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1. Introduction. The solution of & recursive domain equation, of the

form

D T F(D) ("
may be viewed as the finding of a fixpoint (up to isomorphism) of the
functor F. This has led to the idea of formulating a category~theoretic
analogue of Tarski's fixpoint theorem for lattices, as a basis for a
general method of solution for this kind of equation; see especially
Reynolds [1], Wand [2], Plotkin (3].

In seeking to adapt Tarski's results to the category situation, one
would expect the role of continuous functions to be taken by colimit-
preserving functors. In all the versions developed up till now, however,
the major role is taken by a quite different wotion of continuity of
functors ("continuity on morphism-sets'), having to do with orderings
of the hom-sets. Apparently it was thought thggeéequirement of preservation
of (w-)colimits was tco difficult to handle (1.

The purpose of the present note is to show that, on the contrary,

a much better organization of the theory can be achieved by taking
preservation of w-colimits (or w-continuity, as we shall call it) as the
basic notion) The main theorem (Theorem 1) now takes the form of an

exact generalization of the lattice~theoretic fixpoint'theorem, rather
than only an analogue of it. More substantially, since the theorem applies
to arbitrary categories admitting w-colimits (no ordering of hom-sets is
needed) the range of application is wider: see Sec. 2 below. Furthermore,
the application of the theorem to a given class C of domains takes on a
simpler form: instead of the manipulations with three distinct categories

(K,KP,KR in Wand's notation) characteristic of the 'continuity on morphism



sets" approach, we consider just the category of 'embeddings'" in C (Definition 2

In Section 2 we discuss the existence of w-colimits in certuin relevant
categories. The material here is fairly standard. One point, however, is
worth noting. We have not found the abstract approach of Wand [?] to be
worth the effort it involves., In all the relevant categories, the objects
are sets (with structure); and it involves little more than n routine veri-
fication to show that the set-theoretic inverse limit is also the colimit,
The abstract method , however, brings with it a double complication when
we try to apply it to a concrete category, We must first show that the
set-theoretic inverse limit is the (category-theoretic) limit; =nd then,
with the aid of specigl conditions (ef. dand's "Conditlion 4"), lhat the
limit is also the colimit.

Section 3 concerns the w-~-continuity of various usecful functors. In

addition to the ones usually discussed, we have included n bhrief treatment

of Plotkin's powerdomain construction.

2« The fixpoint theorem. The ''lattice~theoretic'" fixedpoint theorem

for continuous functions may be stated in n strong form as follows. Lef

(Py £) be a poset in which every increasing W-chain has » lub, let a € P

and let f:P = P be an w-coatinuous function (thst i, f preserves lubs of
w-chains) such that a & fa. Then the set of rost-fixedpoints ot f creater

thrn a (that is, {x] f(x): x & aii x} ) has a lesst eleament, namely LA M(a) -
which is, moreover a fixedpoint of {. We seek the appropriate generalization

of this resuit to categories,

Definition 1. An w=chain is a funclor {rom @ {(the natural numbers with

the standard linear ordering) into K. K is said to admit w-colimits if every



Ww-chain in K hes a colimit. A functor F:¥ - K' 1is w-continuous if ¥ trensforms

any colimit diagram for an w-chain [ in K into a colimit diagram (for FI) in XK',

An w-chain in K may be pictured like this:

r: ao 83 a 8‘1’ cow

1
We adopt the viewpoint that a colimit (diagram) for [ is an initial object
in the category of canes from [, Corresponding to the sequence <f(a)>
in the above formulation of the fixedpoint theorem, we will have an w-chain
4 = a o, Fa ke, F2a cee

where F:K - K is now an w-continuous functor. Cur progr:m is to construct
the category PF(K,F,8) of '"post-fixed-ntjects along 6" and "post-fixed-arrows"
of F, and to show that - roughly speasking - colim A is initial in this
categorya.

Let F bhe an endofunctor of a category K. We say that an abject x of K

is a post-fixedpoint of F via ¥ if ¥:Fx - x; and an arrow ™A -+ B is a

post-fixed-arrow of F via y,0 if

B. ° s
TT$ \ vy
a. Y - Fa

commutes. If now 8:a + Fa, define the category UDPF(K,F,8) =as follows:
the objects wure the triples <,M,¥>, where M is a post-fixedpoint of F via v,

and @ =Y To 8 (equivalently, the objects are the commuting squares

a ————>Fa

al jm )
1 "
M< Y —Fu

while Hom(< a,M,y>,<a',H',y'>) is the set of arrows (in K) m:M - M'
such that (1) ma =a', and (2) 1 is a post-fixed arrow of F via y,y'.

Suppose now that I is w-continnous, «nd that A is a colimit cone for



A = a LN Fa AN eso (the vertex of A being L). FA is o colimit cone

for FA = Fa e, an eee « FA extends trivially to a colimit cone A" for A

(put XB = Tko By, A = Tkn). Let ¢:L > TL be the (unique) arrow from

n+1
A toA'; then { is an isomorphism (since A,A* are both initial), and ¢~

is the unique arrow from A" toA. In particular, < XO,L,W-1> i i object

of PF(K,F,8). Ve have:

Theorem 1., Let K admit w-colimits &nd F be w~continuous, Then L is a
fixedpoint of F via ¢ ', and < )\,O,L,q,‘1> is initial in FF(K,F,8).

Froof. That L is a fixedpoint of I’ vig ¢-1 is contained in the preceding
remarks. Turning to the initiality of < XO,L,¢-1>, we note first that any
object < a,M,y> of PF(K,F,8) deternines a conefd from A to M, as follows:

Hy = ©

Mpaq = Y M

n+1

(In this =ense, < XO,L,¢_1> determines A.) Moreover, any arrow

7 < QMY 3 <a'M',w'> is a morphism of the corresponding cones W, M°'

(That is, uﬂ =7 Mo n=0,14.. ). For ué =Q'=7TQa = THg while (induction

step) Mi,q =Y Ful= v! F(ﬂ‘un) =Ty Fu = Ty 4. Hence, the only

rossible arrow from < KO,L,w-1> to <a,M,y> is the unique arrow O:A - .
It remains to show that O is indeed an arrow of PF(X,F,8), that is,

that 0 is a post-fixed-arrow of F via ¢-1,Y. By the preceding remarks, the

(unique) arrow from At oto M 1s Uw_1. But we can also show that it is ¥y Fo:

Hp=0=YR B8 = yFoi) 8 = yFox;)

Moq=YFu = YFlOX) = y Fo Af+1 .

Hence O ¢-1 = Y Fo ; the proof is complete.

n+1

This theorem is formally cimilar to wWand's Theorem 3. The content (and

proof) is different, due to the changed notion of continuity of functors.



Also, we have brought in the terminology of post-fixedpoints (and arrows),
in the hope of making the result more intuitivel

In most applications of the theorem, a is initial in K. (The important
exception is the construction of models of the A-calculus via the domain
equation D = [D- D] ) In this cese, the conclusion of the theorem can

be simplified:

Corollary 1. Under the hypotheses of Theorem 1, suppose that a is
initial in K. For any post-fixedpoint M of F via ¥, there is &« uni:jue

0:L » M such that 0 is a post-fixed~urrow of F via ¢—1,Y,

"he following lemma will be uceful fvia Corollary 2) in establishing
w-continuity of functors:

Lemma 1., Let K' admit w-colimits, and I':K - K'. Then F is w-continuous
iff the following condition holds for every w-chain A in K with colimit
cone A: if W is a colimit cone for FA in K', the arrow { from W to KA
is an isomorphisme.

Proof. The necessity of the condition is obvious. For sufficiency, sssume
the condition satisfied. Then there is an arrow from FX to any cone V from
FA, vize. 0¢—1, where O:d - V; and there is at most one such arrow, for if
Yq'Y2: FA > v are distinct, then so are Y1W,Y2¢: M = Vv. (Alternati ve

proof: verify that ¥ is an isomorphism in the category of cones from FA.)

3, Existence of w-cclinits

Definition 2. An w-cpo is a poset in which every (ascending) w-chain

has a lub., A map f:D = D', where D,D' nre w-cpo's, is w-continucus if

fiLh,) = U f(a,) for every w-chain <a,>, in D. An w~continuous map
14 1 i i'i
f:D-» D' is an embedding if f possesses an W-continuons right adjoint f':D' 0.

m—CPOE is the category of w-cpo's with enbeddings as arrows.



Some of these concepts were already introduced informally at the
beginning of Sec. 2. A more familiar characterization of embeddings is as
follows: f£:D - D' is an embedding iff there is an (w-continuous) f':D'» D
such that f' f = ID and f ' E_ID, (so that f£,f' form & projection pair).
The prefix W~ will usually be omitted (from the terms introduced in Definition
2)e In fact, nothing hinges on our use of W~-cpo's rather than the more
restricted class of cpo's (in which all directed sets have lubs). The point
simply that the w-notions generalize more readily to categories: see remarks
at the end of this section.

Usually, the categories in which we need to solve recursive domain
equations are full subcategories of CPO% There follows a concise treatment
of the construction of w-colimits in CPUB. This is little more than &
summary of (parts of) the existing proofs for complete lattices (Reynolds,
Wand).

fa i E
Theorem 2, Let A = DO - D1 - ... be an w~chain in CPU", Let

D be the inverse limit [<xn>n€w| xneDn & fg(xn*1)=xn } with the induced
(componentwise) partial ordering. Then D, together with the maps in:Dﬁa ia

given by i (x ) = <f (x )> is a colimit for A, (Here we have used the
n'n

nm n’ mew?

standard notation

(G e Fae RN
| i )
f = I I m b4
nm Dn
fm-.] *e® fn' m>n

Proof. This falls into a series of lemmas and sublemmas. For the easiest
cases we just quote the main relevant fact(s), rather than giving a detailed
proof. Certain elementary f_cts are used implicitly, for example: for n 2 m,

. . : ] - 2
fmn is an embedding, with fmn = fnm'



(1) D is a cpo. (Continuity of the fﬂ.)
(2) Each i is an embedding, with adjoint iﬁ given by: i'(<x > . ) = x .
: 3 L] -
(1) <fnm(xn)>m€w € D (since £1 fn.m+1 =f )

(ii) iAOin = IDn
o v < L - N T
(iii) 1ﬁ,i£(<xm>) C<x> (x = fpn(xp) (n < p) £ ( T x_ ).

¥ )
np n P
(3) Given a cone A from A to L, we have the mediating map ¢:D - L
| . . o . ,
<x > %‘Xm(xm), with adjoint ¥':L->D :y < Kn(y)>n.
(1) { is well-defined, i.e. < )\m(xm)>m is increasing. (Since A is a
= . = ¢ -
cone, Xm(xm) = Xm+1 fm(xm) lm+1 f fm(xm+1) c km+1(xm+1) )e
(i1) ¢' 1is well-defined, i.e. 4'(y) € D. This is equivaslent to
1 1 - ] 1 yor 3 e -
£l Kn+1(y) = Kn(y). But this follows, by taking adjoints, from Xn+1 fn- Xn.
I ' - G 3 - ' -
(1i1) ¢'ey = Ip. For (4t gl > o)) MO Ge))
= Yo = ' = = -
= o 5 ankm(xm) o-hfmn Ao (%) hfmn 0 = %
(iv) ¢ ' E I . For ¢ 4'= LA A'y and each A >‘r'1 cI.
= ¢ ] = u = -
(v) A =ti. For 1n(xn) SN AL fnm(xn) Xn(xn)
(4) There is at most one mediating map @:D - L. For if Xn = © in' then

iﬁ wﬁ(y) = Kg(y), so that ®@'(y) must be < Xﬁ(y)>n. Hence ®', and so &,

is uniquely determined.

Corollary 2. A is a colimiting cone for A iff Lllnvkg =1.
Proof. By Lemma 1, X is colimiting iff { is an isomorphism, This holds

iff o §' = I. Now ¢-§' = LJX;X; .

If K is any full subcategory of CPOE, it follows from Theorem 2 that
K admits colimits provided that the inverse limit of any w-chain in K is
an object of K. In perticular, this holds for the algebraic cpo's, which
may be intrpduced - using sequences instead of directed mets, as in Definition

2 - as follows:



Definition 3 A cpo D is countably alpebraic if there is o countable

subset B of D such that (1) every x€D is the lub of an increasing sequence
of elements of B, and (2) for any increasing sequence <ei>i in B and any

a€B, if alL e, then a C e, for some ie

The qualifier '"countably" will usually be omitted., One readily shows
that the elements of B are exactly the finite (zisolated) elements of D,
and that the definition agrees with that given by Plotkin (for "algebraic
ipo™) except for one (minor) point: we do not require algebraic cpo's to
have least elements.

For the proof that ACPOE (the caterory of algebraic cpo's and embeddings)
is closed under the inverse limit construction, see [3]. One other elementory
fact which we shall need is the following: if (=, <) is a countable preordered
set, then the collection 3 of all directed subsets of U, ordered by inclusion,
is an algebraic cpoj the finite elements of 2 are the sets of the form
[a] = {bl b < a}, for acq.

The basic notion of this section is that of an w-complete poset, As has
already been hinted, however, the definitions and results can be formulated
more generally, in terms of (w-complete) categories. A generalization of thin
kind has been worked out by Lehmann [4], with a.view to applications to the
semantics of non~-deterministic progrems; in this approach the semantic domainsg
are themselves categories. In a slightly different direction, [5] introduces
a notion of "algebraic category', zot by generalizing Definition 3; we return
to this point in Sec.4, It should be emphasized that Theorem 1 applies without
modification in the more general situation; this is an importrnt advantage
which the formulation in terms of w-continuity has over that in terms of

local continuity (continuity on morphism sets).
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4, Continuity of special functors. The functor F in the domain equation

(1) will typically be composed out of the following basic functors: +,x, = and
(in case we follow Plotkin's '"powerdomain' approach [3] to non~deterministic
semantics) . The definition, and proof of w-continuity, of + and are
entirely straightforward. In the present section wé consider - and .
The functor =: (CPOE)2 + Cpo© is defined on objects by
-+(<D,D"™>) = [D - D']
(the cpo of continuous functions from D to D'), and on arrows by

-»(<p,g>) = Aqu0f"P'

+(<p,q)> is an embedding, with adjoint Ag.q''g’p .

Theorem 3. = is w-continuous.
Proof. Suppose that 4 is & cone in (CPOD)E; that is, A is in effect s

pair of cones D =+ D, 3 ... Eo -+ E, - ... in CPOL. let these cones have

0 1

colimits D,E via the embeddings dn:Dn - D, en:En 2 E, -(A) is a cone with

1

vertex [D - E] and embeddings @ _:[D - E ] > [D=E]: f 2>e fd'; we
n " n n n n'

have to show that this cone is colimiting. But this follows by Corollary 2,

since
‘oot = ' g4 . Q"
UCPn ® Ag. U e.e g d -4
- ce'dlep: v d i 1 v
= vyge ( Ue en) g-( L d dn) (by continuity of ¥ )
= Ag g (by Corollary 2)
e I .

Turning to the powerdomain, let D be an algebraic cpo, and let M(D)  be
the set of non-empty finite sets of finite elements of D. M(D) 1is given the
preorder L, (the "Milner ordering") defined as follows:

AL, B =, VeeaJoeB. aCb & VbeBJa€h. aCd



-1 -

It was shown in [5] that the powerdomain of D, as defined by Flotkin, is

isomorphic to M(D) ; we will define (D) as M(DY. To dencribe the action

of i on srrows of ACPOL, we proceed as follows. Given any continuous f:D - D!
(L,b* algebraic), we define the '"extension" f of f to (D) by:

Px) = [£(A)]

AEX

(of course, the operation [ ] is here taken w.r.t. the preorder E-M of HM(D"))

The following properties are immediate: f is a continuous functiong

s\ PO
Ih = Ip@y s fe fe;

N

A A
is monotone (that is, fC g-» fL g ). It

N A
follows that if f is an embedding, then f is an embedding (with adjoint f'),

A ; V
£, then {:4CkO® o acrc® is

Thus, if we define I on arrows by: §(f)
indeed a functor.

It will be useful to have the property of local continuity for this functor:

Lemma e If f D~ D! is an inCI"C'iSin[: aequence O (‘(3ntiliu0ll.‘i fur ction:
¢ g ) ( )A -~ ? .
DeD! al (.‘bl":’lic then f - u f
( ’ ' hl In n n

Proof. The conclusion of the lemma is equivalent to the following statement:
for any A € M(D), [( LJ}n)(a)] = U [gn(A)]' The right-to~left inelusion
here is trivial. For the left-to-right inclusion, suppose that B EM ( Lifn)(A).
5ince the elements of B are finite, we can choose (1) k such tha,t
Va€f, (A) JbEB. bC a, and (2) 1 such that VbeB (a€f ) (A) B C a. Gotting

= b ¢ ' (;\
m = max(k,1), we have B E;M fm(A), end so B € ktfn‘ )],

Theorem k. is w~continuous.

Proof. Again using Corollary 2, it suffices to show Lthat if

A

Wf:fr = 1 (where each f :D =D is an embedding), then W fLof' = 1., ..
n n n D n'n T n n ()
Wow
n oA A N
WEfaf!' = Wfef) = (Ur fr) (by Lemma 2)
B "n n A n n A n 'n
A
= I = T
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The functors = and P have been defined for different categories. If
we wish to solve a recursive domain equation which involves both functors,
we need to have a single category which is closed under both of them, For this
purpose Plotkin introduces the SFP objects - these are the cpo's which are
colimits of w-chains of finite cpo's. Every SFP object is algebraic, by
the remarks following Definition 3 (closure under inverse limit construction
of ACPOE). Thus SFPE (category of SFP objects and embeddings) is a full
subcategory of acpo®, 1f D,E are finite, then P(D) snd D E are (trivially)
finite. It follows by Theorems 3,4 that SFPE is closed under both constructions.
It remains only to show that SFFE admits W-colimits. A proof of this

result is given in [3). An alternative proof - which proceeds by way of

showing that SFPE is an "algebraic category' - may be found in (5l.
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