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Lbstract

A bottom-up parsing technigue which can make non-leftrmost
possible reductions in sentential forms is said to be non-
canonical. Nearly every existing parsing Eechnique can be
exteﬁded to a non-~-canonical method which operates cn larger
classes of grammars and languages than the original technicue.
Moreover, the resulting parsers run in time linearly propor-
tional to the length of their input strings.

Several such extensions are defined and analyzed from

‘the points of view of both power and éecidability. The results
are presented in terms of a general bottom-up parsing model
which yields a common decision procedure for testing membérshié

in many of the existing and extended classes.
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Section 1 Introduction

Since 1965 when Knuth suggested that the power of formal pars-
ing techniques might be increased by allowing them to recduce not
only handles but other parases of sentential forms as well, there
have been Zfew iﬁvestigations exploring this possibility. 1In this
paper we consider this technique which we call non-canonical pars-
ing. We present a cescr iptive framework in which to consider

bottom-up parsing techniques in general and ncn-canonical techniques

in particular, and we use this framework to describe some existihg
techniques and to suggest their non-canonical extensions.
Very simply stated, the class of grarmars that can be parsed
5y Bottom-up reduttion mathods operating under a left to right scan
.has Lsen progressively approximated by the BRC notion of Floyd
{FL 64], then the LR(k) notion of Knuth [Kn 65] and finally by the
‘LR-regular notion of Cchen and Culik [CC-73] (we overlook the right
to left transduction of the latter method in making>this oversimplified
summarv). Essentially each of these rethods generalizes its precde-
cessor in that it enlarces the class of grammars (and sometimes the
iass of languages) to which it is applicable. This generality has
been cbtained by discovering ways to increase +he amount of context
used in maxing decisions without increasing the complexity of the
decisicns so much that the parser can no longer parse in linear time.
Note ?hat each of these methods has required the parser to produce
a canonical parse.
Our approach has been to remove the restriction that a parser

must always recduce the handle of a sentential form and to study the



properties of the resulting non-cancnical parsers. In Sections 2
and 3 we present basic definitions and develop a cereral model of
bottom-up parsing techniques with which we can describe and char-
acterize some of the cxisting methods. Then, in Section 4, we
consider the non-canonical extcnsions of these methods and ccnsider
to what degree these extensions possess the useful properties of
i) membership in the class being Gecidable, and ii) membership in
the class implying the existence of a linear time paréer for the
grammar. Finally, we cdemonstrate +hat +the ncn-canonical versions
of the various methods considered are applicable to more grammars . .
than their canonical counterparts, and we compare the various classes
of languages thus obtained.

In order to motivate the more formal treatment of Section 3 we
will attempt to give the flavor of non-canonical techniques by
considering the non-LR-regular language.

n,.n_m. m+d n, 2n_m
L | c

= {a'bcad a,m i1t Y {a'p ™|

n,m > 1}
1 -
and constructing a BCP grammar for it. A BCP grammar is essentially
a2 grammar which can be parsed by a non-canonical, bounded context
parser [Wi 72]. ~We emphasize that this is intended to be merely an

intuitive discussion; the formal definition appears in Section 4.

Intuitively, Ll is not LRR since any grammar for Iy will require

the handle of some sufficiently long sentence to be.at the a-b
interface, and the context reguired to distinguish between the two
alternative parses, namely whether there are more é's than c¢'s in
the remaining portion of the string, carnnot be getermined by a par-
tition into regular sets. Ll is a BCP language however, since the

grammar G, given in Figure 1 is a 3CP(1,1) grammar for it.

1



Intuitively, G1 allows a non-canonical parser to postpore any de=
cisions about the a's and b's until the c's and d's have becen re-
duced. It is then a simple matter to tell whether there were ori-
ginally more ¢'s than c's. This information is then transmitted
back to the a-b ‘interface via the B ané B' one-productions. 1In
Figure 1, we associate with each production, Ai Ry of Gl a set

of "parsing contexts",i.e. contexts in which it is always correct

to reduce x; to A;.

1
Sroduction parsing contexts
) Gz 1) S - Xy ‘ (=,=)
‘ 2) s + X'y’ (=,
3).X + aks (A, A)
4) X +aB (A1)
5) X' -+ ax'B'B' (A, A)
6) X' - aB'B' (A, A)
7) ¥ -+ va (A, 4)
8) Y + zd (5, M)
9) Y' ~ 2 (A,
10) 2 +czd (A, A) ‘
11) 2 + cd - . (A, A)
12) B + b (A,B) , (AY)
13) B~ > C(A,BY) L (AYY)

Figure 1. A BCP grammar for Ll'



step string acplicable reduction

1) ~ aabbccddd + 11

2) ~ aabbczdd— 10

3) Faabb2d - 8

4) i—aabb¥ 12

5) FaabBY- 12

6) )-aaBBY— 4

7) r-aXBY ' 3

8) =XY -+ 1

9) S+ . e
Figure 2. A sample parse of a sentence in L(Gl).

For example, any cccurrence of the string Yd can always be reduced to
ay (production 7), but the string b can be reduced to a B (produc~- *
tion 12) only when it occurs next to a B or a Y.,

Actually, the parsing contexts listed in Figure 1l are only a
subset of those produced by the gereral BCP analyzer. For exanple,
tbe string 2d could be reduced to a Y (producticn 8) rnot only when
it follows a b but also whenevér it follows a B. Tre subset we have
presented is sufficient to allow the correct parsing of any sentence
of Gl.' We illustrate this by ccnsidering the parse of the sentence

a2b2c2d3
in Figure 2. At each step we have underlined the lefiimost string
which occurs in a parsing context, and we indicate the appropriate
reduction. '

Notice that even though only one character of left and right
context is ever used, the important information can be passed back

to the crucial a-b interface by rippling back over the b's via the



oﬁé-brbduetion, B + b, This is tpe technique that gives the non-
canonical methods their additional power. It will be seen in

the next section that this increase in power has not been achieved
at the expense of the two important propertics mentioned earlier,
narmely decidability of membership in the class and linear time
parsing. )

We want to re-emphasize that the purpose of this example was to

_give an intuitive feeling for the formal treatment to follow. In
éarticular it will be seen that BCP parsers can be applied to arbi=-
trary sentential forms as well as sentences. This simplification

was nace here in order to expose the essential features of non-

canonical parsing.



Section 2 Basic Defini.tions
In this section we exhibit our notation. First, we need the
usual grammatical concepts.

Def. 2.1: A context free grammar G is a quadruple (v,z,p,S)

‘where V and I are finite sets called, respectively, the

vocabulary and terminals of G (the set N =V - £ is called

the nonterminals of G ), P is a finite subset ¢f N x V*

"called the productions of G and S € N is called the start

symbol of G .

We adhere to the usual convention of using A,B,C,... to derote
elements of N, X,Y¥,2,... to denote elements 0of V and a,B,Yseee
to represent elements of V* . .

Def..i.2: We define the relation = ¢ V¥ x V* by saying tha£

a=>8 iff o = alAaz, B=Aalslu2 ané A - Sl is in P for

some A € N and al,az,sl € V¥ ., The set of sentential forms
of G is the set SF(G) = {a € V¥| S % a}. The language
of G. is the set of terminal sentential forms, that is,

L(G) = SF(G) N I* .

In dealing with parsers, we need the concept of a phrase. We
a;sume that the reader is familiar with the concept 'of a derivation
tree for a grammar. The next definition is basic to this éaper.

Def. 2.3: Let T be a derivation tree for some sentertial

form Bay of the context free grammar G . Wé say that the

ordered pair (A + a,i) is a phrase of T if A+ a € P and

i = |Ba| and there exists a derivation corresponding to T

of the form S X BAY =3BQy.



Notice that phrases are cefined only in terms of derivation
trees. If. G is an unambigucus grammar, then and only then will
it make sense to talk about the phrases of a sentential form.

We next linearize the concept of a derivation trec in two

ways. A description languace for a grammar will be a set of

bracketad strings denoting a (unique) derivatian tree and the

phrase language for a grammar will describe the location of all

the phrases of a sentential form relative to a given derivation tree.
Def. 2.4: Let G = (V,I,P,S) be a CFG. Let ZB= {]|
1 <i < |P|} be aset of new characters. We call B the

set of brackets for G . Let N = {A] A & N} also be a naw

set of characters. The description language for G is the

language' DL(G) genarated by the gramhar
G'= (NUVUZB.VUZB,?',5) where
» = N - . - » oo . 2 - :
P'. = {A Yl”'yn4];!A X; - Yni is the i-th production of
P and Y. = X. X. f < 4 < n.
nd ¥y jor X5 for 1 <3 < n;}
The phrase language PL(G) Zor G is defined by the context

free grammar G" = (N Y VUEB VU ZB,p",5) where

P* = {X + Yi...¥, [A = Xj...X  is the i-th production of P,
ay 1 . g

Py
Yj = xj or ij for 1 < j < n; and at least
one Y. = X.
J 3)
U
. {R » %...x 1;]a > %,...x_ ~ is the i-th production of ?l.
1 ny

i
For example, consider the grammar whose productions are

S < s5|a and A » a. DL(G) is defined by the set of productions
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Consider now the following derivation tree according to G:
. //s\\ .
S
/\
S

»-—W
p— -

I
a
' This tree is represented by the strings

¢, = sal;l,1,al31,1, € DL(G)

and
v 6y = Sa]3a13 € PL(G)

Notice that the brackets in a string of DL(G) capture the
complete structure of some derivation tree whereas the brackets of
a string in PL(G) describe only the locations of the phrases for
that tree. Notice also that if G 1is ambigucus, there may exist
nore than one string in CL(G) or PL(G) corresponding to a given
sentential form of G. The mapping between SF{G) and -DL(G) or

PL(G) is provided by the string homomorphism defined below.



 Def. 2.5: let G = (V,Z,P,3) be a CFG and ZB be the bracket
sac “or G . Let & be a special character not in VU Z&.
pefine m: (VU BU (1) * » (V U [£})* by
pla) = (¥ - mly) if a = ¥y, ¥ € VU {4}
nly) if ¢ = Yy, Y € A -
A if o = A
define Rt (VU R U L) * » (VU * by
h{a) = (Y - h(y) if a = ¥y,Ye VUZRB
h(y) if a = YY,Y = %

A if a = A

The maps m ané h are respectively referred to as the bracket-

erasing "and marker erasing horomorphicsms. The reader may verify that

the restrictions of m to DL(G) or PL(G) are one-to-one if and
only if G is urambiguous. The reader may further verify that

wm(dL(G) U {S}) = m(PL(G) U {S}) = SF(G).

Section 3 A Model of Bottcm-Up Parsing

In the seqguel it will be necessary to discuss the operation
of‘parsers wﬁich naxe non—canonicai reductions. YXor this purpose
we define a general model of bottom-up parsing which eﬁphasizes the
context used by a parser when making reductions. No restrictiop
will be placed 6n where in a subject string the parser chooses to
make a reduction.

Def. 3.1: let G = (V,I,P,S) be a CFG. A reduction pattern

for G is a pair (R,A +a) where A + a € P and R C V*afV*,

The reduction pattern is said to apply to the string
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6 = 3132°3384 if 620#53 € R. The string ¢' = 8152A3384

is said to be a reduction of ¢ implied by (R,A = o).

The set R thus specifies those contexts in which a given reduction
may be made.

Note that no restrictions have been made on the set R as far

~as finiteness or even recursiveness are concerned. Of course the
interesting cases will involve "nice" sets in the sense of being
reguia:, bounded to the right of the #, etc.

In order for a reduction pattern to be useful, we must place - -
some additional qualifications upon it. In particular, let us
require that an implied reduction must be correct in the sense
that the substring "pruned" by the pattern from a sentential form
¢ 1is in fact a phrase of ¢ relative to al) derivation trees for ¢.

Def. 3.2: Let (R,A > o) be a reduction pattern for a CFG

G = (V,£,P,S) in which A + « 1is the i-th prcduction. We

say that (R,A - o) is a parsing pattern for G if

1) y € PL(G)
2) m(y) = 8,6,a8,8,
3)

4
ezdws3 € R

imply ¢ € m * 3lsz)a)im'1(s3s4).

Consider for example the grammar G whose productioné'are
S + SS|A and A + a. The reduction pattern ({a?},A -~ a) is a
parsing pattern because any  "a" can only be derived from an "A".
On the other hand, the pattern ({SS#},S - SS) is not a parsing
pattern because the pair of S's in the sententiai form SSA is nét
always an immediate S derivative. This is captured by the

definition in that both Yy = SS]lA]2 and Y, = SSA]2 are



elements of PL(G), yet SS 1is not a phrase of SSA relative to
all cerivaticn trees (eg. ¥, 7 m-l(A)ss]l =t

At this point we are ready to characterize parsing patterns
in such a way as to yield an effective procedure for testing

whether a large class of reduction patterns are in fact also

parsing patterns.

. Lemma 3.3: Let. G be a CFG arnd @b be the set of brackets for
G. let A + a be the i-th production of G and (R,A ~ a) be
a reduction pattern for G. Define the set

M =07 eLE)N w7 werva N nThwove B-1)%V 8w -

Then (R,A » a) is a parsing pattern for G if and only if X =g -

Prool: ;oosely speaking, M 1s the set of "mistakes" committéd by
the reduction pattern,and a parsing pattern will be a reduction
pattern'whose set of mistakes is empty. More formally:
only if: Suppose M # g . We must show that (R,A ~ a) is not a
parsing pattern.

Let ¥' e M.

%' can be uniguely written as @lxl#yx2¢2 where

S8 em v, XX, eV, Ye (B-lox -

Let v =h(y'). Then y € PL(G).

By definition of M, & 81,82,63,64 € V* such that

m(e;X)) = 88,0 , m(X,3,) =838, , and 3,0%3, € R.

(Nete that since ¢ € PL{G) , nm(y) = 8152a3384 € SF(G)).

Notice that xl is the last character of Blsza and tﬁat

X is the first character of 8384 .

2



if:

. = -1l 5 1 -1 o . -
If ¢ = ¢1X1YX2¢2 €nmn (wldz)a,im (33_4) then Y wculd have
to contain ]; . But by hypothesis, Y € (RB= 1.)*.
- -1
Hence Y € m 1(3152)a];m ‘(6754) ané we conclude that (R,A - a)

is not a parsing pattern.

Suppose (R,A - Y) is not a parsing pattern. We must show that

M#£ 2.

Since (R,A -~ w) is nct a parsing pattern, = . € PL(G) such that
. . - -1,. -1
m(p) = ByE,6B52, with £huxdy € R but 3 € m T(E,8,)e]lim ‘(2334)
By picking Xl = last character of Blsza and
X2 = first character.of 5354 we can uniquely write

Y= 90X YX8, with ¢,.¢, € (V Ui~ , X;.X, €V, ¥ €eRB* .
m(¢lx ) = slsza , and o 2;2) = g 54 .
l Q 2 "o

( 185 i 3._4) we must have .

Yy € (B - ]i)*. (Note thac'in PL(G), ény occurrence of ]

Moreover, since y £ m
i
must be immediately preceded by & with no intervening
brackets.)

Now consider the string ' = ¢1X157K2¢2.

Since h(p') = ¢ and ¢ € PL(G), we have y' €-h-1(PL(G)).

Since m(y') = 3152“#3324 and Szu#33 € R by hypothesis,
-l .

we have y' € m ~(V*RV¥*).

-1 )
Finally, since 4,0, € m ~(V¥) , ¥),%) @V and Y & (2 - 1%,

we have y' € m T (V*)Vi (B -]i)*Vm-l(V*).

Thus ¢' € M and M ¥ @ as was to be shown. g

Since the set M defined in Lemma 3.3 is-a context-free set.

whenever the set R is regular, we have



Corollary 3.4: It is decidable whether a regular reduction pattern
oros ety ~-2- S

is a parsing pattern.

Notice that all cormonly used parsing methods use reduction
patterns which are in facﬁ regular sets. This observation is
easily verified for any of th2 precedence or bounded context algo-
rithms. The LR{k) method of Xnuth [Xn 65] essentially uses
patterns which are regular sets but which have only k or fewer
characters following the #. The LR-regular technicue of Cohen and
Culik {CC 73] uses a pattern set which is of unbounded length éo
.eithe: side of the # but which is always regular. All of the
asove methods however are strictly canonical in operation. Our
model .thus. not only includes them but also allows for their ex-
tc;sioﬁ»zOJnoncanonical cperation.

A single parsing pattern allows us to make reductions for
‘but oﬁe production of the grammar at hand. In order to parse
arbitrary sentences we need a pattern for each production along
with some guarantee that the parsing process will not "block".

In other words, the set of parsing patterns must cover the set of
sentential forms which are generated by the parsing process itself
while processing strings of L{G). Since this set of sentential

"

forms is not necessari cleanly" sitructured set we will

Ve
<

a
susstitute 2 simpler reguirement, namely the ability to cover the

entire set of sentential forms. We thus are led to

Def. 3.5: A parsing scheme for a grammar G is a finite

colliection of reduction patterns such that

1) each reduction pattern is a parsing pattern.

of G other than S , there

4!

2) for every sentential o
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exists some pattern in the collection which applies to it.
This concept left unrestricted is sufficient to allow us to parse

any unambiguous context-free g¢rammar. Noreover,

’ +,
Theorem 3.6: Let G = (V,.,P,S) be a CFG in which S#QS. Then
therce cxists a parsing scheme for G if and only if G is
unarbiguous.
Procf: only if: suppose we have a parsing scheme F for G bu

that G is ambiguous. Therefore there exists some sentential

form ¢ with two distinct derivation trees T, and T, . We nay

further assume that T and T have no common phrases (if they

1 2

do, we can "prune" the common phrases until the desired condition
occurs.). The sentential form ¢ ceannot be S (because we have
hypothesized that S;Q S) and therefore some reduction pattera in
& applies to ¢. The "phrase" located by this pattern cannot
be a phrase of both Tl and T2, and thus the reduction pattern
fails to be a parsing pattern. Thus & could not have been a
§arsing scheme after all.

if: If G is unambiguous we can reaningfully talk about the
phrascs of a sentential form instead of just fhe phrases of a
derivation tree. So Aow we take as a reduction pattern for the
i-th production, A > a, the set R, = {ga3y| s L8ay} . This
(context-free) pattern is a parsing pattefn for G because when-
ever ¢ = Bay € SF(G) and Ea# € Ri , then there is but one
derivation tree for ¢ and (i,}eai) must be a‘phrase of that )
tree. Furthermore the collection of parsing patterns {Ri}l <i i_IP[

clearly covers every sentential. form except for S.g
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An immediate ané somewhat unfortunate corollary to the above

Corollary 3.7: It is undecidable whether there exists a parsing

Pttt indat SERL

scheme for an arcitrary context IZree grammar.

Thus is appears as if cur original conception of a parsing
scheme is too powerful to work with. The obvious restriction (with
~$n eye toward mééningful implementation) is to reguire that each
recuction pattern be a regular set. This restriction vields a class

cf parsing schemes which can be tested for correctness as

o}

described in

Theorem 2.8: [Decidability Theorem for correctness cf bottom-up
parsers} Let G be a CFG and & bve a finite collection of
reduction patterns for G . Then it is decidable whether & is

a parsing scheme for G .

Proof: We first check that each mexber of the finite collection
& is a parsing pattern. Corollary 3.4 tells us that this is
decidable. We must next check that some pattern applies to each

sentential form. Let U be the regular set U V*RV* . Then

..
Re
every sentential form is reducible if SF(G) - {s}ie YR. sSince the
set on the left of the ¢ is a context-free set and Y is regular,

this question is also cdecidable.'=

" In the next few paragraphs let us consider the implementation
of a parser based on regular reduction patterns. If we require
that only caronical reductions be mace, then we essentially have a

model of the LR-regular parsing process [CC 73] and can implement



the parser ©n a cne stack DPLDA wi
initial right-to-left finice stats transducticn of its inputz.
If non-canonical reductions are.allowed, then cne stack is no
longer sufficients and vwe arc forced to turn tc a twwo stack im-

plementation. We thus nave

Theorem 3.9: Let G be a CFG and & be a parsing scheme for G,
all of whose patterns are regular. nen L{G) can be parsed by
a deterministic two stack pusndcwn transducer. Furtherrcre, there

cxists a constan ¢ depending only on G such that any string

of length n can be parsed in tixe cn”.

Pféof: The two stacks are used to hold those portions of the
current sen;ential form which are resgactively to the left or
right of the current "point of interest". Each :eéuc;ion can e
made by a left-to-right sweep follcwed by & richt-to-leit sweed

over the sertential form recording states cf the rsgular patterns

as we Go. Thus a twc stack DPDA implementaticn works.

To establish the time bound, recall that if & grarmar is
unambiguous then there exists a coastanc cy such that any
derivation of a string of L(G) of length n takes at most clﬁ
steps. Furthermore no intermediate sentential form of this deri-
vation is of length longer than ¢ n. Fence the parzing pIccess

described above takes at most time (cln)‘. a

If we limit ourselves to reduction patterns which are bounded

on one side of the ¥ , we can establish a linear time bound Zor

parsing. Such patterns can be implemented in the simple autcnmaton

o]



Def. 3.10: Let G = (V,Z,P,S) be a CFG. A reducing automaton
for G 1is a quadruple (Q,k,&,qo) where

Q is a (rot necessarily finite) set of states,

k, the lookanead factcr, is an integer > 1,

§, the move function, is a map 6; Q x vk QU {i]l ¢ i< |P|},
go € Q is the start state.

The extension of § to Q X VkV* is defined inductively as

follows: 3(pabX) = [5G (,a6),8X) if 18X] = k and § (p,ag) € Q

undefinec otherwise

A .reducing automaton functions in a manner similar to that of
a finite state automaton except 1) each move consults the next k-
characters of~inpu€ and 2) the machine stops as soon as the move
funééion yields the index of a production instead of a new state.

A natural collection of reduction patterns can be associated
with'any reducing automaton. If this collection constitutes a

parsing scheme, then we call the automaton a parsing automaton.

More formally,
Def. 3.11: Let A = (Q,k,&,qo) be a reducing automaton for
G= (V,I,P,S). Let R, ={ 8#r|3 € V¥,y € v and 8 (qy.8v) = i}.

Let P = {Rj] 1< i< |2l}. A is said to be a parsing

avtcoaton for G iff & is a parsing scheme for G .

_Restricting a parser to a fixed amount of lookahead beyond the

right erd of a phrase yields a linear time parser.

Theorem 3.12: Let A be a parsing automaton for G . Then there
exists a deterministic pushdown transducer which parses sentences of

G in time'O(n) where n is the length of the input string.



Proof: Suppose that ¢ = 5

Suppose further that

is A = a. This means that
mermber of Q . If we now reduce ¢ to ' = ¢
apply A to find another phrase, the found phrase rust be to the
right of Bl. Thus in implementing A as a parser, after each
reduction we need only "back us" k characters irn th centential
form before continuing a left to right scan.

Thé total time spent during parsing can thus e éivided inzo
three parts: t, = the»time spent backing up, t, = the tiﬁe spent-
moving forward over regions cf cthe string already scanned and
ty = the time spent advancing cver previcusly unscanned characters.
The t;me t3 is clearly equal tc n . The time tl is bouncded
above by cln(k+2) where c¢)n ‘bounds the tctal nurber of reductions

ength cf the

'

1=

made (see proof of Theorem 3.9) and £ is the cagest

right side of a producticn. Similarly €, is at most cyn(xk+l) .
In any case, since cy and % depend only on G , we ccnclucde
that t, + t, + t. = O(n).
h 178 3 (n). g

Thus the parsing automaton is just the model which we need o

develop the desired linear time, non-cancnical extensicns of

existing parsing algorithms.



Section 4 Non=-cancnical extensions

In this section we will show how several existing parsing
methods can be extended to operate non-canonically while remaining
within the framework of the theory developed in section 3. We will

then analyze the generative power of these oxtensions with respect

languages.

Let us start with Floyd's Bounded Context grammars [F1 641.
A grammar is m,n Boundad Context (3C(m,n)) if every phrase of every
sentential form is uniqueély distinguished by the m characters to
its 12ft and the n characters to its right. Fxtending this idea,

a grarmar is said to be m,n Bounded Context Parsable (BCP(m,n)) if

at leaéi one phrase- 0f every sentential form is uniquely distinguished
by the m characters to its left and n characters to its right [Wi 72].
m™is extension is actually ron-canonical because a BC parser was
intended to operate in a strictly left-to-right fashion.

An equivalent definition may be phrased in the terminology of
saction 3. Thus a grammar is BCP(m,n) iff there exists a parsing
schame for it such that every reduction pattern takes the form of
an m character string, followed by the right side of the production
in question, followed by a # and then an n character string.

The results of section 3 immediately vield
Theorem 4 .1: It is cecidable whether a'g:ammar is BCP(m,n) for

fixed m and n.

Proof: One simply generates all possible sets oX reduction patterns

which fit the ECP condition and tests their correctness using
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Theorem 3.8. Such & procecdure is guaranteed to nalz oy the fact
that there are but a finite ruxber oI such patterns. 03

A simﬁlc example of a BCP{l,1l) grammar 1s Gl' It has also
been shown that the 3CP grammars are sufficiently oowerful t
a proper supcrset of the determinisctic languages [Wi 727.

we mention in passing that the work of Colmerauer {Co 70]
inzended to be a noa-canonical extension of simple precedence
parsing.” It has been shown hcwaver [AU 72]) that the resul
of grammars is too powerful in the sense of including sorme am:i

grammars.

in Theorem 3.6.

This will never be the case

ith

Let us consider next the non-cancnical extensicn cf LR(K)

parsiné.

Knuth [(Kn 65] suggested a partial

y ncn-canonical

cur parsers as was shown

: extensicn by defining an LR({x,t, grammar as &n unaxn iguous CfG i
wnich every sentential form has the preperty that orne of its t
aeftmost phrases is uniguely distincuished by its leit context a
first k characters of right context. An example of an LR(1,2)
grammar is provided by G, : S =~ 2R |BB

A~ a
B+ a
3 + bi|b3B
3 - bEcik
The reader should note that G, is not an LR(x) grammar or even a
LR-regular grammar.
parsers for LR(kx,t) grammars can be constructed using a te
similar to that used for building LR(X) parsers (see [AU 72} for
£ this latter constructicn). The only major difference is that



+he lookahead string associated with an individual LR(k) item is
allowed to contain non-terminals as well as terminals. Whenever an
inadequate item set (i.e. one in which the correct parsing action
is undefined@ duve to the presence of conflicting items) is reached,
the parser postpcnes any implied reduction(s) and shifts to a new
set of items. This new item set includes in its closure any items
produced by expandﬁng the leading non-terminal in the lookahead
string of any postponed items; Comélete details of this construction
appear in [52‘73]. The construction also serves as a test for
LR(k,t)-ness.

Since the process of postponing an individual item can be
'répeatéd at most t times, no lookahead string need have a length
which exceeds kt. Hence the above construction is finite and we have

Theorem <.2: It is cecidable wnether an arbitrary CFG is LR(k,t)

for fixed values of k and t. Furthermore, an LR(k,t) grammar can

be parsed in linear time.

Proof: The ccnstruction sketched above gives rise to a set of

regular reduction patterns whose adequacy can be testcd by Theorem 3.8,

The linear time result then follows immediately from Theorem 3.12.

However, since an LR(k,t) parser has to back up at most t times in

successicn and since each back up is of distance ¥, we can clain a

stronger result, nam2ly that LR(k,t) grammars can be parsed by a DPDA.EE
"Note that parsing with a DPDA implies that all LR(k,t)

languages are in fact deterministic languages; that is, every

LR(ﬁ,t) grammar is equivalent to some LR(k) grammar. This suggests

that we should consider instead the fully non-canonical generalization

of the LR(k) grammars.



Accordingly, we

CFG in which every scntenti
uniguely distinguished by
of right context. Gl is
not LR{k,t) for any k and t.
The generalization actually introduces wore parsing pgcwer than
intended. More specifically, if cne considers the parsing patterns
induced by an LR(k,=) parser, one finds that these sets can in fact
. be non-régular context—free sets. This in turn imslies the need for
a PA with infinitelyv many states in order tc do parsing. Iven
more ;erious is tre faci that
Theorem 4.3: The class of LR(k,») grammars is not recursively

enumerabdle.

J

roof: Consider the set C = {{G',G")!G' and G" are LX{k) and

L(G') N L(G") = ¢}. It is easy to show that C is not recursively
enumerable. ‘

We next show that given any two LR(k) grammars Gl and Gz, we

can effectively construct a new frammar G(G.,G,) such that G is
L4T2

LR(k,») iff (Gl’G € C. Accordingly, let G, = (V,, I,?2,,8,} and

2! R 1 IEERES Tt

G2 = (VZ, Z,PZ,SZ). Without loss of generality, assume that G

and C2 have disjoint sets of non-terminals. For each ©
replace all occurrences of G, in P, by a new ron-terminal ©
i 1

vy a new non-termiral o

&3

all occurrences of ¢. in P,
time we add ci * Gy to Py and o} +'G; ©o p,, and ce&ll the resultin
sets of productions Pi and Pé. Now we let G be the grammar

C = v, U v,y 'y Iy {sh,z,pl U Py U {s ~ s, 18,1,8).



It is well Xnown that with this standard construction G is unam-
biguous iff L(G)) N L(G,) = 9. We claim that G is LR(k,») iff G

is unawbiguous. The oaly if directicn is cbvious. For the if

b

directicn, note that if G is unanbliguous then L(G,) and L{G,) arc

N
-

éisjoint. Trerefiore in every sentence of »(G) the last character,
Os will always be able to be reduced to a ¢! or a ¢! by consider-
ing the left context (the entire rest oI the sentence) and the
richt context tée.% ). Once a saentential Zorm contains a non-
tercineal, thai non-terminal will serve as sufficient context for
its neighbor‘until the entire string has been reduced to a word
in either I' or I". 2t this point the parsing schemes of the
préginal LR(k) grammars can complete the reduction to r Sl4 or

bos,d .

Hance (ti,Gz) € C iff a(Gl,GZ) i3 LR(k,®). Since C is nct recursively
enumerable, the class of LR(k,») grammars cannot be rccursively
enumerable either. &J

Corollzrv 4.4: It is undecidable whether a CFG is LR({x,x) even for

Suppose then that we try to capture the favorable aspects of
the LR(X,~) method, i.es. the ability to reduce arbitrary phrases of
sentential ferms, while still preserving the appiicability of the
theory developed in the previous section. This suggests that we -
rust weaken the discriminatory power of the left contexts by
restricting them to be regular sets. If a grammar is parsable
(perhaps non-canonically) by using regular reduction patterns that

re k-bounded on the right, then we say that it is FSPA(K) (the

abbreviation follows from the fact that such a grammar has a finite
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o
.

lockahcad). The results of Secticn 3 guarantee that

Thocrem 4.5: An FSPA(x) Grammar is unambicucus and 1is parsaktle

in linear time ca & PIA

Proof: Directly from Theorems

et us next investigate whether this rescriction to regular
parsing patterns yields a docidable cless,cf grarmars. The :CFI{m,n)
grammars formed a recursive class (for fiwed = and n) because oI

the fact that only a bouncded nurber of pctential reducticn patcerns

needed to be checked via Theorem 3.8. Cn the other hand, since

undecidable by the next two thedrems.

Zorz

Tne argument turns on the Iollowing
deterministic langucges:
Is it decidable of two arbitrary deterministic languages,

L

1 and LZ’ whether they are ragularly separzbdle, i.e.
whether therc exists a regular set ® such that

L, € Rand L

1

Regular separability implies the existernce cf a f.s.a. which
accepts all strings from L,, rejects all strings frcem L2, and can
do what it pleases with strings in Ix - (L, U LZ). Coviously, a

*
necessary condition for regular separability is that Ll and L2 be

N
disjoint.



The regular separability problem can be s
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by mcdifying Ogden's proof [Og 71] that it is undecidable whether

an arbitrary CFG is LR-regular.

~heorem 4.6: It is undecidable whether two arbitrary deterministic
CFL's are regularly separéble.

Proof: Let M be an arbitrary Turing machine with tape alphabet I

and state set Q. Let idi € L%+ (Q0xL)+I* represent the i-th

instanctaneous description of M when started on blank tape. Using

well established technigques [Ha 67, RS 70] we may defirne the

£following disjoint DCFL's.

L{ = (wlaﬁzé...ﬁwzk#a‘ ix > 1, W, € L*e (QXL)eL*

for 1 < i <2
- w = w., R for 1 <i <k
o . 2i-1 "M Y2i - -
Lz = {Wl'wzg-.-#wz}{#a lk 2 1, wl ,ldol
vy € I*- (QxI)+I* for 2 < i < 2k,
‘.R = w for 1 < i < k-1}
Y21 T i+l * - ="

To @stablish the theorem, we will show that Ll and L2 are regularly
separable if and only if M never halts. We will thus have reduced
the halting prcblem to the regular separabilicy problem. The
essential idea to be used here is that if M diverges, Ll and L2
will have arbitrarily long common prefixes which will “"confuse" any
f.s.a. which attempts to separate them.

case 1l: Suppose M diverges. Assume A is an n-1 state f.s.a. which

separates Ll from LZ' Consiler the string

z = idgeidieidEidie... 84, #idl, 4
. 2n!
. Then w; = zan1 €L, and w, = za ne L2.

=

—~



Suppose that ¢
Y

Then by the usual repeateld stats arguments, thers cxists s

such that 1 < s < n and &.(p,a"" "7} = r for any value oI Zi.

In particular,choose i = n! s to see that 5A(p,a

Thus 8 (gn,w,) = 6,(g,,w,) and hence A cannot pOssibly
ATE0TL A 072

separate L. and L,.
1 2

case 2: Suppose M halts in n steps. Thus idg ¥ i, Foo.vid) Fie_.
.

and the length of each idi

Suppose z = wy#w, ¥... 3w, Fa” € L u
2 X

Then z can be classified by means o the Zollcwing algorithm:

if k < n then
if j = k then z € L, else z € L
— 1 2
else
for i = 1 to n+l do
if Woiog # i’-i_l then z & L;.
= . . R
T T
) if wy, # ldi then z € Iy
en

The above algorithm can be perfcrmed by & f.s.a, and hernce

L, and L,
1 2

are regularly separadle.
In Theorem 4.3 we constructed a grammar which was LR{x,=) 1iff
its two "halves" were disjoint (i.e. separable by a context—free
set). Exactly this same constructicn can Le us2é to ccrbine two
LR{1) grammars Gl and G2 intc & rnew grzmmer G which Is
L(Gl) and L(Gz) are regularly separable. We thus ccnclude
Theorem 4.7: It is undecidable (even for fixed k) whether or not

an arbitrary grammar is FS2a(k).
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of states of g is Q. Suppose further that the start state g, of g
is not:in the range of the move Zunction 6g. Define a new language
L' with alphabet QxIxQ by
L' = {(po;alypl)(pl,az,pz)...(pk_l,ak,pk)§kll, aja,...a €L,
Py = 9y
. 6g(px’ai) = p;_, for 1<i<k}
L' then is an LR(0) language. Williams has shown that every
deterministic language is a BCP language [Wi 72). So, let
G' = (N', QxIxQ, P', S') be a BCP grammar gernerating L'.
We next define a new grammar
G" = (N'\ QxIxQ, I, P'U P", S
py adding some §:odqptions to G'. More specifically we lct
P" = ({p}a,q) > a lsg(q,a) = pl.
Clearly.L(G") = L . We also claim that G".is a BCP grammar. The

necessary reduction patteras are
(a) for T € P' the appropriate pattern for parsing G'.
(b) for (p,a,q) + a € P" then {a%(q,b,s) b eI, s €Q} if q# 9
(a#% } if g = a4
Thus G" is a BCP grammar Zor L.
b) To see that the containment is proper, consider L(Gl)
frox Section 1. L(Gl) has been shown not to be LR-regular [CC 73],

yet clearly is BCP(1,l) as demonstrated in Section 1. EB

Thus the ability to parse non-canonically significantly
broadens the class of recogrizable languzges beyond the deterministic

langdages. It is obvious from the definitions that the BCP



languages are contained within the FEPA languages. However, we nal
not been able to prove or disprove that this containment is prozer

¢ turn now to analvzing the power c¢f the LR({x,») languages.

grammar is an LR(k,«) grammar and the lemma Zollows irmediately. ia

Lerma $.11: The sets {a“c

n el N .0 20 L, _ T

separable by any regular set.

Prcof: Left to the reader.

its computations within time Xn where K is a constant
and n is the length of its input tape, then the set

.

accepted by M is regular.

anie [He 63}. &2

Proof: This result was first shown by

Lemme 4.13: There exist LR(1l,«) languages which are not FSzZalk)-
for any value cf k.

Proof: Consider L = {a"c b"i

be showrn to have an LR{l,«) "3 i i n 3
for L can be FSPA(k).

Suppcse that some grammar G fcr L were F32a(k} Zor-scmz k.
Let us aralyze the properties of this grammar. Assume without loss

of generality, that G is reduced.

If a one-tape off line Turing machine M pericrms all cf
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l) If A is a non-terminal of G which can generate infinitely
many-sttings, then it must be the case that any terminal string
produced b& A contains a c. If this were not the case, some
sentential form of G would contain a string such as wAy where w and
y are strings of terminals and y (say) contains a ¢. By letting A
derive a string of length 2 x |y| we produce a string which
certainly is not.in L.

. 2) If a is a sentential form of G then there can be at mosp
one'nonfterminal in a which generates an infinite set because
otherwise' we could produce a string with. multiple c's.

3) Suppose that A is a non-terminal and that A %a"ab" for

some values of m and n. We claim that either n = m or n = 2m.. Using

Y

1 above and the fact that G is reduced, there exist q,r,s,t such that

S ;>anbt and A 3>arcbs. Therefore, since A —>akmAbK“ for all k,

we conclude that a%a km bknbt

a¥cb € L(G) V k. Examine the ratio of

number of b's to nuxber of a's in such a form. This ratio is

(s+t) + kn
(g+r) + km

way that this can happen is for n = m or for n = 2m.

and must for any value of k be either 1 or 2. The only

M .
2m for some m. Then A never can occur in a

4a) Let A ->a "Ab
sentential form a which derives a string in {a"cb”| n>1}.

Suppose otherwise. Thus a= SlAsz and o Z>aPch® for some n.
Then there exist q,r,s,t such that_Bl :>aq R A ;>arcbs and 62 ;>b .
Furthermore, g + r = s + t. Since BlAsz is a sentential form, so are
aqhbt, aqakmhbzkmbt, and a% kma cb b2kmbt Examining the ratio of
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b's to a's in this latter sentence, we have

s + t + 2km

f = -
g + £ + Ka

In particular, letting k = g + r and recalling that s + t = q + r,

- = (g+r) + 2(g+r)m _ 1 + 2m
(g+r) + (g+r)m m

but then 2 > £ > 1 and the string could not have been in L(G).
4b) Similarly, if A 2 a™™ for some m, then no sentential
form containing an A can ever derive a string of the form ancbzn.

5) We can now partition the vocabulary of G into four subsets.

v, = {a e VlL(GA) is finite! . e
v, = {a e VlL(GA) is infinite but A is not recursive!l
v, =1{ae V|A is recursive and A % a™a™ for some m}
v, =1{ae V|A is recursive and A 2 a™an%® for scme m}

6) There exists g such that any sentential form whose length °
is greater than g can only be derived using recursive non-terminals.

Pictorially then, a tree for a long string looks like

S
\\\\\ ’ where only elements:
l of v, v V3 occur
Q::\7\ along the "core™ or
else elements of
\\ v,y U V4. occur along
the "core". All
\\\\\ ‘ characters on the

side branches are

elements of Vl.
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7) Suppose G is FSPA(k) with machine M (a 2PDA) as its
pars;:, We will generate a two stack acceptor M' which will
simulate M oﬁ any input whose length is greater than g. However,
the first time that M produces an element of V3 or V,, M' will
halt. Furthermore, M' will indicate acceptance of its input if
and only if the non-terminal which caused the termination is in
Va. Oﬂ the other hand, if the input string has length < g, then

- M Accepts it if and only if it is of the form {a"cb"| 1 < n < a/2},
Thus M' separates {a"b® n > 1} from {ancbznl n > 1}. Further-

more, M' does this in linear time on a 2PDA.

é) M' can be simulated by a Turing machine M" which also runs
in linear time. When M" makes a reduction such as A -~ BCD on its,
tape it will actually change the instance of BCD to Abb. Thus M"
does not attempt to "shrink" its tape as the two stack device M'
does. Since the side trees occurring on a derivation tree belonging
to G are bounded in size (i.e. wid:h) by some value p, we can never

produce more than 2p blanks in a row before producing one of the

non-terminals in V3 or V4. Thus, M" runs slower than M' by at most
a constant factor, namely 2p.

9) T(M") is a regular set by Lemma 4.12. However, since
T(M") = T(M'), we conclude that T(M") is a regular set which
separates {a"™| n>1} from {ancbzél n> 1}.

This, of course, contradicts Lermma 4.11 so we conclude that G

could not have existed in the first place. Hence no grammar for G

is FSPA(K). 3 .
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These lemmas can be combined to give us the desired result,
namely,
Theorem 4.14: The class of LR(k,») languages properly includes the

_ FSpA(k) languages.

Proof: 1Inclusion follows from Lemma 4.10. The fact that this
inclusion is proper is a consequence of Lemma 4.13. 0

The relationships between the classes of languages induced by
the parsing methods we have studied is depicted in Figure 4. Solid
lines indicate proper containment whereas dashed lines indicate a
‘containment which has not yet been shown to be proper. It is
interesting to note that the fairly "messy" lattice 'of inclusions
of.grammar classes shown in Figure 3 collapses into a linear order

when viewed in language space.

UCFL
'
]

LR (k,®)

FSPA
|

ECP

LR-regular

LR(k,t) = LR(k) = BRC

FIGURE 4: Inclusion lattice for some classes of

A - free languages.
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Section 4 Conclusions and Ocen Pxcblems

We have attempted to construct a general framework for
bottom-up parsers and, within that framework, to cxamine the non-
canonical extensions of some existing methods. It has been shown
that the only non-canonical extension to enjoy both linear time
parsability and decidability is the BCP technique. We irntend to
consider further restrictions to the FS2A method to see if we can
achieve déciéability with Scme class significantly mocre general than
the BCP’grarma:s. Even so, we cornjecture that in language space
the two classes will prove to be identical, probably for the same
ieﬁgon that Bﬁc'languages are the same as LR(k) languages. v

Additional extensions are possible within the current framework.

Define a Grammar G as being Regular Pattern Parsable (RPP) if there

exists a parsing scheme for G , each of whose reductiocn-patterns is

a regular set (rossibly unbounded on both sides of the #). The

class of RPP g:éémars is essentially the rnon=-canonical extension of
the LR-regular grammars. This class is non-recursive because it
contains the FSPA(k) grammars yet certainly is recursively enumerable
(Theorem 3.8). Several interesting questions can now be asked.

Does every unambiguous context—frze language have an RPP grammar?

Can RPP grarmars be parsed in linear time and if so, what sort of

computer is needed to achieve this bound?
We finally point out that the requirement that a parser be able

to locate a phrase in anv sentential form is overly restrictive. What
is really desired is that every sentential form which arises during .

parsing be reducible. Is it possible to refine the theoretical

~ o



36 - - . N

framework of Section 3 to incorporate this idea? As an example, one
. R
can easily construct a grammar G for {ww |w € {a,bl}*} and a parser
for G which utilizes the order in which reductions are made to procduce

a parser while still only using a finite number of states.
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APPENDIX

Grammars used in constructing the lattice of Figure 3.

Lemma A.l: G, of the paper is BCP but,nqz‘LR(k,t) nor LR-regular.

1

Lemma A.2: G2 of the paper is LR(k,t) but not LR-regular.

Lemma A.3: 63 below

G3; S

>

P w
7 +

ot

. Letma A.4: 64 below

,GA:

MW oy 0

i

Lemma A.5: 65 below

G.: S

g
-

is LR(1l,«) but not FSPA(X).

+ alB

aAl|ak

aBB|aB

+ b

-+ bb

is LR-regular and FSPA(1l) but not BCP nor LR(k,t). ;

+ aAa|bAblaBb|bBa

;l

(¢

- Bl

wi

->

5

[¢]

-

(2]

+c
is unambiguous but neither LR(k,«) nor LR-regular.

+ aSa|bSblaa!bd
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