
A C T-29 AUGUST, 1981

& . 1 COORDINATED SCIENCE LABORATORY

APPLIED COMPUTATION THEORY GROUP

OPTIMAL DYNAMIC EMBEDDING
OF TREES INTO ARRAYS

M.C. LOUI

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

REPORT R-917 UILU-ENG 81-2248

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

UNCLASSIFIED
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Data Enterad)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. R E P O R T N U M B E R 2. G O V T A C C E S S I O N N O 3. R E C I P I E N T ' S C A T A L O G N U M B E R

4. T I T L E (and Subtitle)
OPTIMAL DYNAMIC EMBEDDING OF TREES INTO ARRAYS

5. T Y P E O F R E P O R T 4 P E R I O O C O V E R E D

Technical Report
6. P E R F O R M I N G O R G . R E P O R T N U M B E R

R-917 : ACT-29 (UIUC-ENG 81-22¿|8)
7. A U T H O R r * ;

Michael C. Loui

S. C O N T R A C T O R G R A N T N U M B E R / *)

N00014-79-C-0424

9. P E R F O R M I N G O R G A N I Z A T I O N N A M E A N O A O O R E S S
Coordinated Science Laboratory
University o f I l l in o is at Urbana-Champaign
1101 W. Springfield Avenue
Urbana TT.___ftlftilL

10. P R O G R A M E L E M E N T . P R O J E C T , T A S K
A R E A 4 W O R K U N I T N U M B E R S

11. C O N T R O L L I N G O F F I C E N A M E A N O A D O R E S S

Joint Services Electronics Program
12. R E P O R T D A T E

August 1981
13. N U M B E R O F P A G E S

20
14. M O N I T O R I N G A G E N C Y N A M E 4 A O O R E S S / J / diilarent from Controlling Ottica) 15. S E C U R I T Y C L A S S , (of. thia reportj

UNCLASSIFIED
15«. O E C L A S S I FI C A T I O N / D O W N G R A D I N G

S C H E D U L E

16. D I S T R I B U T I O N S T A T E M E N T (oi thia Report)

Approved for public release; d istribution unlimited

17. D I S T R I B U T I O N S T A T E M E N T (of the abatract entered in Block 20, if ditterent from Report)

18. S U P P L E M E N T A R Y N O T E S

19. K E Y W O R D S (Continue on reverae aide it neceaaary and identify by block number)

tree, array, data structure, multidimensional Turing machine, simulation,
embedding

20. A B S T R A C T (Continue on reverae aide it neceaaery and identify by block number)

An optimal method for dynamically embedding trees into arrays is presented.
Every multihead tree machine o f time complexity t(n) can be simulated on-line
by a multihead d-dimensional machine in time 0(t(n)^+^ ^ /lo g t (n)) . An
inform ation-theoretic argument gives the worst-case lower bound
0 (t(n)^+^ ^ /lo g t (n)) on the time required.

DD , :;nRM73 1473 _______ UNCLASSIFIED_________________
S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E (When Data Entered)

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G SC W » « « D*tm Enter'd)

v

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E fJ F h *n Dmtm Entered)

OPTIMAL DYNAMIC EMBEDDING OF TREES INTO ARRAYS

Michael C. Loui

Coordinated Science Laboratory
University o f I l l in o is
Urbana, I l l in o is 61801

August 1981

Abstract

An optimal method for dynamically embedding trees into arrays is

presented. Every raultihead tree machine o f time complexity t(n) can be

simulated on-line by a multihead d-dimensional machine in time

0 (t(n)^+^ ^ /lo g t (n)) . An inform ation-theoretic argument gives the worst

case lower bound Q (t(n) log t (n)) on the time required.

Key Words: tree, array, data structure, multidimensional Turing machine,

simulation, embedding.

Supported by the Joint Services Electronics Program (U.S. Army, U.S.
U.S. Air Force) under Contract N00014-79-C-0424.

Navy,

1. Introduction

Several researchers [2 ,5,12,13,14] have investigated sta tic embeddings

among data structures. To model the physical implementation o f a log ica l

data structure, they f ix a correspondence between locations in the guest

(lo g ica l) structure and locations in the host (physical) structure and

analyze the e ffe c t o f various correspondences on access costs . Lynch's work

on a ccess ib ility o f values in algebras [8] gives lower bounds on these access

costs . When few ce lls o f the guest structure are used during a computation,

these fixed embeddings waste space in the host structure.

In contrast, we have developed dynamic embeddings that designate

representatives in the host only for ce lls o f the guest that are actually

used [6 ,7]. To model storage and retrieva l operations in data structures, we

have used generalizations o f Turing machines: tree machines for trees, multi­

dimensional machines for arrays. The access heads o f the machines correspond

to access pointers into the data structures.

Continuing the study of dynamic embeddings, we present an optimal

on-line simulation o f a multihead tree machine o f time complexity t(n) by a

multihead d-dimensional machine in time 0 (t(n) 1+1/,<i/lo g t (n)) . To establish

the lower bound Q (t(n)^+^*Vlog t (n)) on the time required, we employ the

information-theoretic technique developed by Paul, Seiferas, and Simon [9].

Previously, Pippenger and Fischer [10] proved that every tree machine o f

time complexity t(n) can be simulated on-line by a one-dimensional machine in
2time 0 (t(n) /lo g t (n)) , an optimal amount o f time. For d ̂ 2, a theorem of

Grigoriev [3] implies a simulation by a d-dimensional machine in time

0 (t (n)1+1'<d- l >).

Conversely, Reischuk [11] devised on-line simulations o f d-dimensional

machines o f time complexity t(n) by tree machines in time 0 (t (n)(5 d) 1°g*t (ri)) .

I t is not known whether Reischuk's simulation is optimal.

2

2. D efinitions

Cook and Aanderaa [1] introduced the bounded a ctiv ity machine, a

generalization o f the Turing machine model. A bounded a ctiv ity machine has

a fin ite -s ta te control, a read-only linear input tape (from which i t reads

input symbols), a w rite-only linear output tape (on which i t writes output

symbols), and a fin ite number o f storage media, each o f which has a fin ite

number o f access heads. A storage medium is an in fin ite set o f c e l l s , each

o f which can hold a symbol from a fin ite storage alphabet. One c e l l is

designated the origin o f the storage medium. Each access head is located at a

c e l l o f its storage medium and can execute a f in ite number o f sh ifts to other

ce lls o f its storage medium. Cell X is at distance s from c e l l Y i f s is the

minimum number o f sh ifts required for an access head on X to travel to Y.

A bounded a ctiv ity machine operates in a sequence o f steps. At each step

the machine reads the symbols in the c e lls on which the input head and access

heads are positioned, writes symbols on the storage ce lls and possibly on the

output tape too, and sh ifts some of it s heads. We may assume that the machine

can detect when two heads are located at the same c e l l and hence that the two

heads do not attempt to write d ifferent symbols in this c e l l . In it ia lly , a l l

storage ce lls hold a particular blank symbol, and every access head is

positioned on the orig in o f it s storage medium.

The time complexity o f the machine is a function t(n) defined for

each n to be the maximum over a l l input strings w o f length n o f the time

(number o f steps) that the machine spends on w.

A tree worktape is a storage medium whose ce lls are organized into a

complete in fin ite binary tree. The root has two children, and a l l other

ce lls have two children and a parent. An access head can sh ift from a c e l l

3

to it s parent or to one o f its children. The root o f the tree worktape is

it s orig in . A tree machine is a bounded activ ity machine whose storage media

are a l l tree worktapes. Let W be a tree worktape. We fix a natural b ije ction

between strings in [0 , l] , ca lled location s5 and ce lls o f W; we write W(b)

for the c e l l at location b. Let \ denote the empty string. The root o f W

is W(\). In general, W(bO) is the le f t child o f W(b), and W(bl) is it s

right ch ild . Let W[b,r] denote the complete subtree o f W o f height r rooted

at W(b). The leaves o f W[b,r] are at distance r from W(b).

A d-dimensional worktape is a storage medium whose c e lls correspond

b ije c t iv e ly with d-tuples o f integers, called the coordinates. An access head

can sh ift from a c e l l to another whose coordinates d iffe r in just one component

by + 1. The origin o f the worktape is the c e l l whose coordinates are a l l

zero. The location o f a c e l l is a binary string (o f a fixed format) that

sp ecifies it s coordinates. The location o f a c e l l at distance s from the

origin has length proportional to log s. The binary encoding o f coordinates

permits a machine to employ the location of c e l l X to send an access head from

the origin to X in time proportional to s . A box is a set o f c e lls that form

a d-dimensional cube. The volume o f a box is the number o f ce lls in i t . The

base c e l l o f a box is the c e l l whose coordinates are the smallest. The

location o f a box is the location o f its base c e l l . A d-dimensional

machine is a bounded a ctiv ity machine whose storage media are a l l d-dimensional

worktapes.

Fix integers d ̂ 1 and h ̂ 1. Let T be a tree machine o f time complexity

t(n) with just one worktape W with h access heads. Let A be the storage

alphabet o f T. We may assume that whenever a head of T v is its a storage

c e l l , i t writes a nonblank symbol in the c e l l . We devise an on-line simula­

tion o f T by a d-dimensional machine S in time 0 (t(n)^+^ ^ /lo g t (n)) :

4

I f < s2 < . . . are the steps at which T sh ifts it s input head or output

head, then there are corresponding steps s ̂ < s^ < . . . at which the input

and output heads of S perform the same sh ifts , reading and writing the same

symbols, and s| < s f ^ ^ l o g s ̂ for every i . (A ll logarithms are taken to

base 2 .) Since every tree machine with a tota l o f h access heads on

several tree worktapes can be simulated in real time by a tree machine with

h heads on one worktape with a larger storage alphabet, i t su ffices to

consider only T.

5

3. Simulation

On a particular input string o f length n, suppose T runs for N' < t(n)

steps. To simulate this computation, S repeats the simulation described in

this section for N = 1 ,2 ,4 ,8 , . . . , using N for the length o f the computation

o f T, u n til N' ̂ N. When N > 1, an output manager prevents repetitious

outputs by writing only the output symbols generated during steps (N/2 + 1)

through N o f T. In addition, S marks a l l c e lls that it s worktape heads v is i t .

Before embarking on the simulation with the next value o f N, i t erases it s

worktapes via a depth -first traversal o f the marked c e l ls . We shall show that

for each N, the simulation with that value o f N takes time tQ(N) = 0 (N ^ ^ / l o g N).

I t follows that S simulates T on-line in time

tQ(l) + t0(2) + . . . + t0(2 ri° 8 Nr|) = 0 (t (n)1+1/d/lo g t (n)) .

Choose r so that

(log N)/4d < r < (log N)/2d.
^ 1 J .J

By defin ition , r 4 < N

Cover W with overlapping trees W[b,2r+1] such that the length o f b is a

multiple o f r + 1 . Call these trees b locks. Every block has 2^r + ̂ - 1 < 4r + ̂

c e l ls . Call W[b,r] the upper half o f block W[b,2r+1] and the remainder o f the

block it s lower h a lf . By defin ition , i f c e l l X is at distance at least r + 1

from the root, then X belongs to exactly two blocks; X is in the upper half

o f one block and in the lower half o f another. The immediate ancestor block

o f W[b,2r + 1] is the block W [a,2r+1] such that W(a) is the ancestor o f W(b)

at distance r + 1 fromW(b); equivalently, the location a is the in it ia l

segment o f b for which jbj = |aj + r + 1 . An immediate descendant block

o f W[b,2r + 1] is a block W[bc,2r + 1] such that W(bc) is a descendant of W(b)

at distance r + 1 fromW(b); equivalently, Jc| = r + 1.

6

Define the function t by

T(Z) = 2r i°S 21 ;

i f z is not a power o f 2, then t maps z to the next larger power o f 2.

Define k* ,u, and the function tt by

k' = 2d + 1[(3 + 4dk)(2h) +24 dhk2],

T T (m) = t ((3 + 4dk)m+3k log N),

u = T (k'N + (TT(4r + 1)) d) ,

where the constant k is chosen so that the location o f every c e l l at distance

at most du from the origin has length at most k log N. Observe that the

volume of a box o f side rr(m) is at least (3+4dk)m+3k log N, and that

u = 0(N1/d) .

To maintain the simulated contents o f blocks, S has a box o f side u

whose base c e l l is the origin called the mass store . By defin ition o f u,

the location o f every c e l l in the mass store has length at most k log N.

The mass store contains pages. A page P is box whose side is a power o f 2

and whose contents are organized into a path strin g , an Ancestor-pointer,

a F irst-poin ter, and a Current-pointer. We assume a standard format for

pages such that a page o f volume L + 3k log N can accommodate a path string

o f length L in addition to the Ancestor-pointer, F irst-pointer, and Current-

pointer, which together occupy at most 3k log N c e l ls .

We describe how the path string o f P represents the contents of a block

B = W[b,2r + 1]. The path string has symbols from three d is jo in t alphabets:

A (the storage alphabet o f T); three sh ift symbols for the sh ifts on the

tree worktape; and location symbols to specify locations on the d-dimensional

7

worktape. A symbol occurring in the path string v is its c e l l X of W i f a

head that starts at W(b) and sh ifts according to the sh ift symbols preceding

that occurrence arrives at X. The path string represents the contents o f the

lower half o f B i f the following two conditions hold. F irst, for every nonblank

c e l l X in the lower ha lf o f B, the path string has exactly one occurrence o f a

symbol in A that v is its X, and X contains this symbol. Second, for every

binary string x there is at most one nonnull substring o f contiguous location

symbols that v is i t W(bx); this substring has length at most k log N, and P

has a Descendant-pointer whose value Descendant (P,x) is this string of

location symbols.

The Ancestor-pointer, F irst-pointer, and Current-pointer specify locations

o f pages in the mass store. Write Ancestor (P), F irst (P), and Current (P)

for the values o f these pointers. For convenience, we identify a page with

its location . For instance, Current (F irst (P)) is the value o f the Current-

pointer o f the page at location F irst (P). As the simulated contents o f B

change, d ifferent pages o f S w ill correspond to B; First (P) is the f ir s t page

that corresponds to B during the simulation.

For configurations o f S we define a correspondence between pages and

blocks.

(i) There is exactly one page marked with a special symbol.

This page corresponds to W[\,2r + 1].

(i i) Let page P correspond to W[b,2r + 1]. I f Descendant (P ,c)

is nonnull, then Current(First(Descendant (P ,c)))

corresponds to W [bc,2r+ 1].

8

Throughout the simulation, the following w il l be true for a page P

that corresponds to a block B.

Invariant 1» The path string o f P represents the contents o f

the lower half o f B.

Invariant 2 . I f the path string o f P v is its v d istin ct c e lls o f B,

then the path string has at most 2v sh ift symbols and at most v

A symbols. The ce lls o f B v isited by the path string are nonblank.

Invariant 3 . The page Current(First(Ancestor (P))) corresponds

to the immediate ancestor block o f B. I f B' = W[bc,2r + 1] is an immediate

descendant block o f B and the lower half o f B' is nonblank, then

Current(First(Descendant(P,c))) corresponds to B’ .

Invariant 4 . I f B = W [\ ,2r+1], then for every nonblank c e l l X

in B (not just in the lower h a lf) , the path string o f P has exactly one

occurrence o f a symbol in A that v is its X, and X contains this symbol.

Let H ^,...,H ^ be the h access heads o f T. To maintain the simulated access

head locations, S has several head location tapes named L ^ , f ° r

i = l , . . . , h ; they are used as linear tapes. On tape the location o f

is written and marked in consecutive contiguous segments; a l l segments

preceding the last have length r + 1, and the la st has length between 0 and r.

Tape is used as a unary counter with values 0 to 2 r + l .

Suppose is located at c e l l X = W(bx) in a block B rooted at W(b).

Let page P correspond to B. The value of the contents o f L ^ indicates

whether 1L is in the upper half or the lower half o f B. Using the head

location tapes, S can determine whether a symbol in the path string of P

v is its X. Depending on the value o f L ^» S copies the last one or two

9

segments on to an auxiliary tape. While one head scans along the path

string, S uses the information on this auxiliary tape to decide in a routine

fashion which symbols o f the path string v is it X. I f X is in the lower half

o f B, then S can retrieve the symbol that X contains and also the value

Decendant (B ,x).

To record the nonblank symbol 6 that IL writes on X, machine S f ir s t

determines the ancestor Y closest to X that the path string v is its in B.

Let Y be at distance s ̂ 0 from X. Then S produces a new path string that

d iffe rs from the old one only by the insertion o f a string o f 2s + 1 consecu­

tive symbols: s sh ift symbols for the sh ifts from Y to X, the symbol 6 (which

v is its X), and s sh ift symbols for the sh ifts from X to Y. I f the orig in a l

path string v isited v d istin ct c e lls o f B and had at most 2v sh ift symbols,

then the new path string v is its v + s c e l ls , including X , and has at most

2v + 2s = 2(v + s) sh ift symbols. Throughout the computation o f T, the nonblank-

ce lls o f W form a connected set. Thus, i f X and Y are nonblank, then a l l

the s - 1 ce lls between Y and X are also nonblank. Consequently, i f the old

path string v isited only nonblank c e lls o f B, then so does the new path

string. We conclude that S can maintain Invariant 2.

The simulator S has heads G ^ ^ ,...,G ^ on it s mass store.

The simulation begins with a l l these heads on a page Pq o f side TT(r) that

corresponds to W[\,2r + 1]. In it ia lly , Ancestor (Pq) = F irst (Pq) =

Current (Pq) = Pq, and the path string o f Pq is empty.

In general, to simulate head IL on c e l l X̂ in block B̂ = W[b^,2r + 1],

head G . is in page P. and head G .. in page Q. such that Q. corresponds to
u i i J&l 1 1.

and P̂ = Current(First(Ancestor(Q^))) corresponds to the immediate ancestor

block Ai o f Bi . I f Xi is in the lower half o f B^, then S uses the path string

10

o f Q. read by G .. to retrieve the contents o f I f the path string o fi a 3-
does not v is i t X^ then holds a blank symbol. I f X̂ ̂ is in the upper

half o f Bt and b ± t X, then X± is in the lower ha lf o f A± , and S retrieves

the contents o f X̂ from the path string o f P̂ read by G ^ . (I f b ̂ = X, then

according to Invariant 4, the path string o f Q± has the contents o f X., even

when X± is in the top ha lf o f B ^) To simulate the e ffe c t o f one step o f T,

machine S records the new contents o f each X̂ in the appropriate path string

(o f P. or o f Q^). I f T sh ifts its input head or writes an output symbol at

the end o f this step, then S does the same. F inally, S updates the head

location tapes. When S completes the simulation o f this step, Invariant 1

holds: the path string o f represents the contents o f the lower half o f A^,

and the path string o f represents the contents o f the lower half o f .

I f Hi sh ifts from W(b^) to it s parent, then S performs an upward

reorientation on heads G . and G ,. . Let M = Current(First(Ancestor(P.))) . --------------------- ui j&i 3.
The upward reorientation consists o f sending G .. to P. and G . to M, which

Xjlm L 111

corresponds to the immediate ancestor block o f A^, in whose lower half the

parent of W(b^) is located.

I f IL sh ifts to a child o f a lea f W(bjCx) o f B^ where |c| = r + 1,

then S performs a downward reorientation o f G and G„_. by sending G„_. to Q_.
Li 1 X j 1 Li J» 1

ang Ĝ i to R = Current(First(Descendant(Qi , c))) , provided that has a

Descendant(Qi ,c) pointer. I f R is not defined, then the bottom half o f

W j^ c ^ r + l] is completely blank (by Invariant 3), although r ce lls in

its top half (on a path fromW(bjC) to W(b^cx)) must be nonblank. The

storage allocation procedure ALLOCATE (described in Section 5) produces

11

a new completely blank page R o f side rr(r) in the mass store. Next, on this

new page S sets F irst (R) «- R, Current (R) ♦- R, Ancestor (R) «- Q. Also, S

sets Descendant (Q .,c) *- R and sends G .. to R. After this in it ia liz a t io n ,
1. Xj !•

R corresponds to W [b^c,2r+1].

Now suppose that when S adds further symbols to the path string o f a

page P to record the contents o f a c e l l in the corresponding block B, P is

not large enough to contain the updated path string. With a c a ll to

ALLOCATE, S finds a new unused box P' in the mass store whose side is a power

o f 2 such that P' is just large enough to hold the new path string (as w ell as

the Ancestor-pointer, F irst-pointer, and Current-pointer). Then S writes

the updated path string into P* and sets F irst (P1) «- F irst (P),

Current (F irst (P)) «- P ', and Ancestor (P ') *- Ancestor (P). Page P* now

corresponds to B.

12

4. Analysis o f the Simulation

F irst, we establish upper bounds on the volumes o f pages. Throughout

this section we may assume that at least r c e lls o f W[\,2r + 1] are nonblank.

Lemma 1. In some configuration o f S during the simulation, le t page P

correspond to simulated block B = W[b,2r + 1] with m nonblank c e l ls . Then

the length o f the path string o f P is at most (3+4dk)m, and the side o f P

is at most Tr(m) .

Proof. Invariant 2 guarantees that the path string o f P has at most

2m sh ift symbols and at most m symbols in A. I f P has a Descendant (P ,c)

pointer, then by Invariant 3, the lower ha lf o f block W [bc,2r+1] is nonblank

since the nonblank ce lls o f W always form a connected set, at least r ce lls

o f W[bc,r] in the lower half o f B are nonblank. The number o f location

symbols in Descendant (P ,c) is at most k log N < 4 dkr. Consequently, the

tota l number o f location symbols in the path string o f P is bounded above

by 4 dk times the number o f nonblank c e lls in the lower half o f B, which is

at most m. We have deduced that the length o f the path string is at most

2m+m + 4 dkm = (3 + 4 dk)m.

The Ancestor-pointer, F irst-pointer, and Current-pointer together occupy

at most 3 k log N c e l ls . Therefore, the volume o f P is at most

(3 + 4 dk)m + 3 k log N < (Tr(m))^,

and the side o f P is at most rr(m). □

Lemma 2 . Throughout the simulation, the tota l volume o f pages in the

mass store is at most k'N.

Proof. At an arbitrary configuration of the simulation, le t P ^ jP ^ ,...

be the pages that correspond to blocks on W. Let P̂ correspond to block

Bj, and le t B̂ have m.. nonblank c e l ls . Since every c e l l o f W belongs to at

13

most two blocks and since the access heads o f T can v is it at most hN ce lls

o f W,

2 . m. < 2 hN.J J

Because a page is allocated only when the corresponding block has at

least r nonblank c e l ls , every dol ̂ r , and hence there are at most 2 hN/r

pages P .. The mass store holds smaller pages that correspond to B. in
J 3

previous configurations o f S . The volumes o f these smaller pages are

d istin ct powers o f 2. I t follows that the tota l volume o f pages that have

ever corresponded to B̂ is at most twice the volume o f P . Ergo, the tota l

volume o f a l l pages in the mass store is

S . 2 (tt (m.)) d < 2«2d 2 .((3 + 4 dk)m. + 3k log N) < 2d+1[(3 + 4 dk) (2hN)
J J 3 3

+ (2hN/r)(3k log N)] < k'N

by Lemma 1 and defin ition o f r and- k' . □

The time used by S to simulate one step o f T is proportional to the

length o f the h path strings that i t handles. Lemma 1 implies that every

path string has length at most 0 (4r) . Thus, to simulate N individual

steps, S spends time 0 (N 4r) = 0 (N^+ ^ d/lo g N) updating path strings and

head location tapes.

After an upward or a downward reorientation o f G . and G . . , the r ui
simulated head H. is at distance r or r + 1 from both the root and thel
leaves o f a block. Consequently, this head can induce at most N/r reorienta­

tions. Each upward reorientation takes time O(log N) to retrieve the

location o f another page and time 0(u) = 0(N1//d) to move the heads across the

14

mass store. For a downward reorientation, S may spend, in addition, time

0 ((log N)2) for a c a ll to ALLOCATE (as we show in Section 5). Therefore,

the tota l time for reorientations is at most

(N /r)0((log N)2 + N1/d) = 0(N1+1/d/lo g N) .

When S copies the contents o f a page P to a larger page P ', i t spends

time 0 (u) = OCN1^) to move the heads across the mass store, time O ((log N)2)

for a c a ll to ALLOCATE, and time 0(4 + log N) to copy the path string and

pointer values. Since every page has volume at least r , Lemma 2 implies that

S makes at most 0(N /r) allocations o f pages. Thus, S spends time

0((N /r)(N 1/d + 4r + (lo g N)2)) = 0 (N1+1/d/lo g N)

finding and in it ia liz in g new pages.

In summary, the simulator uses time 0(N^+^ d/lo g N) to simulate N

individual steps, time 0 (N1+1 d̂/lo g N) to reorient heads Gui and G ^ , and

time 0(N1+1/ d̂/lo g N) to prepare new larger pages in the mass store.

Theorem 1. Every multihead tree machine o f time complexity t(n)

can be simulated on-line by a multihead d-dimensional machine in time

0 (t (n)1+1 d̂/lo g t (n)) .

15

5. Storage A llocation

Machine S has a free storage l i s t , a l i s t o f locations o f blank boxes

in the mass store. For q = 1 , 2 , . . . ,u /2 ,u , this l i s t has locations o f at

most 2d- l boxes o f side q. In it ia lly , the free storage l i s t holds the

location of the mass store i t s e l f , a single box o f side u.

Procedure ALLOCATE employs a buddy system [4] to a llocate a blank box

with a desired side in the mass store. To obtain a blank box o f side p, a

power o f 2, ALLOCATE finds the location o f a box o f side p on the free
•k

storage l i s t . I f the free storage l i s t has no boxes o f side p, then le t q

be the smallest power o f 2 for which the free storage l i s t has a box o f side

q . (We shall show that when ALLOCATE is called during the simulation, q

must e x is t .) For q = q * ,q * /2 ,. . . ,4r,2r in order, se lect the location o f a

box 0 o f side q and delete this location from the l i s t ; add to the l i s t the
q

locations o f the 2d d is jo in t boxes o f side q/2 whose union is Q . F inally,

le t y be the location o f a box o f side p on the free storage l i s t , delete

y from the l i s t , and return the value y. The time taken by ALLOCATE is

0 ((log u)(k log N)) = 0 ((lo g N)2) .

Let q. < < . . . < q be the sides o f boxes whose locations are on thenl — 2 s
free storage l i s t when ALLOCATE is called to produce a blank box o f side T r (m) ,

r+lwhere m< 4 . Lemma 2 and the defin ition o f u imply that

d d d . . /7r+l. Nd
s 1

Since the free storage l i s t has at most 2d + 1 boxes o f each d istin ct side,

Thus,

16

qd + . . . + qd < (2d - l) q d + (2d - 1) (q /2)d + . . . + (2d - 1) (1) < (2q)d .s l s s &

(2q) d > (TT(4r+1)) d, hence q £ rr(4r+1) because q is a power o f 2. s s s
I t follows that ALLOCATE can find a box o f side tt(m) in the mess store.

17

6. Lower Bound

We define a tree machine T' and demonstrate that every d-dimensional

machine that simulates T* on-line requires time Q log N) .

Machine T’ has just one access head on one tree worktape and operates

in real time. Its input alphabet is a set o f commands o f the form (e,<j),

where e G [0 ,1 ,?] and a is a sh ift for a tree worktape. Suppose 1 ' is in a

configuration in which the c e l l X at which the access head is located

contains e ' . On input (e ,a) , machine T* writes e* on its output tape, and

the access head writes e on X i f e G { 0 , l } , but writes e ' on X (its current

contents) i f e = ?. At the end o f the step the access head executes the

sh ift a .
*

Let d-dimensional machine S' simulate T' on -lin e. To establish the lower

bound Q (N ^ ^ ^ /lo g N) on the time required by S ' , we formalize the following

volumetric argument. The worktape head o f T' can access one o f a set o f N

ce lls within log N steps, whereas the heads o f S' require Q (N^^) steps to

access one o f a set o f N ce lls in the worst case. I f the contents o f a set

o f N ce lls o f the worktape o f T* are su ffic ien tly random (in a sense made

precise below), then there is a sequence o f Q(N/log N) "hard questions" about

the contents o f these c e l ls , each question having length log N, such that S’

requires time CKN"^) to answer each question.

Let # be a new symbol. For strings x ,y in {0 ,1 ,# } , le t K(x|y) be the

Kolmogoroff complexity o f x given y with respect to a fixed universal

function U. Formally, K(x|y) is the length o f the shortest binary string b

such that U(b # y) = x. In tu itively , b is a binary description o f x,

given y. Write K(x) for K(x|\), where X is the empty string. The following

elementary properties o f K are w ell known: There is a fixed constant c such

18

that for a l l x and y,

K(x) < 2(x| + c,

K(x) < K(x|y) + K(y) + c .

Call a binary string x for which K(x) ̂ |xj incompressibl e . Since there are

2n binary strings o f length n but only 2n- l possible shorter binary descrip­

tions, there exists for every n at least one incompressible binary string

o f length n.

Lemma 3 . Let h ̂ 1 and le t x be an incompressible string o f length

N > 8(c + h). For every set o f h strings [y ^ ,. . . ,y ^ } o f length at most

N/4h each, K(x|y^# . . . #y^) > N/4.

Proof. I f not, then

K(x) < K(xj y^# . . . #yh) + K(y.j# . . . #yh) < N/4 + (2h)((N /4h)+ 1) + 2c < N.

Contradiction. □

Theorem 2 . Let d-dimensional machine S' with head-to-head jumps on one

worktape simulate T' on-line in time t '(N). Then t '(N) * Q (N ^ ^ ^ /lo g N).

Proof. For every N that is a su ffic ien tly large power o f 2, we

construct a string o f N input commands on which S' requires time Q(N^+^ ^ /lo g N).

The input string has a f i l l in g part Qq o f length N/2 followed by a query

part o f length N/2.

Let W be the worktape o f T ' . The f i l l in g part compels the head o f T'

to write on the (N/4) - 1 c e lls o f W[X, log(N/8)] such that a depth -first

traversal o f the contents o f W[X, log(N/8)] gives an incompressible

string x o f length (N/4) - 1.

19

The query part is a sequence o f N /(4 log N) questions

Each question is a string o f 2 log N commands o f the form (?,cr) that

drives the head o f T' from the root W(X) to a c e l l o f W [X,log(N/8)] and back

to the root. Note that the contents o f W [\,log(N /8)] remain unchanged

when T' processes a question. We choose the questions so that S' spends

time Q (N ^d) to process each Q̂ .

Let S' have h access heads. For j ̂ 0, consider the configuration o f

S' a fter i t has processed Q ̂ . Let be the boxes o f side (N /(32 c 'h))

centered at the heads in this configuration, where the constant c ' depends on

S' and is specified la ter. These boxes hold a l l the ce lls accessed by S'

during the next (N/(32 c ,h)) '^ d/2 steps. We claim that for some some

head o f S' must ex it B̂ U . . . U when S' processes Qj+ *̂ Otherwise, le t

y ̂ be a binary encoding o f the contents o f B̂ and z. be a binary encoding o f

the relative position o f access head i in B^. Evidently, i f c ' is su ffic ien tly

large, then both |ŷ | < c '|b |̂ and |ẑ | < c'|B^| for every i . From the string

y^# . . . # yh # z i # . . . # z^, only a small constant amount o f additional

information (essentia lly a binary description o f this discussion) is

necessary to generate x because S' can process every question with the

heads remaining in B ̂ U . . . U B^. We deduce that

K(y^ # . . . # yh # z i # . . . # zh) = 0 (1), contravening Lemma 4.

Therefore, since some head spends time (N/(32 c 'h)) ^ d/2 to ex it

U . . . U when S ’ processes question t*ie spent by S' on the

1/d

query part alone is at least

(N/(4 log N))(N/(32 c 'h)) 1/d/2 = CUN1+1/d/lo g N) . □

20

References

[1] S. A. Cook and S. 0. Aanderaa. On the minimum computation time of
functions. Trans. Am. Math. Soc. 142 (1969) 291-314.

[2] R. A. De M illo, S. C. Eisenstat, and R. J. Lipton. Space-time trade­
o ffs in structured programming: An improved combinatorial embedding
theorem. J. ACM 27 (1980) 123-127.

[3] D. Ju. Grigoriev. Imbedding theorems for Turing machines o f d ifferen t
dimensions and Kolmogorov's algorithms. Soviet Math. Dokl. 18 (1977)
588-592.

[4] D. E. Knuth. The Art o f Computer Programming, v o l. 1: Fundamental
Algorithms. Addison-Wesley, 1968.

[5] R. J. Lipton, S. C. Eisenstat, and R. A. De M illo. Space and time
hierarchies for classes o f control structures and data structures.
J. ACM 23 (1976) 720-732.

[6] M. C. Loui. Simulations among multidimensional Turing machines, Tech.
Rep. TR-242, Lab. for Comp. S c i . , M .I.T ., Aug. 1980. To appear in Proc.
22nd Ann. Symp. on Foundations o f Computer Science, IEEE, 1981. To
appear in Theor. Comp, S c i .

[7] M. C. Loui. Minimizing access pointers into trees and arrays. Rep.
R-910, ACT-27, Coordinated S ci. Lab., Univ. o f I l l in o is , June 1981.

[8] N. A. Lynch. A ccessib ility o f values as a determinant o f relative
complexity in algebras. To appear in J. Comp. Sys. S c i .

[9] W. J. Paul, J. I Seiferas, and J. Simon. An inform ation-theoretic
approach to time bounds for on-line computation. Proc. 12th Ann. ACM
Symp. on Theory o f Computing, 1980, pp. 357-367. To appear in
J. Comp. Sys. S c i.

[10] N. Pippenger and M. J. Fischer. Relations among complexity measures.
J. ACM 26; (1979) 361-381.

[11] R. Reischuk. A fast implementation o f a multidimensional storage into
a tree storage. Proc. 7th Intern. Colloq. on Automata, Languages and
Programming, Springer-Verlag, 1980, pp. 531-542. To appear in Theor.
Comp. S c i .

[12] A. L. Rosenberg. Data encodings and their costs . Acta Informatica 9
(1978) 273-292.

[13] A. L. Rosenberg. Encoding data structures in trees. J. ACM 26 (1979)
668-689.

A. L. Rosenberg and L. Snyder. Bounds on the costs o f data encodings.
Math. Sys. Th. 12 (1978) 9-39.

[14]

