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THE TRAVELING SALESMAN PROBLEM AND
MINIMUM MATCHING IN THE UNIT SQUARE*

KENNETH J. SUPOWIT,t EDWARD M. REINGOLD:I: AND DAVID A. PLAISTED:I:

Abstract. We show that the cost (length) Of the shortest traveling salesman tour through n points in
the unit square is, in the worst case, aopt v/n + o (x/-n), where 1.075 atsPopt <= 1.414. The cost of the minimum

4+ O(4), wherematching of n points in the unit square is shown to be, in the worst case, a opt

0.537 mat <0.707 Furthermore, for each of these two problems there is an almost linear time heuristicopt

algorithm whose worst case cost is, neglecting lower order terms, as low as possible.

Key words, traveling salesman problem, matching, analysis of algorithms, computational geometry,
graph algorithms, heuristics

1. Introduction. Let P be a set of n points in the (Euclidean) unit square. Define
a traveling salesman tour T of P as a set of n edges such that each point of P is an
endpoint of exactly two edges, and the resulting graph (P, T) is connected. If n is
even, then define a matching M of P as a set of n/2 edges such that each point of P
is an endpoint of exactly one edge of M. If S is a tour or a matching then let cost(S)
denote the sum of the lengths of the edges of S. The (Euclidean) traveling salesman
(respectively, matching) problem is to find a minimum cost tour (respectively,
matching).

The Euclidean traveling salesman problem is known to be NP-hard [7], [11] while
the fastest known algorithm for Euclidean matching runs in time O(n 3) [6], [13]. This
paper concerns fast heuristic algorithms for these two problems. Applications for
heuristic Euclidean matching are described in [15].

In order to evaluate a heuristic, we use the following measure" the worst-case
performance of a traveling salesman heuristic A is a function fP’ N--> I such that

fP(n)= sup {the cost of A’s tour of P},
P

where P ranges over all sets of n points in the unit square. By "sup" we mean the
supremum, i.e., the least upper bound; by "inf" we mean the infimum, the greatest
lower bound. We use the supremum in the definition of worst-case performance
because it is possible (since there are infinitely many n-point sets) that there is no
n-point set P for which the cost of A’s tour is maximized. If B is a matching heuristic
then the worst case performance of B is the function/at defined analogously. The
first question that arises is how good the worst-case performance of any traveling

tspsalesman (respectively, matching) heuristic can be? Let opt denote the worst-case
performance of the exhaustive optimizing traveling salesman problem algorithm. Let
rnat
opt denote the worst-case performance of the (R)(n a) optimizing matching algorithm.
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tsp matWe will show that both fopt and fopt are (R)(x/). Let
a r, inf {x’(In >= 0)[fp (n) <= x,,/+ o (x/)]},

and
tsp (xfn)]}a s inf {x (Vn ->_ 0)[f’ (n) <_- xn+ o

adopting the convention that the infimum of the empty set is infinity. The statement
tsp mat O(%/’) I, tsp matthat opt and fopt are may be rephrased as a opt and a opt are both finite and

nonzero. Thus, the answer to the question of how good the worst-case performance
t, x/+ o(x/) for the traveling salesman problemof a heuristic can_possibly be is a opt

mtn+ o (xn) for the matching problem.and a opt

There are two main results of this paper:
/47=i /47: mat < 1/x/0.707.tsp <41.414, 0.5371. 1.075 =2 O opt

2. There exists a heuristic algorithm A for the traveling salesman problem such
that A runs in time O(n log n) and a u opt. Analogously, for matching there exists

mat tspa heuristic algorithm B that runs in O(n log n) time and has a s a n
Furthermore, if the floor function is available at unit cost, then for each

unbounded, nonnegative, nondecreasing, integer-valued function f such that f(n) is
computable in time O(nf(n)), the expression "O(n log n)" can be replaced by
"O(nf(n))" in the statement of (2). Examples of such functions f are [lg lg n ], lg*n,
a (n, n) [18], and so on. In other words, (2) says that for each of these two problems,
there exists an almost linear time heuristic algorithm whose worst-case performance
is asymptotically optimal.

The worst-case performance (as defined above) of various traveling salesman
problem and matching algorithms is given in Tables I and 2, respectively. For matching,
the rectangle algorithm is the best of the simple divide-and-conquer algorithms; its
worst-case behavior is analyzed in [17] (this issue, pp. 118-143)and its average-case
behavior is analyzed in [14]. The greedy algorithm for matching works by iteratively
matching the two closest unmatched points; the analysis of its worst-case performance
is in [1] and its O(nlogn) implementation is in [4]. The spiral rack matching
algorithm and its analysis are in [9].

Our results on worst-case performance should also be compared with the known
results on expected performance:

(i) The expected cost of the shortest tour of n points drawn from a uniform
distribution in the unit square is tsp4+O(4), for some Btsp satisfying 0.61 tsp
0.92 [2].

(ii) The expected cost of the minimum matching of n points drawn from a uniform
distribution in the unit square is Brnatn+o(n), for some /3m,t satisfying 0.25 _--<

/3mt -< 0.402 [12].

2. Lower bounds on opt and opto We will show that 2 --< a opt and that
mat1//T_-< a opt. Our strategy is to construct an infinite class of sets of points P such

that any tour of P has cost at least (2//lffiff- and any matching of P has cost
at least (1//)/. Let k >_-2 be an even integer. Let P be the set of points

01_-< [2/(Sx/J

When we say that (Vn)[f(n)<-xx/-+o(x/-n)], we mean that

(::lg. R)[g(n) o(x/n) and (ln)[f(n) <=x.,/n+ g(n)]].
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TABLE
Summary of results ]’or the traveling salesman problem in the unit square, neglecting

lower order terms, f is any unbounded, nonnegative, nondecreasing, integer-valued
function computable in O(nf(n)) time. The order given for the running time assumes
that the floor function is available at unit cost. If it were not, then the time for the
decomposition algorithm would be (R)(n log n).

Upper bound on
Order of Worst known worst-case

Algorithm running time example cost performance

Optimizing n 2" 1.075/ tsp/--
O opt/__

Strip n log n 1.414x/ 1.414x/n
tsp 4nDecomposition n[(n) 1.0754 Oop

TABLE 2
Summary of results for matching in the unit square, neglecting lower order terms, f

is any unbounded, nonnegative, nondecreasing, integer-valued function computable in
O(nf(n)) time. The order given for the running time assumes that the floor function is
available at unit cost. If it were not, then the times for the rectangle, spiral rack, and
decomposition algorithms would be (R)(n log n).

Upper bound on
Order of Worst known worst-case

Algorithm running time example cost performance

Optimizing [6], 13] n 0.537x/ mat/--
O opt _.

Greedy [1], [4] n 1"5 log n 0.806x/ 1.075x/n
Strip n log n 0.7074 0.7074
Rectangle 17] n 1.436x/ 1.436x/
Spiral rack [9] n 1.014x/ 1.014x/
Decomposition n[(n) 0.5374 mat4Oopt

where 8 1/(k- 1/2) is a factor introduced so that the points of P all lie in the unit
square. An example is shown in Fig. 1 with k 6. The points of P are vertices of a
hexagonal grid, which, incidentally, also gives the densest packing of the plane by
unit circles [16] and the worst known example for the greedy matching heuristic [1].

0 8 28 38 4 5

FIG. 1. The vertices of a hexagonal grid.
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Let n IPI and let T be any tour of P. Since 6 is the distance between the closest
pair of points in P, each edge of T has length at least 6, so that

Now

Therefore

giving

cost (T) -> n6.

n (number of rows of P) (number of points per row)

[2]) 2k
=_ +a xk> 

\

cost (T) => n6 >

Similarly, if M is a matching of P then M has n/2 edges, each of length at least 6,
so that

1
cost (M) >

n
6 > /.

=2
tsp and mat3. Upper bounds on Elop opt, We present a heuristic for the traveling

salesman problem that we call the strip algorithm, and show that its worst-case
performance is at most /n+ O(1). The algorithm can be used for matching, when
n is even, by taking the shorter of the two matchings contained in the tour found.
Therefore the worst-case performance of the strip algorithm for matchingis bounded
above by x/n-+ O(1). This will show that apPt -_< x/ and that a ompat 1/x/2.

The strip algorithm for the traveling salesman problem is a modification of one
analyzed for its expected performance in [2]. We are given a set of n points in the
unit square. Let r nx/-/2]. Divide the unit square into r vertical strips, each of
width 1/r. Construct a tour T of the points by starting at the lowest point in the
leftmost strip, going up that strip from point to point, over to the top point of the
next strip, then down that strip point by point, up the next, and so on, finally returning
to the starting point, as shown by the jagged line in Fig. 2. For simplicity, not all of
the input points are pictured; in order to actually have 5 strips there would have to
be between 50 and 71 points.

A second tour T2 is constructed in the same way, except that now the strip
boundaries are shifted by 1/(2r) to the right. There are r + 1 strips used in constructing
T2, each of width 1/r. In Fig. 3, the strip boundaries for T1 are shown as solid lines,
those for T2 as dashed lines. Note that the leftmost of these strips contains none of
the points in its left half. Similarly, the rightmost strip contains none of the points in
its right half.

The strip algorithm outputs the shorter of the two tours Tx and T2. The algorithm
can be implemented in time O(n log n) by appropriately sorting the points.

To derive an upper bound on the cost of the tour produced, we will bound the
sum of the horizontal and vertical components, and then use the triangle inequality.
Consider paths P and P2 defined as follows: Px starts at the bottom, on the median
of the leftmost of the strips used in constructing T. P follows the median of that
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FIG. 2. The construction o] a tour, using strips.

FIG. 3. The two sets of strip boundaries.

strip up to the top, then down the median of the next strip, up the median of the
next, and so on. For each strip, for each point in that strip, the path P1 juts out to
that point and then back to the median, moving at right angles, as illustrated in Fig. 4
by the jagged line. The path P2 is defined like P1, except that P2 follows the medians
of the strips used to construct T2. It follows from the triangle inequality that
length (Tx)-<length (P), and that length (T2)=<length (P2). We now derive an upper
bound on length (Px)+ length (P2).

Consider some input point q; q must lie in some strip used for T and for P1
(shown in Fig. 5 between solid lines), and in some strip used for T2 and for P2 (shown
in Fig. 5 between dashed lines). In Fig. 5, a segment of P1 is shown as a bold line,
and a segment of P2 as a jagged line. It is clear that the total amount of horizontal
line in Px or P2 jutting out to q and back is 2x 1/(2r) 1/r. Since q was arbitrary,
there is a total of n/r units of horizontal line in Px and P2 together that juts out to
points and back. Also, P1 has r units of vertical line (that is, r strips of unit length).
P2 has r + 1 strips and hence r + 1 units of vertical line. P1 has 1-(l/r) units of
horizontal line that run from the end of one strip to the start of the next and P2 has
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FIG. 4. The construction of the path P1, using strips.

FTG. 5. The paths P1 and P2 at a point q,

1 unit of such line. Finally, P1 and P2 each have a segment of length at most x/ that
joins the end of the last strip back to the starting position. Thus

length (T1) + length (T2) -< length (P1) + length (P2)

<_-+r+(r+l)+ 1
1
+ 1 +4-+4-

n
=-+2r+O(1)

n
=+2[,/nl + o(1)

24n+ 0(11.
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Therefore

min {length (T1), length Tz)} -<_ x/nn+ O 1),

and if n is even, the cheaper of the two matchings contained in the shorter of {T1,
has cost at most 4/2 + O(1).

These bounds are asymptotically achievable, as is suggested by the example
pictured in Fig. 6. T is shown as a jagged line; Tz is not shown, but looks like T
shifted by 1/(2r) to the right. The points, which number n 2k z for some even integer
k, are arranged so that halfway between each solid vertical line and either of its two
neighboring dashed vertical lines there is a vertical string of n/r points; these points
are e/r apart, for some e < 1/(2r). Intuitively, these points are placed so that T and
Tz must zigzag, and hence look very much like P and Pz, respectively. This attains
the maximum amount (neglecting O(1) terms) of horizontal line for T1 and for
There is a point at the bottom of each strip, so as to attain the maximum vertical
length. To compute min {length (T1), length (Tz)}, note that by the Pythagorean
theorem, each short, almost horizontal edge of the tour has length

/rr) +{rr) >2-7
There are r((n/r)-1) of these edges. There are r long vertical pieces, each of length
1- e. Recalling that r [x/n--], we have

min {length (T), length (Tz)} >r (rn--1 1___+
2r

r(1-e)

n 1 n
----+r-re>-- r 1 ",/n 1/
2r 2 2r

FIG. 6. A set of points in the unit square for which length (Ta) length (T2) x/n.

We can easily arrange the points in this example so that each of the matchings from
Tx or T2 contains about half of the long vertical edges; hence the strip matching
algorithm produces a matching for this example of cost at least x//2- 1/2.
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4. The decomposition heuristic for the traveling salesman problem. In this section
we present a decomposition heuristic for the traveling salesman problem that achieves
(asymptotically) the best possible worst-case performance. The heuristic, given in
Algorithm 1, is reminiscent of the traveling salesman problem heuristic given by Karp
in [10]. Assuming a uniform distribution, Karp’s heuristic runs in time O(n log n)
almost everywhere, and, for all e > 0, outputs a tour of cost at most 1 + e times that
of the optimal tour, almost everywhere. Karp’s heuristic requires exponential time
on some input sets. Our heuristic, on the other hand, always runs in time O(n log n)
and has the best possible worst-case performance, neglecting lower order terms. An
argument similar to the one we give below proves that Karp’s heuristic also has,
asymptotically, the best possible worst-case performance.

In order to avoid the sorting required by the strip heuristic, Algorithm 1 uses a
slightly crude approximation, the modified strip heuristic. It is essentially the serpentine
algorithm of [9]. Each column of subsquares in the grid is a strip and we traverse the
subsquares by going up the first strip, down the second, up the third, and so on. The
tour thus constructed visits the points in some arbitrary order that is consistent with
the cell order. Figure 7 shows an example of such a tour. The advantage of this
heuristic is that it requires only O(m) time for m points. It produces a tour of length
O(/) because an edge wholly contained in one of the subsquares has length at
most ",/-/c O(1//) (see Algorithm 1 for the definition of c).

ALGORITHM 1. The asymptotically optimal decomposition heuristic for the
travelingsalesmanp.roblem on a set P of n points in the unit square.

1. c ,-[2,/-/4iOgzf(n)], where z > 2 is some real, and f(n) is a nonnegative,
unbounded, nondecreasing, integer-valued function computable in O(nf(n))
time.

2. Divide the unit square into a regular grid of c 2 subsquares, each of side length
1/c.

3. For each of the subsquares, do the following"
P’ <--the subset of P inside the subsquare
while IP’[ > 0 do

begin
k min {4 [rt/C2], Ie’l}
O a set of k points chosen arbitrarily from P’
Use dynamic programming to find the shortest

traveling salesman tour of O [3], [8].
Distinguish one point of O
PP’-O

end
4. Perform the modified strip heuristic to find a tour of the distinguished points.
5. T’ <--the union of all tours found in Steps 3 and 4.
6. Convert T’ to a tour T by the method of [5] (see [13])2 and output T.

We first analyze the worst-case performance of Algorithm 1. Let a be a real
number such that

tsp (F/) < 4+ O(4)].(n)[fopt
2 Since T’ is a union of tours, the degree of each vertex in T’ is even so T’ contains an Eulerian circuit.

Start at an arbitrary vertex and follow the order of the Eulerian circuit, but skip any previously encountered
point; the result is a Hamiltonian circuit. By the triangle inequality, the cost of this Hamiltonian circuit is

no more than the cost of the Eulerian circuit we started with. The cost of the Eulerian circuit is the sum
of the lengths of the edges in T’.
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FIG. 7. The modified strip heuristic.

We will show that

(Vn) feP (n) --< a x/+ o (/)].
tsp tspwhere "dec" denotes the decomposition algorithm; this will prove that aOec =opt.

In fact, it will prove that

{X’ (rt >0)Iftsp (r/) < x/+o(x/)]} {x (n >0)[ftsp (r/)<xx/+o(x/)]},opt X dec

which is not implied by the equality of the infima.
Fix some input set P of n points. For notational convenience, let

(1) b

Number the subsquares from 1 to c 2. For all i, 1 < < c 2, let Bi denote the set of input
points within the ith subsquare, and let bi IBil mod 4b. Thus the number of applica-
tions of the optimizing dynamic programming algorithm (that is, the number of
executions of the body of the while loop) when working on subsquare Bi is at most

Let

4b

(2) t= Y, =(n-Z bi)/(4b);
i=1 4b i=1

thus / c 2 is the total number of executions of the body of the while loop.
Now for all r >_-1, the cost of the tour produced by the optimizing algorithm on

r points in a 1/c by 1/c square is at most [ax/-r+o(x/-r)]/c. The factor 1/c scales
down the cost from the unit square to the (1/c)x (1/c) square. Therefore the sum of
the costs of all the tours produced by the optimizing algorithm is at most

_1 t(ax/-+o(x/))+ Y =-a t4-+ ,
C i=1 C i=1

since bi < 4b and _-< C 2.
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The tour produced in Step 4 by the modified strip algorithm on at most c E points
has cost O(c). In Step 5, the tour T produced by the method of [5] (see [13]) from
T’, the union of the tours found in Steps 3 and 4, has cost at most Y-er’ length(e),
by the triangle inequality. Therefore the total cost of the tour T produced by the
algorithm is at most

[ c2 ](3) E t,,/-+ Z 4,+o(c4-) +O(c).
C i=1

Note that 4-=4[n1[:] <,/-/c + a and that c o(x/) so (3) can be rewritten as

(4) a__
C i=

Let g" Re2--> R be defined by

g(b, bE,’’’, bc)= t4+ Y, 4
i=1

Taking partial derivatives shows that g is maximized at bl b2 be2 b. In this
case n >-bc 2, but because b [rt/c2], we have bc2>= n SO that n bc E giving

t=(n-,Z b /(4b)=(n-bcE)/(4b)=O.

Therefore (4) is maximized when 0 and bl --bE be,-= b. Hence

I c2

cost (T) -_< Y. 4+ o (4) ac4+ o (4) a4+ o (4),
Ci=l

since 4<4/c + 1. Thus
tsp (n)<fdec

tsp tspso that a dec ff opt as claimed. Thus the decomposition algorithm has the asymptotically
best possible worst-case performance.

We now analyze the running time of Algorithm 1. Under the real RAM model
of computation, partitioning the n points into the c 2 subsquares can be done in
O(n log n) time, since the subsquares form a grid. If we allow the floor function at
unit cost, then this partitioning can be done in O(n) time.

There is a dynamic programming algorithm that finds the shortest tour of r points
in time O(r2r) [3], [8], hence in time O(z’) for z >2. Step 3 makes at most +c 2

calls on that algorithm, each with at most 4b points. Therefore the time quired by
Step 3 is

O((t-[-C2)z4b) O([(/I--i__ bi)/(4b)-[-c2]z 4b)
O((.q-C2)Z 4b)

(nf(n)i)O(c2z4[n/(4n/lgzf(n))] 0 \i0gf(n O(nf(n)).
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There are at most

t+c2<--+c =O
logf(n

points distinguished in Step 3. Therefore Step 4 can be performed in time
O(n/logf(n)).

Thus, the total running time of Algorithm 1 is O(n log n) under the real RAM
model of computation. If the floor function is available at unit cost, the running time
is O(nf(n)).

5. The decomposition heuristic for matching. In this section we present a
decomposition heuristic for matching that, like Algorithm 1 for the traveling salesman
problem, achieves (asymptotically) the best possible worst-case behavior. The heuristic,
given in Algorithm 2, is almost an exact parallel to Algorithm 1, and its analysis is
virtually identical. In particular, we can show, with the same argument as before, that
if c is a real number such that

then
(Vn)[[o%’ (n) _-<,4+ o (4)],

(Vn’rgmat(n)< 4-+o(4-)]/LJdec O

mat matso that Cdec topt.

ALGORITHM 2. The asymptotically optimal decomposition heuristic for matching.
1. c x//x/], where f(n) is a nonnegative, unbounded, nondecreasing,

integer-valued function computable in O(nf(n)) time.
2. Divide the unit square into a regular grid of c 2 subsquares, each of side length

1/c.
3. For each of the subsquares, do the following"

P’ - the subset of P inside the subsquare
it IP’I is odd then distinguish an arbitrarily chosen point

in P’ and delete it from P’
while [P’I > 0 do

begin
k the largest even integer less than or equal to

min {4In [P’I}
Q a set of k points chosen arbitrarily from P’
Use the optimizing matching algorithm [6], [13] to

find the minimum cost matching of Q
pp’-Q

end
4. Perform the modified strip heuristic to find a tour of the distinguished points,

then find the less costly of the two matchings contained in the tour.
5. Output the union of all matchings found in Steps 3 and 4.

As for the time required, the partitioning takes O(n log n) under the real RAM
model of computation and O(nf(n)) if the floor function is available at unit cost" Let
b and be defined by (1) and (2), respectively; note that now b (R)(ff-f(n)). There
are at most + c 2 calls on the optimizing algorithm, each with at most 4b points and
hence each requiring O(b 3) time. Thus Step 3 requires time

O((t+c2)b3)=O +c b =O(c2b =O(nf(n)).
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There is at most one distinguished point in each subsquare, so Step 4 can be performed
in time O(c 2) O(n/x/-f(n)). The total time for Algorithm 2 is thus O(n log n) without
the floor function and O(nf(n)) with it.

6. Open problems. Many questions remain unanswered. We know that

2 mat<

msttsp mat9 We can define Copt for the minimum spanning tree problem inDoes opt Zopt
tsp matanalogy tot and opt; the hexagonal grid example of Fig. 1 establishes that

mst mst tsp mst tsp Q HOWaopt =2/. Furthermore, it is obvious that aopt =aopt. Does aopt =aopt.
does 2mt mt9 We conjecture thatopt compare with a opt.

2tsp mst mat
opt opt 2a

Finally, our decomposition algorithms are not quite linear time; are there linear time
algorithms A and B for the traveling salesman problem and matching, respectively,

tsp mat mat 9for which a a opt and a n opt

7. Acknowledgment. We gratefully acknowledge suggestions by the referee
that helped sharpen one of the time bounds, improve the notation, and clarify the
exposition.
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