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l. INTRODUCTION

An algorithm for finding a minimal edge coloring of a bipartite graph in
time O(E log V) is presented. Polynomial time algoritims for this problem have
previously been given by Gabow in [1] and by Gabow and Kariv in (2], the best
time bounds being O(E log2 V) and O(V2 log V).

The algorithm is based on using fast methods for finding maximal
matchings in semiregular bipartite graphs; an algorithm for finding a maximal
natching in a general bipartite graph was given by Hopcroft and Karp in [3].
Two algorithms for finding such a matching are given. Although the second one
always has a faster running time of O(max{E, V log V log D}), the first one
is presented for the sake of clarity.

2. HOTATION AND DEFINITIONS

Throughout this paper G = (V,E) denotes a graph, V its vertex set and E
its edge set. G = (Vl’VZ’E) denotes a bipartite graph with V1 and v, being
disjoint vertex sets and E € V; * v, being the edge set. D denotes the maximal
degree of any vertex in V = V; U V,.

A graph is said to be regular if all its vertices have the same degree. A
bipartite graph is said to be semiregular if all the vertices in V1 have the
same degree D, the maximal degree of any vertex in G; it is said to be high-
lov if there exists an integer k such that deg(v) 2 k if v € V; and deg(v) £ k
if v e vy

An Euler partition is a partition of the edges into open and closed
paths, so that each vertex of odd degree is at the end of one open path, and
each vertex of even degree is at the end of no open paths.

An Euler split of a graph G = (Vl'VZ’E) is a pair of graphs Gl
(VI’VZ’EI) and G, = (Vl’VZ’EZ) where E; and E, are formed from an Euler
partition of E by placing alternate edges of each path into E and E,
respectively. Any vertex of even degree in G will have the same degree in both
G, and G,» while any vertex of odd degree in G will have degrees in G; and G,
differing by one. This implies that if G is semiregular, and D, the maximal
degree of any vertex in G is even, then both G, and G, are semiregular. An
algoritim for finding an Euler split in time O(E) is given in [1].

3. ALGORITHN 1

An O(E log V) time algorithm for finding a maximal matching in a
semiregular bipartite graph is given. The algorithm works by partiticning E
into sets E; and E, such that G, = (vl’VZ’El) and G, = (Vl’VZ’EZ) are both
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nontrivial semiregular bipartite graphs. If the graph with smaller edge set
has maximum degree one it is the required matching; otherwise the algorithm is
applied recursively to that graph. Since each iteration reduces E by at least
a factor of two, the algorithm eventually terminates.

The partitioning procedure to obtain the semiregular graphs Gl and G2 is
as follows. An Euler split of G is made giving graphs 9 and G,. If ‘D, the
maximal degree of any vertex in G is even, then both G and G, are-
semiregular. Otherwise edges are moved between Gl and 62 to make then
semiregular. This is described more precisely below.

Let M be the set of maximum degree vertices in G. At least half of the
vertices in M will have even degree in one of G, or G2. Without 1loss of
generality let G, be that graph in which at least half the vertices are of
even degree. Then let Ml be those vertices of M that have even degree in G2
and M, be the remaining vertices of M.

Next an Euler split of G2 is made giving graphs G21 and G22. The
vertices of My have the same degree in G,y and G,y while some of the vertices
in M2 have even degree in G21 and odd degree in G22 and the others have odd
degree in G,; and even in G,,; these degrees differ by one, and one of them is
the degree of the vertices of M; in G, (and in G22)' Without 1loss of
generality let Gyy be the graph in which at least half the vertices of M, have
even degree. Let HZI be the subset of vertices of MZ that have even degree in
G22 and let M,, be the remaining vertices of Mye

Now one of the graphs G,; or G,, is combined with ¢, in such a way that
vertices in My will have the same degree as vertices in Moy in the combined
graph. The new graphs are named G, and G, in such a way that vertices in M,y
are of odd degree in G2. Hl and M, are redefined with MZ reduced in size by
at least a factor of two. The process is repeated until Ml = M when the
vertices in M all have the same even degree in Gy The partitioning procedure
is shown in algol like form below.



PROCEDURE RARTITION

G = (V,E)
M = set of maximum degree vertices of G
BEGIN _
Let G;» G, be an Euler split of G;
At least half of the vertices in M have even degree in one of
G, or Gys Let it be Gys
Let M) = {vlv ¢ M, and v has even degree in Gz};
Let HZ = M- Ml;
WHILE ([ul, # 0) DO
BEGIN
Let GZl’ G22 be an Euler split of Gzz;
Again at least half the vertices in H, have even degree in
either G,y or Gygs Let it be Gyos
Let My = {vlv € M), and v has even degree in 622};
Let M22 = Mz - MZl;
IF degree of a vertex in My in Goy is even
then
G1 = G1 u G21, G2 := G22
else
G2 S Gl u G22. Gl := G21;
Ml HES Hl u MZl' Hz HES M22;
END
END
CORRECTNESS

It is necessary to show that all the vertices in My have the same degree
in G, at any given stage of the algoritilm, and likewise in G,. The same result
should be proven for vertices in Hyo It will first of all be illustrated by an
example.

Consider the example in which vertices 1in Ml have degree 5 in G1 and
degree 12 in Gos while those in M, have degree 4 in G,y and degree 13 in Gye

Then vertices in Ml have degree 6 in both G21 and G22; vertices in le
have degree 7 in G21 and degree 6 in Gyos and vertices in Hyy have degree 6 in
021 and degree 7 in Gyge So the assignments G1 = Gl U Gyys G, = Gygs M) = Ml
u MZI’ and M, = M22 are made.

Now vertices in M have degree 11 in G1 and degree 6 in Gys and vertices
in M, have degree 10 in G, and degree 7 in Gye

By considering respectively the cases in which the degree in G of
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vertices in M_1 is one greater or one lesser than that of vertices from 4, it
can be proven by induction that the degree of vertices in M; is the same in
each of G, and G, and likewise for M,. Thus all the vertices in M have the
same degree in each of G, and G, when the partitioning procedure terminates.

To show that G; and G, are both semiregular it is necessary to show that:
deg(v) in Gys v not in M < deg(v) in Gys v € M, and similarly in G,.

This is proven by an induction using the inductive hypothesis that:
deg(v) in Gy» v not in M < deg(v) in Gys v € My, and likewise in G,.

To show that both Gl and G2 are nontrivial the following inductive
hypothesis is proven:

deg of vertices of Ml in G2 > 0.

In fact this degree is even and so the degree of vertices from Ml in G21 and
G22 is nonzero. The induction now follows.

IIMING

Each iteration of the while loop reduces the size of M, by at least a
factor of two. So after at most O(log V) iterations Myl = 0 and the
procedure terminates. Each iteration of the while loop takes time O(E). So to
obtain G; and G, takes time 0(E log Vl) < 0(E log E/D). Thus the time T(E)
taken to find a matching is given by:

T(E) = O(E log E/D) + T(E/2) = O(E log E/D) < O(E log V).

In fact this algorithm will produce a matching covering all the vertices
of maximal degree in a general bipartite graph in time O(E log E/D).

4. ALGORITHM 2

An O(E + V log V log2 D) time algorithm for finding a maximal matching in
a semiregular bipartite graph is given.

QBSERVATION

It is known that if a network has a maximal flow, with the flow through
each vertex being integral, then it has a maximal flow such that the flow
through each edge is integral [4, pll3].

In particular, if the edges of a bipartite graph are assigned positive
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weights, so that the sum of the weights at each vertex is at most one, and the
weight at each vertex of V; is one, then the graph has a matching covering
every vertex of Vl'

By shifting the weights between edges, while maintaining a constant
weight at each vertex, and deleting edges of weight zero, a new smaller graph
is obtained containing just as large a matching.

METHOD

Vertices of small degree are merged together so that all vertices have
degrees between D/2 and D. Now V#D = O(E). This simplifies the timing
analysis. Every edge is given weight 1/D. Using depth first search, cycles in
the graph among edges of weight 1/D are found. When a cycle is found alternate
edges in the cycle are deleted; the other edges in the cycle have their weight
doubled. This is continued until there are no cycles among edges of weight
1/D. Cycles are then found among edges of weight 2/D, 4/D ..in turn until no
further increase in edge weights can be obtained in this way.

A graph with at most O(V log E/V) weighted edges is obtained, such that
the sum of the weights at each vertex in v is one. Algorithm 1 is now
adapted to find this matching.

Each edge is considered to have multiplicity D times its weight . Four
copies of each edge are kept, one in each of Gl' Gys Goy and G22. When making
an Euler split, each edge added to an Euler path is made to occur as often as
it can at that point in the path; the multiplicities of the copies of the edge
are changed accordingly. Othervise one proceeds just as in algoritim 1.

As with algorithm 1 this algorithm can be used to find a matching
covering all the vertices of maximal degree in a general bipartite graph in
the same time bound.

IIMING

One iteration of the procedure in algorithm 1 cuts the number of edges in
half (counting edges according to their multiplicity), but may well not reduce
the size of the structure stored, affecting the timing given with algorithm 1.

To find the graph of size 0(V log E/V), O(E) time is needed. To use
algorithm 1 one requires time O(V log E/V log E/D) to halve the numver of
edges (counted according to their multiplicity), and time 0(V log E/V log E/D
log D) = O(V log V log2 E/V) to obtain a maximal matching.

Thus the overall time taken is O(E) for E 2 0(Vlog V (loglog2 V)) and
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o(V log V log? E/V) otherwise, which is always better than the O(E log V) of
algoritim 1.

5. COLORING IHE EDGES OF A BIPARTITE GRAPH

An O(E log V) time algorithm for finding a minimal edge colorimg is
given. It is minimal in the sense that the fewest possible colors are used. It
is shown in [1] that this is D colors.

The algorithm is based on divide and conquer. When a graph has vertices
of even maximal degree, using the method of Euler partitions it is split into
two subgraphs of equal maximal degree which are then recursively colored. On
occasion when the graph has vertices of odd maximal degree a matching M
covering all the vertices of maximal degree has to be found. This is obtained
by using algorithm 2.

ALCORITEN
If D is odd find a matching as described above; color it and delete it

ftom Gc Set D =D - 10

Make an Suler split of G to give two bipartite graphs G1 and G, ezch
having vertices of maximal degree D/2.

WLOG assume G1 has a smaller edge set thaﬁ G2 (otherw&fe swap the labels
G1 and GZ)’ and recursively color Gl' Let 2° < D/2 = 2 - r. Add the r
smallest sets of colored edges to G,, delete them from the set of colored
edges, and recursively color Gye

A similar method was used in [3] and led to the current presentation of
the algorithm. That exactly D colors are used can be shown by induction.

TIMING

Excluding the time taken to find the matchings, the time taken is given
by:

T(E, D) = T(El. Lp/2]) + T(EZ U Eqs Lp/2]) + r) + O(E),

where E; U E, = E and Eq is the union of the r sets of colored edges added to
G, For D a power of two T(E, D) = O(E log D). In all other cases as IE3I <
2r |E1|/D < IEy| one finds that T(E, D) = O(2E log(D + r)) = O(E log D).

The time required for finding the matchings is bounded by O(max{E log D,
V logV log3 D}) < O(max{E log D, E log V}) and hence the total time required
is bounded by O(E max{log D, log V}) which is O(E log V). For a graph without
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multiple edges a time bound of O(E max{log D, log V}) is obtained.
6. MATCHINGS IN HICH LOU GRAPHO

By pruning the high-low graph a semiregular graph with D = k can be
obtained, D being the maximal degree of any vertex in the semiregular graph.
The matching algorithm is then applied to this graph to obtain a maximal
matching for the high-low graph. So a maximal matching in a high-low graph can
be found in time O(max{E, V log V log2 E/V}). High-low graphs were defined in
[3] and the above method for pruning was described there.

REFERENCES

[1] Gabow - Using Euler partitions to edge colour bipartite multigraphs, IJCIS
5'49DEC 76 .

[2] Gabow and Kariv - algorithms for edge colouring bipartite graphs and
multigraphs, SIGACT 78.

[3] Hopcroft and Karp - An nS/2 algorithm for maximal matchings in bipartite
graphs, SIAM 2,4,Dec 75.

[4] Lawler - Combinatorial Optimization, Networks and Matroids, Holt-
Rinehart-Winston.






	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif

