ACT-29 AUGUST, 1981

& .1 COORDINATED SCIENCE LABORATORY

APPLIED COMPUTATION THEORY GROUP

OPTIMAL DYNAMIC EMBEDDING
OF TREES INTO ARRAYS

M.C. LOUI

APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.

REPORT R-917 UILU-ENG 81-2248

UNIVERSITY OF ILLINOIS - URBANA, ILLINOIS

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enterad)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPORT 4 PERIOO COVERED

OPTIMAL DYNAMIC BVBEDDING OF TREES INTO ARRAYS Technical Report

6. PERFORMING ORG. REPORT NUMBER
R-917 : ACT-29 (UIUC-ENG 81-22;]8)
7. AUTHORr*: S. CONTRACT OR GRANT NUMBER/*)

N00014-79-C-0424
Michael C. Loui

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. iRRgﬁR‘{U\I}VOERL}EMUEN’\H-NPURMOBJEEF?ST TASK
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield Avenue
Urbana TT.___ ftiftilL
11. CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT DATE
Joint Services Electronics Program August 1981
13. NUMBER OF PAGES
20
14. MONITORING AGENCY NAME 4 AOORESS/J/ diilarent from Controlling Ottica) 15. SECURITY CLASS, (of. thia reportj
UNCLASSIFIED
15«. OECL ASSIFICATION/DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (oi thia Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if ditterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide it neceaaary and identify by block number)

tree, array, data structure, multidimensional Turing machine, simulation,
embedding

20. ABSTRACT (Continue on reverae aide it neceaaery and identify by block number)
An optimal method for dynamically embedding trees into arrays is presented.
Every multihead tree machine of time complexity t(n) can be simulated on-line

by a multihead d-dimensional machine in time 0(t(n)~+~"/log t(n)). An
information-theoretic argument gives the worst-case lower bound

O (t(n)~+~~/log t(n)) on the time required.

DD ,:; A3 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGSCWx»«« D*tm Enter'd)

SECURITY CLASSIFICATION OF THIS PAGEfJFh*n Dmtm Entered)

OPTIMAL DYNAMIC BVBEDDING OF TREES INTO ARRAYS
Michael C. Loui
Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

August 1981

Abstract
An optimal method for dynamically embedding trees into arrays is
presented. Every raultihead tree machine of time complexity t(n) can be
simulated on-line by a multihead d-dimensional machine in time
o(t(n)~+~~/log t(n)). An information-theoretic argument gives the worst

case lower bound Q(t(n) log t(n)) on the time required.

Key Words: tree, array, data structure, multidimensional Turing machine,

simulation, embedding.

Supported by the Joint Services Electronics Program (U.S. Army, U.S. Navy,
U.S. Air Force) under Contract N00014-79-C-0424.

1. Introduction

Several researchers [2,5,12,13,14] have investigated static embeddings
among data structures. To model the physical implementation of a logical
data structure, they fix a correspondence between locations in the guest
(logical) structure and locations in the host (physical) structure and
analyze the effect of various correspondences on access costs. Lynch's work
on accessibility of values in algebras [8] gives lower bounds on these access
costs. When few cells of the guest structure are used during a computation,
these fixed embeddings waste space in the host structure.

In contrast, we have developed dynamic embeddings that designate
representatives in the host only for cells of the guest that are actually
used [6,7]. To model storage and retrieval operations in data structures, we
have used generalizations of Turing machines: tree machines for trees, multi-
dimensional machines for arrays. The access heads of the machines correspond
to access pointers into the data structures.

Continuing the study of dynamic embeddings, we present an optimal
on-line simulation of a multihead tree machine of time complexity t(n) by a
multihead d-dimensional machine in time 0(t(n) 1+1l/<i/log t(n)). To establish
the lower bound Q(t(n)~+~*VIlog t(n)) on the time required, we employ the
information-theoretic technique developed by Paul, Seiferas, and Simon [9].

Previously, Pippenger and Fischer [10] proved that every tree machine of
time complexity t(n) can be simulated on-line by a one-dimensional machine in
time O(t(n)zllog t(n)), an optimal amount of time. For d ™ 2, a theorem of
Grigoriev [3] implies a simulation by a d-dimensional machine in time
0(t(n)1+1'<d-1>).

Conversely, Reischuk [11] devised on-line simulations of d-dimensional
machines of time complexity t(n) by tree machines in time 0(t(n)(5d)1°g*t(n)).

It is not known whether Reischuk's simulation is optimal.

2. Definitions

Cook and Aanderaa [1] introduced the bounded activity machine, a
generalization of the Turing machine model. A bounded activity machine has
a finite-state control, a read-only linear input tape (from which it reads
input symbols), a write-only linear output tape (on which it writes output
symbols), and a finite number of storage media, each of which has a finite
number of access heads. A storage medium is an infinite set of cells, each
of which can hold a symbol from a finite storage alphabet. One cell is
designated the origin of the storage medium. Each access head is located at a
cell of its storage medium and can execute a finite number ofshifts to other
cells of its storage medium. Cell X is at distances from cell Y if sis the
minimum number of shifts required for an access head on X to travel to Y.

A bounded activity machine operates in a sequence of steps. At each step
the machine reads the symbols in the cells on which the inputhead and access
heads are positioned, writes symbols on the storage cells andpossibly on the
output tape too, and shifts some of its heads. We may assume that the machine
can detect when two heads are located at the same cell and hence that the two
heads do not attempt to write different symbols in this cell. Initially, all
storage cells hold a particular blank symbol, and every access head is
positioned on the origin of its storage medium.

The time complexity of the machine is a function t(n) defined for
each n to be the maximum over all input strings w of length n of the time
(number of steps) that the machine spends on w.

A tree worktape is a storage medium whose cells are organized into a
complete infinite binary tree. The root has two children, and all other

cells have two children and a parent. An access head can shift from a cell

to its parent or to one of its children. The root of the tree worktape is

its origin. A tree machine is a bounded activity machine whose storage media
are all tree worktapes. Let Wbhe a tree worktape. We fix a natural bijection
between strings in [0,lI] , called locations5 and cells of W we write W(b)
for the cell at location b. Let \ denote the empty string. The root of W

is W(\). In general, WbO) is the left child of W(b), and W(bl) is its

right child. Let W[b,r] denote the complete subtree of Wof height r rooted
at W(b). The leaves of W][b,r] are at distance r from W (b).

A d-dimensional worktape is a storage medium whose cells correspond
bijectively with d-tuples of integers, called the coordinates. An access head
can shift from a cell to another whose coordinates differ in just one component
by + 1. The origin of the worktape is the cell whose coordinates are all
zero. The location of a cell is a binary string (of a fixed format) that
specifies its coordinates. The location of a cell at distance s from the
origin has length proportional to log s. The binary encoding of coordinates
permits a machine to employ the location of cell X to send an access head from
the origin to X in time proportional to s. A box is a set of cells that form
a d-dimensional cube. The volume of a box is the number of cells in it. The
base cell of a box is the cell whose coordinates are the smallest. The
location of a box is the location of its base cell. A d-dimensional
machine is a bounded activity machine whose storage media are all d-dimensional
worktapes.

Fix integers d”~ 1 and h”™ 1. Let T be a tree machine of time complexity
t(n) with just one worktape Wwith h access heads. Let A be the storage
alphabet of T. We may assume that whenever a head of T visits a storage
cell, it writes a nonblank symbol in the cell. We devise an on-line simula-

tion of T by a d-dimensional machine S in time 0(t(n)™+~"/log t(n)):

4
| f < s2< ... are the steps at which T shifts its input head or output
head, then there are corresponding steps s < s < ... at which the input
and output heads of S perform the same shifts, reading and writing the same
symbols, and s] < sf*”~log s™ for every i. (All logarithms are taken to
base 2.) Since every tree machine with a total of h access heads on
several tree worktapes can be simulated in real time by a tree machine with
h heads on one worktape with a larger storage alphabet, it suffices to

consider only T.

3. Simulation
On a particular input string of length n, suppose T runs for N' < t(n)
steps. To simulate this computation, S repeats the simulation described in
this section for N=1,2,4,8,..., using N for the length of the computation
of T, until N' 2~ N. When N> 1, an output manager prevents repetitious
outputs by writing only the output symbols generated during steps (N/2 + 1)
through N of T. In addition, S marks all cells that its worktape heads visit.
Before embarking on the simulation with the next value of N, it erases its
worktapes via a depth-first traversal of the marked cells. We shall show that
for each N, the simulation with that value of N takes time tQ(N) = O(N ~~/log N).

It follows that S simulates T on-line in time

tQ(l) +t0(2)+ ... +t0(2ri°8 N) =0(t(n)1+1/d/log t(n)) .

Choose r so that
(log N)/4d < r< (log N)/2d.

By definition, r 4A < Iilu

Cover Wwith overlapping trees W[b,2r+1] such that the length of b is a
multiple of r+1. Call these trees blocks. Every block has 2+ - 1< 4r+ /"
cells. Call W][b,r] the upper half of block W[b,2r+1] and the remainder of the
block its lower half. By definition, if cell X is at distance at least r+1
from the root, then X belongs to exactly two blocks; X is in the upper half
of one block and in the lower half of another. The immediate ancestor block
of W[b,2r + 1] is the block W/[a,2r+1] such that W(a) is the ancestor of W(b)
at distance r+1 fromW(b); equivalently, the location a is the initial
segment of b for which jbj = Jg + r+1. An immediate descendant block

of W[b,2r + 1] is a block W][bc,2r + 1] such that W(bc) is a descendant of W(b)

at distance r+1 fromW(b); equivalently, J| = r+ 1.

Define the function t by

T(Z) = 2ri°S 2L;

if z is not a power of 2, then t maps z to the next larger power of 2.

Define k*,u, and the function t by

k' = 2d+ 1[(3 + 4dk)(2h) +24 dhk2],
= t((3+4dk)m+3k log N),
u=T(K'N+ (TT@r + 1)) d),

where the constant k is chosen so that the location of every cell at distance
at most du from the origin has length at most k log N. Observe that the
volume of a box of side rr(m) is at least (3+4dk)m+3k log N, and that

u = 0(N1/d).

To maintain the simulated contents of blocks, S has a box of side u
whose base cell is the origin called the mass store. By definition of u,
the location of every cell in the mass store has length at most k log N.
The mass store contains pages. A page P is box whose side is a power of 2
and whose contents are organized into a path string, an Ancestor-pointer,

a First-pointer, and a Current-pointer. We assume a standard format for
pages such that a page of volume L+ 3k log N can accommodate a path string
of length L in addition to the Ancestor-pointer, First-pointer, and Current-
pointer, which together occupy at most 3k log Ncells.

We describe how the path string of P represents the contents of a block
B = W[b,2r + 1]. The path string has symbols from three disjoint alphabets:
A (the storage alphabet of T); three shift symbols for the shifts on the

tree worktape; and location symbols to specify locations on the d-dimensional

worktape. A symbol occurring in the path string visits cell X of Wif a
head that starts at W(b) and shifts according to the shift symbols preceding
that occurrence arrives at X. The path string represents the contents of the
lower half of B if the following two conditions hold. First, for every nonblank
cell X in the lower half of B, the path string has exactly one occurrence of a
symbol in A that visits X, and X contains this symbol. Second, for every
binary string x there is at most one nonnull substring of contiguous location
symbols that visit W(bx); this substring has length at most k log N, and P
has a Descendant-pointer whose value Descendant (P,x) is this string of
location symbols.

The Ancestor-pointer, First-pointer, and Current-pointer specify locations
of pages in the mass store. Worite Ancestor (P), First (P), and Current (P)
for the values of these pointers. For convenience, we identify a page with
its location. For instance, Current (First (P)) is the value of the Current-
pointer of the page at location First (P). As the simulated contents of B
change, different pages of S will correspond to B; First (P) is the first page
that corresponds to B during the simulation.

For configurations of S we define a correspondence between pages and
blocks.

(i) There is exactly one page marked with a special symbol.
This page corresponds to W[\,2r + 1].
(ii) Let page P correspond to WI[b,2r +1]. |f Descendant (P,c)
is nonnull, then Current(First(Descendant (P,c)))

corresponds to W{[bc,2r+ 1].

Throughout the simulation, the following will be true for a page P
that corresponds to a block B.
Invariant 1» The path string of P represents the contents of
the lower half of B.
Invariant 2. If the path string of P visits v distinct cells of B,
then the path string has at most 2v shift symbols and at most v
A symbols. The cells of B visited by the path string are nonblank.
Invariant 3. The page Current(First(Ancestor (P))) corresponds
to the immediate ancestor block of B. If B' = W[bc,2r + 1] is an immediate
descendant block of B and the lower half of B' is nonblank, then
Current(First(Descendant(P,c))) corresponds to B’.
Invariant 4. If B = W[\,2r+1], then for every nonblank cell X
in B (not just in the lower half), the path string of P has exactly one
occurrence of a symbol in A that visits X, and X contains this symbol.
Let H™,...,H”™ be the h access heads of T. To maintain the simulated access
head locations, S has several head location tapes named L™, fer
i =1,...,h; they are used as linear tapes. On tape the location of
is written and marked in consecutive contiguous segments; all segments
preceding the last have length r+ 1, and the last has length between 0 and r.
Tape is used as a unary counter with values 0 to 2r+1.
Suppose is located at cell X =W(bx) in a block B rooted at W(b).
Let page P correspond to B. The value of the contents of L~ indicates
whether 1L is in the upper half or the lower half of B. Using the head
location tapes, S can determine whether a symbol in the path string of P

visits X. Depending on the value of L~» S copies the last one or two

segments on to an auxiliary tape. While one head scans along the path
string, S uses the information on this auxiliary tape to decide in a routine
fashion which symbols of the path string visit X. If X is in the lower half
of B, then S can retrieve the symbol that X contains and also the value
Decendant (B,x).

To record the nonblank symbol 6 that IL writes on X, machine S first
determines the ancestor Y closest to X that the path string visits in B.
Let Y be at distance s ~ 0 from X. Then S produces a new path string that
differs from the old one only by the insertion of a string of 2s+ 1 consecu-
tive symbols: s shift symbols for the shifts from Y to X, the symbol 6 (which
visits X), and s shift symbols for the shifts from X to Y. |If the original
path string visited v distinct cells of B and had at most 2v shift symbols,
then the new path string visits v+s cells, including X, and has at most
2v+2s = 2(v+s) shift symbols. Throughout the computation of T, the nonblank-
cells of Wform a connected set. Thus, if X and Y are nonblank, then all
the s - 1 cells between Y and X are also nonblank. Consequently, if the old
path string visited only nonblank cells of B, then so does the new path
string. We conclude that S can maintain Invariant 2.

The simulator S has heads GAN,...,G”™ on its mass store.
The simulation begins with all these heads on a page Pg of side T1(r) that
corresponds to W[\,2r + 1]. Initially, Ancestor (Pq) = First (Pq) =
Current (Pqg) = Pqg, and the path string of Pq is empty.

In general, to simulate head IL on cell X in block B = W[b",2r + 1],
head Gu : is in page PI and head Gj@u in page Q.1 such that Q.lcorresponds to

and PN = Current(First(Ancestor(Q”))) corresponds to the immediate ancestor

block Ai of Bi. If Xi is in the lower half of B® then S uses the path string

10

of Qi read by Ga'3 to retrieve the contents of If the path string of
does not visit X~ then holds a blank symbol. [If X*is in the upper

half of Bt and b+ t X, then X+ is in the lower half of A+, and S retrieves
the contents of X from the path string of P™ read by G~. (If b™ = X, then
according to Invariant 4, the path string of Q+ has the contents of X, even
when X+ is in the top half of B~) To simulate the effect of one step of T,
machine S records the new contents of each X* in the appropriate path string
(of P. or of Q7). If T shifts its input head or writes an output symbol at
the end of this step, then S does the same. Finally, S updates the head
location tapes. When S completes the simulation of this step, Invariant 1
holds: the path string of represents the contents of the lower half of A%,

and the path string of represents the contents of the lower half of

If H shifts from W({b”) to its parent, then S performs an upward

reorientation on heads Gui and Gj&" Let M= Current(First(Ancestor(PS))).
The upward reorientation consists of sending ij.lm. to PL and G11i to M which
corresponds to the immediate ancestor block of A”, in whose lower half the
parent of W(b”) is located.

If IL shifts to a child of a leaf W(bjCx) of B~ where |c] = r+1,
then S performs a downward reorientation of GLil and Gx;h. by sending GE’:r to Q_
ang GN to R = Current(First(Descendant(Qi ,c))), provided that has a
Descendant(Qi ,c) pointer. If R is not defined, then the bottom half of
W jrc~r +1] is completely blank (by Invariant 3), although r cells in

its top half (on a path fromW(bjC) to W(b”cx)) must be nonblank. The

storage allocation procedure ALLOCATE (described in Section 5) produces

11

a new completely blank page R of side rr(r) in the mass store. Next, on this
new page S sets First (R) « R, Current (R) ¢ R, Ancestor (R) « Q. Also, S
sets Descendant (Ql_.,c) * R and sends C)Es!... to R. After this initialization,
R corresponds to W[b”c,2r+1].

Now suppose that when S adds further symbols to the path string of a
page P to record the contents of a cell in the corresponding block B, P is
not large enough to contain the updated path string. With a call to
ALLOCATE, S finds a new unused box P' in the mass store whose side is a power
of 2 such that P' is just large enough to hold the new path string (as well as
the Ancestor-pointer, First-pointer, and Current-pointer). Then S writes
the updated path string into P* and sets First (Pl « First (P),

Current (First (P)) « P', and Ancestor (P') * Ancestor (P). Page P* now

corresponds to B.

12

4. Analysis of the Simulation

First, we establish upper bounds on the volumes of pages. Throughout
this section we may assume that at least r cells of W[\,2r + 1] are nonblank.

Lerma 1. In some configuration of S during the simulation, let page P
correspond to simulated block B = W[b,2r + 1] with mnonblank cells. Then
the length of the path string of P is at most (3+4dk)m, and the side of P
is at most Tr(m) .

Proof. Invariant 2 guarantees that the path string of P has at most
2m shift symbols and at most m symbols in A. If P has a Descendant (P,c)
pointer, then by Invariant 3, the lower half of block W[bc,2r+1] is nonblank
since the nonblank cells of Walways form a connected set, at least r cells
of W[bc,r] in the lower half of B are nonblank. The number of location
symbols in Descendant (P,c) is at most k log N< 4 dkr. Consequently, the
total number of location symbols in the path string of P is bounded above
by 4 dk times the number of nonblank cells in the lower half of B, which is
at most m We have deduced that the length of the path string is at most
2m+m+4 dkm = (3 +4 dk)m.

The Ancestor-pointer, First-pointer, and Current-pointer together occupy

at most 3 k log Ncells. Therefore, the volume of P is at most
(3+4 dkhm + 3 k log N< (Tr(m))™,

and the side of P is at most rr(m). O

Lemma 2. Throughout the simulation, the total volume of pages in the
mass store is at most k'N.

Proof. At an arbitrary configuration of the simulation, let PAjPA, ...
be the pages that correspond to blocks on W. Let P correspond to block

Bj, and let B™ have m. nonblank cells. Since every cell of Wbhelongs to at

13

most two blocks and since the access heads of T can visit at most hN cells
of W

2. m < 2 hN.
J J

Because a page is allocated only when the corresponding block has at
least r nonblank cells, every aa ™ r, and hence there are at most 2 hN/r
pages Pj. The mass store holds smaller pages that correspond to Bg in
previous configurations of S. The volumes of these smaller pages are
distinct powers of 2. It follows that the total volume of pages that have
ever corresponded to B™ is at most twice the volume of P . Ergo, the total

volume of all pages in the mass store is

Sy 2w(m))d< 22d 2,((3 +4 dkm, +3k log N) < 2d+1[(3+4 dk) (2hN)
+ (2hN/r)(3k log N)] < k'N

by Lenma 1 and definition of r and k'. O
The time used by S to simulate one step of T is proportional to the
length of the h path strings that it handles. Lenma 1 implies that every
path string has length at most 0(4r). Thus, to simulate N individual
steps, S spends time O(N 4r) = O(N~+ ~ d/log N) updating path strings and
head location tapes.
After an upward or a downward reorientation of Gui and G.., the
simulated head HI is at distance r or r+1 from both the root and the
leaves of a block. Consequently, this head can induce at most N/r reorienta-
tions. Each upward reorientation takes time O(log N) to retrieve the

location of another page and time O(u) = O(N1/d) to move the heads across the

14

mass store. For a downward reorientation, S may spend, in addition, time
0((log N)2) for a call to ALLOCATE (as we show in Section 5). Therefore,

the total time for reorientations is at most
(N/r)O((log N)2 + N1/d) = O(N1+1/d/log N).

When S copies the contents of a page P to a larger page P' it spends
time O(u) = OCNL™) to move the headsacross the massstore, time O((log N)2)
for a call to ALLOCATE, and time 0(4 + log N) to copy the path string and
pointer values. Since every page hasvolume at leastr, Lenma 2 implies that

S makes at most O(N/r) allocations ofpages. Thus, Sspends time
O((N/r)(N1/d +4r +(log N)2)) = 0(N1+1/d/log N)

finding and initializing new pages.

In summary, the simulator uses time O(N~+~ d/log N) to simulate N
individual steps, time O0(N1+1°d/log N) to reorient heads Qui and G, and
time O(N1+1/d/log N) to prepare new larger pages in the mass store.

Theorem 1. Every multihead tree machine of time complexity t(n)
can be simulated on-line by a multihead d-dimensional machine in time

0(t(n)1l+1~d/log t(n)).

15

5. Storage Allocation

Machine S has a free storage list, a list of locations of blank boxes
in the mass store. For g =1,2,...,u/2,u, this list has locations of at
most 2d-1 boxes of side g. Initially, the free storage list holds the
location of the mass store itself, a single box of side u.

Procedure ALLOCATE employs a buddy system [4] to allocate a blank box
with a desired side in the mass store. To obtain a blank box of side p, a
power of 2, ALLOCATE finds the location of a box of side p on the free
storage list. |If the free storage list has no boxes of side p, then let q.k
be the smallest power of 2 for which the free storage list has a box of side
g . (We shall show that when ALLOCATE is called during the simulation, ¢
must exist.) For q = g*,q*/2,...,4r,2r in order, select the location of a
box 0 of side q and delete this location from the list; add to the list the
Iocatiqons of the 2d disjoint boxes of side g/2 whose union is Q . Finally,
let y be the location of a box of side p on the free storage list, delete
y from the list, and return the value y. The time taken by ALLOCATE is
0((log u)(k log N)) =0((log N)2).

Let op < 2< o < dq be the sides of boxes whose locations are on the

free storage list when ALLOCATE is called to produce a blank box of side tr(m),

r+l

where m< 4 . Lemmma 2 and the definition of u imply that
d d d . I7r+l N
S 1

Since the free storage list has at most 2d+ 1 boxes of each distinct side,

16

qg+ o+ qij< (2d-|)qg+ (2d-1)(q3/2)d+ .o+ (2d-1) (1) < (2q8)d.

Thus, (2qs)d > (TT@r+1))d, hence dq £ rr(4r+1) because dg is a power of 2.

It follows that ALLOCATE can find a box of side w(m) in the mess store.

17

6. Lower Bound

We define a tree machine T' and demonstrate that every d-dimensional
machine that simulates T* on-line requires time Q log N).

Machine T' has just one access head on one tree worktape and operates
in real time. Its input alphabet is a set of commands of the form (e,<j),
where e G [0,1,?] and a is a shift for a tree worktape. Suppose 1' is in a
configuration in which the cell X at which the access head is located
contains e'. On input (e,a), machine T writes e* on its output tape, and
the access head writes e on X if e G {0,1}, but writes e' on X (its current
contents) if e = ?. At the end of the step the access head executes the
shift a.

I:et d-dimensional machine S' simulate T' on-line. To establish the lower
bound Q(N~~~/log N) on the time required by S', we formalize the following
volumetric argument. The worktape head of T' can access one of a set of N
cells within log N steps, whereas the heads of S' require Q(N”™") steps to
access one of a set of Ncells in the worst case. |If the contents of a set
of N cells of the worktape of T are sufficiently random (in a sense made
precise below), then there is a sequence of Q(N/log N) "hard questions" about
the contents of these cells, each question having length log N, such that S’
requires time CKN"”~) to answer each question.

Let # be a new symbol. For strings x,y in {0,1,#} , let K(x]y) be the
Kolmogoroff complexity of x given y with respect to a fixed universal
function U. Formally, K(x]y) is the length of the shortest binary string b
such that U(b # y) = x. Intuitively, b is a binary description of x,
given y. Write K(x) for K(x]\), where X is the empty string. The following

elementary properties of K are well known: There is a fixed constant ¢ such

18

that for all x and vy,

K(x) < 2(x] + c,

K(x) < Kxly) + K(y) + c.

Call a binary string x for which K(x) ™ |xj incompressible. Since there are
2n binary strings of length n but only 2n-1 possible shorter binary descrip-
tions, there exists for every n at least one incompressible binary string
of length n.

Lenma 3. Let h ™ 1 and let x be an incompressible string of length
N> 8(c +h). For every set of h strings [y”,...,.y”~} of length at most
N/4h each, Kx|y™ ... #y”) > N/4.

Proof. If not, then

K(x) < KXjy™ ... #yh) + K(y.j# ... #yh) < N/4 + (2h)((N/4h)+ 1)+2c < N.

Contradiction. O

Theorem 2. Let d-dimensional machine S' with head-to-head jumps on one
worktape simulate T' on-line in time t'(N). Then t'(N) * Q(N~""/log N).

Proof. For every N that is a sufficiently large power of 2, we
construct a string of N input commands on which S' requires time Q(N™+"~~/log N).
The input string has a filling part @ of length N/2 followed by a query
part of length N/2.

Let Wbe the worktape of T'. The filling part compels the head of T'
to write on the (N/4) -1 cells of W[X,log(N/8)] such that a depth-first
traversal of the contents of W[X, log(N/8)] gives an incompressible

string x of length (N/4) - 1.

19

The query part is a sequence of N/(4 log N) questions
Each question is a string of 2 log N commands of the form (?,cr) that
drives the head of T' from the root W(X) to a cell of W[X,log(N/8)] and back
to the root. Note that the contents of W[\,log(N/8)] remain unchanged
when T' processes a question. We choose the questions so that S' spends
time Q(N~d) to process each QM.

Let S' have h access heads. For j ™ 0, consider the configuration of
S' after it has processed Q*. Let be the boxes of side (N/(32 c'h))lld
centered at the heads in this configuration, where the constant c' depends on
S' and is specified later. These boxes hold all the cells accessed by S’
during the next (N/(32 c,h))'~d/2 steps. We claim that for some some
head of S' must exit BU ... U when S' processes Qj+”* Otherwise, let
y™ be a binary encoding of the contents of B™ and z. be a binary encoding of
the relative position of access head i in B~ Evidently, if c¢' is sufficiently
large, then both |y < <¢'|b™N and |2 < c'|BM| for every i. From the string
yM ... #yh# zi# ... # z7, only a small constant amount of additional
information (essentially a binary description of this discussion) is
necessary to generate x because S' can process every guestion with the
heads remaining in B U ... UB” W deduce that
Ky# ... # ynh# zi # ... # zh) = 0(1), contravening Lemma 4.

Therefore, since some head spends time (N/(32 c'h))”™d/2 to exit

u... U when S’ processes question tie spent by S' on the

guery part alone is at least

(N/(4 log N))(N/(32 c'h))1/d/2 = CUNL+1/d/log N). O

20
References

[1] S. A. Cook and S. 0. Aanderaa. On the minimum computation time of
functions. Trans. Am Math. Soc. 142 (1969) 291-314.

[2] R. A. De Millo, S. C. Eisenstat, and R. J. Lipton. Space-time trade-
offs in structured programming: An improved combinatorial embedding
theorem. J. ACM 27 (1980) 123-127.

[3] D. Ju. Grigoriev. Imbedding theorems for Turing machines of different
dimensions and Kolmogorov's algorithms. Soviet Math. Dokl. 18 (1977)
588-592.

[4] D. E. Knuth. The Art of Computer Programming, vol. 1. Fundamental
Algorithms. Addison-Wesley, 1968.

[6] R. J. Lipton, S. C. Eisenstat, and R. A. De Millo. Space and time
hierarchies for classes of control structures and data structures.
J. AOM 23 (1976) 720-732.

[6] M. C. Loui. Simulations among multidimensional Turing machines, Tech.
Rep. TR-242, Lab. for Comp. Sci., M.I.T., Aug. 1980. To appear in Proc.
22nd Ann. Symp. on Foundations of Computer Science, IEEE, 1981. To
appear in Theor. Comp, Sci.

[7] M C. Loui. Minimizing access pointers into trees and arrays. Rep.
R-910, ACT-27, Coordinated Sci. Lab., Univ. of Illinois, June 1981.

[8] N. A Lynch. Accessibility of values as a determinant of relative
complexity in algebras. To appear in J. Comp. Sys. Sci.

[9] W. J. Paul, J. I Seiferas, and J. Simon. An information-theoretic
approach to time bounds for on-line computation. Proc. 12th Ann. ACM
Symp. on Theory of Computing, 1980, pp. 357-367. To appear in
J. Comp. Sys. Sci.

[10] N. Pippenger and M J. Fischer. Relations among complexity measures.
J. AOM 26; (1979) 361-381.

[11] R. Reischuk. A fast implementation of a multidimensional storage into
a tree storage. Proc. 7th Intern. Collog. on Automata, Languages and
Programming, Springer-Verlag, 1980, pp. 531-542. To appear in Theor.
Comp. Sci.

[12] A. L. Rosenberg. Data encodings and their costs. Acta Informatica 9
(1978) 273-292.

[13] A. L. Rosenberg. Encoding data structures in trees. J. AOM 26 (1979)
668-689.

[14] A. L. Rosenberg and L. Snyder. Bounds on the costs of data encodings.
Math. Sys. Th. 12 (1978) 9-39.

