effect and is not accounted for in the present analysis. In particular, the
discussion following (110) would have to be revised. Notice, however, that
these restrictions do not prevent us from considering the sequential limit
(k; — 0) then 6, — oo of section 4.

From here on, we assume the form of the solutions in (120)-(121) and
go back to the transformed governing equations. The terms including metric
functions are assessed in the framework of section 6.1, so that

D = 1-6D"(z,#;6)+ O([6"]?)
A = AO(z,%,6) +0(8) (124)
i o= kO, 7;6)+0(6) .
and . ) R R
J=AD = A® 4 §*(A* —D*AO) ... | (125)

with z,6* from (110) and (107), respectively. Again, the explicit § - depen-
dences indicate that the functions contain the leading terms for two-gauge
function expansions in 4.

Using the definitions for (€,(,7) in (96), the equations (98) for the co-
and contravariant bases, (102) and the estimate (119) for v(!), we obtain

1 a 1y __ 3/2
7-6-5(}0 ) = 0(6%?) (126)

for the neglected term in (86) and

on

a—(i:

v' (1 + %) 9 =0(68?6")  and  v'oig;- 0(6%6™)  (127)

¢t

for the metric functions in (88).
The Ansatze in (120) and (121), and again (119) yield for f = (p, p,u):
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o, g{i = 0(66",6%%6")  in MRL . (128)

and

af 3{. = O(8"+#,6%*%)  in TSL. (129)

On the other ha.nd, the smallest terms kept from the continuity equation are
of the order

pr(u+ D) = 0O(6) (130)

in both layers, which is large compared to (126) and (128). The smallest
terms kept from the energy and normal momentum equations are of the
form

(1/v)
61/"u(°);a-f—a-€— =0(") for (v<1) inMRL (131)
and
(1/2v)
" Fugy aéfg =0(6"%) for (v<1) inTSL (132)

Here we used {35, = §7%(€ — &) with @ = 1/v — 1 from (121). Compar-
ison with (128) and (129), respectively, shows that the quasisteady, quasi-
onedimensional equations are a consistent leading order approximation in the
present regime. We finally obtain (2)-(5) by (2) replacing ¢ with the shock
ray arclength coordinate n on a ray satisfying dn = Dd¢ and (?) using the
fact that the variation of D through the layers is of order 6* only, thus setting
it to its value, D,, at the detonation shock.

A Differential Operators

A.1 Particle Time Derivative

Beginning with a formulation in terms of cartesian coordmates (t,z¥), (v =
0,1,2), we write
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D 0

Dl B +vP grad( ) . (133)

X

The coordinate transformation, (¢,z") — (7,("), implies

g 0 ox
3 B i} +b_7' -grad( ), (134)
such that
D 0 Wy O0X% :
Di- or + (v - —5;) -grad( ) . (135)
Due to (72), (80) and (82), this is equivalent to
D_2 igy (Lnd L g0
”ﬁ—ar‘l“(un'*'vg:) (Dn6£+g 50)_ (136)

Sincen 1 g'and g; - g' = 61-‘, this is the desired result from (83).

A.2 The Divergence

For the divergence of a vector field, w, say, we use two equivalent represen-
tations:

10 o, Ow

The first relation is a standard expression. To obtain the second, we replace
Jw* = Jg* - w and use the relation

div(w) = (137)

Jgt=g, xg, . (138)
Here and below, we consider {), i, v} to be cyclic permutations of {0,1,2}.

Thus, we get

divw =g -—3—5+—jw-255(g#xgu). (139)
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Carrying out the differentiation of the product in the sum of the second term
and observing: (1) the definition g, = 9x/3¢* and (2) that {A,p,v} are
cyclic permutations of {0,1,2} one finds

aJg* & 0
S = 2 e (8 x8) =0, (140)
A=0

which verifies (137)b.

To find the divergence of the velocity field in our flow problem we procede
as follows: Using (74) we write w = w° Dn + w'g; and then use (137)b for
the normal but (137)a for the tangential component to obtain

div(w) = (D w°) + Dw® div(n) + (J . (141)

Jo¢
Considering the veloc1ty vector w = v2° from (80), and noting that the sum
of principal curvatures, k = k1 + K2, of surfaces { = const obeys

k = div(n) , (142)

we find (85). To see (142), we observe from (137)b that div(n) is the trace
of the Weingarten map g; — On/d(*, whose eigenvalues are the principal
curvatures, [15].

B Differential Geometric relations

B.1 The evolution equation for & in 2-D

Here we work in the scaled coordinates (£,{) as introduced in (96). Recall
from (142) that & = divn. It follows that

0 _ 0 (4 m)_og on . 9 (0n
%~ 5 (g ac‘*) o a6 T8 ao( ) (143)

where the derivative 3/ A¢° does not appear in the expression for divn, be-
cause dn 1L g° =n/D.
We use the following auxiliary relations:
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—=-VD=—g'— 144
Y I &5 (144)
and, in two dimensions,
: 1
V= 1 = —=t , 145
g =g yi (145)
1 A
—Aa/? = &D, (146)
A 0f
1on . (147)
Aol

The relation (144) will be derived at the end of this appendix, while the others
are equivalent to (98), (100) and (102), respectively. Wizh these identities
we transform (143) into

N 2
Ok _ Akt-i(it) - (l—a-) b (148)
o 9€ \A Aal
2
. Dk%(i-—"z—-) b (149)
Aadt

which coincides with (106).
It remains to check (144). We decompose

on . on
m_gifg. 08 150
0¢ (g 65) (150)
and use (g; -n) =0, (¢ = 1,2) to obtain
on ; ag.-
on_ _oi(n. %8 . 151
€~ " (“ 0é ) (50

Then we recall g; = 8x/0¢* and 9x/8¢ = Dn and conclude

an_”‘(n.aljn)_*,g_b_ (152)
- E M) T E

Notice that the last result is valid in two as well as in three dimensions.
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FIGURES

Figure 1.: T(¢) for plane detonation versus £ for v = 1.4,1.7,2.0 and 2.3.
Figure 2a.: 1,(0) versus 0 for v = 0.5, 7y = 1.4,1.7,2.0,2.3.

Figure 2b.: I;(0) versus v for v = .5, § = 0,.5,1.0 and 2.0 and the asymp-
totic result evaluated with § = 2.0 shown for comparison.

Figure 2c.: I;(0) versus v for y = 1.4 and 6 = 0,1.0 and 2.0.

Figure 3a.: The D, — « relation for vy = 1.4,v = .5 and § = 0,.5,1.0 and
2.0.

Figure 3b.: The D, —« relation for y = 2.0, = .5 and § = 0.0,0.5,1.0 and
2.0.

Figure 3c.: The D, —  relation for v = 1.4,0 = 1.0 and v = 0,0.3,0.6,0.9.
Figure 3d.: The D, — & relation for 4 = 2.0,6 = 1.0 and v = 0,0.3,0.6,0.9.

Figure 4a.: Detonation structure for u and A as computed from the com-
posite expansion. v = 1.4,v = .5,0 = 0.0,0.5,0.75 and « = 0.02.

Figure 4b.: Detonation structure for u and A showing the effects of the
inclusion of curvature. ¥ = 1.4,» = 0.6,0 = 1.0 and « = 0 and 0.01.

Figure 4c.: Detonation structure for v and A as computed from the com-
posite expansion. ¥ = 1.4,0 = 1.0,»v = 0.0,0.3,0.6,0.9 and « = 0.01.

Figure 4d.: Detonation structure for u and A as computed from the com-
posite expansion. v = 2.0,0 = 1.0,v = 0,0.3,0.6,0.9 and « = 0.01.
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FIGURES

Figure 1.

T'(£) for plane detonation versus £ for v = 1.4,1.7,2.0 and 2.3.
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Figure 2a.

I,(0) versus 6 for v = 0.5, v = 1.4,1.7,2.0,2.3.
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Figure 2b.
I,(0) versus v for v = .5, § = 0,.5,1.0 and 2.0 and the asymptotic result

evaluated with 6 = 2.0 shown for comparison.
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Figure 2c.

I,(0) versus v for y = 1.4 and 6 = 0,1.0 and 2.0.
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Figure 3a.

The D,, — & relation for v = 1.4,v = .5 and 6 = 0,.5,1.0 and 2.0.
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Figure 3b.

The D,, — « relation for ¥ = 2.0,» = .5 and 8 = 0.0,0.5,1.0 and 2.0.
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Figure 3c.

The D,, — & relation for vy =1.4,6 = 1.0 and v = 0,0.3,0.6,0.9.
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Figure 3d.

The D,, — & relation for ¥ =2.0,60 = 1.0 and v = 0,0.3,0.6,0.9.
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Figure 4a.

Detonation structure for u and A as computed from the composite expansion.

v=14,vr=.5,0 =0.0,0.5,0.75 and « = 0.02.
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Figure 4b.

Detonation structure for u and A showing the effects of the inclusion of

curvature. ¥ = 1.4, = 0.6,0 = 1.0 and « = 0 and 0.01.
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Figure 4c.

Detonation structure for « and A as computed from the composite expansion.
vy=14,0=1.0,vr=0.0,0.3,0.6,0.9 and x« = 0.01.
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Figure 4d. -

Detonation structure for u and A as computed from the composite expansion.
v=2.0,0=1.0,v=0,0.3,0.6,0.9 and ¥ = 0.01.
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