
ON THE OPTIMUM CHECKPOINT SELECTION PROBLEM*

SAM TOUEG† AND O
..

ZALP BABAOG̃LU†

Abstract. We consider a model of computation consisting of a sequence of n tasks. In the absence of failures,
each task i has a known completion time ti . Checkpoints can be placed between any two consecutive tasks. At a
checkpoint, the state of the computation is saved on a reliable storage medium. Establishing a checkpoint immedi-
ately before task i is known to cost si . This is the time spent in saving the state of the computation. When a failure is
detected, the computation is restarted at the most recent checkpoint. Restarting the computation at checkpoint i
requires restoring the state to the previously saved value. The time necessary for this action is given by ri . We derive
an O(n3) algorithm to select out of the n − 1 potential checkpoint locations those that result in the smallest expected
time to complete all the tasks. An O(n2) algorithm is described for the reasonable case where si > s j implies ri ≥ r j .
These algorithms are applied to two models of failure. In the first one, each task i has a given probability pi of com-
pleting without a failure, i.e., in time ti . Furthermore, failures occur independently and are detected at the end of the
task during which they occur. The second model admits a continuous time failure mode where the failure intervals
are independent and identically distributed random variables drawn from any giv en distribution. In this model, fail-
ures are detected immediately. In both models, the algorithm also gives the expected value of the overall completion
time and we show how to derive all the other moments.

Key words. fault-tolerance, checkpoint, rollback-recovery, discrete optimization, renewal process

1. Introduction. A variety of hardware and software techniques have been proposed to
increase the reliability of computing systems that are inherently unreliable. One such soft-
ware technique is rollback-recovery. In this scheme, the program is checkpointed from time
to time by saving its state on secondary storage and the computation is restarted at the most
recent checkpoint after the detection of a failure [6]. Between the times when the failure is
detected and the computation is restarted, the computation must be rolled back to the most
recent checkpoint by restoring its state to the saved value. Obviously, rollback-recovery is an
effective method only against transient failures. Examples of such failures are temporary
hardware malfunctions, deadlocks due to resource contention, incorrect human interactions
with the computation, and other external factors that can corrupt the computation’s state. Per-
sisting failures will block the computation no matter how many times it is rolled back. The
ability to detect failures is an essential part of any fault-tolerance method including rollback-
recovery. Examples of such failure detection methods are integrity assertion checking [8] and
fail-stop processors [10].

In the absence of checkpoints, the computation has to be restated from the beginning
whenever a failure is detected. It is clear that with respect to many objectives such as mini-
mum completion time, minimum recovery overhead, maximum throughput, etc., the position-
ing of the checkpoints involves certain tradeoffs. A survey of an analytical framework for
resolving some of these tradeoffs is presented by Chandy [1]. Young [11] and Chandy et al
[3] addressed the problem of finding the checkpoint interval so as to minimize the time lost
due to recovery for a never-ending program subject to failures constituting a Poisson process.
Gelenbe and Derochette [5] and Gelenbe [4] have generalized this result to allow the possibil-
ity of external requests arriving during the establishment of a checkpoint or rollback-recovery.

* Received by the editors March 9, 1983, and in revised form September 13, 1983. This article was typeset by
the authors at Cornell University on a UNIXTM system. Final copy was produced on November 3, 1983.

† Department of Computer Science, Cornell University, Ithaca, New York 14853. This research was supported
in part by the National Science Foundation under Grants MCS 81-03605 and MCS 82-10356.

These requests are queued and serviced later. Consequently, these results for the optimum
checkpoint intervals with respect to maximizing system availability and minimizing response
time reflect the dependence on the rate of requests. More recently, Koren et al [7] have
derived expressions for optimum parameters in a system employing a combination of instruc-
tion retry and rollback-recovery.

In the previous work described above, expressions for the optimum checkpoint interval
were derived with the assumption that checkpoints could be placed at arbitrary points in the
program at a cost (as measured in units of time) that is independent of their position. Recall
that establishing a checkpoint implies the saving of the current program state on secondary
storage. As the minimum amount of data required to specify the state of a program can vary
greatly over time, it is unrealistic to assume that the time necessary to write it to secondary
storage is a constant. Furthermore, some programs cannot be blocked to create a checkpoint
during the execution of certain intervals. The transaction processing periods of a database
system are examples of such intervals. Whether due to prohibitive costs or other practical
considerations, most computations display only a discrete set of points where checkpoints can
be placed. Informally, we will view these computations as a sequence of tasks such that the
program state between two consecutive tasks is ‘‘compact’’ (i.e., incurs a reasonable cost to
save). In other words, task boundaries define potential checkpoint locations. Statically, such
a computation can be represented as a directed graph where the vertices denote the tasks and
an edge (i, j) exists if and only if task i may be followed by task j in some execution. This
computation model was used by Chandy and Ramamoorthy in the optimum checkpoint selec-
tion problem where the objective was to minimize the maximum and expected time spent in
saving states [2].

In this paper, we model the execution of a program as a linear sequence of tasks and con-
sider the optimum checkpoint selection problem with respect to minimizing the expected total
execution time of the program subject to failures. In the next section, we introduce the formal
program model along with the input parameters to the problem. § 3 describes an algorithm
based on dynamic programming that generates the set of checkpoint locations so as to mini-
mize the expected completion time. § 4 giv es an improved version of this algorithm that is
applicable when there is a certain relation between the costs for establishing checkpoints and
the costs of rolling back the computation. In § 5, we present two possible failure models to
which the algorithm could be applied. Solutions to some extensions of the original problem
are presented in § 6. A discussion of the results concludes the paper.

2. The model of computation. Assume that a computation consists of the sequential
execution of n tasks where a task may be a program, procedure, function, block, transaction,
etc. depending on the environment. For our purposes, any point in the execution where the
computation is allowed to block and where its state can be represented by a reasonable
amount of information can delimit a task. Clearly, the decomposition of the computation into
tasks is not unique -- any convenient one will suffice.

Let ti denote the time required to complete task i in the absence of failures. We assume
that these times are deterministic quantities and are known for all of the tasks. The boundary
between two consecutive tasks i − 1 and i determines the ith candidate checkpoint location.
The setup cost, si , is defined to be the time required to establish a checkpoint at location i.
This is the time necessary to save the state of the computation on secondary storage as it
exists just before task i is executed. After a failure is detected, the state of the computation is
restored to that of the most recent checkpoint. The rollback cost, ri , is defined to be the time
required to roll back the computation to the checkpoint at location i. After the rollback, the

computation resumes with the execution of task i. We assume that a checkpoint is always
established just before task 1. Initially, we also assume that the checkpoint setups and roll-
backs are failure-free. We relax these last assumptions in § 6.

The optimization problem can now be stated as follows: Given ti , si and ri for
i = 1, 2, . . . , n and a suitable failure model, select the subset of the n − 1 potential checkpoint
locations such that the resulting expected total completion time (including the checkpoint
setup and the rollback-recovery times) for the computation is minimized. The objective func-
tion we have selected is a reasonable one for computations that govern time-critical applica-
tions such as chemical process control, air traffic control, etc., in the presence of failures.

The following definitions will be used in the subsequent sections. Let [i, j] denote the
sequence of tasks i, i + 1, . . . , j where j ≥ i. Note that [1, n] is the entire computation. Let
T m

i, j denote the minimum expected execution time for [i, j] over all the possible checkpoint
selections in [i, j] with m or fewer checkpoints. Clearly, T 0

i, j is the expected execution time of
[i, j] without any checkpoints. Among all the checkpoint selections in [i, j] that achieve T m

i, j ,
we consider those with the minimum number of checkpoints. These selections are called m-
optimal solutions for [i, j], and we denote them by Lm

i, j . Note that a m-optimal solution Lm
i, j

for [i, j] contains at most m checkpoints. If Lm
i, j contains no checkpoints (i.e., it is the empty

selection of checkpoints), it is written as Lm
i, j = < >. If Lm

i, j contains k checkpoints
(1 ≤ k ≤ m), we represent it as the ordered sequence of the selected checkpoint locations
Lm

i, j = < u1, u2 , . . . , uk >, where i < u1 < u2 < . . . < uk ≤ j. The rightmost checkpoint loca-
tion of Lm

i, j = < u1, u2 , . . . , uk > is uk , and the rightmost checkpoint location of Lm
i, j = < > is

i . There may be more than one m-optimal solution for [i, j]. From now on, we will consider
only those m-optimal solutions Lm

i, j that satisfy the following additional requirement: Either
Lm

i, j = < > or the rightmost checkpoint location of Lm
i, j is greater than or equal to the rightmost

checkpoint location of any other m-optimal solution for [i, j]. Henceforth, we reserve the
notation Lm

i, j to denote only those m-optimal solutions for [i, j] that satisfy this additional
requirement.

The next section describes an algorithm to determine an optimum checkpoint selection
Ln−1

1,n and the corresponding minimum expected execution time T n−1
1,n for a given problem.

3. The basic algorithm. Consider T k
1, j and T k−1

1, j for some k and j such that k ≥ 1 and
j ≥ 2. Note that either T k

1, j = T k−1
1, j or T k

1, j < T k−1
1, j . Suppose T k

1, j < T k−1
1, j . In this case, any k-

optimal solution for [1, j] must contain exactly k checkpoints. Let h be the location of the
rightmost checkpoint of a k-optimal solution for [1, j]. We must have

T k
1, j = T k−1

1,h−1 + T 0
h, j + sh .

That is, up to k − 1 checkpoints are optimally established in [1, h − 1] and a checkpoint is
established at location h. No checkpoints are established in [h, j]. Let Lk−1

1,h−1 be any
(k − 1)-optimal solution for [1, h − 1]. Then

Lk
1, j = Lk−1

1,h−1 || < h >

must be a k-optimal solution [1, j] (the || operator denotes concatenation of sequences, i.e.,
< u1, . . . , un > || < v > = < u1, . . . , un, v >).

From these observations, it is clear that we can compute T k
1, j and Lk

1, j as follows. Let

T =
1<i≤ j
MIN (T k−1

1,i−1 + T 0
i, j + si)

and let h be the largest index such that T = T k−1
1,h−1 + T 0

h, j + sh. We must have

for i ← 1 until n do
for j ← i until n do compute T 0

i, j ;

for k ← 1 until n − 1 do
begin

T k
1,1 ← T 0

1,1

Lk
1,1 ← < >

end;

for k ← 1 until n − 1 do

for j ← n step −1 until 2 do

begin

T ←
1<i≤ j
MIN (T k−1

1,i−1 + T 0
i, j + si)

Let h be the largest minimizing index above

if T < T k−1
i, j then do

begin

T k
1, j ← T

Lk
1, j ← Lk−1

1,h−1 || < h >

end

else do

begin

T k
1, j ← T k−1

1, j

Lk
1, j ← Lk−1

1, j
end;

end;

FIG. 1. Dynamic programming algorithm for computing the optimum checkpoint selection (and the
corresponding expected execution time) for a n-task computation.

T k
1, j = MIN(T , T k−1

1, j). If T k
1, j = T k−1

1, j then we have Lk
1, j = Lk−1

1, j ; otherwise
Lk

1, j = Lk−1
1,h−1 || < h >.

We just showed that if T 0
i, j , T k−1

1,i and Lk−1
1,i are computed first (for all i’s and j’s such that

1 ≤ i ≤ j), then we can also derive T k
1, j and Lk

1, j . This suggests a dynamic programming algo-
rithm to compute T n−1

1,n and Ln−1
1,n . The algorithm is described in detail (in ‘‘Pidgin Algol’’) in

Fig. 1.

Note that the underlying probabilistic failure model does not explicitly appear in the
algorithm. It is implicitly used only during the initialization of the algorithm, when the T 0

i, j’s
are computed (for all i’s and j’s such that 1 ≤ i ≤ j ≤ n). Therefore, the same algorithm can
be applied to any underlying failure model such that the T 0

i, j’s can be computed.

If we exclude the computation of the T 0
i, j’s, the time complexity of this algorithm is

O(n3). In fact, the inner loop is executed O(n2) times, and the most time-consuming opera-
tion in this inner loop is the MIN1<i≤ j operation. Since j = O(n), this operation requires

O(n)-time.

If we assume that the setup costs and the rollback costs are related as described in the
next section, then we can reduce the complexity of the algorithm to O(n2).

We finally note that computing all the T 0
i, j’s takes O(n2)-time in the two failure models

that we consider in § 5. Therefore, with these models, the overall complexity of the algo-
rithms described in Fig. 1 and in the next section is O(n3) and O(n2), respectively.

4. An improved algorithm for a restricted model. We assume the following relation
between the setup costs and the rollback costs:

For any two checkpoint locations i and j, if si > s j then ri ≥ r j .

Note that if there is a non-decreasing function f relating all the rollback costs to the setup
costs, i.e., ri = f (si) , then the above relation is satisfied. In particular, it is satisfied if for all i
we have ri = α si + β , for some constant α ≥ 0 and β ≥ 0 . It is also satisfied if all the setup
costs or all the rollback costs are equal.

We further assume that the failure model is such that augmenting any segment cannot
decrease the probability of a failure occurring in that segment. Formally, for all i, j and k
such that 1 ≤ i ≤ j ≤ k < n, we hav e pi, j ≥ pi,k , where pi, j denotes the probability that no
failures occur during the execution of [i, j]. With these assumptions, we can prove the fol-
lowing two theorems.

THEOREM 1. Suppose the m-optimal solutions for [i, j] are such that their rightmost
checkpoint location is k, i ≤ k ≤ j. Then, for any p > j the m-optimal solutions for [i, p] are
such that their rightmost checkpoint location is some h, h ≥ k.

THEOREM 2. Suppose the m-optimal solutions for [i, j] are such that their rightmost
checkpoint location is k, i ≤ k ≤ j. Then the (m + 1)-optimal solutions for [i, j] are such that
their rightmost checkpoint location is some h, h ≥ k.

The proofs of these two theorems can be found in the Appendix. From these two theorems
we can immediately derive the following corollary.

COROLLARY. Let a, b, and c be the rightmost checkpoint locations of the (k − 1)-optimal
solutions for [1, j], the k-optimal solutions for [1, j], and the k-optimal solutions for
[1, j + 1], respectively (1 < j, k < n). We have a ≤ b ≤ c.

Using this corollary, we can speed up the basic algorithm described in Fig. 1 by a factor
of O(n). The main idea is to restrict the range of indexes scanned by the MIN operation in the
algorithm’s inner loop. Suppose we want to compute T k

1, j and we already know some Lk−1
1, j

and Lk
1, j+1. Let lk−1

1, j and lk
1, j+1 be the rightmost checkpoint locations of Lk−1

1, j and Lk
1, j+1,

respectively. From the corollary, we know that the rightmost checkpoint location i of any k-
optimal solution of [1, j] is such that lk−1

1, j ≤ i ≤ lk
1, j+1. Therefore, we can compute T k

1, j as fol-
lows:

T ←
lk−1
1, j ≤i≤lk

1, j+1

MIN (T k−1
1,i−1 + T 0

i, j) ,

T ← MIN(T , T k−1
1, j) .

Note that, in the algorithm described in Fig. 1, when T k
1, j is computed, Lk−1

1, j and Lk
1, j+1 have

already been derived in some earlier steps of the algorithm. Therefore, lk−1
1, j and lk

1, j+1 are
known at that point and they can be used to compute T k

1, j as shown above; Lk
1, j is then derived

as in the basic algorithm.

In the basic algorithm of Fig. 1, the range of indexes scanned by the MIN operation to
compute T k

1, j was 1 < i ≤ j. With the algorithm modification that we just described, the range

is lk−1
1, j ≤ i ≤ lk

1, j+1. We now show that this modification results in an O(n2) algorithm1. Note
first that a MINa≤i≤b operation in this algorithm takes b − a + 1 steps, i.e., O(b − a) time. Let
q, 0 ≤ q ≤ n − 1, be a fixed positive constant. Let T (q) be the following set

T (q) = {T k
1, j | 2 ≤ j ≤ n, 1 ≤ k ≤ n − 1, and j − k = q}.

Consider the time taken by all the MIN operations performed while computing all the ele-
ments of T (q).

When T 1
1,q+1 is computed, the range of indexes is 1 ≤ i ≤ l1

1,q+2.

When T 2
1,q+2 is computed, the range of indexes is l1

1,q+2 ≤ i ≤ l2
1,q+3.

When T 3
1,q+3 is computed, the range of indexes is l2

1,q+3 ≤ i ≤ l3
1,q+4.

...

When T n−q−1
1,n−1 is computed, the range of indexes is ln−q−2

1,n−1 ≤ i ≤ ln−q−1
1,n .

When T n−q
1,n is computed, the range of indexes is ln−q−1

1,n ≤ i ≤ n.

By summing up the number of computation steps needed by all these MIN operations, we get
a total of n + (n − q) steps. Therefore, for any fixed q (0 ≤ q ≤ n − 1), the MIN operations
performed while computing all the elements of T (q) take a total of O(n) time. By considering
all the n possible values of q, we conclude that the MIN operations performed while comput-
ing all the T k

1, j’s such that j − k ≥ 0 take a total of O(n2) time. Similarly, we can show that
the MIN operations performed while computing all the T k

1, j’s such that j − k < 0 take O(n2)
time. Therefore, during the execution of the algorithm the total time taken by MIN is O(n2),
and the algorithm’s complexity is also O(n2).

5. Models of failure.

5.1. Discrete case. Our first failure model is discrete where failures occur indepen-
dently. In the absence of failures each task i has a known completion time ti and a given
probability pi of completing without failures (i.e., in time ti). Failures occurring during the
execution of task i are detected only at the end of task i. For example, failure detection could
be done by checking if an integrity assertion about the state holds at the conclusion of the
task. In this model we also assume that the ti and the rollback times ri are integers.

To use the algorithms of § 3 and § 4 with this failure model, we need to compute all the
T 0

i, j’s. Consider a segment [i, j]. Let the random variable Yi, j denote the time required to
execute [i, j] in the presence of failures and no checkpoints. Note that T 0

i, j = E[Yi, j]. Let
qt = Prob[Yi, j = t]. The moment generating function Φ(z) = Σ∞t=0 qt z

t of this distribution can
be derived as follows. The execution of [i, j] takes at least ti, j = Σ j

k=i tk units of time. There-
fore,

q0 = q1 = . . . = qti, j−1 = 0 .

The execution of [i, j] takes exactly ti, j units of time only if no failures occur. Then we have

1 We exclude the time taken to compute all the T 0
i, j’s during the initialization of the algorithm. This time de-

pends on the underlying failure model. We consider two failure models in § 5, and with both models it takes O(n2)
time to compute all the T 0

i, j’s.

qti, j
= pi pi+1

. . . p j .

The execution of [i, j] takes more than ti, j units of time only if there is at least one failure dur-
ing the execution. Consider the first failure that occurs after the computation is started. By
conditioning on all the possible tasks where this failure could occur, we derive the following
recurrence relation for qt :

qt = (1 − pi)qt−(ti+ri) + pi(1 − pi+1)qt−(ti+ti+1+ri) + . . .

+ pi pi+1
. . . p j−1(1 − p j)qt−(ti+ti+1+...+t j+ri)

for all t such that t > ti, j . Multiplying both sides of this equation by zt and summing over all
t, t > ti, j , we get

Φ(z) − pi pi+1
. . . p j zti+ti+1+...+t j

= (1 − pi) zti+riΦ(z) + pi(1 − pi+1) zti+ti+1+riΦ(z) + . . .

+ pi pi+1
. . . p j−1(1 − p j) zti+...+t j+riΦ(z) .

Therefore,

Φ(z) =

pi pi+1
. . . p j zti+ti+1+...+t j

1 − (1 − pi)zti+ri − pi(1 − pi+1)zti+ti+1+ri − . . . − pi pi+1
. . . p j−1(1 − p j)zti+...+t j+ri

By taking the derivatives of Φ(z) and setting z to one, we can find all the moments of the ran-
dom variable Yi, j and, in particular, we can obtain T 0

i, j = E[Yi, j]. It is then easy to verify that
the following recurrence relation holds

T 0
i,i =

ti

pi
+ (

1

pi
− 1) ri

T 0
i, j =

1

p j
(T 0

i, j−1 + t j) + (
1

p j
− 1) ri for all j, j > i .

Using these recurrence relations, we can compute all the T 0
i, j’s (for i and j, 1 ≤ i ≤ j ≤ n) in

O(n2)-time.

5.2. Continuous case. Rather than assuming the task executions to constitute indepen-
dent Bernoulli trials as we have done in the previous section, let us consider the case where
failures occur according to a stationary renewal process throughout the computation. In other
words, the inter-failure times are independent and identically distributed random variables.
We assume the existence of a mechanism to detect failures as soon as they occur. As before,
when a failure is detected, the computation is rolled back to the most recent checkpoint before
it can be resumed. We assume that the checkpoint setups and rollbacks constitute renewal
points.

Let the random variable X denote the time until the next failure after a renewal.
F(x) = Prob[X ≤ x] denotes the distribution function of X which is assumed known. As
before, let the random variable Yi, j denote the time required to execute [i, j] in the presence of
failures and no checkpoints. Let V (t) = Prob[Yi, j ≤ t]. We proceed as follows in order to

derive an expression for this distribution.

As before, ti, j = Σ j
k=i tk be the time required to execute [i, j] without any failures.

Clearly, the execution time in the presence of failures cannot be less than this time; that is,
V (t) = 0 for t < ti, j . Conditioning on the time until the first failure after a renewal, we have

V (t) =
∞

0
∫ Prob[Yi, j < t |X = x]dF(x), t ≥ ti, j .

If the length of the first failure-free interval is greater than ti, j , the computation completes in
exactly ti, j time units. Consequently, the above equation can be written as

V (t) =

ti, j

0
∫ Prob[Yi, j < t |X = x]dF(x) + (1 − F(ti, j)), t ≥ ti, j .

If, however, X = x < ti, j , the computation must be rolled back at least once. Since resuming
the computation after a rollback constitutes a renewal point, the probability that the total
execution time for [i, j] will be at most t time units after having expended x time units due to
the failure and ri time units for the rollback is simply given by V (t − x − ri). This observation
allows us to write V (t) as a renewal equation [9]

V (t) =

ti, j

0
∫ V (t − x − ri)dF(x) + (1 − F(ti, j)).

Making the change of variable y = x + ri and the substitutions

z(x) =




0 ,

1 − F(ti, j) ,

x < ti, j ,

x ≥ ti, j

and

G(x) =







0 ,

F(x − ri) ,

F(ti, j) ,

x < ri ,

ri ≤ x ≤ ti, j + ri ,

x > ti, j + ri ,

we obtain

V (t) =
t

0
∫ V (t − y)dG(y) + z(t), for all t.

Note that the integral represents the convolution of the functions V and g where
g(x) = dG(x)/dx. Taking Laplace transforms yields

Ṽ (s) = Ṽ (s)g̃(s) + z̃(s)

where f̃ (s) = ∫
∞

0
e−s x f (x)dx denotes the Laplace transform of the function f (x). Finally,

the transform of the distribution we are interested is given by

Ṽ (s) =
z̃(s)

1 − g̃(s)

where z̃(s) = e−s ti, j (1 − F(ti, j)) / s and g̃(s) = e−s ri ∫
ti, j

0
e−s x dF(x).

Whether the inverse transform of Ṽ (s) has a closed form solution depends on the nature
of F(x). Note that the probability density function of Yi, j , v(t) = dV (t) / dt, has the transform

ṽ(s) = sṼ (s) =
e−s ti, j (1 − F(ti, j))

1 − g̃(s)
.

Since the algorithms given in the previous sections need only the values for T 0
i, j (by definition,

this is the first moment of Yi, j) for all 1 ≤ i ≤ n and i ≤ j ≤ n, we do not have to obtain the
inverse transform of ṽ(s). All of the moments of Yi, j can be obtained by differentiating the
transform of its density. In particular, the first moment is given by

(5.2.1)T 0
i, j = E[Yi, j] = −

d

ds
ṽ(s)



s=0

= ti, j −

d

ds
g̃(s)|s=0

1 − g̃(0)

= ti, j +

ri F(ti, j) +

ti, j

0
∫ tdF(t)

1 − F(ti, j)
.

As an example, we will derive an expression for E[Yi, j] in the presence of Poisson fail-
ures (i.e., F(x) = 1 − e−λ x and dF(x) = λe−λ x dx where λ is the failure rate). It is important to
note that the above derivation of E[Yi, j] does not rely on the inter-failure times being expo-
nentially distributed. We hav e selected the example simply to define one possible form of
F(x). Substituting the expressions for F(x) and dF(x) into equation (5.2.1) and simplifying,
we obtain

T 0
i, j = E[Yi, j] =

(eλ ti, j − 1)(λri + 1)

λ
.

6. Extensions. Up to this point, we have assumed that the checkpoint setups and roll-
backs are failure-free. We now discuss how each one of these assumptions can be easily
relaxed.

Let the checkpoint setups be subject to the same failure model as the normal tasks. Con-
sider [i, j] and our computation of T 0

i, j for this segment. Recall that in the algorithm, T 0
i, j

denotes the expected execution time of [i, j] giv en that a checkpoint is established at the end
of task j. We consider this checkpoint setup to be a new task of length s j+1 which augments
segment [i, j]. (Obviously, if j = n, the completion of the computation, rather than a check-
point, marks the end of the segment. For notational convenience, we define sn+1 = 0.) The
execution time of the augmented segment without any failures becomes ti, j = Σ j

k=i tk + s j+1 .
Following this change, the expected execution time T 0

i, j of the augmented segment can be
computed as shown in § 5. Clearly, since the checkpoint setup costs are now included in the
T 0

i, j’s, the minimization step in the algorithm of Fig. 1 becomes

T ←
1<i≤ j
MIN (T k−1

1,i−1 + T 0
i, j) .

Suppose now that checkpoint setups are failure-free but the rollbacks are subject to fail-
ures. We can apply the algorithm of Fig. 1 provided that the T 0

i, j’s are computed appropri-
ately. For example, in our discrete model of failure, let ρ i be the probability that a rollback to
location i is failure-free. Proceeding in a similar fashion to § 5.1, we can derive the following

recurrence relation for the new T 0
i, j’s:

T 0
i,i =

ti

pi
+ (

1

pi
− 1)

ri

ρ i
,

T 0
i, j =

1

p j
(T 0

i, j−1 + t j) + (
1

p j
− 1)

ri

ρ i
for all j, j > i.

This extension can be similarly incorporated into the continuous failure model analysis.

Finally, since the necessary modifications for the above extensions to the problem are
orthogonal, both of them could be present in the basic algorithm.

7. Discussion and conclusions. We hav e presented an algorithm to select a set of check-
point locations out of the n − 1 candidate locations such that the resulting expected execution
time for the computation is minimized. The algorithm can be applied to any failure model
such that the expected execution time can be computed for any segment with no checkpoints.
The time complexity of this algorithm was shown to be O(n3) where n is the number of tasks
making up the computation. We also described an O(n2) algorithm for the case that, for all i
and j, si > s j implies ri ≥ r j . In most applications, this is a reasonable assumption since
rolling back the state involves loading the same state information which was saved at the
checkpoint.

The objective function we have selected for the optimization problem is the expected
execution time. For certain time-critical applications, we may be interested in knowing the
probability with which the computation will complete in less than some given time. Note
that, given the optimum checkpoint locations, the computation can be viewed as a sequence of
segments rather than tasks where each segment is delimited by a checkpoint. The execution
times for these segments are independent and we have derived their moment generating func-
tions (in the two failure models that we considered). The moment generating function for the
total execution time of the computation is simply the product of the individual segment
moment generating functions. In principle, this function can be inverted to obtain the distri-
bution of the total execution time. Given this distribution, confidence bounds for the total
execution time can be derived. If inverting the moment generating function is not possible,
we can use it to derive the mean, the variance, and any higher moments of the total execution
time (note that the mean is already part of the algorithm’s output). Given these values, we can
derive the probability with which the computation completes within a given interval about the
known mean by an application of Chebyshev’s Inequality.

If the static structure of a computation is not simple, its dynamic characterization as a
sequence of tasks may be difficult to obtain. Given this observation, a generalization of our
work would represent the static computation as a Directed Acyclic Graph (DAG) where the
vertices are tasks and an edge (i, j) denotes a possible execution where task j follows task i.
Here we may want to position the checkpoints on this DAG in a way that minimizes the maxi-
mum expected execution time over all the possible execution paths. If we augment the DAG
by associating probabilities with each edge such that the two tasks connected by the edge
appear in succession with that probability, we can pose the problem of selecting checkpoint
locations such that the total expected execution time for the computation is minimized.

Appendix. We introduce some definitions to be used in the following proofs leading to
those of Theorems 1 and 2 of § 4. Consider segment [i, j] for some i ≤ j . Let pi, j be the

probability that no failures occur during the execution of [i, j], α i, j be 1/pi, j and ti, j be the
execution time of [i, j] when no failures occur. Giv en that a failure occurs during the execu-
tion of [i, j], li, j denotes the expected time interval from the beginning of task i to the time the
failure is detected.

LEMMA 1. For all i and j such that i ≤ j we have

T 0
i, j = ti, j + (α i, j − 1) (li, j + ri) .

For all i, j and k such that i < k ≤ j we have

T 0
i, j = α k, j T 0

i,k−1 + tk, j + (α k, j − 1) (lk, j + ri) .

Proof. We present the proofs for the case where the failure times are discrete random
variables. The continuous case proofs follow simply by replacing the sums with integrals and
discrete probabilities with density functions.

The first equality can be proven as follows. Let the random variable X denote the time
until the first failure is detected after the beginning of [i, j]. Conditioning on this time, we
have

T 0
i, j = ti, j ⋅ Prob[X > ti, j] +

x≤ti, j

Σ (x + ri + T 0
i, j) ⋅ Prob[X = x].

By definition, pi, j = Prob[X > ti, j]. Consequently,

T 0
i, j = ti, j pi, j + (ri + T 0

i, j) (1 − pi, j) +
x≤ti, j

Σ xProb[X = x].

Noting that, by definition, li, j = Σx≤ti, j
xProb[X = x]/(1 − pi, j), and solving for T 0

i, j we have

pi, j T 0
i, j = pi, j ti, j + (1 − pi, j) (li, j + ri) . Dividing both sides by pi, j results in the desired

expression.

To prove the second equality, we condition on the time until the first failure is detected
after the beginning of [k, j]. Letting X denote this time, we have

T 0
i, j = T 0

i,k−1 + tk, j ⋅ Prob[X > tk, j] +
x≤tk, j

Σ (x + ri + T 0
i, j) ⋅ Prob[X = x].

As before, rewriting this equation in terms of lk, j , and solving for T 0
i, j we obtain

pk, j T 0
i, j = T 0

i,k−1 + pk, j tk, j + (1 − pk, j) (lk, j + ri) .

Dividing the equation by pk, j completes the proof.

LEMMA 2. For all i, j and k such that i < k ≤ j and α k, j ≠ 1 we have

T 0
i,k−1 + T 0

k, j + sk ≤ T 0
i, j if and only if sk ≤ (α k, j − 1) (ri + T 0

i,k−1 − rk) .

Furthermore, the equality holds in the left expression if and only if it holds in the right one.

Proof. From Lemma 1 we have

T 0
i, j = α k, j T 0

i,k−1 + tk, j + (α k, j − 1) (lk, j + ri)

and

T 0
k, j = tk, j + (ak, j − 1) (lk, j + rk) .

Therefore T 0
i,k−1 + T 0

k, j + sk ≤ T 0
i, j if and only if

T 0
i,k−1 + tk, j + (α k, j − 1) (lk, j + rk) + sk ≤α k, j T 0

i,k−1 + tk, j + (α k, j − 1) (lk, j + ri)

This inequality holds if and only if

(α k, j − 1) (lk, j + rk) + sk ≤ (α k, j − 1) (lk, j + ri + T 0
i,k−1) .

Since α k, j > 1 , this is satisfied if and only if

lk, j + rk + sk (α k, j − 1)−1 ≤ lk, j + ri + T 0
i,k−1 .

This last inequality holds if and only if sk ≤ (α k, j − 1) (ri + T 0
i,k−1 − rk) . It is also easy to

check that T 0
i,k−1 + T 0

k, j + sk = T 0
i, j if and only if sk = (α k, j − 1) (ri + T 0

i,k−1 − rk) .

LEMMA 3. Suppose the m-optimal solutions for [i, j] are such that their rightmost check-
point location is k , i < k ≤ j . Then we have α k, j > 1 and sk < (α k, j − 1) (ri + T 0

i,k−1 − rk) .

Proof. The proof is by induction on m (note that by hypothesis m ≥ 1).

Suppose m = 1 . By hypothesis we have

(L3.1)T 1
i, j = T 0

i,k−1 + T 0
k, j + sk < T 0

i, j .

If we show that α k, j ≠ 1 then Lemma 3 follows directly from Lemma 2. Suppose α k, j = 1 .
From Lemma 1 we have T 0

i, j = T 0
i,k−1 + tk, j and T 0

k, j = tk, j . Therefore, T 0
i, j = T 0

i,k−1 + T 0
k, j

and this contradicts (L3.1). So α k, j > 1 and Lemma 3 follows.

Now assume Lemma 3 holds for all m , 1 ≤ m < r , for some r > 1 . We show that it
must also hold for m = r . Suppose the r-optimal solutions for [i, j] are such that their right-
most checkpoint location is k , i < k ≤ j . Let Lr−1

i,k−1 be a (r − 1)-optimal solution for
[i, k − 1] . We consider Lr

i, j = Lr−1
i,k−1 || < k > . Note that this must be a r-optimal solution for

[i, j] . Let h be the rightmost checkpoint location of Lr−1
i,k−1 . We hav e i ≤ h < k ≤ j .

Assume first that i < h . By induction hypothesis we have
sh < (α h,k−1 − 1) (ri + T 0

i,h−1 − rh) , and α h,k−1 > 1 . Note that sh ≥ 0 , and therefore

(L3.2)rh < ri + T 0
i,h−1 .

Since L1
h, j = < k > is a 1-optimal solution for [h, j] then, by induction hypothesis, we have

α k, j > 1 and sk < (α k, j − 1) (rh + T 0
h,k−1 − rk) . Suppose, for contradiction, that

sk ≥ (α k, j − 1) (ri + T 0
i,k−1 − rk) . Combining the last two inequalities we have

ri + T 0
i,k−1 < rh + T 0

h,k−1 . From Lemma 1 we have

ri + [α h,k−1 T 0
i,h−1 + th,k−1 + (α h,k−1 − 1) (lh,k−1 + ri)]

< rh + [th,k−1 + (α h,k−1 − 1) (lh,k−1 + rh)] .

So (ri + T 0
i,h−1)α h,k−1 < rh α h,k−1 , and ri + T 0

i,h−1 < rh contradicting (L3.2). Therefore we
must have sk < (α k, j − 1) (ri + T 0

i,k−1 − rk) .

Suppose now that i = h . In this case it is clear that Lr−1
i,k−1 = < > and Lr

i, j = < k > , there-
fore L1

i, j = < k > , i.e., < k > is the 1-optimal checkpoint selection for [i, j]. Then, by induc-
tion hypothesis, we have α k, j > 1 and sk < (α k, j − 1) (ri + T 0

i,k−1 − rk).

LEMMA 4. Suppose the m-optimal solutions for [i, j] are such that the rightmost check-
point location is k , i < k ≤ j . Then for all h , i < h < k , we have

sk − sh ≤ (α k, j − 1) (rh + T 0
h,k−1 − rk) .

Proof. We prove the lemma by induction on m (note that by hypothesis m ≥ 1).

Assume first that m = 1 . Suppose, for contradiction, that for some h , i < h < k , we
have

(L4.1)sk − sh > (α k, j − 1) (rh + T 0
h,k−1 − rk).

From Lemma 3 we have sk < (α k, j − 1) (ri + T 0
i,k−1 − rk) , and α k, j > 1 . Therefore,

rh + T 0
h,k−1 < ri + T 0

i,k−1 , and from Lemma 1 we have

rh + [th,k−1 + (α h,k−1 − 1) (lh,k−1 + rh)]

< ri + [α h,k−1 T 0
i,h−1 + th,k−1 + (α h,k−1 − 1) (lh,k−1 + ri)]

so, α h,k−1 rh < α h,k−1 (ri + T 0
i,h−1) , and

(L4.2)rh < ri + T 0
i,h−1.

Since < k > is the 1-optimal solution for [i, j] we hav e

T 1
i, j = T 0

i,k−1 + T 0
k, j + sk ≤ T 0

i,h−1 + T 0
h, j + sh

and therefore T 0
i,k−1 − T 0

i,h−1 + sk ≤ T 0
h, j − T 0

k, j + sh . We define ∆1 = T 0
i,k−1 − T 0

i,h−1 and
∆2 = T 0

h, j − T 0
k, j , and we write the last inequality as

(L4.3)∆1 + sk ≤ ∆2 + sh .

Applying Lemma 1 we have

∆1 = [α h,k−1 T 0
i,h−1 + th,k−1 + (α h,k−1 − 1) (lh,k−1 + ri)] − T 0

i,h−1

so

∆1 = th,k−1 + (α h,k−1 − 1) (lh,k−1 + ri + T 0
i,h−1) .

We also have

∆2 = [α k, jT
0
h,k−1 + tk, j + (α k, j − 1) (lk, j + rh)] − [tk, j + (α k, j − 1) (lk, j + rk)]

and therefore

∆2 = α k, jT
0
h,k−1 + (α k, j − 1) (rh − rk) .

From (L4.1) we have rh − rk < −T 0
h,k−1 + (sk − sh) (α k, j − 1)−1 . Therefore,

∆2 < α k, j T 0
h,k−1 − (α k, j − 1) T 0

h,k−1 + sk − sh , that is

(L4.4)∆2 < T 0
h,k−1 + sk − sh .

From (L4.3) and (L4.4) we obtain

(L4.5)∆1 < T 0
h,k−1 ,

that is, th,k−1 + (α h,k−1 − 1) (lh,k−1 + ri + T 0
i,h−1) < T 0

h,k−1 . By Lemma 1 we have

th,k−1 + (α h,k−1 − 1) (lh,k−1 + ri + T 0
i,h−1) < th,k−1 + (α h,k−1 − 1) (lh,k−1 + rh)

so (α h,k−1 − 1) (ri + T 0
i,h−1) < (α h,k−1 − 1) rh . Suppose α h,k−1 = 1 . Then ∆1 = th,k−1 and

T 0
h,k−1 = th,k−1 , a contradiction to (L4.5). So we must have α h,k−1 > 1 and ri + T 0

i,h−1 < rh .
But this contradicts (L4.2) and therefore sk − sh ≤ (α k, j − 1) (rh + T 0

h,k−1 − rk) for all h,
i < h < k .

Now assume the lemma holds for all m, 1 ≤ m < r, for some r > 1. We show that it must
also hold for m = r . Suppose the r-optimal solutions for [i, j] are such that their rightmost
checkpoint location is k, i < k ≤ j . Let Lr−1

i,k−1 be a (r − 1)-optimal solution for [i, k − 1] . We
consider Lr

i, j = Lr−1
i,k−1 || < k > . Note that this must be a r-optimal solution for [i, j] . Let p

be the location of the rightmost checkpoint of Lr−1
i,k−1 . Note that i ≤ p < k ≤ j .

Assume first that i < p . Consider some h such that i < h < k . There are two possible
cases, either p < h or h ≤ p . We show that in both cases
sk − sh ≤ (α k, j − 1) (rh + T 0

h,k−1 − rk) .

(i) Suppose i < p < h < k ≤ j . Since k must be the (rightmost) checkpoint location of the
1-optimal solution for [p, j] then, by induction hypothesis, we have
sk − sh ≤ (α k, j − 1) (rh + T 0

h,k−1 − rk) .

(ii) We now consider h such that i < h ≤ p < k ≤ j . Suppose, for contradiction, that
sk − sh > (α k, j − 1) (rh + T 0

h,k−1 − rk) . Since L1
p, j = < k > is a 1-optimal solution for [p, j]

then, by Lemma 3, we have sk < (α k, j − 1) (r p + T 0
p,k−1 − rk) , and α k, j > 1 . Combining the

last two inequalities we have rh + T 0
h,k−1 < r p + T 0

p,k−1 . Therefore h ≠ p (i.e., h < p), and
from Lemma 1 we have

rh + [α p,k−1 T 0
h,p−1 + t p,k−1 + (α p,k−1 − 1) (l p,k−1 + rh)]

< r p + [t p,k−1 + (α p,k−1 − 1)(l p,k−1 + r p)] .

By simplifying we obtain

(L4.6)rh + T 0
h,p−1 < r p .

Since the rightmost checkpoint location of the (r − 1)-optimal solutions for [i, k − 1] is p,
and i < h < p ≤ k − 1 , then, by induction hypothesis, we have

(L4.7)s p − sh ≤ (α p,k−1 − 1) (rh + T 0
h,p−1 − r p) .

From Lemma 3 we also have α p,k−1 > 1 . From (L4.6) and (L4.7) we obtain s p − sh < 0 .
From our assumption about checkpointing costs either s p = sh, a contradiction, or r p ≤ rh

which contradicts (L4.6). So we must have sk − sh ≤ (α k, j − 1) (rh + T 0
h,k−1 − rk) .

Suppose now that i = p . In this case it is clear that Lr−1
i,k−1 = < > and Lr

i, j = < k >, and
therefore L1

i, j = < k > , i.e., < k > is the 1-optimal checkpoint selection for [i, j]. Then, by
induction hypothesis, we have sk − sh ≤ (α k, j − 1) (rh + T 0

h,k−1 − rk) , for all h, i ≤ h < k .

LEMMA 5. Suppose the m-optimal solutions for [i, j] are such that their rightmost check-
point location is k, i ≤ k ≤ j . Consider h and p such that i ≤ h ≤ k ≤ j ≤ p . If i = h or
sh ≤ sk then we have T 0

k,p − T 0
k, j ≤ T 0

h,p − T 0
h, j .

Proof. The result is obvious for i = k, or h = k, or j = p. Otherwise, suppose that for
contradiction

(L5.1)T 0
k,p − T 0

k, j > T 0
h,p − T 0

h, j

for some i ≤ h < k ≤ j < p such that i = h or sh ≤ sk . From Lemma 1 we have

T 0
k,p = α j+1,p T 0

k, j + t j+1,p + (α j+1,p − 1) (l j+1,p + rk)

and therefore

(L5.2)T 0
k,p − T 0

k, j = t j+1,p + (α j+1,p − 1) (T 0
k, j + l j+1,p + rk) .

Similarly we have

(L5.3)T 0
h,p − T 0

h, j = t j+1,p + (α j+1,p − 1) (T 0
h, j + l j+1,p + rh) .

From (L5.1), (L5.2) and (L5.3) we have

(α j+1,p − 1) (T 0
k, j + l j+1,p + rk) > (α j+1,p − 1) (T 0

h, j + l j+1,p + rh) .

Suppose α j+1,p = 1 . In this case, from (L5.2) and (L5.3) we have
T 0

k,p − T 0
k, j = T 0

h,p − T 0
h, j = t j+1,p which contradicts (L5.1). Therefore α j+1,p > 1 , and we have

(L5.4)rk + T 0
k, j > rh + T 0

h, j .

Note that h < k ≤ j and by applying Lemma 1 we derive

rk + [tk, j + (α k, j − 1) (lk, j + rk)] > rh + [α k, j T 0
h,k−1 + tk, j + (α k, j − 1) (lk, j + rh)] .

Then we have α k, j rk > α k, j (rh + T 0
h,k−1) and

(L5.5)rk > rh + T 0
h,k−1 .

From Lemma 3, we have sk < (α k, j − 1) (ri + T 0
i,k−1 − rk) , and α k, j > 1 , therefore

(L5.6)rk < ri + T 0
i,k−1 .

If i = h then (L5.6) contradicts (L5.5). Suppose i < h . From Lemma 4, we have
sk − sh ≤ (α k, j − 1) (rh + T 0

h,k−1 − rk) . Therefore, if sh ≤ sk , then rk ≤ rh + T 0
h,k−1 which

also contradicts (L5.5). Then neither i = h nor sh ≤ sk and the proof is complete.

LEMMA 6. If i ≤ h ≤ k ≤ j and rk ≤ rh then T 0
k, j ≤ T 0

h, j .

Proof. The lemma is obvious for h = k . We now assume i ≤ h < k ≤ j . From Lemma
1 we hav e

T 0
h, j = α k, j T 0

h,k−1 + tk, j + (α k, j − 1) (lk, j + rh)

and T 0
k, j = tk, j + (α k, j − 1) (lk, j + rk) . Therefore we have

T 0
h, j − T 0

k, j = α k, j T 0
h,k−1 + (α k, j − 1) (rh − rk)

and since rk ≤ rh then T 0
h, j − T 0

k, j ≥ 0 .

LEMMA 7. If i ≤ h ≤ k ≤ j ≤ p and rk ≤ rh then T 0
h, j − T 0

k, j ≤ T 0
h,p − T 0

k,p .

Proof. The lemma is obvious if h = k or j = p . We now assume that
i ≤ h < k ≤ j < p . In the proof of Lemma 6 we showed that

T 0
h, j − T 0

k, j = α k, j T 0
h,k−1 + (α k, j − 1) (rh − rk)

and similarly we have

T 0
h,p − T 0

k,p = α k,p T 0
h,k−1 + (α k,p − 1) (rh − rk) .

Since p > j it is clear that α k,p ≥ α k, j . By hypothesis we also have rh − rk ≥ 0 and therefore
T 0

h, j − T 0
k, j ≤ T 0

h,p − T 0
k,p .

THEOREM 1. Suppose the m-optimal solutions for [i, j] are such that their rightmost
checkpoint location is k, i ≤ k ≤ j . Then for any p > j the m-optimal solutions for [i, p] are
such that their rightmost checkpoint location is some h, h ≥ k .

Proof. If i = k, the theorem is obvious. Assume i < k and therefore m ≥ 1 . Suppose,
for contradiction, that the rightmost checkpoint location of the m-optimal solutions for [i, p]
is h, i ≤ h < k .

Assume first that i < h . By hypothesis we must have

(T1.1)T m−1
i,k−1 + T 0

k, j + sk ≤ T m−1
i,h−1 + T 0

h, j + sh .

From our definition of h we also have

(T1.2)T m−1
i,k−1 + T 0

k,p + sk ≥ T m−1
i,h−1 + T 0

h,p + sh .

Suppose equality holds in (T1.1). Then the (m − 1)-optimal solutions for [i, h − 1] cannot
include fewer checkpoints than the (m − 1)-optimal solutions for [i, k − 1] . Therefore equal-
ity cannot also hold in (T1.2), otherwise k would be the rightmost checkpoint location of the
m-optimal solutions for [i, p] contradicting our definition of h. So equality cannot hold
simultaneously in (T1.1) and in (T1.2). Then, subtracting (T1.1) from (T1.2) we obtain

(T1.3)T 0
k,p − T 0

k, j > T 0
h,p − T 0

h, j .

If sh ≤ sk then (T1.3) contradicts Lemma 5; therefore sk < sh . From our assumption about
checkpointing costs we have rk ≤ rh . Then, from Lemma 6, we also have T 0

k, j ≤ T 0
h, j , so

(T1.4)rk + T 0
k, j ≤ rh + T 0

h, j .

However, in the proof of Lemma 5 we showed that (T1.3) implies rk + T 0
k, j > rh + T 0

h, j which
contradicts (T1.4).

Suppose now that i = h , i.e., the m-optimal solutions for [i, p] contain no checkpoints
(Lm

i,p = < >). In this case we must have

(T1.5)T m−1
i,k−1 + T 0

k, j + sk < T 0
i, j .

Since Lm
i,p = < > then

(T1.6)T m−1
i,k−1 + T 0

k,p + sk ≥ T 0
i,p .

Subtracting (T1.5) from (T1.6) we obtain (T1.3). From (T1.3) we can also derive a contradic-
tion exactly as before, and the proof is complete.

THEOREM 2. Suppose the m-optimal solutions for [i, j] are such that their rightmost
checkpoint location is k, i ≤ k ≤ j . Then the (m + 1)-optimal solutions for [i, j] are such that
their rightmost checkpoint location is some h, h ≥ k .

Proof. If i = k, the theorem is obvious. Assume i < k and therefore m ≥ 1 . If
T m+1

i, j = T m
i, j then m-optimal solutions for [i, j] are also (m + 1)-optimal solutions for [i, j] and

the theorem clearly holds. We now assume T m+1
i, j < T m

i, j . Note that in this case (m + 1)-opti-
mal solutions for [i, j] hav e exactly m + 1 checkpoints. Let g be the number of checkpoints in
the m-optimal solutions for [i, j]. Note that 1 ≤ g ≤ m . We form a particular m-optimal solu-
tion Lm

i, j = < ug, ug−1 , . . . , u1 > for [i, j] as follows. Let u1 be the rightmost checkpoint loca-
tion of the m-optimal solutions for [i, j] , let u2 be the rightmost checkpoint location of the
(m − 1)-optimal solutions for [i, u1 − 1] , . . . , and let ug be the rightmost checkpoint location
of the [(m + 1) − g]-optimal solutions for [i, ug−1 − 1] . Note that with this construction
< ug, ug−1 , . . . , u f > is a [(m + 1) − f]-optimal solution for [i, u f −1 − 1] , for all f ,
2 ≤ f ≤ g . By hypothesis we have u1 = k . We also form in a similar way a particular
(m + 1)-solution Lm+1

i, j = < vm+1, vm , . . . , v1 > for [i, j] . We define v1 = h . Suppose, for
contradiction, that h < k (i.e., v1 < u1). There are two possible cases. We show that each one
leads to a contradiction.

I. Suppose first that vm ≤ ug . Note that vm+1 < vm and therefore vm+1 < ug . Since
Lm

i, j = < ug, ug−1 , . . . , u1 > is a m-optimal solution for [i, j] we hav e

T m
i, j = T 0

i,ug − 1 +
1

l=g−1
Σ T 0

ul+1,ul − 1 + T 0
u1, j +

1

l=g
Σ sul

and

T m
i, j ≤ T 0

i,vm − 1 +
1

l=m−1
Σ T 0

vl+1,vl − 1 + T 0
v1, j +

1

l=m
Σ svl

where the indexes of the summations scan the segments from left to right, and the summation
b

l=a
Σ ... is defined to be zero if a < b .

Therefore,

(T2.1)T 0
i,ug − 1 − T 0

i,vm − 1 + F ≤ 0

where

F =
1

l=g−1
Σ T 0

ul+1,ul − 1 −
1

l=m−1
Σ T 0

vl+1,vl − 1 + T 0
u1, j − T 0

v1, j +
1

l=g
Σ sul

−
1

l=m
Σ svl

.

Since Lm+1
i, j = < vm+1, vm , . . . , v1 > is a (m + 1)-optimal solution for [i, j] we hav e

T m+1
i, j = T 0

i,vm+1 − 1 + T 0
vm+1,vm − 1 +

1

l=m−1
Σ T 0

vl+1,vl − 1 + T 0
v1, j + svm+1

+
1

l=m
Σ svl

.

(T2.2)

Note that if the < vm+1, ug, ug−1 , . . . , u1 > selection of checkpoints achieved the time T m+1
i, j

(or less) this would contradict our assumption that the rightmost checkpoint location of the
(m + 1)-optimal solutions for [i, j] is v1 < u1 . Therefore we must have

T m+1
i, j < T 0

i,vm+1 − 1 + T 0
vm+1,ug − 1 +

1

l=g−1
Σ T 0

ul+1,ul − 1 + T 0
u1, j + svm+1

+
1

l=g
Σ sul

.

(T2.3)

Subtracting (T2.2) from (T2.3) we get

(T2.4)0 < T 0
vm+1,ug − 1 − T 0

vm+1,vm − 1 + F .

From (T2.1) and (T2.4) we have

(T2.5)T 0
vm+1,ug − 1 − T 0

vm+1,vm − 1 > T 0
i,ug − 1 − T 0

i,vm − 1 .

Note that i < vm+1 ≤ vm − 1 ≤ ug − 1 and < vm+1 > is the 1-optimal solution for [i, vm − 1] .
By Lemma 5 we have

T 0
vm+1,ug − 1 − T 0

vm+1,vm − 1 ≤ T 0
i,ug − 1 − T 0

i,vm − 1

which contradicts (T2.5).

II. Suppose now that vm > ug . Let k be the minimum r such that v1 ≤ u1 , v2 ≤ u2 , . . . ,
vr−1 ≤ ur−1 , and vr > ur . Note that such k exists because vm > ug (and therefore vg > ug).
There are two possible cases.

(i) Suppose vk+1 ≤ uk . In this case we have vk+1 ≤ uk < vk < vk−1 ≤ uk−1 . Since
Lm

i, j = < ug , . . . , u1 > is a m-optimal solution for [i, j] we hav e

T m
i, j =T 0

i,ug − 1 +
k

l=g−1
Σ T 0

ul+1,ul − 1 + T 0
uk ,uk−1 − 1 +

1

l=k−2
Σ T 0

ul+1,ul − 1 + T 0
u1, j +

1

l=g
Σ sul

.

(T2.6)

The checkpoint selection < ug , . . . , uk , vk−1 , . . . , v1 > cannot achieve a smaller time than T m
i, j

for [i, j] . Therefore we have

(T2.7)T m
i, j ≤ T (u, v)

where T (u, v) is defined as

T (u, v) = T 0
i,ug − 1 +

k

l=g−1
Σ T 0

ul+1,ul − 1 +T 0
uk ,vk−1 − 1

+
1

l=k−2
Σ T 0

vl+1,vl − 1 +T 0
v1, j +

k

l=g
Σ sul

+
1

l=k−1
Σ svl

.

From (T2.6) and (T2.7) we have

(T2.8)T 0
uk ,uk−1 − 1 − T 0

uk ,vk−1 − 1 + G ≤ 0

where

G =
1

l=k−2
Σ (T 0

ul+1,ul − 1 − T 0
vl+1,vl − 1) + T 0

u1, j − T 0
v1, j +

1

l=k−1
Σ (sul

− svl
) .

Since Lm+1
i, j = < vm+1 , . . . , vk , vk−1 , . . . , v1 > is a (m + 1)-optimal solution for [i, j] we hav e

T m+1
i, j =T 0

i,vm+1 − 1 +
k

l=m
Σ T 0

vl+1,vl − 1 +T 0
vk ,vk−1 − 1 +

1

l=k−2
Σ T 0

vl+1,vl − 1 +T 0
v1, j +

1

l=m+1
Σ svl

.

(T2.9)
Since with u1 > v1 then the < vm+1 , . . . , vk , uk−1 , . . . , u1 > checkpoint selection cannot
achieve the time T m+1

i, j (or less) for [i, j] without contradicting the optimality of Lm+1
i, j .

Therefore we have

(T2.10)T m+1
i, j < T (v, u)

where T (v, u) is defined as

T (v, u) = T 0
i,vm+1 − 1 +

k

l=m
Σ T 0

vl+1,vl − 1 +T 0
vk ,uk−1 − 1

+
1

l=k−2
Σ T 0

ul+1,ul − 1 +T 0
u1, j +

k

l=m+1
Σ svl

+
1

l=k−1
Σ sul

.

Subtracting (T2.9) from (T2.10) we have

(T2.11)0 < T 0
vk ,uk−1 − 1 − T 0

vk ,vk−1 − 1 + G .

From (T2.8) and (T2.11) we have

(T2.12)T 0
vk ,uk−1 − 1 − T 0

vk ,vk−1 − 1 > T 0
uk ,uk−1 − 1 − T 0

uk ,vk−1 − 1 .

Note that we have vk+1 ≤ uk < vk ≤ vk−1 − 1 ≤ uk−1 − 1 and < vk > is the 1-optimal solution
for [vk+1, vk−1 − 1] . By Lemma 5 we know that if svk

≥ suk
then

(T2.13)T 0
vk ,uk−1 − 1 − T 0

vk ,vk−1 − 1 ≤ T 0
uk ,uk−1 − 1 − T 0

uk ,vk−1 − 1

which contradicts (T2.12); therefore svk
< suk

. From our assumption about checkpointing
costs we have rvk

≤ ruk
.

From (T2.7) and (T2.10) we have T (u, v) − T m+1
i, j > T m

i, j − T (v, u) , that is

(T2.14)T 0
uk ,vk−1 − 1 − T 0

vk ,vk−1 − 1 > T 0
uk ,uk−1 − 1 − T 0

vk ,uk−1 − 1 .

But since vk+1 ≤ uk < vk ≤ vk−1 − 1 ≤ uk−1 − 1 , and rvk
≤ ruk

then we can apply Lemma 7
and obtain T 0

uk ,vk−1 − 1 − T 0
vk ,vk−1 − 1 ≤ T 0

uk ,uk−1 − 1 − T 0
vk ,uk−1 − 1 . This contradicts (T2.14) and there-

fore we cannot have vk+1 ≤ uk .

(ii) Suppose vk+1 > uk . In this case we have uk < vk+1 < vk < vk−1 ≤ uk−1 . We show that this
is not possible. Observe that < ug , . . . , uk > is a [(m + 1) − k]-optimal solution for
[i, uk−1 − 1]; its rightmost checkpoint location is uk , uk < vk+1 . We also note that
< vm+1 , . . . , vk+1 > is a [(m + 1) − k]-optimal solution for [i, vk − 1] . Since uk−1 − 1 > vk − 1
then, by Theorem 1, the rightmost checkpoint location of the [(m + 1) − k]-optimal solutions
for [i, uk−1 − 1] is some u such that u ≥ vk+1 . Since uk < vk+1, this contradicts the optimality
of < ug , . . . , uk > for [i, uk−1 − 1] , and the proof is complete.

REFERENCES

[1] K. M. CHANDY, A survey of analytic models of rollback and recovery strategies, Com-
puter, 5 (1975), pp. 40-47.

[2] K. M. CHANDY AND C.V. RAMAMOORTHY, Rollback and recovery strategies for computer
programs, IEEE Trans. on Comput., 6 (1972), pp. 546-556.

[3] K. M. CHANDY, J. C. BRO WNE, C. W. DISSLY AND W. R. UHRIG, Analytic models for roll-
back and recovery strategies in data base systems, IEEE Trans. on Soft. Engr., 1
(1975), pp. 100-110.

[4] E. GELENBE, On the optimum checkpoint interval, J. Assoc. Comput. Mach., 2 (1979),
pp. 259-270.

[5] E. GELENBE AND D. DEROCHETTE, Performance of rollback recovery systems under inter-
mittent failures, Comm. Assoc. Comput. Mach., 6 (1978), pp. 493-499.

[6] J. GRAY, P. MCJONES, M. BLASGEN, B. LINSAY, R. LORIE, T. PRICE, F. PUTZOLU AND I.
TRAIGER, The recovery manager of the System R database manager, Comput. Surveys,
2 (1981), pp. 223-242.

[7] I. KOREN, Z. KOREN AND S. SU, Analysis of a recovery procedure, Tech. Report, Tech-
nion-Israel Institute of Technology, (1983). To appear in IEEE Trans. on Comput.

[8] B. RANDELL, P. LEE AND P. TRELEAVEN, Reliability issues in computing system design,
Comput. Surveys, 2 (1978), pp. 123-166.

[9] S. M. ROSS, Applied probability models with optimization applications, Holden-Day,
San Francisco, CA, 1970.

[10] R. D. SCHLICHTING, AND F.B. SCHNEIDER, Fail-stop processors: an approach to designing
fault-tolerant computing systems, ACM Trans. on Computer Systems, 3 (1983), pp.
222-238.

[11] J. W. YOUNG, A first order approximation to the optimum checkpoint interval, Comm.
Assoc. Comput. Mach., 9 (1974), pp. 530-531.

