
-- --

Preemptive Scheduling Of A Multiprocessor System

With Memories To Minimize Maximum Lateness*

Ten-Hwang Lai and Sartaj Sahni

University of Minnesota

Abstract

We develop an O (q2n + nlogn) algorithm to obtain a preemptive schedule that minimizes max-

imum lateness when n jobs with given due dates and memory requirements are to be scheduled

on m processors (n ≥ m) of given memory sizes. q is the number of distinct due dates. The value

of the minimum maximum lateness can itself be found in O(qn + nlogn) time.

Key Words and Phrases

Preemptive scheduling, maximum lateness, memory requirements.

*This research was supported in part by the Office of Naval Research under contract N00014-

80-C-0650 and in part by the National Science Foundation under grant MCS80-005856.

Dr Ten-Hwang Lai’s present address is: Computer Science Department, The Ohio State Universi-

ty, Columbus, Ohio.

1

-- --

2

1. Introduction

The problem of scheduling n jobs on a multiprocessor system consisting of m processors, each

having its own independent memory of size µi has been considered by Kafura and Shen [2].

Associated with each job is a processing time t j and a memory requirement mj. Job j can be pro-

cessed on processor i iff mj ≤ µi. No job can be simultaneously processed on two different proces-

sors and no processor can process more than one job at any given time instance. In a preemptive

schedule, it is possible to interrupt the processing of a job and resume it later on a possibly

different processor. In a nonpreemptive schedule, each job is processed without interruption on a

single processor.

Obtaining minimum finish time nonpreemptive schedules is NP-hard even when m = 2 and

µ1 = µ2 [1]. Hence, Kafura and Shen [2] study the effectiveness of several heuristics for

nonpreemptive scheduling. For the preemptive case, they develop an O(nlogn) algorithm that

obtains minimum finish time schedules (without loss of generality, we may assume n ≥ m). Their

algorithm begins by first computing the finish time, f*, of a minimum finish time schedule.

This is done as follows. First, the jobs and processors are reordered such that µ1 ≥ µ2 ≥ . . . ≥ µm

and m1 ≥ m2 ≥ . . . ≥ mn. This reordering takes O(nlogn) time (again, we assume n ≥ m). Let Fi

be the set of all jobs that can be processed only on processors l, 2, ..., i because of their memory

requirements. Let Xi be the sum of the processing requirements of the jobs in Fi. Xi = 0 iff Fi = φ.

Kafura and Shen [2] show that

f * = max{ maxj{t j}, maxi{Xi/i}}. (1.1)

The jobs may now be scheduled in the above order (m1 ≥ m2 ≥ . . . ≥ mn) using f* and

McNaughton’s rule [4].

In this paper, we extend the work of [2] to the case when each job has a due time dj associ-

ated with it. Every job is released at a common release time. We are interested in first determin-

ing whether or not the n jobs can be preemptively scheduled in such a way that every job com-

pletes by its due time. A schedule that has this property is called a feasible schedule.

The existence of a feasible schedule can be determined in polynomial time using network

flow techniques [3]. The complexity of the algorithm that results from this approach is

O(qn(n+qs)log2(n+qs)) where q is the number of distinct due dates and s the number of different

memory sizes. In fact, a feasible schedule (whenever one exists) may be obtained in this much

time. In Section 2, we develop another algorithm for this problem. This algorithm is consider-

ably harder to prove correct but has a complexity that is only O(qn + nlogn). A feasible schedule

can be constructed in O(q2n + nlogn) time. In arriving at the algorithm of Section 2, we develop

a necessary and sufficient condition for the existence of a feasible schedule. With the help of this

condition, in Section 3, we develop an algorithm to obtain a schedule that minimizes the

-- --

3

maximum lateness. This algorithm is also of complexity O(q2n + nlogn).

Sahni [5] and Sahni and Cho [6 and 7] have done work related to that reported here. They

have considered preemptive scheduling of n jobs with due dates when µ1 = µ2 = . . . = µm. For

the special case when all memory sizes are the same, Sahni [5] has developed an O(nlogmn)

algorithm to obtain a feasible schedule (when one exists). Sahni and Cho [6 and 7] have

obtained efficient algorithms for the case when µ1 = µ2 = . . . = µm and the processors run at

different speeds.

2. A Fast Feasibility Algorithm

In this section, we first derive a necessary and sufficient condition for the existence of a feasible

schedule. This condition is used to obtain a fast algorithm to construct a feasible schedule when-

ever such a schedule exists. In section 3, this necessary and sufficient condition is used to obtain

a fast algorithm to minimze the maximum lateness.

Each job is characterized by a triple (tj , dj, mj) where tj is the task time of job j; dj is its due

time; and mj its memory requirement. Let δ1 , δ2 , ..., δq, δ1 < δ2 < . . . < δq , denote the distinct due

times in the multiset {d 1 , d2 , ..., dn}. Let δ0 be the common release time for the n jobs. Without

loss of generality, we may assume that δ0 < δ1.

Let µ(1), µ(2), ..., µ(s), µ(1) > µ(2) > ... > µ(s) be the distinct memory sizes in the multiset

{µ1 , µ2 , ..., µm}. Let µ(s+1) = 0 for convenience. Let Pk denode the set of all processors with

memory size equal to µ(k); i.e., Pk = { i | µi = µ(k)}, 1 ≤ k ≤ s. Let Jk be the set of all jobs that can

be processed only on processors in P1, P2, ..., Pk because of their memory requirements; i.e., Jk =

{ j | µ(k) ≥ mj > µ(k +1)}, 1 ≤ k ≤ s. We shall refer to Pk as processor class k and Jk as job class k.

2.1 A Necessary and Sufficient Condition

It is easy to see that in every feasible schedule for the n jobs, at least

b (j,d) =

�� �
 t j−min{t j,dj−δd}
t j otherwise

dj ≤ δd

amount of job j must be completed by δd, 1 ≤ j ≤ n, 0 ≤ d ≤ q. Observe that if there exist j and d

such that b(j,d) > δd - δ0, then there is no feasible schedule.

Of the minimum amount b(j,d) that must be completed before δd , at most

a (j,d) = min{b (j,d), δ1−δ0}

can be completed by δ1.

Define B(k,d) to be the sum of the b(j,d)s for those jobs j in Jk. Define A(k,d) in a similar

manner. Specifically,

-- --

4

B (k,d) = ΣjεJk
b (j,d), 1 ≤ k ≤ s, 0 ≤ d ≤ q,

and

A (k,d) = ΣjεJk
a (j,d), 1 ≤ k ≤ s, 0 ≤ d ≤ q.

B(k,d) gives a lower bound on the amount of jobs in Jk that must be completed by δd. A(k,d)

gives the maximum amount of B(k,d) that can be done by δ1.

Define a capacity function C(k,d) such that

C (k,d) = | Pk | (δd−δ0), 1 ≤ k ≤ s, 0 ≤ d ≤ q.

C(k,d) gives the available processing capacity in processor class k from the release time δ0 to the

due time δd .

One readily observes that if a feasible schedule exists, then:

i =1
Σ
k

B (i,d) ≤
i =1
Σ
k

C (i,d) (2.0)

for all k,d, 1≤k≤s, 0≤d≤q. While Eq. 2.0 provides a necessary condition for the existence of a

feasible schedule, it does not provide a sufficient condition. We leave it to the reader to construct

an instance that satisfies (2.0) but for which no feasible schedule exists.

This necessary condition can be strengthened by using the notion of a profile function. Let

π be the set of all nonincreasing functions σ with domain {0, 1, 2, ..., s} and range {0, 1, ..., q}.

Recall that s is the number of processor classes anq q the number of distinct due times. Thus

π = { σ� σ:{0,1,...,s}→{0,1,...,q} and σ(k)≥σ(k +1), 0≤k<s}.

π defines the set of profile functions. Each profile function σ defines a profile in a timing diagram

(see [8]), i.e., the curve of t = δσ(i), i = 1,2,...,s. We shall refer to the profile defined by σ simply as

the profile σ. For example, consider the case s = 4, q = 5, and the profile function σ such that

σ(0) = σ(1) = σ(2) = 4; σ(3) = 2; and σ(4) = 1. Figure 2.1 displays σ pictorially.

Let σ be a profile function. In any feasible schedule, at least B(i,σ(i)) amount of processing

from Ji must be done on P1 , P2 , . . . , Pi by time δσ(i). Since σ is nonincreasing, B(i,σ(i)) is a

lower bound on the amount of processing from Ji that must be scheduled between δ0 and the

profile σ (see Figure 2.2). Since the Ji’s are pairwise disjoint, it follows that
i =1
Σ
s

B (i, σ(i)) is a

lower bound on the amount of processing that must be scheduled between δ0 and the profile σ.

Since
i =1
Σ
s

C (i, σ(i)) is the total processing capacity of P1 , . . . , Ps between δ0 and the profile σ, it

-- --

5

Figure 2.1 Example profile.

follows that if there is a feasible schedule, then

i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) (2.1)

for every σ ε π. We shall show in Theorem 1 that there is a feasible schedule iff (2.1) holds.

2.2 Obtaining A Feasible Schedule

We now ready to introduce the ideas that lead to the feasibility algorithm of section 2.3. Our

algorithm begins by computing the amount wj of each job j that is to be scheduled between δ0 and

δ1 . These wjs are determined such that they can be scheduled in the interval δ0 to δ1 and the

remaining processing requirements {t j − wj : 1≤j≤n} can be feasiby met from δ1 to δq.

Once the wjs are known the schedule from δ0 to δ1 may be obtained. The schedule for the

remaining q-1 intervals is similarly obtained. The wjs are computed starting with jobs in J 1 and

proceeding to J 2 etc. Observe that jobs in Jk +1 ∪ . . . ∪ Js compete with the jobs in Jk for the pro-

cessing time available on P1 , ..., Pk from δ0 to δ1. Hence, while determining wj, jεJk, we must also

determine a value Rk that represents the amount of P1 , . . . , Pks processing capacity in the inter-

val δ0 to δ1 that is to be reserved for the jobs in Jk +1 ∪ . . . ∪ Js.

-- --

6

B(i,σ(i)) must be scheduled in the rectangle ABCD and hence to the left of the profile σ.

Figure 2.2

Considering the definition of a(j,d), it seems plausible to compute the wjs using the greedy

method as below:

for d 0,1,2,... until satisfied do

set wj to a(j,d) for every jεJk

end

We would like to compute Rk in a similar manner from a yet to be defined quantity Y(k,d). We

shall define Z(k,d), Y(k,d), and X(k,d), 0≤k≤s, 0≤d≤q such that:

(i) In any feasible schedule, at least Z(k,d) amount of Jk +1 ∪ . . . ∪ Js must be done on

P1 , . . . , Pk by time δd.

(ii) In any feasible schedule, at least X(k,d) amount of Jk +1 ∪ . . . ∪ Js must be processed on

P1 , . . . , Pk between δ1 and δd.

(iii) Y(k,d) = Z(k,d) - X(k,d). Hence, one may think of Y(k,d) as representing the maximum

amount of Z(k,d) that can be done between δ0 and δ1.

It is important to note that (Rk, Z (k,d), Y (k,d)), when regarded as an attribute of

Jk +1 ∪ . . . ∪ Js is the counterpart of (wj , b (j,d), a (j,d)) if the latter is considered an attribute of

job j, j∈Jk.

We now proceed to define Z(k,d). Define πd as below:

-- --

7

πd = { σ � σ ε π and σ(i) ≤ d, 0 ≤ i ≤ s}.

From the discussion of section 2.1, it follows that for any profile σ ε πd,

i =k +1
Σ
s

B (i, σ(i)) −
i =k +1
Σ
s

C (i, σ(i))

gives a lower bound on the amount of Jk +1 ∪ . . . ∪ Js that must be done on P1 , . . . , Pk by time

δσ(k +1) (and hence by time δd as σ(k+1)≤d). Hence,

Z (k,d) =
σεπd

max{
i=k +1
Σ
s

B (i, σ(i)) −
i =k +1
Σ
s

C (i, σ(i))} (2.2)

is also a lower bound on the amount of Jk +1 ∪ . . . ∪ Js that must be done on P1 , . . . , Pk by δd .

From (2.2) we may obtain a simple recurrence for Z(k,d). Let σ’ ε πd be the σ at which

i =k +1
Σ
s

B (i, σ(i)) −
i =k +1
Σ
s

C (i, σ(i))

is maximum. Assume that k < s. If σ’(k+1) ≠ d, then Z(k,d) = Z(k,d-1). If σ’(k+1) = d, then

Z (k,d)=
i =k +1
Σ
s

B (i, σ´(i)) −
i =k +1
Σ
s

C (i, σ´(i))

=
i =k +2
Σ
s

B (i, σ´(i))−
i =k +2
Σ
s

C (i, σ´(i))+B (k +1,d)−C (k +1,d)

= Z (k +1,d)+B (k +1,d)−C (k +1,d).

This yields:

Z (k,d)=

�� �

max{Z (k,d −1), Z (k +1,d)+B (k +1,d)−C (k +1,d)}
Z (k, 0)
0

otherwise.
if d = 0
if k = s

(2.3)

Define D(k,d) as below:

D (k,d) =

�� �
 C (k, 1)
0 otherwise.

d = 0

When d ≠ 0, D(k,d) is nothing but the processing capacity of Pk from δ0 to δ1.

To arrive at a formula for X(k,d), we note that for any i and d, B(i,d) - A(i,d) is a lower

bound on the amount of Ji’s processing that must be done between δ1 and δd. The processing

capacity of Pi in this interval is C(i,d) - D(i,d). So, for any profile function σεπd’

i =k +1
Σ
s

[B −A](i, σ(i))−
i =k +1
Σ
s

[C −D](i, σ(i))

-- --

8

is a lower bound on the amount of Jk +1 ∪ . . . ∪ Js that must be done on P1 , . . . , Pk between δ1

and δd. Consequently X(k,d), 0≤k≤s, 0≤d≤q, as defined below:

X (k,d) =
σεπd

max{
i =k +1
Σ
s

[B −A −C +D](i, σ(i))} (2.4)

is a lower bound on the amount of Jk +1 ∪ . . . ∪ Js that must be processed on P1 , . . . , Pk between

δ1 and δd.

From (2.4) the recurrence

X (k,d) =

�
� �

max{X (k,d −1),[X +B −A −C +D](k +1,d)}
X (k, 0)
0

otherwise
d = 0
k = s

(2.5)

may be obtained in the same way as (2.3) was obtained from (2.2).

Define:

Y (k,d) = Z (k,d) − X (k,d), 0 ≤ k ≤ s, 0 ≤ d ≤ q.

Some of the identities that we shall use in section 2.3 are stated below.

Lemma 1: If
i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε π, then

(1a) A(k,0) = B(k,0) = 0, 1 ≤ k ≤ s.

(1b) A(k,1) = B(k,1), 1 ≤ k ≤ s.

(2a) X(k,1) = 0, 0 ≤ k ≤ s.

(2b) X(k,0) = Y(k,0) = Z(k,0) = 0, 0 ≤ k ≤ s.

(2c) X(0,d) = Y(0,d) = Z(0,d) = 0, 0 ≤ d ≤ q.

(3) The functions a, b, A, B, C, D, X, Y, and Z all have nonnegative values and are nondecreas-

ing in the second variable; i.e.,

0 ≤ f(k,d) ≤ f(k,d+1) for f = a, b, A, B, C, D, X, Y, and Z.

Proof: See Appendix. []

2.3. The Algorithm

We are now ready to describe our preemptive scheduling algorithm. The jobs will be scheduled

in q phases. In phase d we determine the amount of each job j that is to be scheduled from

δd −1 to δd. Once this amount has been determined, the actual schedule from δd −1 to δd is con-

structed using the Kafura-Shen algorithm.

Procedure COMPUTE_W determines the amount wj of job j that is to be scheduled from

-- --

9

line Procedure COMPUTE_W

//wj is the amount of job j to be processed from

δ0 to δ1//

1 R0 ← 0

2 for k ← 1 to s do //consider jobs by classes//

3 Qk ← { d | A(k,d) + Y(k,d) ≤ Rk −1 + C(k,1)}

4 if Qk = then print(’infeasible job set’)

5 stop endif

6 hk ← max{ d | d ε Qk}

7 case

8 :(1) hk = q: wj ← a(j,q), j ε Jk

9 :(2) hk<q, A (k,hk+1)+Y(k,hk)≥Rk −1+C(k,1):

10 set wj for j ε Jk such that

11 a(j,hk) ≤ wj ≤ a (j,hk+1) and

12 ΣjεJk
wj + Y (k,hk) = Rk −1 + C (k, 1)

13 :(3) else: wj ← a(j, hk+1), j ε Jk

14 end case

15 Rk ← Rk −1 + C(k,1) - ΣjεJk
wj

16 end for

17 end COMPUTE_W

Figure 2.3

δ0 to δ1. The wjs are determined in a way such that {wj : 1 ≤ j ≤ n} can be scheduled from δ0 to δ1

and the remaining processing requirements {tj−wj : 1 ≤ j ≤ n} can be feasibly scheduled from δ1

to δq. Once the wjs are determined, the amount w´j of job j, 1 ≤ j ≤ n that is to be scheduled from

δ1 to δ2 is determined by applying COMPUTE_W to {tj−wj : 1 ≤ j ≤ n}. Repeatedly applying

COMPUTE_W in this way, one may successfully determines the wjs for each interval.

In procedure COMPUTE_W, Rk denotes the amount of idle time remaining on processor

-- --

10

classes 1, 2, ..., k following the scheduling of the wjs corresponding to jobs in job classes 1, 2, ...,

k. (One may also think of Rk as the amount of processing time on processor classes 1, 2, ..., k that

is to be reserved for jobs in job classes k+1, k+2, ..., s.) Roughly speaking, COMPUTE_W com-

putes the wjs (job) class by class. In determining the wjs for job class k, the processing capacity

available is equal to Rk −1 + C(k,1). Initially, let wj <- a(j,0) for j ε Jk and Rk <- Y(k,0). If ΣjεJk
wj +

Rk < Rk −1 + C(k,1), then wj, j ε Jk is incremented to a(j,1) and Rk incremented to Y(k,1). If it is

still the case that ΣjεJk
wj + Rk < Rk −1 + C(k,1), then wj, j ε Jk is incremented to a(j,2) and Rk to

Y(k,2). This procedure continues until Rk −1 + C(k,1) is used up (i.e., until ΣjεJk
wj + Rk = Rk −1 +

C(k,1)).

When actually implementing COMPUTE_W, the subscripts on h, R, and Q may be omitted.

We have kept them in the version given in Figure 2.3 so that we may easily refer to the values of

h, R, and Q during different iterations of the for loop. One should also note that in case (2), since

A (k,hk+1) + Y (k,hk) ≥ Rk −1 + C (k, 1) and A (k,hk) + Y (k,hk) ≤ Rk −1 + C (k, 1), there exist wj,

a (j,hk) ≤ wj ≤ a (j,hk+1), such that

ΣjεJk
wj + Y (k,hk) = Rk −1 + C (k, 1).

These wjs are easily determined by first setting all wj = a (j,hk), j εJk and then incrementing the wjs

one by one (up to at most a(j,hk+1)) until the desired equality is satisfied.

2.4. Correctness and Complexity

We now proceed to prove the correctness of the above algorithm and analyze its complexity. We

have pointed out in subsection 2.1 that if there exists a feasible schedule, then
i =1
Σ
s

B (i, σ(i)) ≤

i =1
Σ
s

C (i, σ(i)) for every σ ε π. We shall show in the following that if
i =1
Σ
s

B (i, σ(i)) ≤
i=1
Σ
s

C (i, σ(i)) for

every σ ε π, then the above algorithm generates a feasible schedule.

Definition. For convenience in proving Lemmas 2 and 4, we arbitrarily define Q0 = {0, 1},

and h0 = 1.

We first show that if
i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σεπ, then procedure

COMPUTE_W wil not terminate in line 5.

Lemma 2: If
i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε π, then

(3) Rk ≤ Y (k,hk+1) if hk ≠ q, 0 ≤ k ≤ s.
(2) Rk ≥ Y (k, hk), 0 ≤ k ≤ s.
(1) Qk ≠ φ and hk ≥ 1, 0 ≤ k ≤ s.

-- --

11

Proof: We shall show (1), (2), and (3) by induction on k.

I.B. When k = 0, Q0 ≠ φ, h0 = 1, and R0 = Y(0,h0) = Y(0,h0+1) = 0 (either by definition or by

Lemma 1).

I.H. Assume that (1), (2), and (3) are true for k-1 where 1 ≤ k-1 < s.

I.S. We shall show that (1), (2), and (3) are true for k. To show (1), we see that

Rk −1 ≥ Y (k −1,hk −1) (induction hypothesis)

≥ Y(k-1,1) (Lemma 1)

= Z(k-1,1) (Lemma 1)

≥ [Z+B-C](k,1) (Eq. (2.3))

= [Y+A-C](k,1) (Lemma 1)

Hence, 1 ε Qk and so Qk ≠ φ and hk ≥ 1.

To prove (2) and (3), consider the three cases of COMPUTE_W (lines 7-14).

Case 1: In this case, Σwj = A(k,hk). From lines 3 and 6, we observe that A(k,hk) + Y(k,hk) ≤ Rk −1

+ C(k,1). Combining these two facts with the definition of Rk (line 15), we obtain Y(k,hk) ≤ Rk.

Case 2: From lines 12 and 15, we obtain Rk = Y(k,hk) ≤ Y(k,hk+1).

Case 3: In this case, A(k,hk+1) + Y(k,hk) < Rk −1 + C(k,1) < A(k,hk+1) + Y(k,hk+1) and Σwj =

A(k,hk+1). From these and line 15, we immediately obtain Y(k,hk) < Rk < Y(k,hk+1).

Before establishing the correctness of our scheme to compute the wjs, we obtain some rela-

tionships concerning the amount of processing t´j of job j that remains to be done following time

δ1 . Note that t´j = t j − wj, 1 ≤ j ≤ n.

Definition. Define b’(j,d), a’(j,d), B’(k,d), and A’(k,d) to be the values obtained for b, a, B,

and A when t´j is used in place of t j. Let C’(k,d) = | Pk | (δd−δ1), 1 ≤ k ≤ s, 1 ≤ d ≤ q, and

W (k) = Σj εPk
wj, 1 ≤ k ≤ s.

Lemma 3: If
i=1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε π, then

(1) B´(k,d) ≤ B (k,d) − A (k,d), d ≤ hk

-- --

12

(2) B´(k,d) = B (k,d)−W (k), d > hk ≠ q

Proof: It is easy to see that for any job j, 1 ≤ j ≤ n,

b’(j,d) = max{0, b(j,d) - wj}

When d ≤ hk, from Lemma 1 and lines 8-13 of COMPUTE_W, we have a(j,d) ≤ a(j,hi) ≤ wj.

Hence,

b´(j,d) = max{0, b (j,d) − wj} ≤ b (j,d) − a (j,d)

Hence,

B´(k,d) ≤ B (k,d) − A (k,d)

When d > hk ≠ q, from cases (2) and (3) of COMPUTE_W, Lemma 1, and the definition of

a(j,d), we see that

a(j,hk) ≤ wj ≤ a(j,hk+1) ≤ a(j,d) ≤ b(j,d).

So,

b´(j,d) = max{0, b (j,d) − wj} = b (j,d) − wj .

Hence,

B´(k,d) = B (k,d) − W (k). []

Lemma 4: If
i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε π, then the following are true for every k, 0

≤ k ≤ s and every σ such that σ(k) ≥ 1 :

(l)
i=1
Σ
k

B´(i, σ(i)) + Z(k,σ(k)) - Rk ≤
i=1
Σ
k

C´(i, σ(i)),

(2) If σ(k) ≤ hk, then

i =1
Σ
k

B´(i, σ(i)) + X (k, σ(k)) ≤
i=1
Σ
k

C´(i, σ(i)).

Proof: The proof is by induction on k.

-- --

13

I.B. When k = 0,
i =1
Σ
0

B´(i, σ(i)) =
i =1
Σ
0

C´(i, σ(i)) = R0 = 0 by definitions, and Z(0,σ(0)) = X(0,σ(0)) = 0

by Lemma 1. Hence, (1) and (2) hold.

I.H. Assume that (1) and (2) are true for k-1, where k-1 is in the range 0 ≤ k-1 < s.

I.S. We proceed to establish (1) and (2) for k by considering the three cases σ(k) > hk; σ(k) ≤ hk

and σ(k-1) ≤ hk −1 ; and σ(k) ≤ hk and σ(k-1) > hk −1 .

Case 1: σ(k) > hk: We first obtain the following

i =1
Σ
k −1

B´(i, σ(i)) + Z (k −1,σ(k −1)) − Rk −1 ≤
i=1
Σ
k −1

C´(i, σ(i)) (I.H.)

Rk −1 − Rk = W (k) − C (k, 1) (def. of Rk)

B´(k, σ(k)) + W (k) = B (k, σ(k)) (Lemma 3)

Z (k, σ(k))+B (k, σ(k))−C (k, σ(k))

≤ Z (k −1,σ(k)) (Eq.(2.3) and σ(k) ≥ 1)

≤ Z (k −1,σ(k −1)) (σ(k −1)≥σ(k) and Eq.(2.3))

Adding these four equalities and inequalities yields:

i=1
Σ
k

B´(i, σ(i)) + Z (k, σ(k)) − Rk ≤
i =1
Σ
k

C´(i, σ(i))

Case 2: σ(k) ≤ hk and σ(k-1) ≤ hk −1: From the induction hypothesis, we have

i =1
Σ
k −1

B´(i, σ(i))+X (k −1,σ(k −1)) ≤
i=1
Σ
k −1

C´(i, σ(i)). (2.6)

From Eq.(2.5) and the fact that σ(k-1) ≥ σ(k) ≥ 1, we get:

X (k −1,σ(k −1)) ≥ X (k −1,σ(k)) ≥ [X +B −A −C +D](k, σ(k)).

Using Lemma 3, this reduces to

X (k −1,σ(k −1)) ≥ X (k, σ(k))+B´(k, σ(k))−C´(k, σ(k)).

Combining with (2.6) yields:

i=1
Σ
k

B´(i, σ(i))+X (k, σ(k)) ≤
i =1
Σ
k

C´(i, σ(i)). (2.7)

-- --

14

Since Rk ≥ Y (k,hk) ≥ Y (k, σ(k)) (Lemmas 4 and 3) we conclude that Z(k,σ(k)) - Rk ≤ X(k,σ(k)).

Substituting into (2.7) yields

i =1
Σ
k

B´(i, σ(i)) + Z (k, σ(k)) − Rk ≤
i =1
Σ
k

C´(i, σ(i)).

case 3: σ(k) ≤ hk and σ(k −1) > hk −1: From the induction hypothesis, we get

i =1
Σ
k −1

B´(i, σ(i))+Z (k −1,σ(k −1)) − Rk −1 ≤
i =1
Σ
k −1

C´(i, σ(i)). (2.8)

Since hk −1 ≠ q, we obtain from Lemma 2:

Rk −1 ≤ Y (k −1,hk −1+1) ≤ Y (k −1,σ(k −1)). (2.9)

From Lemma 3, Eq. (2.5), and the inequality σ(k-1) ≥ σ(k) ≥ 1, we get

[X +B´−C´](k, σ(k)) ≤ X (k −1,σ(k)) ≤ X (k −1,σ(k −1)). (2.10)

Adding (2.8), (2.9), and (2.10) yields:

i =1
Σ
k

B´(i, σ(i)) + X (k, σ(k)) ≤
i=1
Σ
k

C´(i, σ(i)).

Using the same reasoning as in case 2, we may now conclude the truth of (1) for k.

Theorem 1: There exists a feasible preemptive schedule for the given n jobs if and only if

i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε πq .

Proof: We have already pointed out that if a feasible schedule exists, then the above inequality is

satisfied for every σ ε πq. So, we need only show that when the above inequality is satisfied for

every σ ε πq , there is a feasible schedule. Assume that

i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε πq . (2.11)

From (2.11) it is clear that when q = 1, the t js and Eq (1.1) yield f* ≤ δ1 - δ0 and so a feasible

schedule exists.

For the induction hypothesis, we assume that there exists a feasible schedule when (2.11) is

satisfied and q = r for some r, 1 ≤ r. We show that if (2.11) is satisfied when q = r+1, then there is

a feasible schedule. From Lemma 2, we see that Qk ≠ φ for any k. Hence procedure

-- --

15

COMPUTE_W successfully computes the wjs. Let P(k) =
i =1
∪
k

Pi. It is clear from COMPUTE_W

that wj ≤ a (j,d) ≤ δ1 − δ0 where d = q or hk+1 and that ΣiεP (k)wj ≤ |P (k) | (δ1−δ0) - Rk ≤ | P (k) | (δ1−δ0)

for every k. Hence, the wjs satisfy (1.1) (i.e., f* ≤ δ1 − δ0) and may be scheduled from δ0 to δ1

using the Kafura-Shen algorithm.

Now, consider the t´js. We know that X(s,d) = Z(s,d) = 0, 0 ≤ d ≤ r+1. If hs<r +1, then

from Lemma 2, we obtain 0 ≤ Rs ≤ Y(s,hs+1) = 0 or Rs = 0. Using this in Lemma 4 yields:

i =1
Σ
s

B´(i, σ(i)) ≤
i =1
Σ
s

C´(i, σ(i)) for every σ ε πr +1

such that σ(s) ≥ 1. (2.12)

If hs=r +1 then σ(s) ≤ hs and from Lemma 4 we once again obtain (2.12). One readily sees that

(2.12) is equivalent to

i =1
Σ
s

B´(i, σ(i)+1)≤
i =1
Σ
s

C´(i, σ(i)+1) for every σεπr. (2.13)

Following the scheduling from δ0 to δ1, we are left with the problem of scheduling the t´js

from δ1 to δr +1. The number of distinct due times is now r (note that t´j = 0 for every j such that d j

= δ1). Relabel the start time δ1 as δ´0 and the due times δ2 , . . . ,δr +1 as δ´1 , . . . ,δ´r. Define b"(j,d),

B"(k,d), and C"(k,d) to be the values obtained for b, B, and C when t´j is used in place of t j and

δ´d is used in place of δd. We immediately see that B"(k,d) = B’(k,d+1), and C"(k,d) = C’(k,d+1),

for every k, d, 1 ≤ k ≤ s, 0 ≤ d ≤ r. Substituting into (2.13) yields:

i =1
Σ
s

B"(i,σ(i)) ≤
i =1
Σ
s

C"(i,σ(i)) for every σ ε πr.

It now follows from the induction hypothesis that the t´js can be scheduled. []

From Theorem 1, it is clear that by repeatedly using COMPUTE_W to determine the

amount to be scheduled in each interval, a feasible schedule can be obtained whenever such a

schedule exists. Each time COMPUTE_W is used, we need to recompute b, a, Z, X, and Y. The

time needed for this is O(nq)(note that recurrences 2.3 and 2.5 will be used to compute Z and X).

The for loop may be executed in O(qs + n) time. We may assume that s ≤ n and so the complex-

ity of COMPUTE_W is O(qn). The Kafura-Shen algorithm is of complexity O(n). Hence, the

overall computing time for the q phases of our scheduling algorithm is O (q2n). An additional

O(nlogn) time is needed to sort the jobs by memory size mi. Hence, the overall complexity of our

preemptive scheduling algorithm is O(q2n + nlogn). As for preemptions, since each job may be

preempted at most twice in each interval [δd , δd +1], 0 ≤ i ≤ q-1, the total number of preemptions is

O(nq).

-- --

16

3. Minimizing maximum lateness

Let S be a preemptive schedule for (t j, dj , mj), l ≤ j ≤ n. Let f j be the finish time of job j in S. If

f j ≤ d j, 1 ≤ j ≤ n then S is a feasible schedule and no job is late. The lateness of job j is fj - dj and

the maximum lateness of the n jobs is Lmax = max{f j − dj : 1 ≤ j ≤ n}. Note that Lmax ≤ 0 iff all jobs

finish by their due times. Also, note that if Lmax ≤ 0 then δ0 - δ1 ≤ Lmax.

From the definition of Lmax, it follows that by changing the release time from δ0 to δ0 - Lmax

we obtain a job set that can be scheduled such that no job finishes after its due time. Hence, to

determine the minimum Lmax, we need to determine the least x such that the condition of

Theorem 1 is satisfied when a release time of δ0 - x is used. This x may be obtained from a form

equivalent to that of Theorem 1. We observe that
i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) for every σ ε π iff

σεπ
max{

i=1
Σ
s

B (i, σ(i)) -
i =1
Σ
s

C (i, σ(i))} ≤ 0. It is helpful to rewrite this form seperating out the case when

σ(i) = 0, 1 ≤ i ≤ s. For this σ, we see that
i =1
Σ
s

B (i, σ(i)) -
i =1
Σ
s

C (i, σ(i)) =
j =1
Σ
n

b (j, 0). For every other σ,

there is a k, l ≤ k ≤ s such that σ(k) ≥ 1.

Define Hk as below:

Hk =
σεπ,σ(k)≥1

max {
i =1
Σ
k

B (i, σ(i))−
i =1
Σ
k

C (i, σ(i))}, 1 ≤ k ≤ s.

We immediately see that

σεπ

max{
i=1
Σ
s

B (i, σ(i)) −
i=1
Σ
s

C (i, σ(i))}

= max{
j=1
Σ
n

b (j, 0), H1 , H2 , . . . , Hs}

Let x 1 =
1≤j≤n
max {t j − dj + δ0} and let x 2 =

1≤k ≤s
max {Hk/ | P (k) | }, where |P(k)| is the cardinality of P(k)

=
i =1
∪
k

Pi.

Clearly, if we change the release time to δ0 - max{x 1 , x 2} then

max{Σb´(j ,0), H´1 , H´2 , . . . , H´s} = 0 (the b’, H´i values are computed with respect to the new

release time δ0 - max{x 1 , x 2}). Hence, maxσεπ{Σ B’(i,σ(i)) - Σ C’(i,σ(i))} ≤ 0 and Σ B’(i,σ(i)) ≤ Σ

C’(i,σ(i)) for every σ ε π. Moreover, x = max{x 1 , x 2} is the least value of x for which this hap-

pens. Hence,

(Lmax)min = max{x 1 , x 2}.

The Hks may be computed in O(qs) time as follows. Define Hk
d as below:

-- --

17

Hk
d =

σ(k)≥d
σεπ

max{
i =1
Σ
k

B (i, σ(i)) −
i =1
Σ
k

C (i, σ(i))}, 1≤k≤s, 1≤d≤q.

Hence, Hk = Hk
1 , 1 ≤ k ≤ s. We immediately obtain the following recurrence for Hk

d:

Hk
d =

�
� �

max{Hk −1
d +B (k,d)−C (k,d), Hk

d +1} otherwise.
i =1
Σ
s

B (i,q) −
i =1
Σ
s

C (i,q) if d = q

i ≥d
max{B (1,i) − C (1,i)} if k = 1

Using this recurrence, all the Hk
d s may be obtained in O(qs) time (excluding the time

needed to determine the b(j,d)s, B(k,d)s etc.). The additional time needed to compute the

B(k,d)s and C(k,d)s is O(qn + nlogn) (assuming n ≥ m). Hence, the minimum Lmax may be deter-

mined in O(qn + nlogn) time. Having determined the minimum Lmax, a schedule having this Lmax

value can be obtained by changing δ0 to δ0 - (Lmax)min and using the algorithm of Section 2.

4. Conclusions

We have developed an O(q2n + nlogn) algorithm to obtain a preemptive schedule for n jobs (t j, dj,

mj), 1 ≤ j ≤ n on m processors with given memory sizes. This schedule minimizes Lmax and

contains at most O(qn) preemptions. The minimum value of Lmax can itself be obtained in only

O(qn + nlogn) time.

Appendix. Proof of Lemma 1

Assume that

i =1
Σ
s

B (i, σ(i)) ≤
i =1
Σ
s

C (i, σ(i)) (A.1)

for every σ ε π. Using σ(i) = 0, 1 ≤ i ≤ s in (A.1), we obtain B(i,0) = 0 for 1 ≤ i ≤ s. From this, we

have b(j,0) = 0, 1 ≤ j ≤ n and, therefore,

t j ≤ dj − δ0, 1 ≤ j ≤ n (A.2)

From Eqs. (A.1) and (A.2), it is easy to verify (1), (2), and (3) (except the case when f = Y) of

Lemma 1.

The rest of this appendix is devoted to prove (3) for f = Y; i.e.,

0 ≤ Y(k,d) ≤ Y(k,d+1), 0 ≤ k ≤ s, 0 ≤ d ≤ q-1

To prove this inequality, since Y is defined as Z - X, we need to know the relation between X and

-- --

18

Z. (See Claim 2 below). But X and Z are in turn defined through A and B, so, we first establish

the relationship concerning A and B:

Claim 1:
δd − δ1

B (k,d) − A (k,d)______________ ≤
δd − δ0

B (k,d)_______, 1 ≤ k ≤ s, 1 < d ≤ q.

Proof: Since a(j,d) = min{b(j,d), δ1 - δ0}, a(j,d) = b(j,d) or a (j,d) = δ1 - δ0.

If a(j,d) = b(j,d), then

δd − δ0

δ1 − δ0_______ b (j,d) ≤ a (j,d)

as δ1 ≤ δd.

If a(j,d) = δ1 - δ0, then since tj ≤ dj - δ0 implies b (j,d) ≤ δd - δ0, we get

δd − δ0

δ1 − δ0_______ b (j,d) ≤ δ1 − δ0 = a (j,d).

So, in both cases we have

δd − δ0

δ1 − δ0_______ b (j,d) ≤ a (j,d).

Hence,

δd − δ0

δ1 − δ0_______ B (k,d) ≤ A (k,d)

or

δd − δ1

δ1 − δ0_______ B (k,d) ≤
δd − δ1

δd − δ0_______ A (k,d)

or

δd − δ1

δd − δ0_______ [B (k,d) − A (k,d)] ≤ B (k,d)

or

δd − δ1

B (k,d) − A (k,d)______________ ≤
δd − δ0

B (k,d)_______ . []

Claim 2: (δd−δ0)X (k,d) ≤ (δd−δ1)Z (k,d), 0 ≤ k ≤ s, 0 ≤ d ≤ q

-- --

19

Proof: The proof is by induction on k and d.

I.B. on k When k = s and 0 ≤ d ≤ q, X(k,d) = Z(k,d) = 0.

I.H. on k Assume that the inequality is correct when 0 ≤ k = k’+1 ≤ s and 0 ≤ d ≤ q.

I.S. on k When k = k’ and 0 ≤ d ≤ q, the inequality may be shown correct by induction on d.

I.B. on d When d = 0 or 1, X(k’,d) = 0 and Z(k’,d) ≥ 0.

I.H. on d Assume that the inequality is correct when q ≥ d = d’-1 ≥ 1.

I.S. on d We need to show the inequality is correct for d = d’ (and k = k’). From Eq. (2.5), we see

that there are two possibilities for X(k’,d’).

Case(i) X(k’,d’) = X(k’,d’-1): In this case,

(δd´−1−δ0)X (k´,d´) = (δd´−1−δ0)X (k´,d´−1)

≤ (δd´−1−δ1)Z (k´,d´−1) (I.H. on d)

≤ (δd´−1−δ1)Z (k´,d´) (Eq. (2.3))

Since δd´−1 − δ0 > δd´−1 − δ1 ≥ 0, we get

X (k´,d´) ≤ Z (k´,d´)

or

(δd´−δd´−1)X (k´,d´) ≤ (δd´−δd´−1)Z (k´,d´).

Adding this inequality to the previous one yields:

(δd´−δ0)X (k´,d´) ≤ (δd´−δ1)Z (k´,d´).

Case(ii) X(k’,d’) = [X+B-A-C+D](k’+1,d’): Now, we obtain:

δd´−δ1

X (k´,d´)________ =
δd´−δ1

[X +B −A −C +D](k´+1,d´)_______________________ .

Using I.H. on k, Claim 1, and the equality

δd´−δ1

C (k´+1,d´)−D (k´+1,d´)_____________________ = | Pk´+1 | =
δd´−δ0

C (k´+1,d´)__________,

-- --

20

we obtain:

δd´ − δ1

X (k´,d´)________ ≤
δd´ − δ0

Z (k´+1,d´) + B (k´+1,d´) − C (k´+1,d´)_________________________________

≤
δd´ − δ0

Z (k´,d´)________ (Eq. (2.5)) []

We are now ready to show Y(k,d) ≥ Y(k,d-1) ≥ 0, 0 ≤ k ≤ s, 1 ≤ d ≤ q.

Claim 3: Y(k,d) ≥ 0, 0 ≤ k ≤ s, 0 ≤ d ≤ q.

Proof: For k ≥ 1, this follows from Claim 2 and the fact δk−δ0 > δk−δ1 ≥ 0. For k = 0, this follows

from part (2b) of Lemma 1. []

Claim 4: Y(k,d) ≥ Y(k,d-1), 0 ≤ k ≤ s, 1 ≤ d ≤ q.

Proof: The proof is by induction on k.

I.B. When k = s and 1 ≤ d ≤ q, Y(k,d) = Y(k,d-1) = 0.

I.H. Assume that Y(k,d) ≥ Y(k,d-1) for 1 ≤ k’ < k ≤ s and 1 ≤ d ≤ q.

I.S. We need to show that Y(k’,d) ≥ Y(k’,d-1) for 1 ≤ d ≤ q.

Let d be in the range 1 ≤ d ≤ q.

Case (i) Z(k’,d) ≥ Z(k’,d-1) and X(k’,d) = X(k’,d-1):

In this case, it is readily seen that Y(k’,d) ≥ Y(k’,d-1).

Case (ii) Z(k’,d) = Z(k’,d-1) and X(k’,d-1) < X(k’,d) = [X+B-A-C+D](k’+1,d):

This case is not possible. To see this, suppose that this case is possible. Let k" ≥ k’ be the largest

k" for which

Z(k",d) = Z(k",d-1) and X(k",d-1) < [X+B-A-C+D](k"+1,d) (A.3)

for some d. Let d" be the smallest d for which (A.3) holds. Note that d" > 0. So,

Z(k",d") = Z(k",d"-1) and X(k",d"-1) < [X+B-A-C+D](k"+1,d")

(A.4)

-- --

21

Since X(k",d"-1) ≥ 0, it follows from Eqs. (2.5) and (A.4) that X(k",d") > 0. Assume that

Z (k",d") = Z (k",d" −1) = Z (k",d" −2) = . . . = Z (k",d*) ≠ Z (k",d* −1).

Then, it follows from our choice of k" and d" that

X (k",d" −1) = X (k",d" −2) = . . . = X (k",d*).

If d* = 0, then 0 = Z(k",d*) = Z(k",d") ≥ X(k",d") > 0. Hence, d* ≠ 0. Now, from the choice of

d*, we get

Y (k",d*) = Z (k",d*) − X (k",d*)

≤ [Z +B −C](k" +1,d*) − [X +B −A −C +D](k" +1,d*)

= [Y +A −D](k" +1,d*). (A.5)

Also,

X (k",d" −1) < [X+B−C−A +D](k" +1,d"),

and

Z (k",d" −1) ≥ [Z+B−C](k" +1,d").

So,

Y (k",d*) = Y (k",d" −1) > [Y+A−D](k" +1,d").

Substituting into (A.5) yields:

[Y+A −D](k" +1,d*) > [Y +A −D](k" +1,d")

or,

Y (k" +1,d*) > [Y +A −D](k" +1,d") − [A −D](k" +1,d*)

≥ Y (k" +1,d") (Lemma 1 and def. of D)

But, k" + 1 > k’ and so from I.H., it follows that

Y (k" +1,d") ≥ Y (k" +1,d" −1) ≥ . . . ≥ Y (k" +1,d*).

So, case (ii) is not possible.

Case (iii) Z(k’,d) = [Z+B-C](k’+1,d) and X(k’,d) = [X+B-A-C+D](k’+1,d):

Now, Y(k’,d) = [Y+A-D](k’+1,d). Suppose that

-- --

22

Z(k’,d-1) = Z(k’,d-2) = ... = Z(k’,d*) ≠ Z(k’,d*-1) (A.6)

From the proof of case (ii), it follows that X(k’,d-1) = X(k’,d-2) = ... = X(k’,d*). So, Y(k’,d-1) =

Y(k’,d*). If d* = 0, then Y(k’,d-1) = Y(k’,0) = 0 ≤ Y(k’,d). If d* ≠ 0, then

Y (k´,d −1) = Y (k´,d*)

≤ [Y +A −D](k´+1,d*) (Eqs. A. 6, 2.3, 2.5)

≤ Y (k´+1,d)+[A −D](k´+1,d*) (I.H.)

≤ [Y +A −D](k´+1,d) (Lemma 1)

= Y (k´,d). []

-- --

23

References

1. M. Garey and D. Johnson, "Computers and intractability, a guide to the theory of NP-

Completenss," W. H. Freeman and Co., San Francisco, l979.

2. D. Kafura and V. Shen, "Task scheduling on a multiprocessor system with independent

memories," SICOMP, Vol. 6, No. 1, l977, pp. l67-l87.

3. T. Lai and S. Sahni, "Preemptive scheduling of a multiprocessor system with memories to

minimize maximum lateness," Tech. Report 81-20, Computer Science Department, Univer-

sity of Minnesota, Minneapolis, 1981.

4. R. McNaughton, "Scheduling with deadlines and loss functions," Manag-Sci, 12, 7, l959.

5. S. Sahni, "Preemptive scheduling with due dates," Op. Res., , Vol. 27, No. 5, l979, pp. 925-

934.

6. S. Sahni and Y. Cho, "Scheduling independent tasks with due times on a uniform processor

system," JACM, Vol. 27, No. 3, l980, pp. 550-563.

7. S. Sahni and Y. Cho, " Nearly on line scheduling of a uniform processor system with

release times," SICOMP Vol. 8, No. 2, 1979, pp. 275-285.

8. E. Coffman, Jr., "Computer and job shop scheduling theory", John Wiley and Sons, Inc.,

New York, 1976.

-- --

