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1. Introduction

Several researchers [2 ,5,12,13,14] have investigated sta tic  embeddings 

among data structures. To model the physical implementation o f a log ica l 

data structure, they f ix  a correspondence between locations in the guest 

(lo g ica l) structure and locations in the host (physical) structure and 

analyze the e ffe c t  o f various correspondences on access costs . Lynch's work 

on a ccess ib ility  o f values in  algebras [8] gives lower bounds on these access 

costs . When few ce lls  o f  the guest structure are used during a computation, 

these fixed embeddings waste space in  the host structure.

In contrast, we have developed dynamic embeddings that designate 

representatives in the host only for  ce lls  o f the guest that are actually 

used [6 ,7 ]. To model storage and retrieva l operations in  data structures, we 

have used generalizations o f Turing machines: tree machines for trees, multi­

dimensional machines for arrays. The access heads o f the machines correspond 

to access pointers into the data structures.

Continuing the study of dynamic embeddings, we present an optimal 

on-line simulation o f a multihead tree machine o f time complexity t(n) by a 

multihead d-dimensional machine in time 0 (t(n ) 1+1/,<i/lo g  t (n ) ) .  To establish 

the lower bound Q (t(n)^+^*Vlog t (n )) on the time required, we employ the 

information-theoretic technique developed by Paul, Seiferas, and Simon [9 ].

Previously, Pippenger and Fischer [10] proved that every tree machine o f

time complexity t(n) can be simulated on-line by a one-dimensional machine in 
2time 0 (t(n ) /lo g  t (n ) ) , an optimal amount o f time. For d  ̂ 2, a theorem of 

Grigoriev [3] implies a simulation by a d-dimensional machine in time 

0 ( t (n )1+1'<d- l >).

Conversely, Reischuk [11] devised on-line simulations o f d-dimensional 

machines o f time complexity t(n) by tree machines in time 0 (t (n )(5 d) 1°g*t (ri) ) .  

I t  is  not known whether Reischuk's simulation is  optimal.
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2. D efinitions

Cook and Aanderaa [ 1 ] introduced the bounded a ctiv ity  machine, a 

generalization o f the Turing machine model. A bounded a ctiv ity  machine has 

a fin ite -s ta te  control, a read-only linear input tape (from which i t  reads 

input symbols), a w rite-only linear output tape (on which i t  writes output 

symbols), and a fin ite  number o f storage media, each o f which has a fin ite  

number o f access heads. A storage medium is  an in fin ite  set o f c e l l s , each 

o f which can hold a symbol from a fin ite  storage alphabet. One c e l l  is  

designated the origin  o f the storage medium. Each access head is  located at a 

c e l l  o f its  storage medium and can execute a f in ite  number o f sh ifts  to other

ce lls  o f its  storage medium. Cell X is  at distance s from c e l l  Y i f  s is  the

minimum number o f sh ifts  required for an access head on X to travel to Y.

A bounded a ctiv ity  machine operates in a sequence o f steps. At each step 

the machine reads the symbols in the c e lls  on which the input head and access

heads are positioned, writes symbols on the storage ce lls  and possibly on the

output tape too, and sh ifts  some of it s  heads. We may assume that the machine 

can detect when two heads are located at the same c e l l  and hence that the two 

heads do not attempt to write d ifferent symbols in  this c e l l .  In it ia lly , a l l  

storage ce lls  hold a particular blank symbol, and every access head is 

positioned on the orig in  o f it s  storage medium.

The time complexity o f the machine is  a function t(n) defined for 

each n to be the maximum over a l l  input strings w o f length n o f the time 

(number o f steps) that the machine spends on w.

A tree worktape is  a storage medium whose ce lls  are organized into a 

complete in fin ite  binary tree. The root has two children, and a l l  other 

ce lls  have two children and a parent. An access head can sh ift  from a c e l l
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to it s  parent or to one o f its  children. The root o f the tree worktape is  

it s  orig in . A tree machine is  a bounded activ ity  machine whose storage media 

are a l l  tree worktapes. Let W be a tree worktape. We fix  a natural b ije ction  

between strings in [ 0 , l ]  , ca lled  location s5 and ce lls  o f W; we write W(b) 

for the c e l l  at location  b. Let \  denote the empty string. The root o f W 

is  W(\). In general, W(bO) is  the le f t  child  o f W(b), and W(bl) is  it s  

right ch ild . Let W[b,r] denote the complete subtree o f W o f height r rooted 

at W(b). The leaves o f W[b,r] are at distance r from W(b).

A d-dimensional worktape is  a storage medium whose c e lls  correspond 

b ije c t iv e ly  with d-tuples o f integers, called the coordinates. An access head 

can sh ift  from a c e l l  to another whose coordinates d iffe r  in just one component 

by + 1. The origin  o f the worktape is  the c e l l  whose coordinates are a l l  

zero. The location  o f a c e l l  is  a binary string (o f a fixed format) that 

sp ecifies  it s  coordinates. The location  o f a c e l l  at distance s from the 

origin  has length proportional to log s. The binary encoding o f coordinates 

permits a machine to employ the location of c e l l  X to send an access head from 

the origin  to X in time proportional to s . A box is  a set o f c e lls  that form 

a d-dimensional cube. The volume o f a box is  the number o f ce lls  in i t .  The 

base c e l l  o f a box is  the c e l l  whose coordinates are the smallest. The 

location o f a box is  the location o f its  base c e l l .  A d-dimensional 

machine is  a bounded a ctiv ity  machine whose storage media are a l l  d-dimensional 

worktapes.

Fix integers d  ̂ 1 and h  ̂ 1. Let T be a tree machine o f time complexity 

t(n) with just one worktape W with h access heads. Let A be the storage 

alphabet o f T. We may assume that whenever a head of T v is its  a storage 

c e l l ,  i t  writes a nonblank symbol in the c e l l .  We devise an on-line simula­

tion o f T by a d-dimensional machine S in time 0 (t(n )^+^ ^ /lo g  t (n ) ) :
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I f  < s2 < . . .  are the steps at which T sh ifts it s  input head or output

head, then there are corresponding steps s  ̂ < s^ < . . .  at which the input 

and output heads of S perform the same sh ifts , reading and writing the same 

symbols, and s| < s f ^ ^ l o g  s  ̂ for  every i .  (A ll logarithms are taken to 

base 2 .) Since every tree machine with a tota l o f h access heads on 

several tree worktapes can be simulated in  real time by a tree machine with 

h heads on one worktape with a larger storage alphabet, i t  su ffices  to 

consider only T.
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3. Simulation

On a particular input string o f length n, suppose T runs for N' < t(n) 

steps. To simulate this computation, S repeats the simulation described in 

this section for N = 1 ,2 ,4 ,8 , . . . ,  using N for the length o f the computation 

o f T, u n til N'  ̂ N. When N > 1, an output manager prevents repetitious 

outputs by writing only the output symbols generated during steps (N/2 + 1) 

through N o f T. In addition, S marks a l l  c e lls  that it s  worktape heads v is i t .  

Before embarking on the simulation with the next value o f N, i t  erases it s  

worktapes via a depth -first traversal o f the marked c e l ls .  We shall show that 

for each N, the simulation with that value o f N takes time tQ(N) = 0 ( N ^ ^ / l o g  N). 

I t  follows that S simulates T on-line in  time

tQ( l )  + t0( 2 ) + . . .  + t0(2 ri° 8 Nr| ) = 0 (t (n )1+1/d/lo g  t (n )) .

Choose r so that

(log N)/4d < r <  (log N)/2d.
^  1 J .J

By defin ition , r 4 < N

Cover W with overlapping trees W[b,2r+1] such that the length o f b is  a 

multiple o f r + 1 .  Call these trees b locks. Every block has 2^r +  ̂ - 1 < 4r +  ̂

c e l ls .  Call W[b,r] the upper half o f block W[b,2r+1] and the remainder o f the 

block it s  lower h a lf . By defin ition , i f  c e l l  X is  at distance at least r + 1 

from the root, then X belongs to exactly two blocks; X is  in the upper half 

o f one block and in the lower half o f another. The immediate ancestor block 

o f W[b,2r + 1] is  the block W [a,2r+1] such that W(a) is  the ancestor o f W(b) 

at distance r + 1  fromW(b); equivalently, the location  a is  the in it ia l  

segment o f b for which jbj = |aj + r + 1 .  An immediate descendant block 

o f W[b,2r + 1] is  a block W[bc,2r + 1] such that W(bc) is  a descendant of W(b) 

at distance r + 1  fromW(b); equivalently, Jc| = r + 1.
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Define the function t by

T(Z) = 2r i°S 21 ;

i f  z is  not a power o f 2, then t maps z to the next larger power o f 2.

Define k* ,u, and the function tt by

k' = 2d + 1[(3  + 4dk)(2h) +24 dhk2],

T T ( m )  = t ( ( 3 + 4dk)m+3k log N), 

u = T (k'N + (TT(4r + 1) ) d) ,

where the constant k is  chosen so that the location o f every c e l l  at distance 

at most du from the origin  has length at most k log N. Observe that the 

volume of a box o f side rr(m) is  at least (3+4dk)m+3k log N, and that 

u = 0(N1/d) .

To maintain the simulated contents o f blocks, S has a box o f side u 

whose base c e l l  is  the origin  called  the mass store . By defin ition  o f u, 

the location o f every c e l l  in the mass store has length at most k log N.

The mass store contains pages. A page P is  box whose side is  a power o f 2 

and whose contents are organized into a path strin g , an Ancestor-pointer, 

a F irst-poin ter, and a Current-pointer. We assume a standard format for 

pages such that a page o f volume L + 3k log N can accommodate a path string 

o f length L in  addition to the Ancestor-pointer, F irst-pointer, and Current- 

pointer, which together occupy at most 3k log N c e l ls .

We describe how the path string o f P represents the contents of a block 

B = W[b,2r + 1]. The path string has symbols from three d is jo in t alphabets:

A (the storage alphabet o f T ); three sh ift  symbols for the sh ifts  on the 

tree worktape; and location  symbols to specify locations on the d-dimensional
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worktape. A symbol occurring in the path string v is its  c e l l  X of W i f  a 

head that starts at W(b) and sh ifts according to the sh ift  symbols preceding 

that occurrence arrives at X. The path string represents the contents o f the 

lower half o f B i f  the following two conditions hold. F irst, for every nonblank 

c e l l  X in the lower ha lf o f B, the path string has exactly one occurrence o f a 

symbol in A that v is its  X, and X contains this symbol. Second, for every 

binary string x there is  at most one nonnull substring o f contiguous location 

symbols that v is i t  W(bx); this substring has length at most k log N, and P 

has a Descendant-pointer whose value Descendant (P,x) is  this string of 

location symbols.

The Ancestor-pointer, F irst-pointer, and Current-pointer specify locations 

o f pages in the mass store. Write Ancestor (P), F irst (P), and Current (P) 

for the values o f these pointers. For convenience, we identify  a page with 

its  location . For instance, Current (F irst (P)) is  the value o f the Current- 

pointer o f the page at location  F irst (P ). As the simulated contents o f B 

change, d ifferent pages o f S w ill  correspond to B; First (P) is  the f ir s t  page 

that corresponds to B during the simulation.

For configurations o f S we define a correspondence between pages and 

blocks.

( i )  There is  exactly one page marked with a special symbol.

This page corresponds to W[\,2r + 1 ].

( i i )  Let page P correspond to W[b,2r + 1 ]. I f  Descendant (P ,c) 

is  nonnull, then Current(First(Descendant (P ,c )))  

corresponds to W [bc,2r+ 1].
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Throughout the simulation, the following w il l  be true for a page P 

that corresponds to a block B.

Invariant 1» The path string o f P represents the contents o f 

the lower half o f B.

Invariant 2 . I f  the path string o f P v is its  v d istin ct c e lls  o f B, 

then the path string has at most 2v sh ift  symbols and at most v 

A symbols. The ce lls  o f B v isited  by the path string are nonblank.

Invariant 3 . The page Current(First(Ancestor (P ))) corresponds 

to the immediate ancestor block o f B. I f  B' = W[bc,2r + 1] is  an immediate 

descendant block o f B and the lower half o f  B' is  nonblank, then 

Current(First(Descendant(P,c)))  corresponds to B’ .

Invariant 4 . I f  B = W [\ ,2r+1], then for every nonblank c e l l  X 

in B (not just in the lower h a lf) , the path string o f P has exactly one 

occurrence o f a symbol in A that v is its  X, and X contains this symbol.

Let H ^,...,H ^ be the h access heads o f T. To maintain the simulated access 

head locations, S has several head location tapes named L ^ , f ° r 

i  = l , . . . , h ;  they are used as linear tapes. On tape the location o f 

is  written and marked in consecutive contiguous segments; a l l  segments 

preceding the last have length r + 1, and the la st has length between 0 and r. 

Tape is  used as a unary counter with values 0 to 2 r + l .

Suppose is  located at c e l l  X = W(bx) in a block B rooted at W(b).

Let page P correspond to B. The value of the contents o f L ^  indicates 

whether 1L is  in the upper half or the lower half o f B. Using the head 

location  tapes, S can determine whether a symbol in the path string of P 

v is its  X. Depending on the value o f L ^» S copies the last one or two
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segments on to an auxiliary tape. While one head scans along the path 

string, S uses the information on this auxiliary tape to decide in a routine 

fashion which symbols o f the path string v is it  X. I f  X is  in the lower half 

o f B, then S can retrieve the symbol that X contains and also the value 

Decendant (B ,x).

To record the nonblank symbol 6 that IL writes on X, machine S f ir s t  

determines the ancestor Y closest to X that the path string v is its  in B.

Let Y be at distance s  ̂ 0 from X. Then S produces a new path string that 

d iffe rs  from the old one only by the insertion o f a string o f 2s + 1 consecu­

tive symbols: s sh ift  symbols for the sh ifts  from Y to X, the symbol 6 (which 

v is its  X), and s sh ift  symbols for the sh ifts from X to Y. I f  the orig in a l 

path string v isited  v d istin ct c e lls  o f B and had at most 2v sh ift  symbols, 

then the new path string v is its  v + s c e l ls ,  including X , and has at most 

2v + 2s = 2(v + s) sh ift  symbols. Throughout the computation o f T, the nonblank- 

ce lls  o f W form a connected set. Thus, i f  X and Y are nonblank, then a l l  

the s - 1 ce lls  between Y and X are also nonblank. Consequently, i f  the old 

path string v isited  only nonblank c e lls  o f B, then so does the new path 

string. We conclude that S can maintain Invariant 2.

The simulator S has heads G ^ ^ ,...,G ^  on it s  mass store.

The simulation begins with a l l  these heads on a page Pq o f side TT(r) that 

corresponds to W[\,2r + 1 ]. In it ia lly , Ancestor (Pq) = F irst (Pq) =

Current (Pq) = Pq, and the path string o f Pq is  empty.

In general, to simulate head IL on c e l l  X̂  in block B̂  = W[b^,2r + 1],

head G . is  in page P. and head G .. in page Q. such that Q. corresponds to
u i  i J&l 1 1.

and P̂  = Current(First(Ancestor(Q^)))  corresponds to the immediate ancestor 

block Ai  o f Bi . I f  Xi  is  in  the lower half o f  B^, then S uses the path string



10

o f Q. read by G .. to retrieve the contents o f I f  the path string o fi  a 3-
does not v is i t  X^ then holds a blank symbol. I f  X̂  ̂ is  in  the upper

half o f Bt and b ± t  X, then X± is  in  the lower ha lf o f A± , and S retrieves

the contents o f X̂  from the path string o f P̂  read by G ^ . ( I f  b  ̂ = X, then

according to Invariant 4, the path string o f Q± has the contents o f X., even

when X± is  in the top ha lf o f  B ^ ) To simulate the e ffe c t  o f one step o f T,

machine S records the new contents o f each X̂  in the appropriate path string

(o f P. or o f Q^). I f  T sh ifts  its  input head or writes an output symbol at

the end o f this step, then S does the same. F inally, S updates the head

location tapes. When S completes the simulation o f this step, Invariant 1

holds: the path string o f represents the contents o f the lower half o f A^,

and the path string o f represents the contents o f the lower half o f .

I f  Hi  sh ifts  from W(b^) to it s  parent, then S performs an upward

reorientation on heads G . and G ,. .  Let M = Current(First(Ancestor(P.) ) ) .  ---------------------  ui j&i 3.
The upward reorientation consists o f  sending G .. to P. and G . to M, which

Xjlm L 111

corresponds to the immediate ancestor block o f A^, in  whose lower half the 

parent of W(b^) is  located.

I f  IL sh ifts  to a child  o f a lea f W(bjCx) o f B^ where |c| = r + 1, 

then S performs a downward reorientation o f G and G„_. by sending G„_. to Q_.
Li 1  X j  1  Li J» 1

ang Ĝ i  to R = Current(First(Descendant(Qi , c ) ) ) , provided that has a 

Descendant(Qi ,c )  pointer. I f  R is  not defined, then the bottom half o f 

W j^ c ^ r  + l ]  is  completely blank (by Invariant 3 ), although r ce lls  in 

its  top half (on a path fromW(bjC) to W(b^cx)) must be nonblank. The 

storage allocation  procedure ALLOCATE (described in Section 5) produces
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a new completely blank page R o f side rr(r) in the mass store. Next, on this 

new page S sets F irst (R) «- R, Current (R) ♦- R, Ancestor (R) «- Q. Also, S 

sets Descendant (Q .,c) *- R and sends G .. to R. After this in it ia liz a t io n ,
1. Xj !•

R corresponds to W [b^c,2r+1].

Now suppose that when S adds further symbols to the path string o f a 

page P to record the contents o f a c e l l  in the corresponding block B, P is  

not large enough to contain the updated path string. With a c a ll  to 

ALLOCATE, S finds a new unused box P' in  the mass store whose side is  a power 

o f 2 such that P' is  just large enough to hold the new path string (as w ell as 

the Ancestor-pointer, F irst-pointer, and Current-pointer). Then S writes 

the updated path string into P* and sets F irst (P1) «- F irst (P),

Current (F irst (P)) «- P ', and Ancestor (P ') *- Ancestor (P ). Page P* now 

corresponds to B.
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4. Analysis o f the Simulation

F irst, we establish upper bounds on the volumes o f pages. Throughout 

this section  we may assume that at least r c e lls  o f W[\,2r + 1] are nonblank.

Lemma 1. In some configuration o f  S during the simulation, le t  page P 

correspond to simulated block B = W[b,2r + 1] with m nonblank c e l ls .  Then 

the length o f the path string o f P is  at most (3+4dk)m, and the side o f P 

is  at most Tr(m) .

Proof. Invariant 2 guarantees that the path string o f P has at most 

2m sh ift  symbols and at most m symbols in A. I f  P has a Descendant (P ,c) 

pointer, then by Invariant 3, the lower ha lf o f block W [bc,2r+1] is  nonblank 

since the nonblank ce lls  o f  W always form a connected set, at least r ce lls  

o f W[bc,r] in the lower half o f B are nonblank. The number o f location  

symbols in Descendant (P ,c) is  at most k log N < 4 dkr. Consequently, the 

tota l number o f location symbols in the path string o f P is  bounded above 

by 4 dk times the number o f nonblank c e lls  in the lower half o f  B, which is 

at most m. We have deduced that the length o f the path string is  at most 

2m+m + 4 dkm = (3 + 4 dk)m.

The Ancestor-pointer, F irst-pointer, and Current-pointer together occupy 

at most 3 k log N c e l ls .  Therefore, the volume o f P is  at most

(3 + 4 dk)m + 3 k log N < (Tr(m))^,

and the side o f  P is  at most rr(m). □

Lemma 2 . Throughout the simulation, the tota l volume o f pages in the 

mass store is  at most k'N.

Proof. At an arbitrary configuration of the simulation, le t  P ^ jP ^ ,... 

be the pages that correspond to blocks on W. Let P̂  correspond to block 

Bj, and le t  B̂  have m.. nonblank c e l ls .  Since every c e l l  o f W belongs to at
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most two blocks and since the access heads o f T can v is it  at most hN ce lls  

o f W,

2 . m. < 2 hN.J J

Because a page is  allocated only when the corresponding block has at

least r nonblank c e l ls ,  every dol  ̂ r , and hence there are at most 2 hN/r

pages P .. The mass store holds smaller pages that correspond to B. in 
J 3

previous configurations o f S . The volumes o f these smaller pages are 

d istin ct powers o f 2. I t  follows that the tota l volume o f pages that have 

ever corresponded to B̂  is  at most twice the volume o f P . Ergo, the tota l 

volume o f a l l  pages in the mass store is

S . 2 ( tt (m.) ) d < 2«2d 2 .((3  + 4 dk)m. + 3k log N) < 2d+1[(3 + 4  dk) (2hN)
J J 3 3

+ (2hN/r)(3k log N)] <  k'N

by Lemma 1 and defin ition  o f r and- k' . □

The time used by S to simulate one step o f T is  proportional to the 

length o f the h path strings that i t  handles. Lemma 1 implies that every 

path string has length at most 0 (4r ) . Thus, to simulate N individual 

steps, S spends time 0 (N 4r ) = 0 (N^+ ^ d/lo g  N) updating path strings and 

head location  tapes.

After an upward or a downward reorientation o f G . and G . . ,  the r ui
simulated head H. is  at distance r or r + 1  from both the root and thel
leaves o f a block. Consequently, this head can induce at most N/r reorienta­

tions. Each upward reorientation takes time O(log N) to retrieve the 

location  o f another page and time 0(u) = 0(N1//d) to move the heads across the
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mass store. For a downward reorientation, S may spend, in addition, time 

0 ((log  N)2) for a c a ll  to ALLOCATE (as we show in Section 5 ). Therefore, 

the tota l time for reorientations is  at most

(N /r)0( (log N)2 + N1/d) = 0(N1+1/d/lo g  N) .

When S copies the contents o f a page P to a larger page P ', i t  spends

time 0 (u) = OCN1^ )  to move the heads across the mass store, time O ((log N)2)

for a c a ll  to ALLOCATE, and time 0(4 + log N) to copy the path string and

pointer values. Since every page has volume at least r , Lemma 2 implies that

S makes at most 0(N /r) allocations o f pages. Thus, S spends time

0((N /r)(N 1/d + 4r + ( lo g  N)2) )  = 0 (N1+1/d/lo g  N)

finding and in it ia liz in g  new pages.

In summary, the simulator uses time 0(N^+^ d/lo g  N) to simulate N 

individual steps, time 0 (N1+1 d̂/lo g  N) to reorient heads Gui and G ^ , and 

time 0(N1+1/ d̂/lo g  N) to prepare new larger pages in the mass store.

Theorem 1. Every multihead tree machine o f time complexity t(n) 

can be simulated on-line by a multihead d-dimensional machine in time 

0 ( t (n )1+1 d̂/lo g  t ( n ) ) .
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5. Storage A llocation

Machine S has a free storage l i s t , a l i s t  o f locations o f blank boxes 

in the mass store. For q = 1 , 2 , . . . ,u /2 ,u , this l i s t  has locations o f at 

most 2d- l  boxes o f side q. In it ia lly , the free storage l i s t  holds the 

location of the mass store i t s e l f ,  a single box o f side u.

Procedure ALLOCATE employs a buddy system [4] to a llocate a blank box 

with a desired side in  the mass store. To obtain a blank box o f side p, a 

power o f 2, ALLOCATE finds the location  o f a box o f side p on the free
•k

storage l i s t .  I f  the free storage l i s t  has no boxes o f side p, then le t  q 

be the smallest power o f 2 for which the free storage l i s t  has a box o f side 

q . (We shall show that when ALLOCATE is  called  during the simulation, q 

must e x is t .)  For q = q * ,q * /2 ,. . . ,4r,2r in order, se lect the location o f a 

box 0 o f side q and delete this location  from the l i s t ;  add to the l i s t  the
q

locations o f the 2d d is jo in t boxes o f side q/2 whose union is  Q . F inally, 

le t  y be the location o f a box o f side p on the free storage l i s t ,  delete 

y from the l i s t ,  and return the value y. The time taken by ALLOCATE is  

0 ( (log u)(k  log N)) = 0 ((lo g  N)2) .

Let q. < < . . .  < q be the sides o f boxes whose locations are on thenl  — 2 s
free storage l i s t  when ALLOCATE is  called  to produce a blank box o f side T r ( m ) ,  

r+lwhere m< 4 . Lemma 2 and the defin ition  o f u imply that

d d d . . /7r+l. Nd
s 1

Since the free storage l i s t  has at most 2d + 1 boxes o f  each d istin ct side,
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qd + . . .  + qd < (2d - l ) q d + (2d - 1) (q /2 )d + . . .  + (2d - 1) (1) < (2q )d .s l  s s &

(2q ) d > (TT(4r+1) ) d, hence q £ rr(4r+1) because q is  a power o f 2. s s s
I t  follows that ALLOCATE can find a box o f side tt(m) in the mess store.
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6. Lower Bound

We define a tree machine T' and demonstrate that every d-dimensional 

machine that simulates T* on-line requires time Q log N) .

Machine T’ has just one access head on one tree worktape and operates 

in real time. Its input alphabet is  a set o f commands o f the form (e,<j), 

where e G [0 ,1 ,? ]  and a is  a sh ift  for a tree worktape. Suppose 1 ' is  in a 

configuration in which the c e l l  X at which the access head is  located 

contains e ' .  On input (e ,a ) ,  machine T* writes e* on its  output tape, and 

the access head writes e on X i f  e G { 0 , l } ,  but writes e ' on X (its  current 

contents) i f  e = ?. At the end o f the step the access head executes the

sh ift  a .
*

Let d-dimensional machine S' simulate T' on -lin e. To establish the lower 

bound Q (N ^ ^ ^ /lo g  N) on the time required by S ' , we formalize the following 

volumetric argument. The worktape head o f T' can access one o f a set o f N 

ce lls  within log N steps, whereas the heads o f S' require Q (N^^) steps to 

access one o f a set o f N ce lls  in the worst case. I f  the contents o f a set 

o f N ce lls  o f  the worktape o f T* are su ffic ien tly  random (in  a sense made 

precise below), then there is  a sequence o f Q(N/log N) "hard questions" about 

the contents o f these c e l ls ,  each question having length log N, such that S’ 

requires time CKN"^) to answer each question.

Let # be a new symbol. For strings x ,y  in {0 ,1 ,# } , le t  K(x|y) be the 

Kolmogoroff complexity o f x given y with respect to a fixed universal 

function U. Formally, K(x|y) is  the length o f the shortest binary string b 

such that U(b # y) = x. In tu itively , b is  a binary description o f x, 

given y. Write K(x) for K(x|\), where X is  the empty string. The following 

elementary properties o f K are w ell known: There is  a fixed constant c such
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that for a l l  x and y,

K(x) < 2(x| + c,

K(x) < K(x|y) + K(y) + c .

Call a binary string x for which K(x)  ̂ |xj incompressibl e . Since there are 

2n binary strings o f length n but only 2n- l  possible shorter binary descrip­

tions, there exists for every n at least one incompressible binary string 

o f length n.

Lemma 3 . Let h  ̂ 1 and le t  x be an incompressible string o f length 

N > 8(c + h ). For every set o f h strings [y ^ ,. . . ,y ^ }  o f length at most 

N/4h each, K(x|y^# . . .  #y^) > N/4.

Proof. I f  not, then

K(x) < K(xj y^# . . .  #yh) + K(y.j# . . .  #yh) < N/4 + (2h )( (N /4h)+ 1 ) + 2c < N. 

Contradiction. □

Theorem 2 . Let d-dimensional machine S' with head-to-head jumps on one 

worktape simulate T' on-line in time t '(N ). Then t '(N ) * Q (N ^ ^ ^ /lo g  N).

Proof. For every N that is  a su ffic ien tly  large power o f 2, we 

construct a string o f N input commands on which S' requires time Q(N^+^ ^ /lo g  N). 

The input string has a f i l l in g  part Qq o f length N/2 followed by a query 

part o f  length N/2.

Let W be the worktape o f T ' . The f i l l in g  part compels the head o f T' 

to write on the (N/4) - 1  c e lls  o f W[X, log(N/8) ] such that a depth -first 

traversal o f the contents o f W[X, log(N/8) ] gives an incompressible 

string x o f length (N/4) - 1.
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The query part is  a sequence o f N /(4 log N) questions 

Each question is  a string o f 2 log N commands o f the form (?,cr) that 

drives the head o f T' from the root W(X) to a c e l l  o f W [X,log(N/8)] and back 

to the root. Note that the contents o f W [\,log(N /8)] remain unchanged 

when T' processes a question. We choose the questions so that S' spends 

time Q (N ^d) to process each Q̂  .

Let S' have h access heads. For j  ̂ 0, consider the configuration o f 

S' a fter i t  has processed Q ̂ . Let be the boxes o f side (N /(32 c 'h ) )

centered at the heads in this configuration, where the constant c ' depends on 

S' and is  specified  la ter. These boxes hold a l l  the ce lls  accessed by S' 

during the next (N/(32 c ,h ) ) '^ d/2 steps. We claim that for some some

head o f S' must ex it B̂  U . . .  U when S' processes Qj+ *̂ Otherwise, le t 

y  ̂ be a binary encoding o f the contents o f B̂  and z. be a binary encoding o f 

the relative position  o f access head i  in B^. Evidently, i f  c ' is  su ffic ien tly  

large, then both |ŷ | < c '|b |̂ and |ẑ | < c'|B^| for every i .  From the string 

y^# . . .  # yh # z i # . . .  # z^, only a small constant amount o f additional 

information (essentia lly  a binary description o f this discussion) is  

necessary to generate x because S' can process every question with the

heads remaining in B  ̂ U . . .  U B^. We deduce that 

K(y^ # . . .  # yh # z i  # . . .  # zh) = 0 (1 ), contravening Lemma 4.

Therefore, since some head spends time (N/(32 c 'h ) ) ^ d/2 to ex it 

U . . .  U when S ’ processes question t*ie spent by S' on the

1/d

query part alone is at least

(N/(4 log N))(N/(32 c 'h ) ) 1/d/2 = CUN1+1/d/lo g  N) . □
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