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FAST ALGORITHMS FOR PARTIAL FRACTION DECOMPOSITION*

H. T. KUNG AND D. M. TONG:I:

Abstract. The partial fraction decomposition of a proper rational function whose denominator has
degree n and is given in general factored form can be done in O(n log n) operations in the worst case.
Previous algorithms require O(n 3) operations, and O(n log n) operations for the special case where
the factors appearing in the denominator are all linear.
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1. Introduction. Let

P(x)

be a given fraction, where the P, Oi are polynomials and the li are positive integral
exponents such that

1. deg P < Y/= li deg Oi n, and
2. Ol, , Ok are relatively prime.

The general partial fraction decomposition problem (general PF problem) is to

compute the coefficients of the polynomials C,i for 1, , k and 1, , li
such that

P(x) I121Cij(x
with deg Ci, < deg O for all i, j. The existence and uniqueness of the polynomials
Ci, are well known (see, e.g., van der Waerden (1953, 29). ere are enormous
applications of partial fractions in applied mathematics and in network theory
(see, e.g., Henrici (1974, Chap. 7) and Weinberg (1962)). This paper gives fast
algorithms for solving the general partial fraction decomposition problem when n
is large.

Previous algorithms for the problem usually involve solving systems of linear
equations (see Henrici (1974, Chap. 7) lor a nice summary). Hence they take
O(n) arithmetic operations, or O(n:’8) operations if Strassen’s method (Stras-
sen (1969)) is used. For the special case that the Oi have either degree one or two,
many algorithms were known: see, e.g., Schwatt (1924, Chap. VIII), Turnbull
(1927), Hazony and Riley (1959), Pottle (1964), Pessen (1965), Brugia (1965),
Moad (1966), Valentine (1967), Wehrhahn (1967), Karni (1969) and Linn6r
(1974). But these algorithms still take O(n:) or more operations.

Recently Chin and Ullman (1975) showed that in case that all the Oi have
degree one the problem can be done in O((n log n)/a) operations. This bound
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was further improved by Chin in his thesis (Chin (1975)). He showed that if the Oi
are all linear, then the problem can be done in O((log k). (n log n)) operations.
However, the assumption that the Oi are all linear factors is crucial in his methods.
Hence the problem of solving the general PF problem (without assuming that the
Oi are linear) in O(n 2) operations is stated as an unsolved problem in his thesis.
Note that the general PF problem does occur frequently in practice. For example,
if we work over the field of real numbers, then the factors O certainly can have
either degree one or two. (See also Grau (1971) and Henrici (1971) for more
examples.) In this paper, we show that the general PF problem can be done in
O((log n) M(n)) operations in the worst case. M(n) is any upper bound on the
number of operations needed to multiply two n-th degree polynomials, which
satisfies some mild regularity condition (see 2). In particular, if an FFT algorithm
is used for polynomial multiplication (see, e.g., Knuth (1969, 4.6.4), Borodin
and Munro (1975)), then we have M(n) O(n log n), which satisfies the regular-
ity condition,, and hence the general PF problem can be done in O(n log2 n)
operations. Moreover, we note that for the special case where the O are all linear,
our approach will lead to Chin’s O((log k). (n log n)) algorithm.

Basic assumptions and preliminary lemmas used in this paper are introduced
in 2. In 3, the solution of the general PF problem is reduced to the solution of
two simpler problems, Problem P1 and Problem P2, and precise statements of the
main results of the paper are given. An algorithm, based on a new theorem
(Theorem 4.1), for solving Problem P1 is presented in 4. Section 5 contains an
algorithm for solving Problem P2. Finally, an important special case of Problem
P2 is solved in 6.

2. Basic assumptions and preliminary lemmas. We assume throughout the
paper that polynomials are over some field K, are denoted by upper case letters,
and are given in the form P(x) pix where p K. To compute P or P(x) means
to find all the coefficients of P. We assume that M(n) is an upper bound on the
number of operations needed to multiply two nth degree polynomials. Given
relatively prime polynomials A 1, A2 with deg A 1, deg A2 _-< n, let F(n) be an
upper bound on the number of operations to find polynomials Fa, F2 such that

F2" AI+F1 A2-- 1

with deg Fa < deg A and deg F2 < deg A2. The existence and uniqueness of F1
and F2 are well-known (see, e.g., van der Waerden (1953, 29)).

Let Z/ be the set of all nonnegative integers and let G: Z+--> Z/ be a
nondecreasing function. We say G satisfies Condition C, if

G(n n H(n

for some nondecreasing function H: Z+ -> Z+. We assume that Msatisfies Condi-
tion C. Similar regularity conditions are usually assumed (see, e.g., Aho, Hopcroft
and Ullman (1974, p. 280), Brent and Kung (1976) and Moenck (1973b)). There
are many algorithms for polynomial multiplication. For example, the classical
algorithm gives M(n) cin

2 binary splitting multiplication gives M(n) c2rt
1.585

and if the field K is algebraically closed, then FFT multiplication gives M(n)=
c3n log n, where ca, c2, c3 are positive constants (see e.g., Fateman (1974)). In all
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cases M satisfies Condition C. In fact all we need in this paper are some
consequences of Condition C. Hence it is possible to weaken our assumption on
M, if one wishes to do so.

Let D(n) be the number of operations needed to divide a polynomial of
degree 2n by a polynomial of degree n. Then using Newton’s method and the fact
that M satisfies Condition C, one can show the following lemma (see, e.g.,
Borodin and Munro (1975) and Kung (1974)).

LEMMA 2.1. D(n)= O(M(n)).
Using the algorithm EGCD in Moenck (1973a), which is a generalization of

an algorithm due to Sch6enhage (1971) for integer GCDs, one can show the
following lemma.

LFMMA 2.2. F(n) O((log n). M(n)).
We shall assume that F satisfies the condition that, F(ni) <- F( Y hi)

for any ni Z/. Clearly, if F(n c (log n) M(n for some positive constant c as
in Lemma 2.2, then F satisfies the condition. In fact, the required condition in F is
satisfied as long as F satisfies Condition C.

3. Problems P1, P2 and statement of results. Consider the following two
instances of the general PF problem defined in 1.

PIOBLEM P1. (This is the general PF problem with li 1 for all i.) Given the
fraction P/[I---1 R where the R are relatively prime and

k

deg P < deg R n,
i=1

compute the polynomials C1," , Ck such that

P(x) C(x)
(3.1) [LLx R(x) =x R(x)

with deg C < deg Ri for all i.
The decomposition (3.1) is called the incomplete partial fraction decomposi-

tion by Henrici (1971), (1974, Chap. 7). Note also that efficient algorithms for
solving Problem P1 will furnish efficient procedures for factoring polynomials, as
observed by Grau (1971).

PROBLEM P2. (This is the general PF problem with k 1.) Given the fraction
p/ol where deg P < deg Q compute the polynomials CI,, o, C such that

ll(x) 1=1 oJ(x)
with deg C. < deg O for all j.

The following lemma essentially shows that fast algorithms for Problems P1
and P2 will lead to fast algorithms for the general PF problem. Define
T(k, n), Tl(k, n) and T2(1, deg O) to be the number ofoperations needed to solve the
general PF problem, Problem P1 and Problem P2, respectively.
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LEMMA 3.1.
k

T(k, n)<= Tl(k, n)+ Z [Tz(li, deg O,)+O(M(ti. deg
i=1

Proof. The result follows from the observation that general PF problem can
be solved in the following way"

O’(x) out for 1,..., k. Let the expansion of Ol’(x) be Ri(x1. Multiply l.

for all i.
2. Solve Problem P1 for the fraction P/I-I,= R and obtain the polynomials

Ci satisfying (3.1).
3. Solve Problem P2 for the fractions Ci/QI’, 1,..., k.

Note that each Ql’(x) can be computed in O(M(l. deg Q)) operations by an
algorithm in Brent (1976, 13). 71

We summarize our results on Tl(k, n) and T2(1, deg Q) in the following:
(i) T(k, n)<-F(n)+O((log k) M(n)). (Theorem 4.2)
(ii) Tl(k, n)= O((log k). (n log n)), when the R(x)

is given in the form (x- zi)" for all i. (Theorem 4.3)
(iii) T2(l, deg Q)= O((log l). M(l. deg Q)). (Theorem 5.1)
(iv) T2(l, deg Q) O(l log l), when deg Q -< 2. (Theorems 6.1 and 6.2)
We have the following results for the general partial fraction decomposition

problem.
THEOREM 3.1. The general PF problem can be done in F(n)+

O((log k). M(n))+ O((log l). M(n)) operations, where max (/1,""", l,).

Proof. Note that

k

Z (log l). M(li .deg Q,)
i=1

k
--< (log l)

i=1

=< (log 1). n H(n (log l). M(n).

The result follows from (i), (iii) and Lemma 3.1.
COROLLARY 3.1. The general PF problem can be done in O(n log2 n)

operations.
Proof. Note that in Theorem 3.1, k -< n and -< n. The result follows from the

theorem and Lemma 2.2 by letting M(n) O(n log n).
O(n log2 n) is the best asymptotic bound known for the general PF problem.
THEOREM 3.2. The general PF problem can be done in O((log k). (n log n))

operations, if Oi (x) x -zi, for 1,. ., k.
Proof. The result follows from (ii), (iv) and Lemma 3.1.
The bound in Theorem 3.2 was obtained previously by Chin (1975). We

include it here just to show that his result will emerge as a special case in our
general approach. See the remarks at the end of 4.

4. An algorithm for problem P1. We first assume that P(x)--- 1 in Problem
P1. Thus we want to find A1,..., Ak such that

k Ai(X)1

Zrlki= Ri (x ,= Ri (x
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with deg Ai < deg R for all i. Note that

(4.1) 1 Z Ai(x) Ri(x)
i=1 i=1

Define

and for each 1,..., k, define Bi, Di by

(4.2) R (x) B, (x)R, (x) + D, (x)

where deg Di < deg Ri. Note that D(x) O, since the Ri are relatively prime.
Suppose that deg Di => 1, i.e., Di(x) is not a constant. Then (4.2) implies that Di
andR are relatively p,rime, since R and R are relatively prime. Hence there exist
unique polynomials A and E such that

(4.3) A,(x)D,(x) + E,(x)R,(x) 1

with deg < deg R and degE < deg D. The following theorem appears to be
new.

THEOREM 4.1. For 1,. , k, ifD(x) d for some constant di, then A is
the constant lids; else A A.

Proof. We classify the zeros of R according to their multiplicities. Let Zm be
the set of zeros ofR which have multiplicity m. (The zeros exist in an algebraically
closed extension field of K.) Clearly, we have that

(4.4) 2 m. ]Zm[ deg R, where Iz[ is the number of elemc -ts in Zm,

and that if z Z, then

(4.5) R}h)(z)=O forh =0, , rn- 1.

Taking derivatives of (4.1) and (4.3), and using (4.5), one can easily show that

(4.6)

(4.7)

q=0 i=1

2 A}q(z) D}h-q)(z)= SO,h
q=O

for z Zm and h 0,. , rn- 1, where 60.h 1 if h 0 and 60,h 0 otherwise.
(Derivatives are represented by the superscripts.) Note that by (4.2) and (4.5),

(4.8)

D}h-q)(z) R(h-q)(Z)

=( (z)
i=1
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for z Zm, h 0, , m 1 and q 0, ., h. Suppose that D (x) =- di for some
constant di. Then by (4.6) and (4.8),

(4.9) A}h)(z) di tO,h

for z Z,,, h 0, , m 1. Since d 0 and deg Ag < deg R, A is uniquely
determined by the Hermite interpolation problem defined by (4.9). Hence
Ai(x)-= 1/di. On the other hand, suppose that deg D => 1. Because the R are
relatively prime,

(4.10) Di(z) ( I]=1
for z Z,. By (4.6), (4.7), (4.8) and (4.10) it is easy to see that A and are
deteremined by the same Hermite interpolation problem. This implies that
Ai Ai. ["]

By Theorem 4.1 the following algorithm can be used for computingA(x) for
i=l,...,k.

ALGORITHM 4.1.
1. Compute R(x).
2. Compute Di(x) for i- 1,..., k.
3. For 1,..., k, if Di(x)=d for some constant di then set Ai(x) 1/d

else compute A(x) by solving (4.3).
In the following we study the number of operations needed by the algorithm.

It is well known that H,=l Ri(x) can be computed by using a binary splitting
scheme, which is illustrated as follows for the case k 8:

R R2 R3 R4 R5 R6 R7 R8

8

1-I Ri
i=1

LEMMA 4.1 By using the binary splitting, H R(x) and all the intermediate
resutts such as H=I R,(x) and HT=s R(x) can be computed in O((log k). M(n))
operations.

Proof. Note that the sum of the degrees of all the polynomials at any level of
the tree is n. Hence each level takes M(n) operations, since M satisfies Condition
C. The result then follows from the fact that the height of the tree is [log2 k ].
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LEMMA 4.2. R(x) can be computed in O((log k) M(n)) operations.
Proof. We shall again use the binary splitting technique. We may assume that

k is a power of 2. It is easy to check that

)R R R + R/ E ]-I R
i-1 j--1 j---- +1 i=1 i=k/2+1 i:k/2+l

This gives us a recursive algorithm for computing R. By Lemma 4.1, we may
  sum: p o ucts suc 
algorithm have been precomputed. The result again follows from the fact that the
sum of the degrees of all polynomials at any level of the associated binary tree is
n.

LMM 4.3. D(x), ", D(x) can be computed in O((log k). (n)) opera-
tions.

Proof. We may assume that k is a power of 2. Note that if we use divisions to
obtain V and V such that

k/2
(x) U(x). a,(x) + V(x),

k

(x) U(x). fl g,(x) + V(x),
i=g/+

/where deg V (deg i: Ri and deg V(degi/+ R, then the problem of
computingD from R for
from V for 1, , k/2 and computingD from V for k/2 + 1, , k. This
again gives us a recursive procedure. Using the fact that D(n) O(M(n)) (Lemma
2.1), the lemma can be proved by the same argument as used in the proofs of
Lemmas 4.1 and 4.2.
LMM 4.4. Al(X),""", Ag (x) can be computed in F(n) operations.
Proof. Since deg D (deg R, the Ai(x) and Ei(x) satisfying (4.3) can be

computed in F(deg R) operations. Hence all the A can be computed in

2 F(deg R) Nf deg R F(n)
i=1 i=

operations.
By Lemmas 4.2, 4.3 and 4.4, we know that Algorithm 4.1 can be done in

F(n) + O((log k). M(n)) operations. After the A have been computed, we can
solve Problem P1 without assuming P(x) 1 in O((log k). M(n)) operations by
the following method: For 1,..., k,

1. compute K (x) such that

(x (x(x+g(x

with deg K < deg R, for some J,
2. compute Li (x) Ki (x) Ai (x) and G (x) such that

Li(x) Ni(x)Ri(x) + Ci(x)

with deg C < deg R, for some N.
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Note that

P
FIR

+E

JiAi "k-E Ni -t-E R---
Since P/I-[R is a proper fraction, Y, JiAi +, Ni must be zero. Iherefore the C are
the desired solution. Since deg P < n, by the same argument as used in the proof of
Lemma 4.3, Ki(x) for 1,..., k can be computed in O((log k). M(n)) opera-
tions. A and K have degree at most deg R, so C(x) can be computed in
O(M(deg Ri)) operations. This implies that Cl(X), , Ck (x) can be computed in
O(M(n)) operations. Therefore, we have shown the following

THEOREM 4.2. Problem P1 can be done in

F(n + O((log k ). M(n))

operations.
We now consider the special case where the Ri(x) is given in the form

(x-zi)"’ for 1,..., k. In this case the A satisfying (4.3), i.e.,

Ai (x)Di (x) 4- Ei (x)(x zi)"’ 1,

can be computed easily in the following way. Let ,d,(x)=A(x +z), /)i(x)=
Di (x + zi), etc. Then

A (X)bi (X) "["/i (X)X m, 1.

This implies that

(4.11) di(x)li(x)-- 1 (rood x"’).

Hence we have the following algorithm for computing A"
ALGORITHM 4.2.
1. Compute/)i (x) such that/)i (x) Di (x + zi).
2. Compute (x) from (4.10).
3. Compute Ai (x) such that A(x) Ai (x zi).

Step 1 is equivalent to evaluating Di and all its derivatives at zi. Aho, Steiglitz and
Ullman (1975) and Vari (1974) have independently shown that this can be done in
O(m log mi) operations. Similarly, step 3 can be done in O(m log m) opera-
tions. Step 2 involves a division, which is O(mi log mi) by Lemma 2.1. Since

m log mi O(n log n) by Theorem 4.2 with M(n)= O(n log n) we have
proved the following
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THEOREM 4.3. Problem P1 with Ri(x) given by (x -zi)mi for 1,. ., k can
be done in

O((log k). (n log n))
operations.

Suppose that we solve the general PF problem for 1/I]k= (x -zi)’ by solving
Problem P1 for 1/1-Ik=l Ri(x) with Ri(x)--(x-zi)l’. Then we need not perform
step 3 of Algorithm4.2 since the solution of the general PF problem is given by the
coefficients of the Ai. It turns out that this is exactly Chin’s O((log k) (n log n))
algorithm for solving the general PF problem for 1/1-I/k=a (x-zi)l’. A similar
observation can also be made for the case of solving the general PF problem for
P/IJik-_ (x zi)li with P(x) 1.

5. An algorithm for Problem P2. Note that using division, we have

P 1 P
Ql QFl/2] Q[l/21

Qrlt2l Pi + Q [//2J

Pa 1 ( P2 )Q filE] + Q /21 Q tt/2j

where deg P1 < [//2] deg Q and deg P2 ( [//2J deg Q. Thus, to solve Problem
P2 for the fraction P/QI, it suffices to do the following:

1. Divide P by Q t/2J and obtain the quotient Pa and the remainder P2.
2. Solve Problem P2 for the fractions P1/Q ft/21 and P2/Q tl/2j.

This gives us a recursive prodedure for solving Problem P2. Assume that the
expansion of the power such as Q t/2j (x) and Q i/2 (x) required by the recursive
procedure have been precomputed. Let X(1) be the number of operations needed
to solve Problem P2. Then the recursive procedure gives

X(l)<-X([I/2])+X([I/2J)+D(l deg Q)

for > 1 and X(1)= 0. Note that

_1< [I/2] <2_
2-- 3

for any integer _->2, and that by Lemma 2.1, D(/ deg Q) O(M(l deg Q)). We
have

X(1) <-X(al)+X((l-a)l)+O(M(l deg Q))

where a is a variable with its values in [1/2, 2/3]. The expansion of the recurrence
corresponds to a binary tree

O(M(l. deg Q))

/
O(M(a.l .deg O)) O(M((1-c)l. deg O))
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such that X(l) is bounded above by the total value of the nodes inside the tree.
Using the fact thatM satisfies Condition C, one can easily show that the sum of the
values of the nodes at each level is O(M(l. deg O)). Since a [1/2, 2/3], the
height of the tree is at most [log3/2 1]. Hence

X(l) O((log l). M(I. deg O)).

Now we examine how to compute all the required powers of O. This can be
done by using a recursion based on

ol O r//2] O l//2j.

The number of operations needed here clearly satisfies the same recurrence as X,
and hence is O((log l) M(l deg Q)). We have proved the following

THEOREM 5.1. Problem P2 can be done in

O((log l). M(l. deg Q))

operations.

6. A special case for problem P2. The following theorem can be found in
Chin and Ullman (1975).

THEOREM 6.1. Problem P2 can be solved in O(l log l) operations if deg Q 1.
In this section we extend the theorem to the case that deg Q 2. Our result is

of interest when the underlying field K is the field of real numbers, for in this case
irreducible factors can have either degree one or two. We may assume that Q is
monic, since this will affect only O(l) operations. Let

Q(x) x 2 + ax + b.

By completing the square and letting y x + a/2 and c b a2/4, we have

P(x) P(y -a/2)
QI(x) (y2 +c)/

Write

P Y- Y, PlY’
i=0

(Po +P2Y 2 .+.... P2/-2Y 2/-2)
+ Y(Pl +P3Y 2 +" +Pzl-lY 2l-2)

PI(Y 9) + Y" P2(Y 2),
where deg P1 --< 1 and deg P2 --< l- 1. Then

P(x) p(y2) p2(y2)
ol (X---- (3] 2 "- C)-y" (y2 _1.. C)I"

Hence we can solve Problem P2 for P(x)/QI(x) by performing the following
steps"

1. Compute po," p21-1.
2. Form Pl(z)=po+P2z +’" "+P2l_2ZI-1 and P2(z)=pl +p3z +’" "+

l--1
pZl-Z
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Solve Problem P2 for the fractions Pl(z)/(z + c) and P2(z)/(z + c)t, and obtain

(Z -I"C i=1 (Z "+’C)i’ (Z --C) (Z -I-C)i"

3. Since

QI(x) i=1 i=I QX)O’(x)
y"

--i=10i-(X) "" X -t-- i=I oi (x

l eix +]i + aei/2
/=1/- Oi (x

aeiwe set Ci(x)eix +ti +-- for 1,... ,l.

By the result of Aho, Steiglitz and Ullman (1975) and Vari (1974) step 1 can
be done in O(l log l) operations. By Theorem 6.1, step 2 can be done in O(l log l)
operations. Step 3 clearly uses O(1) operations. Thus, we have shown the
following theorem.

THEOREM 6.2. Problem P2 can be solved in O(llogl) operations if
deg Q=2.

It is an open problem whether Theorem 6.2 holds if deg Q > 2.
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