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1. Introduction. The solution of a recursive dornain equati.ont of the

form

D z r(D) (t)

nay be viewed as the finding of a Sj@L (up to isomorphism) of the

functorf.Thishasledtotheideaofformulatingacate6ory-theoretic

analogue of Tarskirs fixpoint theorem for lattices; as a basis for a

general method of solution for this kind of equationl see especially

Relmords [t], wana [2], Plottcin [J].

In seeking to adapt Tarski rs resul ts to the category situation, one €

would expect the role of sgliry functions to be taken by colimit-

prgservinf, functors. In aII the versiot,.q devel-oped up till now, howevert

the major role is taken by a quite different rrotion of continuity of

functors ("conti'uity on morphism-sets,'), havin6 to do with orderin6n
the /

of the hom-sets. Apparently it was thought thi["fe,luirement of preservation

of (ur-)colimits was too rlifficult to handle ([2])'

Thepurposeofthepresentnoteistoshowtbat,onthecontrary'

a much better organization of the theory can be achieved by taking

preservation of tU-colimits (or Ul-continuity, as we shall call it) as the (

basic notionJ The main theorem (Theorenn 1 ) now takes the form of an

exact generalization of the lattice-tl'e:oretic fixpoint theorem, rather

than only iut analogue of it. Ilore substantially, since the theorem applicr;

to arbitrary categories admitti.ng ut-colimits (no ordering; of hom-sets is

needed) the range of application is wj.der: 6ee Sec. 2 below. Furtherrnore'

the application of the theorem to a given class c of dornains takes on a

simpler form: instead of the manipulations with three distinct categories

(KTKPTXR in Wandrs notation) characteristic of the "continuity on morphism
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sets'r approach, we consider just the cat,egory of "embeddingF';rtirr C (Definition 2)

In Section 2 rve discuss the existence of ul-colimits in certain relevant

eategories" The material here is fairly standard. One pointt howevert is

worth noting. We have not found the abstract approach of l{and [2] to lre;

worth the effort it involves. In;rI1 the releva.nt.:ategories, the objects

are sel:s (with structure)1 and it invol.ves tittle rnore l.hr-rn n rolrtine veri-

ficatj-on to show tliat the set-thrroretic inversc limit iro rrlso t;he colimit.

The abstract method, however, bring;s with it a double compli.cation when

we try to apply it to a concrete caleifc:ry. l/e must first slrow thelt the

set-theoretic inverse limit is the (category-theoretic) li*i!; and then,

wittr the aitl oi l;Irucirll- concli-tic.,ril, (ci. ,/,inC':; I'CttttdiLj r;tr ,r") r i.lt;,rt tlrt.:

Iimi t is also the colitoit.

Section ] concerns tkre ul-continrrity of various: ur;r:fril frrnr:lors. Irr

addi ti on t.o the ones usual.ly discrrsse.l , rn,e have incl-r.rded r hri cf treatrnirn t

of Plotl<in'o powerdomain construction.

2. The fixnoint t.heorem" The rrlattice-theoreticrt f i;<edpojnt l.heorem

f'or con tinuouri f unc tiorrs may be stated i n ;r r:tron6 f rilrn t*; f oIJ.nws. l,r:1

(P, ! ) t",e a poset in which every increasing tu-chiri.n irirs I Lub, let. a C I'

and Let f :P + P be an t0-continuorrs function ( t)iat. ir;, f Jrreservcr; lutrE; r'f

ul-chains) such that a E fa. Then thc si:t of post-fixt:rlpointg,:1 f 5reater

th,rn a (that is, {"1 r(x)i x & ai- xi ) hos a 1.e1st el,:rrnt:nt., namely L,i f (a)

vrhicir is, moreover a fixedpoint of f. We seek lhe splx'olriatr: general.izatlorr

of this resu-i t to cateAories.

IJefinitiorr 1. An ct-chain is a funct.or 1'rom ui ( Lhei naturiil numb+rrs wit.lr

(

the standard linear ordering) into K. K is said to;idmit ut-colirnits if every
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o-chain in K has a collmit. A frrnctor F:l -r Kf is r!-continuous if ts transforms

any colimit diagram for an ut-chain f in X into a colimit d,ia6r;rm (for F[) in Kr.

An tu-chain in K may be pictured like ttris:

r-: 6g ^ 8r
% -^1 -t ...

We adopt the viewpoint that a colimit (diagram) for l- i. rrn initial object

in the category of canes from f. Conesponding to the sequence <fl(")>

in the above formulation of the fixedpoint theorem, we will h;rve an tu-chain

A = "o.F"Fo*F2" ... €
where F:K -r K is now an uj-continuous funr:lep. Our progr;,fi is t-o r:trnstrrrct

the category I'F(KrFre) of rrpost-fixed-rlh.iects ielong e'r and rrpoat-fix€d-&rrowf;"

of F' and to show that - roughry spe;rking - culim A is initial in t.his

category.

Let l'he an endofunctor of a category K, i/e s;ry tlt:rt an ob;iect x of K

is a post-fixedpoint of F vig Y if ylFx + x; and an a-rrow n;A -r F is a

post-fj-xed-ar::ow of F via Yr6 if

^6TJ. - F'B

"; ,' ,".',

A.. Y FA (

comnutes. f f rrorv 0:a + Fa, define the category I'N'(KrFr0) :is fol'l owr.;:

1.)re ot;jecti; i,re t.he triples orl'1 ,t), whele 1,1 is:-r post-fixedpoint of F via y,

and o = Y TU, 0 (equivarently, the objects are the commuti,ng sqrrareg
A

a ---:'+ Fa
iol f rc )

ol.. Y -Jt
while IIom(( orl'1rY>r< o,rrl.irry')) is the set of arrow6 (in X) n:1,{ -r l"it

;:.;uch that (t) no = of r and (a) n is a yrost-fixerl arrovr of F via yryf .

Suppose now that F is ul-cont.inrrorrs, i,r)d that ). js a r:rrlimit cone for
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A = a !-t l'" {L ... (t}re vertex of }. being L). F}, is a colimit cone

for [A = Fa F0-+ F2r... . F]. extends trivially to a colimit cone ].{-for A

(put lf = m.o 0, trrr*1 = T).n). Let $:1, + TL be the (unique) eirrow from

). to l,+1 then r|l is an isomorphism (sinct'l,rtr+ are both initial)' i:lrrd S-1

is the unique arrow from I+ to A. In particular, < l,nrlrt-1> i, .",i object

of I'F(KrFr0). i/e have:

Theorem 1. Let. K adnit ttt-colimits and F be ttt-continuous. Then l,is a

(
fixedpoint. of F via t 

1, an<l < ).orlr$-1> is initial in PF(KrFrg),

Froof. That I is a fi:.redpoint of If vig 1t1-1 is contained in the preceding

remarks. Trrrning to the initiality of ( ).OrLrr}-1), wc note f irst th.rt any

object < o. rl'1 ,y) of PF(Krl'f e) <leterni !')€rc a cone U fl'on A t.o li, ar,; 1'ol lob,,.;:

uo = o

S1*1 = Y &rt

(ln trr:6 'iense, < trorLr,l,-1> determines l.) I'loreoverr any arrow

n: ( crrMrtD + < cttrl,irryr) is a morphism of lhe corresponding cones fr, frt
(Ihat is, fri = f, Urrr rr=Or1r.. ). For Hf = Or = TTC! = Tt Hg i while (intiucl.ittn

step) H,l*t =Y'FU; -Yt F(nprr) =ttYFHrr= fifln*1. Hence' the only

possible arror"r from < trOrlrr|t-1> to ( orMrY) is the unirlue ;trrow o:l * U-

It remains to show that o is indeed an arrow of PF(KrFre), that is,
t

t.hat o is a post-fixeci-arrow of F via '-1

(unique) arrow from L+ to g is or!-1. llut.

Ho=c-YItr0 = Yr(otrO)

Sn+1 =Yf Un = YF(ol,r,) = YFolf,+1

lience o {,-1 = y Fo ; the proof is complete.

This theorem is formally simil-ar to danrjts ?he.'rem l. Tlre content (an,l

]-.roof) is different, due to the clianged notion of continuity of functors.

,Y. By the precedinl; remarks, thr:

we c:rn ;,r].r;o rltow t.]rtt i t is y Fo:

B = vFu)ri' (r
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Alsol we have brought in the terminology of post-fixedpoints (an<t arrows),

in the hope of makin6 the result more intrritive.

fn most aJrplications of the theorem, a is initial in K. (The important

exception is the construction of rno(iels of the tr-calculus via the domain

s,luation Il = [D -+ D] ) ln this ci.se, the conclusion of fhe theorcn can

be simplified:

Corol-lary 1. Under the hypotheses of Theorem 1r sulrpose that a is

initial in K. For any post-fixedpoS.nt 11 of F via ts there is a uniLlue

o:L -) M such that o is a post-fixed-irr<,w of F via $-1rY.

'fhe fol.l-owini" lemma will be uEeful (via Corollary 2) in establishing

tu-continuity of functors:

Lenmir 1. Let Xr adrnit ul-colimits, and l':K -r Kr. Then I'is o-continuotrs

iff the follorling condition holds for every o-chain A jn I' with colimit

cone tr: if !.1 is a. colimit cone for fA in Kt, the arrout rl'I'r'<,m I'l to lX

is an isomorphism.

Iry!. The necessity of the condition is obvious. For sul'ficiencyl d.srirrftQ

the condition satisfied. Then there is an arow from n to any cone v from

-1 (
FA, viz. of ', where o:p't V; and there is at mo6t one sttclt arrow, for if'

y"ry.: Ftr -t v are clistinct, then so are Y"$rY"t! l.l'+ v. (Alternati ve"l"z | - 1

proof: verify that '!' is an isomorphism i.n the category c'.f cones from FA.)

J. Existence of tl-cc.lirits

Definition 2. An ttt-cpo is a poset in which every (irsct:ndtn5) u-chain

]ras a lub. A nap f :D -r Dt, where l)rDr are o-cpors, is ut-eotrtinugus if

f ( l-b. ) = U f(a, ) for every ul-chain (a.)- j-n D. An o-conti-nrrous maprt 1 1 - 11
f :[) -r Df is an embeddinF if f possesses an oJ-continuotr,s right adjoi.nt f r:Dr-r D.

nr-CPo! is the cat,egory of ut-cpors with enlbeddings ;tri al'rowrl.

€
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Some of these concepts were already introduced informally at the

beginning of Sec. 2. A more faniliar cha-r'acterization of embeddings is as

follows: f:D -r pt is an embedding iff there is an (ur-continuous) f rlDr-r D

such that ff f = ID and f ft f IDr (so that frff form er projection pair).

The prefix ul- will usually be onitt.ed (from the terms introduced in ltelinition

2). In fact, nothing hinges on our use of ul-cpors rather than the more

restricted class of cpo's (in which all directed sets have lubs). ttre point

simply that the t!-notions generaliz-e more :readily to categories: riee remarka

lt at the end of this section.

Usua1.Iy, the categories in wlrich wr.: need to solve recursive dornain

equations are full subcategories of CPC,ii ihere followo a concise treatment

of the construction of ul-col-imits in Ci't'l''. Thio is litt'l'e moru than ai

.surunary of (parts of) the existing proofs for complete l.atticec (Heyrroirls,

'dand ) .

(

Theoren 2. Let A

D be the inverse limit

( componentwise ) partial

given by irr(xrr) = (fr*

standard notation

f^ f^
= Do 

to. 
D,, 

*t- 
.,. tre iln gt-chain in Cpr;g. tet

[*rrrr,€url *rr€Dn & f'(xn+1)=xn ] wjt'h the indueed

ordering. Then D, together with the maps irr:Dn'+ t''

(xrr))rar, is a colirnit for A' (l{ere we lravc used llte

I ir ll
I tnl "' 'n-1 |

i

,' I^ |
\Ulnl+f
\ ^m-1 'ot 'n t

proof. This fa1ls into a series of lemmas nnrl srtbl.emnias. ior the easiest

caae6 we just quote t1e main relevant fact(s), ratlter l;han giving a detail'etl

proof. Certain elementary f-cts are used implicitly, for examnle: for n ) n,

f-- is an embeddingr with f,lr, = fnr.
nn

n{n

m=n )

mln
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(t) P is a cpo. (ContinrritY of tlie

(Z) Each i' is an embeddingr with

(i) <fnm(x,r))*a, € D (since

(ii ) tlo ir, = to,,

fr.)
h

adioint i I
n

ft f -II m nrm+ |

given by:

f)
nm

i,l(crtrer) = xn.

(iii) irro lj((xr>) E cr> (*r, = fprr(*n) (n ! P) tno(tn) ! xn ).

'I:D+L 3(J) civen a cone I fron A to L, we have the mediatinl3 map

Q,o), -) U).r(xr)1 witharljoint '$r:L+D:y +<l"t(y))rr'

(f ) r! is well-defined, i.e. ( ).r(xr)), is increasing. (Since tr is a

cone, ),*(xr) = trr*1. f*(x*) = trr*1'f fi(x.*.,) E trr*1(*,no1) )'

(:.i) tt is well-defined, i.e. ll'(y) e D. This in equivalent to

f | ).'*.r(V) = \ t(y). But this fo]lows' by taking adjointsl from trrr*1 fn=

(iii) qr', ry = ro. For ('1'. g(<xr>*)),, = l;( H )'r(xr)) =

= o'l !, III*(xr) = ,nll*f* l,i'Ir(xrr) = nLlfrrr(xn) = xrr"

(iv) $ $t E Il. For $'t' = U )'; I', and each In lrl f Il'

(v) tr,, = t irr. For g'irr(xrr) = #r, l'rn' fn*(xn) = )'',r(xn)'

(4) There is at most one mediating nap 9:D'+ L. For if trn = P int then

ij Wj(V) = ).'(y), so that p'(y) must be < Ii(v)>n' Hcnce 9r' and so Qr

is uniquely determined.

€

T"
n

Coroll.arY 2. I

Froof . By l,emma

iff '! tt - I. Now

is a colimiting cone for A lff U lrr').' = I"'

1r tr is colimitin6 iff r! is an isomorphism. This holds

$"t' = U l,; I' .

K admits colimite

an object of K. In

rnay be intrbduced

2 - as follows:

provided that the

particular' this

- uoing sequences

rf K is any full subcategory of cPoEr it forrows fr'm Tle.rem 2 that

inverse limit of any to-chain in K is

holds for the aftrebraic cporss which

instead of directed set.s, as in Definil;ic'n
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Definiti.qn a A cpo D is @ if there is; ;r countable

subset B of D such that (1) every x€D is the lub of an increasing seguence

of elementa of B, nnd (Z) tor any increasing sequence (ui)i in B and any

a€B, if a E H .i then a E ei for some i'

(

The qualifier 'tcountably" will usually be omitted. ()ne readiiy sho'as

that the elements of B are exactly thu ;[$i!g (=isolated) eloments of Dt

end that the definition agreec with that given by Plotkin (for I'algebraic

ipo't| except for one (minor) point,: we <1o not require algebraic cJror's to

have least elements.
t,l -

For the proof that ACPOu (thu category of algebraic epors an6 snfrerldingr;)

is close<i under the inverse linit cone;trucLion, see If]. Onr: ef.]1r.':r elr;mr:nt't'ry

fact r.,hich we ghall need is the followinp;: i-f (;ir S) is a count"rble preordered

eetl then the collection Q of all riirected cubsete of r.l, orr^lcrerl try inclur;iortt

is al algebraic cpol tire finite elemente of i are bhe.qets of t.he forrn

[a] = [ul t S "J, for a€Q.

The basic notion of this section is that of ar tl-comPlete poset. As has

already been hinted, howeverl the definitions and results can be formuLatr:tl

( more generally, in terms of (ur-complete) categ.origs., A generalization ol" tirir:

kind has been worked out by Lehmann [4], with a-view to applications to the

,gemantics of non-determini.stic programsl in thic a;-'prrl:rc:h the semanlic dom:;in:;

are themselvee categories. ID a slig;htly dilferent direction, [5] introduces

a notion of rtalgebraic categorytt,l 3ot by generalizing Definiti on ]; we ret'urn

to this point in See.4. It should be ernphasized that Theorem l applies wit.]rout

modification in the more general situation; this ir.r an importrnt. ::dvantage

which the formulation in terms of tl-continuity has over that in terms of

l.ocal continuity (continuity on morphism sets).
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(1) wifl typicalty be composed out of the following basic functors: +rxr'r and

(in case we follow Plotkinrs 'rpowerdomainrt approach []J to non-deterministic

semantics) . The definition, and proof of o-continuityt of + and are

entirely straightforwlrd. In the present section we consider -r ernd .

The functor +: (cPoE)2 -r CpOE is defined on objects by

+(OrDr>) = [D+Dr]

(the cpo of continuous functions f::om D to Dr), and on arrows by

-+((prq)) - ),f.qrf,F'

-r((prq)) is an embeddingr with :idjoint trg.qt Bf P .

Theorem a. 't is uj-continuous.

@. suppose that A is a cone in (cpoE)Z; that is, A is in effect a

pair of cones DO* D1 4 ... r EOt E1 t... in CPOE. Let these cones herve

coli.mits DrE via the embeddings drrtDrr '+ D, €n:En + E. '+(A) is a cone witlr

vertex [D -+ E] and embeddings pnr[Dr, + ErrJ -+ [D -r E]: f + e. f dl i we

have to show that this cone is colimiting. But this follows by CorolltrJ 2r

since

U 9; 9 t = ).8. U 
"rr, 

el'e: do drl

= yB. ( U err. 
",1),e 

( U dn"d;) (by continuity of ' )

= trgg

G I.

(uy Corotlary 2)

Turning to the powerdomain, Iet D be an algebraic cpo, and l'et M(D) be

the set of non-empty finite sets of finite elements of D. l{(D) is g:iven the

preorder !, (ttre "l"lilner ordering't) defined as follows:

{

ArMB =df Vaealueg.af b & Vueg-laen.atrb
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rt was shown i"n [5] that the powerdomain of D, as defined try ir)otkin, is
isomorphic to fr'TI)' ; we wilt define (U) as frfD-f. To rtpr.;cribe the action
of f on srrows of ACPOE, we proceed as follows. Given any continuous f:D.+ pr

(DrDt algebraic), we define the rrextensionrr f of f to (D) bv:

?cxl = ngx tr(A)l
(of couree, the operation t I is here taken w.r.t. tho preorder g M of l,t(Dr))

- The following properties are imrnediate: f is a continuous function;

ro = rg(p); i; f,d; utisironotone(thatis, fEs*|f,il. rt
AAI follows that if f is an enbedding, t.hen ? is aa ernbe<ldi,ng (with adjoint f,)"

Thus' if we define f o1 arrows by: ('f .Cl = ? , then {':ngt.oE + ACl.oD is
indeed a functor.

It will be useful to have the property of local continuity for this funelor:

L-emsla J. If frr:D '+ D I is iut incre'..sinC ir{rql.tenc€ rrf con t-i risi,11;; l'unr:ti r)rrr;

(i)r)' algehraic), ilien ( U f_)" = U i .n n n n'
Proof. The conclusign of the lemma it; equivalent t.cr the i'ol1owin6 atatemr,.nt:

for any A € M(D), [( u i-)(")] - u t?*(e)1. The rjq]rt-to*t.ert incturijonn - n - n-
here is trivial. For the left-to-right inclusionr suftr)o..ie t)lat U l, ( U fr,)(A).

/ Since the elements of B are finite, we can choo.se (r) t r;rrch tlr;,tI

\/a€f*(l) --]uen. b c a' and (a) r sueh that \/bcB Ja€fr(n). b E a. sotr.ing

m = max(krl), we have B E "o 
f_(A), a^n<J so Jf € .!Lt (,.,)].

'-fheorell 4. is u.r-continuous.

Proof . Agarin using corollary 2, it ;uffices r;o r;lrow ilrat iJ.

!J f-: ft - I^ (where each f-:D- -+ D js an ernbr:ddirrg), i.iren U'i " fr = 1,,t.-\.n n n D n n t"'w1's({+rrf'lf rrrrll 
n n n ltrl/

if ow

H ?-,f: = !(f-rf:) = ( U r.^ f l)^ (by Lemma 2)n n n n n n' ,ai--n n.

= rD - r (n)
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The functors -f and e have been defjned for dif'ferent categories. If

we wish to sorve a recursive domain ecluation which involves both functorsl

we need to have a single category which is closed trnder both of them. l'or this

purpose Plotkin introduces the sFP ob.iects - these are the cpors which are

colimits of ur-chains of finite cpors. Every sFP object is a1g;ebra-ic' hy

the rernarks following Definition J (closure under inverse limit construction

of lcpoE). Thus Snf (category of SFP objecte and embeddings) is a full

subcategory of AcpoE. If DrE are finite, then ftpt aind D + E are (trivialry)

finite. It follows by Theorems Jr4 tfrat l;i'Pp is closed under both constructions.
C

It remains only to show that i,Ff qrlrrrits Ur-colimits. A proof of this

resuLt is given in tl]. An alternative prcof - which proceeds by w::y of

showinl; that SFf is an'ralgebraic categor^)"'- may be found in [5].
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