
SIAM J. COMPUT.
Vol. 9, No. 4, November 1980

© 1980 Society for Industrial and Applied Mathematics

0097-5397/80/0904-0001 $01.00/0

COMPLETENESS WITH FINITE SYSTEMS OF INTERMEDIATE
ASSERTIONS FOR RECURSIVE PROGRAM SCHEMES*

KRZYSZTOF R. APTt AND LAMBERT G. L. T. MEERTENS:J:

Abstract. It is proved that in the general case of arbitrary context-free schemes a program is (partially)
correct with respect to given initial and final assertions if and only if a suitable finite system of intermediate
assertions can be found. Assertions are allowed from the extended state space 'V x 'V. This result contrasts
with the results of [2], where it is proved that if assertions are taken from the original state space 'V, then in the
general case an infinite system of intermediate assertions is needed. The extension of the state space allows a
unification in the relational framework of [2], of the (essence of the) results of [2], and of [4], [5] and [6), and
provides a semantic counterpart of the use of auxiliary variables.

Key words. partial correctness, intermediate assertions, relational framework, extended state space,
recursive program schemes

1. Introduction. De Bakker and Meertens proved in [2] that an infinite system of
intermediate assertions is needed to prove the completeness of the inductive assertion
method in the case of an arbitrary system of (mutually) recursive parameterless
procedures. On the other hand, Gorelick in [5] extended the results of [3] and obtained
a completeness result for a Hoare-like axiomatic system (see [7]) for a fragment of
ALGOL 60 in which (deterministic) systems of recursive procedures are allowed. Thus
any true asserted statement is provable. (Observe, however, that the axiomatic system
uses an oracle determining the truth of formulas from the underlying assertion
language.) From the proof we can extract all intermediate assertions about atomic
substatements of the original program. Since proofs are finite, we obtain a finite system
of intermediate assertions, thus apparently contradicting the result of [2]. Also [4] and
[6] avoid the necessity of an infinite number of assertions by using an extension of the
inductive assertion method.

The purpose of this paper is to investigate this issue in the 'relational framework of
[2] and to obtain, within that framework, a unification of the (essence of the) results of
[2] and of [4], [5] and [6]. The solution of the apparent contradiction lies in the fact that
in [4], [5] and [6] auxiliary variables are used (to store the initial values of variables).
These auxiliary variables have no semantic counterpart in the relational framework of
[2]. Semantically, the use of auxiliary variables corresponds to the use of states which
have an additional coordinate (from a space W) inaccessible to a program. We shall call
the domain "f!' x W of such states an extended state space.

We prove that if one allows intermediate assertions from the extended state space
'Vx 'V, then one can always find a finite system of intermediate assertions. More
precisely, a program is partially correct with respect to given initial and final assertions if
and only if a suitable finite system of assertions from the extended state space can be
found. Thus for the space W one can take the original state space "f/'. Theorem 4.4 of [2]
shows that for W one could also take the set of all so-called index-triple sequences, so
that these two completeness results differ only in the choice of the extended state space.
Our choice is both more economical and easier to use in the concrete proofs.

*Received by the editors December 27, 1978, and in revised form October 19, 1979. This publication is
a revised form of the Mathematical Centre Report IW 84/77.

t Faculty of Economics, Erasmus University Rotterdam, P.O. Box 1738, Rotterdam, The Netherlands.
*Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands.

665

666 KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

In [2] it is proved that in the case of regular declaration schemes (corresponding
to flow-chart programs) one can always find a finite system of intermediate assertions
taken from the original state space. In more syntactical terms this can be interpreted as a
statement that auxiliary variables are not needed for correctness proofs in the case of
flow-chart programs. They are needed in the general case of arbitrary systems of
(parameterless) procedure declarations.

In the relational framework any subset of the state space can be taken as an
assertion. This is not the case with a more syntactical approach in which assertions are
formulas from an assertion language. These two different approaches lead to different
types of completeness results. Thus one should be cautious in translating results from
one framework into the other because there can exist subsets of the state space which do
not correspond to (are not defined by) any formula from the assertion language. This
problem within the relational framework could be resolved by defining a language over
the state space in which assertions could be expressed. However, a natural question
then arises as to which formulas (subsets) should be accepted as assertions. This
problem has been studied in [1].

2. Preliminaries. As in [2] we shall use binary relations over the state space to
provide an interpretation for systems of mutually recursive procedures. More precisely,
given a set [!/> = {P1, · · · , Pn} of procedure symbols, we define a language of "state
ments" Y([!/>) as follows: let .sd ={I, Ai. A 2 , • • ·} be a set of "elementary action"
symbols, 9/3 ={t1, tz, ···}a set of "Boolean expressions." Y(r!l>) is then the least set
containing .sd U@ U [!/> that is closed under the operations ";" (sequencing) and "U"
(nondeterministic choice).

By a declaration scheme we mean a set gy = {P1 ~Si.·· ·, Pn ~Sn}, where for
i = 1, · · ·, n, P; E [!/>, S; E !f([!/>).

In [2] a theory of partial correctness and inductive assertions has been worked out
in a relational framework. The meaning of a program is viewed as a binary relation over
the state space, i.e., a set of pairs of initial and final states, whereas an assertion is viewed
as a subset of the state space, i.e., the set of states satisfying the assertion. We recall
some definitions from [2] which are used below.

Let °II be the domain of states. Letters R, R 1 , · · · denote binary relations over 'V;
p, q, r subsets of 'V; x, y, z elements of "f/'.

Ri; R2 = {(x, y): 3z[xR1z A zR2y]},
P+={(x,x):xEp},

p 0 R = {y: 3x[x Ep A xRy]},
R = {(x, y): yRx},
n denotes the empty set.

Throughout the paper we use the convention from [2] that in any expression
involving programs and assertions built up by using ; , U or s we suppress the sub
script "+".

So, for example, if we write p; R s R; q we actually mean p.,_; R s R; q+, i.e.,
TI x, Y [(x ~ P 11 xRy)"' y E q], or (informally speaking) that the program R is partially
correct with respect to P and q. We shall need the following results proved in [2].

LEMMA 1.

(i) (R1;R2);R3=R1;(R2;R3) (=R1;R 2 ;R3 ,fromnowon),
(ii) R1; (R2 U R3) = R1; R2 U R 1; R 3,

(iii) (R1UR2);R3=R1;R3UR 2 ;R3,
(iv) p 0 (R1; Rz) = (p 0 R1) 0 R2.
If Xi. · · · .' Xn, Y1, · · · , Yn are subsets of 'V x "V, then by definition (Xi, · · · , Xn) :;3

(Yi.· · ·, Yn) 1ff X; SY;, for i = 1, · · ·, n (~is a partial ordering).

COMPLETENESS WITH FINITE SYSTEMS 667

Let qz; = {P1 {=Si, · · · , Pn <::Sn} be a declaration scheme. By an interpretation i0!

into a state space "/!' we mean a mapping from ff({f!J) into relations over "/!'such that:
(a) for each A E .sli, i0! (A) is a binary relation over 'V;
(b) i@(I)={(x,x):xE'V};
(c) for each t E !!/3, i0!(t) is a subset of 'V;
(d) for each PE [i/', i0!(P) is a binary relation over 'V;
(e) i@(S1; S2) = i@(S1); i0J(S2);
(f) i@(S1 U S2) = i@(S1) U i@(S2);
(g) (i0J(P1), · · ·, i@(Pn)) is the ~-least n-tuple such that

(i0J(P1), · · ·, i@(Pn)) = U@(S1), · · ·, i@(Sn)) holds.
The above definition is the usual denotational semantics of recursive program schemes.

Its justification and equivalence with operational semantics is an immediate
consequence of the results proved in [2].

Observe, for example, that if qz; = {P <= t1; t2}, then due to the convention
mentioned above i@(P) = i0J(t1)+; i@(t2)+.

In the sequel we shall always consider programs with respect to a given declaration

scheme. We shall freely identify statements and their interpretations, hoping that no
confusion will result from this.

3. Extending the state space. We now want to use the assertions from the

extended space "f/'x "/!'.In order to do this we have to extend (in an obvious way) several

operations from "/!' into 'V x 'V. Let a, b denote subsets of 'V x 'V used as assertions and

a, r elements of "/!' used as a second coordinate of the extended state space. Let
Rt = {((x, a-), (y, u)): xRy /\ a- E "/!'}be the extension of a program R to the space 'V x 'V.

The operations ; and+ mentioned above retain their meaning when applied to subsets of
("/!' x 'V') x ('V x "/!') and 'V x 'V respectively, so obviously Lemma 1 holds in the case of

the extended state space 'V x "/!'. We shall use in the sequel "mixed" expressions

involving assertions from 'V x 'V and programs from 'V x 'V. While doing so we shall

always mean their "extensions" to ('Vx'V)x(°/lx'V), which can be obtained by

attaching the subscript+ to assertions and the superscript t to programs. For example, if

we write R 1; a; R 2 , we actually mean RI; a+; Rt The reader should convince himself
that the convention of omitting brackets (as indicated in Lemma 1) does not lead now to

any ambiguities, since (R 1 ; R 2) t = R 1 ; Rt
Observe that a; R ,,;; R; b means that a+; Rt,,;; Rt; b+, i.e., that

'<Ix, y, a[((x, o-) Ea/\ xRy) ~ (y, a-) E b],

or that the program R is partially correct with respect to a and b.

We shall need the following definition:

a (R) = {(x, u): 3r[aRr f\ (x, r) Ea]}.

In the proofs below we shall use Scott induction to prove inclusions between

relations on "/!' x "/!'.
Scott induction. Let qj;={P1 {=S 1(Pi.···,Pn),···,P,,{=S,,(Pi,···,Pn)} be a

declaration scheme. Let g,(Xi. · · ·, X,,) and g,(Xi. · · · , X,,) be two expressions built
up from assertions from 'V x "/!' and programs from 'V x 'V and formal (place-holding)

variables Xi, · · · , X,, using ; and U and let the following two conditions be satisfied:

(i) g,(il, · · · , il),,;; g,(il, · · · , il), and
(ii) for each R i. · · · , R,, ,,;; 'V x 'V,

if g,(Ri, · · ·, R,,),,;; g,(R 1, · · ·, R,,)
then gi(S1(Ri. ···,Rn),···, S,,(Ri. · · ·, R,,))

,,;; g,(S1(R1, · · ·, R,,), · · ·, Sn(R1, · · ·, R,,)).

668 KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

Then 'iC1(Pi, · · ·, P,.) s 'iC,(Pi. · · ·, P,.).
The proof is analogous to the proof of the version formulated in [2].

4. Completeness result. The general context-free declaration scheme is

(1)

with Mi some integer ~1, and each S;,i> j = 1, · · ·,Mi, of the form

Si,i = A(i, j, 0); P(i, j, 1); · · ·; A(i, j, K.i-1); P(i, j, Ki); A(i, j, Ki,j),

where A(i, j, k) Ed U 9/J, P(i, j, k) E {Pi.···, P,,}, and Ki,i is an integer ~O (if K;,i = O,
then Si,; is simply A(i,j, 0)).

In the above declaration scheme each P(i, j, k) is some element of {Pi, · · · , P,.}.
Define a function h by: h (i, j, k) = l iff P(i, j, k) =Pi.

The general inductive assertion method calls for suitable intermediate assertions
preceding and succeeding each statement in the program. The theorem presented
below states soundness and completeness of a particular version of the method in which
intermediate assertions from the extended state space are used. The theorem shows that
the global correctness property p; P1 s P1; q can always be established by finding
intermediate assertions of the special form a i, a(i, j, k), bi and b(i, j, k).

THEOREM. Assume the declaration scheme (1). For any two assertions p, q s;; "II,

p; P1 sP1; q

if! there exist assertions a\ b; s "II x "II (i E {l, · · · , n}) and relations R;,;,k s "II x °// (i E

{l, · · ·, n}, jE{l, ···,Mi} and kE{l, · · · ,Ki,;}) such that for all iE{l, · · ·, n} and
jE{l,···,M1},

ai; A(i, j, O) sA(i, j, O); bi

a;; A(i, j, O) s A(i, j, O); a (i, j, 1),
(2)

b(i, j, k); A(i, j, k) s A(i, j, k); a(i, j, k + 1),

b(i, j, K1,;); A(i, j, Ki,;) sA(i, j, Ki,;); bi,

k=l ... K---1} ' ' l,j

and

(3)
In(pxp)sa1,

b 1 n("llxp)sqxp.

if K,,i = 0,

if K1,;>0,

Here by definition a (i, j, k) =a hU,i.k\Ri,;,k) and b (i, j, k) = b hii,i.k\Ri,;,k).
Proof To make the argument more readable we shall prove the theorem in the

case of the declaration P{=Ai; P; A1; P; A 3 UA4 . The proof for the case of the general
context-free declaration scheme is analogous and we leave it to the reader. We thus
prove the following.

Assume the declaration P{=A 1 ; P; A 2 ; P; A 3 U A 4 • For any two assertions p, q s
"II,

p;PsP;q,

if! there exist assertions a, b s "II x "II and relations R i. R 2 s "II x °//such that

a; Ai SA1; a(R1),

(4)
b(R1); A1 s A1; a (R2),

COMPLETENESS WITH FINITE SYSTEMS 669

and

(5)
In (p Xp)£ a,

b n er x P) £ q x p.

If part. We first prove by Scott induction that

(6) a;P£P;b.

Assume that a; X £ X; b for some X £ °V x °V, i.e., that

Vx, y, o-[((x, a) Ea i\ xXy)-. (y, u) e b].

Thus for any relation R,

Vx, y, u, T[aRT i\ (x, T) Ea i\ xXy-. (y, T) e b],

i.e., according to our notation,

(7) a(R); X c;;X; b(R).

Now, due to the assumptions, Lemma 1 and (7),

a; (A1;X;A2; X; A3)= (a; A1);X; A2; X; A3£A1; a(R1); X; A 2;X;A3

£A1; X; b(Ri);A2; X; A3£A1;X; A2; a(R2); X; A3£A1;X; b(R2);A3

£ (A1; X; A2; X; A3); b.

Hence, by Lemma 1 and the assumptions,

a; (A1;X; A2;X; A3UA4)£(A1;X; A2;X; A3 UA4); b.

Since obviously a; 0 £ O; b, by Scott induction, (6) holds.
We are now ready to prove p; P £ P; q. Suppose that x E p and xPy for some

x, ye "V. We have to show: ye q. By the assumptions (x, x) ea. By (6), (y, x) e b. Since
x e p, by the assumptions (y, x) e q x p, so y e q.

Only if part. Put a=/, b = P and let R 1 = A 1 and R 2 = A 1 ; P; A 2• We are to prove
that (4) and (5) hold.

Let x, y, u be arbitrary elements of °V.
(i) We have to show: a; A1 £A1; a(R1), i.e., (x, u)e a and xA1y implies (y, o-)e

a(R 1), which is equivalent to 3T[crR 1T i\ (y, T) ea]. Suppose (x, u) ea and
xA 1y. By the definition of a, u = x, so by the definition of R1, uR1y. Hence,
since (y, y)e a, we get 3T[uR1T" (y, T)E a] by putting T= y.

(ii) We have to show: b(R1); A 2 £ A2; a(R2), i.e., 3T[o-R1 T" (x, T) e b] and xA2y
implies 3T1[o-R2T1 "(y, Ti) ea]. Suppose that for some T, 0R1T, (x, T) e b and
,xA2y. By the definition of R 1 and b,uA1T and TPx, so u(A1; P; Az)y. By the
definition of R 2,o-R2y, so, since (y, y) ea, we get 3T1[0-R27'1" (y, 7'1) ea] by
putting T1 = y.

(iii) We have to show: b(R2);A 3 s;;A3;b, i.e., 3T[o-R2TA(x,T)Eb] and xA3y
implies (y, u) E b. Suppose that for some T,oR2T, (x, T) e b and xA3y. By the
definition ofR2 and b, o-(A1; P; A2)T and TPx, so o-(A1; P; A2; P; A3)y. Thus,
uPy, which means (y, o-) E b.

(iv) We have to show: a; A 4 £ A4; b, i.e., (x, u) Ea and xA4y implies (y, o-) E b.
Suppose (x, u) Ea and xA4y. Then u = x and xPy, i.e., (y, u) E b.

(v) Obviously In (p x p) £a.
(vi) We have to show: b n (°Vxp) £ q X p, i.e., (x, y) E b and y E p implies X E q.

Suppose (x, y) E b and ye p. Then yPx, and since p; P £ P; q, we find x e q.

This concludes the proof.

670 KRZYSZTOF R. APT AND LAMBERT G. L. T. MEERTENS

The above proof is an analogue of the corresponding completeness proofs in [5] and [6].
However, the relational approach sheds some light on the role of the auxiliary variables
used in [5] to obtain so-called "most general formulas" and in [6], analogously, to
"freeze" the global variables upon entering a procedure call. It is clear from the above
proof that completeness is obtained by using the meaning of a procedure as an
assertion.

The proof also suggests an alternative, equivalent point of view at the way of
introducing the extended state space. Namely, the same result can be obtained by
proving first partial correctness of the program u := x; P using assertions from its state
space. The condition In (p x p) s a is then replaced by the equivalent requirement
p x 'r; a-:=x <;;;o-:=x; a.

In such a way the extension of the state space is caused by a change in the original
program P. The desired global correctness property is then derived by deleting the
assignment o- := x to the "auxiliary variable" o- using the corresponding proof rule from
[8].

5. An application. Having obtained a specific form of the completeness result we
shall illustrate its usefulness by the following example.

Let the state space 'V be the set of natural numbers K. Consider the following
declaration:

(8) P~[n ~ 100]; [n := n + 11]; P; PU [n > 100]; [n := n -10],

where, of course, [n ~ 100] = {x: x ~ 100}, [n := n + 11] = {(x, y): y = x + 11} and so on.
P is of course McCarthy's well-known 91 function defined in a relational framework.
We want to prove that

(9) [n ~ 100]; P s P; [n = 91].

Observe that the above declaration is of the form P~A 1 ; P; A 2 ; P; A 3 UA 4 , where

A1=[n~100]; [n := n + 11],

A2=I,

A4=[n>100]; [n := n -10].

We can now use the theorem to prove (9). The easiest way to proceed is to define the
required relations and functions as in the proof of the theorem, taking for P [n ;;a 100];
[n := 91] U [n > 100]; [n := n -10], and to check that (4) and (5) hold.

Thus we define

a= {(x, x): x e.N},

b = {(x, y): (x = 91/\y~100) v (x = y-10" y > 100)},

R1 ={(x, y): x ~ 100 /\ y =x +11},

R2 = [n ;;§; 100]; [n := n + 11]; ([n ~ 100]; [n := 91] U [n > 100]; [n := n -10])

= {(x, y): (90~x~100/\y=x+1) v (x < 90 "y = 91)}.

We leave the task of checking that (4) and (5) indeed hold to the reader. Now, by the
theorem, (9) holds.

The above program together with the corresponding assertions can be represented
by the flow-chart (Fig. 1).

COMPLETENESS WITH FINITE SYSTEMS 671

<T;;;; 100An=O"+11 ____ _
(=a(R1))

(90;:;;;; <T :2:i 100An=<T+1)
v(a-<90An=91)" ___ _

(=b(R1)=a(R 2))

n=91Mr;;il00
(=b(R 2))- ---

---n:2'100

---n=a-(=a)

+

n := n -10

- -(n = 91 A a-;;; 100) v (n =a- -10 A a-> 100)(= b)

- - n = 91

FIG. 1

Acknowledgments. We are grateful to Prof. A. Pnueli who refereed the paper and
suggested various improvements, in particular the present, stronger version of the
completeness result. We also thank Prof. J. W. de Bakker for critical comments on an
earlier version.

REFERENCES

[l] K. R. APT, J. A. BERGSTRA AND L. G. L. T. MEERTENS, Recursive assertions are not enough-or are

they?, Theor. Comput. Sci., 8 (1979), pp. 73-87.
[2] J. W. DE BAKKER AND L. G. L. T. MEERTENS, On the completeness of the inductive assertion method,

J. Comput. System Sci., 11 (1975), pp. 323-357.
[3] S. A. COOK, Soundness and completeness of an axiom system for program verification, this Journal,

7 (1978), pp.70-90.
[4) J. H. GALLIER, Semantics and correctness of nondeterministic flowchart programs with recursive pro

cedures, Proc. 5th Coll. Automata, Languages and Programming, Lecture Notes in Computer
Science, No. 62, Springer-Verlag, 1978, pp. 251-267.

[5] G. A. GORELICK, A complete axiomatic system for proving assertions about recursive and nonrecursive

programs, Technical Report No. 75, University of Toronto (1975).
[6] D. HAREL, A'. PNUELI AND J. ST A VI, Completeness issues for inductive assertions and Hoare's method,

Technical Report, Tel-Aviv University, 1976.
[7] C. A. R. HOARE, An axiomatic basis for programming language constructs, Comm. ACM, 12 (1969), pp.

576-580.
[8] S. OWICKI AND D. GRIES, An axiomatic proof technique for parallel programs I, Acta Informatica,

6 (1976), pp. 319-340.

