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IXTRODUCTION

The consecutive retrieval property of a file organization
is the following. A set of queries Q is said to have consecutive
retrieval property with respect to a set of records R if thcfe
exists an organization of the record set (without duplication
of any record) éuch that for every q; € Q, all relevant récords
can be stored in consecutive storage locations. In linear séor—
age systems (e.g. tape, surfacc of drum,_cylinder of a disk
pack), if the query set Q has consecutive reérieval proverty
with resgpect to the record,set R, then to.store thc,pértincnt
records in consecutive stor&ge locations will-provide a file
organization with minimum storage space and minimum‘retrié;al
time.Let the query set Q be‘{ql,qé,...,qm} and the record set
R be (rl,rz,..;,rn}. “The relationship between Q and R is con-
venienply represented by an nxm 0-1 matrix B. The (i,j)th

entry of B is 1 iff record ry is pertinent to query qj. This

matrix is called the Record-Query incidence matrix.

ql qz 613 voe qm
r 1 1 0 1
x, 0 1 0 cee 1
B = 1 0o 1 1
r \1° 70" 1 0
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It should be clecar that Q has the conéccutivc retricval
property with respect to R iff there exists a permutation of
£hc rows of B such that the 1's in each column appear in con-
secutive positions. To find such a permutation, if it cxists,
wvas first solved by Fulkerson and Gross in their study of in-
cidence matrix and interval grachs {4]. A different solution
was given by Eswaran in his study of consecutive information

retrieval [3]. If B is nxm and m is bounded by a polynomial

of n, algorithms that have time bound o(p(n)) for some polynomial

P can be found in [5,4].

Howev?r, not all pairs of d and R have consecutive re-—
trieval property [3,5,6,7]. As a matter_ of fact, in mo;t prac-
tical cases, the consecutive retrieval property is not substan-
tiated. Hence, in generalror in practiéal, either duplication
of records is allowed so that pertinent records corresponding
to any query are always stored consgcutivelé'or, storing the
pertinent recoxds corresponding to a query in several blocks of
consecutive storage locations is necessary so that each record
is stored only once. The former gives rise to a problem of
minimizing storage space (minimizing duplication of records)
subjected to minimai retrieval time and the latter gives rise
to a problem of miniyizing_retrieval time (minimizing blocks of
consecutive storage) subjected to minimal storage space. These
two problems can be stated formaliy as follows:

(A) Problem of minimizing duplications of records

Given an nxm incidence matrix B, let Qj= (tilbij=1 } for
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l1<j<m. Find the minimum length sequence x in the alphabet
R = (rl,rz,....,rn) such that the elements of Qj appear con-
secutively in x, for j =1,2,....,m.

(B) Problem of minimizing blocks of consecutive storage of
relevant records

Given an nxm incidence matrix B, find a permutation of B
such that the total number of blocks of consccutive 1's in the
columns of B is minimized.

It is shoén in this paper that both of these problems are

polynomial complete. Loosely speaking, it implies that if one

can find an efficient algorithm to solve one of these two problems

then many known difficult problems ( e.g. Hamiltonian circuit
problem, job scheduling problem, travelling salesman problem,
to name a few ) would all have efficient algorithms to solve

them, an unlikely event.

COST GRAPiI OF INCIDENCE MATRIX

The cost graph referred here is simply a complete digraph

(all selfloops are ignoreq in this paper) with nonnegative in-
teger cost associated with each edge in tﬁe graph. The cost
graph associated with an incidence matrix is defined as follows.
Given an nxm incidence matrix B, the cost graph G of B is a

3-tuple (V,E,f) such that V ={1,2,...,n) is the set of
vertices in the graph. (Vertex i corresponds to row i in
B.) E= {[i,j) | i # j and i,j € V} is the sct of cdges in the

graph. f: E » I, where I is the set of nonncgative integers,

m
is the cost function and for all [i,3) e B, £([i,3)) = * bis

s=1

bjs



where bij is the (i,j)th entry in B, * is a binary operation

defined by 0*0=0, 0*1=0, 1*0=1 and 1*1=0.

Example 1.
Given
11010
B = 01110
00011
10101

the cost graph G is shown in rig. 1.

For any incidence matrix, there is a unique cost graph
’associated with it. However, not every cost graph has a corre-
sponding incidence matrix. A simple exercise wili show that
the cost'qraph in Fig. 2 has no corresponding incidence matrix.
Given a cost gr&ph G, if therc exists an incidence matrix B
whose associated cost graph is G, then G is said to be 0-1
matrix realizable. For a cost graph G = (V,E,f) if i,j e V
and i # j imply £(([i,3]) = f(ﬁj,i]), then G is said to have
symmetrical costs. The following two theorems concern

certain classes of cost graphs that are 0-1 matrix realizable.

Theorem 1. Let Gn.= (V,E,f) be a cost graph with n vertices,

n > 3, and with symmetrical costs. ;f only edges [1,2] and (2,1]
have cost (n-1) ind%vidually while every other edge has cost
(n-2), then there exists an nan incidence matrix Bn such that

(i) Bn realizes Gn;

(ii) m, = Ei%:ll + 1;

(iii) each row of Bn contains (n-1) 1l°'s.



Proof. The proof is given by induction on n.
For n = 3, let

1010
‘B = 0101
0011

Now assume the theorcm holds for n = k. Then, for

n = k+1, consider

where Ik is a kxk identity matrix.

Part (i):
M1
£([1,2)) = L bl° * bZq (by definition)
s:l -~ v )
My M+l
= I b * b + L b * b
s=1 1s 2s s=mk+l 1s 2s
= (k-1) + 1 (By induction hypothesis that (i) is
true for n = k. and by property of
identity matrix)
= k

Similarly, £([2,1]) k.

For 1 <i <k, ¥<3j <k, i#3, and [i,3) # [1,2] or [2,1],

T +1
£([i,31) = & by  * b, (by definition)
s=1 s
my Mg+
= T bis * bis + b bis * big
s=1 -

s=mk+l
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(k-2) + 1 (by induction hypothesis that (i)
is true for n = k and by property
of identity matrix)

k-1

n

Furthermorc, for all i =1,2,...,k,

M +1
= * CEing
£((k+1,1)) S—El b(k+l)s biS (by definition)
M Mg+l
= L Db, *bh, + L b * b.
. s=1 (k+1)s is s=mk+1 (k+1l)s is
= 0 + (k-1) (by the construction of row k+l)
= k-1 .
M+1
£((,k+1]) = I big * b,y (by definition)
s=1 =
T Mg+ N N
= Z b:_*Db + T is ¥ P(x+l)s
s=1 ° (k+1)s s=m +1 s

= (k-1) + 0 (by induction hypothesis that
(i1i) is true for n'= k and by

construction of row k+l)
= k-1
Hence, for n = k+l. B_ realize Gn’
Part (iij:

Wy = My + k
- k(k-1)

5 + 1+ k (by induction hypothesis that (ii)

is true for n = k)
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- Us)k
2 +1
lence, for n = k+1 , m, = n(;—l) + 1.

Part (iii):

In Bk+l , for 1 < i <k, row i contains (k-1) 1's in the
first m, centries due to By and contains one 1 in the last k
entrics due to I- So for 1 < i <k, row i of By 1 contains k
1's. Row (k+1l) contains k 1's by consfiuction. Hence,
for n = k+1, each row of Bn contains (n-1) 1's.

The proof by induction is thus completed.

Remark: If the cost graph is such that the only two edges that
have individual cost (n-1) are [i,j] and [j,i] instead of [1,2]
and [2,1], simply interchanging row 1 and row 2 respectively with
tow i and row j will givé a realization of the corresponding

new cost graph.

Thecorcem 2. Let G = (V,E,f) be a cost graph with n vertices,

n 3, and with symmetrical costs. Let u be a positive intecger,

v

RN L ¥ X T S VTS 1) PN FPE %) PR ¢ U5 PY DI & PYE % PRERY
[iu,ju], [ju,iu]) is a set of 2u edges which have cost u(n-2) + 1
each while every other edge in G has cost u(n-2), then

there exists an nxm incidence matrix B such that

(i) B realizes G; '
(i) m= w4,

(iii) each row in B contains u(n-1) 1l's.

Proof. Let Gk' 1 <k < u, be a cost graph with n vertices and

with symmetrical costs such that only edges [ik,jk] and [jk,ik]



have cost (n-1) cach while every other edge has cost

(n~2). By Theorem 1, G,_ is 0-1 matrix rcalizable. Let By be

k
the incidence matrix constructed for Gk as in Theorcm 1. 1low

consider

=]
~

The corresponding cost. graph of B is obviously the super-
position of cost graphs Gl’GZ""’Gu (since the cost functions
are additive). The theorem follows immediately ‘from the con-

struction of B and Theorem 1.

INCIDEMCE MATRIX 2D TIE HANMILTOMIAN PATHS TN THE CORREZPONDING

COST GRAPH

Let B be an nxm incidence matrix and G= { V,E,f } be the

corresponding cost graph. A Hamiltonian path in G is a simple
path in G that includes every vertex exactly once. A Hamiltonian
path in G can be specified by a sequence of n vertices, (il'iz"'
""'in)' where the il’iz”""'in are all distinct. The cost

of a Hamiltonian path in G is the sum over the costs of the edges
on the path. The following Lemmas give the relationship between
the cost of a Hamiltonian path in G and the total number of

consecutive 1's in the columns of B.

Lemma 1. Let B be an nxm incidence matrix and G = (V,E,£) be
the corresponding cost graph. Then the cost of the Hamiltonian
path (1,2,.....,n) is k if and only if the total number of blocks

of consecutive 1's in the columns of B is k+c, where c is the
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th row of B.

number of 1's in the n
Proof. Let N be the total number of blocks of consccutive 1's
in the columns of B and Ni be the total number of blocks of con-

sccutive 1l's that end at row i of B. Obviously,

N = Nl + N, + ... + N_ .
n

2

By the definition of the asscciated cest graph, ‘it should be
clear that, for 1 < i < n, N; = ki in B iff f£([i,i+1)) = ki in
G. On the other hand, Nn = C,.

Hence,
the cost of the Hamiltonian path (1,2,....,n)

= £((1,2]) + £([2,3)) +...+ £([n-1,n])

=N, + N, +....+ N
n

1 2 -1 .
=N-c i
The proof is thus completed.
Lemma 2. Let B be an nxm incidence matrix and G = (V,E,f) be

the corresponding cost graph. Then, G has a Hamiltonian path
of cost k if and only if there exists an nxn permutation matrix’
P such that the total number of blocks of consecutive 1's in
the columns of PB is k+c, where ¢ is the number of 1's in the
th
n row of PB.
Proof. S;nce each Hamiltonian path (il,iz,....,%]) in G has a
one to one correspondence with a permutation of rows in B, the

proof of this Lemma is immediate from Lemma 1.

POLYNOMIAL COMPLETENESS OF GENERAL CONSECUTIVE RETRIEVAL

PROBLEMS



- 10 -

Let NP be the class of languages' that can be accepted by a
nondcterministic polynomial time bounded Turing machine. A
language Ll is polynomially reducible to a language L, (written
as Ly = L2) iff there exists a deterministic polynomial tim?
bounded Turing machine which will convert ecach string x in the

alphabet of L, into a string y in the alphabet of L2 such that

1
x € Ly iff y € L,. A language L is polynomially complete {ff
L is in NP and every language in NP is polynomially reducible
to L. A problem that requires a yes or no answar can be cqnsidcred
as a languagé such that a string x is in the language iff an instance
of the problem that has a yes answer is encoded into the string
X. A yes or no problem Py is saiq to be polynomially reducible
to a yes or no problem Pz iff the corresponding "lanquages Ll’ L, .
respectively, are such that L1 « LZ‘ A yes or no problem is
polynomially complete iff the corresponding language is poly-
nomial complete. The re;der is referred to (1,2,8] for the
discussions of polynomial complete problems, the polynomial
reducibility and the encoding of problems onto Turing tapes.

In the following, scveral yes or no problems are intro-

duced first and all 6f them are to be shown as polynomial com-

plete problems.
Problem 1.

Given: an undirected graph G = (V,E) (without loss of
generality it is assumed that |V| = |{1,2,...,n}| = n > 3 and

G is not a complete graph).

Question: Is there a Hamiltcnian path in G?
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Problem 2.
Given: a cost graph G = (V,E,f) and a positive integer u
such that
(1) v = (1,2,....,n} mdnz3;
(ii) 1 cugninzl)
(iii) there exists a set S of 2u edges in G,
S = {[illjl], [)'l/illl [121712], [jz,izl,....,[iu,jul. [ju'iu])
such that [p,q] € S => f([p,q)) = u(n-2) + 1 and [p,q] € E,
fe.ql £8 => £(lp,q]) = uln-2).
Question: Is there a Hamiltonian path in G such that its

cost is u(n-1) (n-2)?

Problem 3.

Given: an nxm incidence matrix B and a non-negative integer

»

Question: ILet #(X) denote the total number of blocks of

consecutive 1's in the columns of an incidence matrix X. Does

there exist an nxn permutation matrix P such that #(PB) = k ?
Problem 4.
Given: a finite set R = {rl,rz,....,rp} , a family of

subsets F, F = (€] 1<i<gq, 2;¢ Rl and a non-negative integer k
Question: Does there exist a string x in the alphabet R
such that the length of x equals to k and for j =1,2,....,9

the elements of Qj appear consecutively in x?

Problems of whether a Hamiltonian path exists in an un-

directed or a directed graph have been shown to be polynomial



- 12 -

complete in [8]. Although the original problems were concern-—
ing the Hamiltonian circuit instead of Hamiltonian path, almost
identical proofs as those shown in [8] can be constructed to

show that the Hamiltonian path problem is polynomial complete.

In the following, Problems 2, 3, 4 are all shown to be polynoiial

complcte.

Theorem 3. Problem 2 is polynomial. complete.

Proof. The language L corresponding to problem 2 is certainly

in NP. A polynomial time bounded nondeterministic Turing machine
can be constructed such that it will guess a correct Hamiltonian
path and then check if the cost of the path is equal tc u(n-1)(n-2).
It remains to show that every language in NP is polynomially
reducible to L. Since Problem 1 is polynomial ccmplete, it is
sufficient to show that Problem 1 « Problem 2.

‘ Let the undirected graph G = (V»,E ) be an instance for
Problem 1. A polynomial time bounded deterministic Turing
machine can be cons:iructed to do the following:

(i) set u =_51%:1L - el
(ii) construct a cost graph G1 = (Vl,El,f ) such that
Vi=V and for i # j, if the undirected pair {i,j} £ E , then A

set £([i,31) = £((3.i]) = u(n-2) + 1 and if (i,j}e E , then

u(n-2).

set £([i,3]) £((3,1])
G is an instance of Problem 2. Furthermore, by the con-

struction of G}, G has a Hamiltonian path (il'iZ{""in) if

and only if the cost of the path in G; is u(n—l}(n—2). The

proof is thus completed.
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Theorem 4. Problem 3 is polynomial complete.
Proof. The language L corresponding to Problem 3 is certainly
in NP. A polynomial time bounded nondeterministic Turing
machine can be constructed to guess a correct permutation matrix
P and then check if §#(PB) = k. Given an instance of Problem 2,
by Theorem 2, a polynomial time bounded deterministic Turing
machine can be constructed to set the value of k equal to u(n-l)2
and assign an nxm incidence B such that
(i) B realizes G;

(ii) m = u(ﬂi%:ll +1);

(iii) each row in B contains u(n-1) 1's.
This is an instance of Problem 3. Furthermore, by the construc-
tion of B and Lemma 2, there exists an nxn permutation matrix P
such that #(PB) = u(n-1) (n-2) + u(n-—-1) = u(n-l)2 if and only if
the cost grapn G las a Hamiltonian path 'with cost equal to
u(n-1) (n-2). Thereforg, Problem 2 « Problem 3. The proof is

thus completed.

Theorem 5. Problem 4 is polynomial complete.
Proof. It is easy to see that the language L corresponding to
Problem 4 fs in NP. In the, following, it is going to show that
Problem 1 « Problem 4.

Let the undirected graph G = {V,E} be an instance of
Problem 1. A polyn?mial time bounded deterministic Turing
machine can be constructed to do the following:

. (i) set R =E ;

(ii) set F = {Q;,Qp,....,Q,} where Q; = {{i,j}|{i,j} €E}

for i = 1,2,....,n ;



- 14 -

n
(iii) set k =1 -n+ Xl ].
i=1 *
This is an instance of Problem 4, Notice that, for i # j and
Qi Qje F, 0.0 9y = (i,3) if and only if {i,j}eE. Therefore,
there exists a Hamiltonian path in G if and only if therc exists
a string x such that the length of x equals k and for i = 1,2,..

«++.,n the elements of Qi appear consecutively in x. Hence,

Problem 1 = Problem 4. ‘The proof is thus completed.

Remark: In Theorem 4, if #(PB) = k = u(n—l)z, then for any

nxn permutation matrix P', #(PB) < #(P'B). Also, in Thecorem 5,
if the length of x equals o k = 1 - n +_2 IQil, then x is the
minimum length string in the alphabet R ;;2h that for i = 1,2,..

«+es,n elements of Qi appear consecutively in the string.

CORCIUSION

The general problems'conccrning aboﬁt consecuiive iafor-
mation retrieval have been shown to be polynomial complete. In
view of this negative results and the increasing nced for file
organization techniques, good heuristic approaches for the

problems seem to be necessary and acceptable.
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Fig. 1. Cost graph for B in Example 1.

Fig. 2. A cost graph corresponding to

no incidence matrix.



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif

