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Abstract. Each multicounter machine can be simulated by an oblivious one-head tape unit in real-time, 
using logarithmic space. The solution uses redundant symmetric number representation and implicit recursion. 
It represents a new positional representation for (vectors of) the integers. 
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1. Introduction. The idea of counting, that is, adding or subtracting a unit from 
any given number, to obtain another one, is the substrate of arithmetic if not of all of 
mathematics. Thus, it is frequently necessary in computing to maintain many counts 
simultaneously, while the only information we want to extract at any time is the set 
of currently zero counts. The process of storing several integer counts, each count 
independently being incremented or decremented by a unit in each step, governed by 
the current input and the set of zero counts, is abstracted and formalized in the notion 
of a multicounter machine. Such machines have numerous connections with both 
theoretical issues and more or less practical applications. It is of considerable interest, 
for many questions, to implement multicounter machines as efficiently as possible. We 
shall show that counting is basically simple, in the computational complexity sense of 
the word, by demonstrating that each multicounter machine can be simulated in 
real-time by an oblivious one-head tape unit using minimal storage space. Since the 
presented implementation is optimal in all commonly considered resources at once, 
the two decade old quest for better simulations of multicounter machines by Turing 
machines is finalized in one stroke. 

Doing arithmetic presupposes number representations. Different representations 
are better suited to different arithmetical operations. All of arithmetic can be performed 
by multicounter machines. Because we shall simulate a multicounter machine by a 
one-head tape unit, we need to straightforwardly represent a vector of integers as a 
linear string. No known representation for single integers allows the counter steps to 
be performed by an oblivious one-head tape unit without unbounded time loss in 
between simulated steps. Neither does any known representation, for pairs of integers, 
allow the counter steps to be performed by a one-head tape unit, oblivious or not, 
without unbounded time loss in between simulated steps. To achieve our objective, 
we in effect have to develop a new representation, with the required properties, for 
vectors of integers. 

Multicounter machines and Turing machines. For the present purpose, machines 
are viewed as transducers, that is, as abstract storage devices connected to input and 
output terminals. Thus we consider a machine as hidden in a black box with input and 
output terminals. Consequently, the presented simulation results concern the input
output behavior of black boxes and are independent of input-output conventions, or 
whether we want to recognize or to compute. The abstract storage structure embodied 
by a k-counter machine (k-CM) consists of a finite control connected to an input and 
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an output terminal, and k counters each capable of containing any integer. The states 
of the finite control are partitioned into polling and autonomous states. (Here we can 
assume without loss of generality that all states are polling states.) At the start of a 
computation the finite control of the k-CM is in a designated initial state and all 
counters are set to zero. A step in a k-CM computation is uniquely determined by 
the state of the finite control, by the symbol scanned at the input terminal if the state 
is a polling state and the set of counters which contain zero. The action at that step 
consists of independently altering the contents of each counter by -1, 0, or+ 1, changing 
the state of the finite control and producing an, possibly empty, output string. Thus 
the machine effects a transduction from input strings to output strings. If you will, the 
input and output may be thought of as written on input and output tapes, on which 
the resident access pointers (heads) are steered by the finite control. The steering 
commands issued can be viewed as part of the output. Above we closely followed the 
formulation in [2] where also a more precise definition can be found. For the more 
standard concept of multitape Turing machines consult [2], [6]. Note that, for us, a 
one-tape Turing machine consists of a finite control connected to an input and output 
terminal, and a single head storage tape. A one-head tape unit is a one-tape Turing 
machine. 

Simulation. A machine A simulates a machine B in time T(n) if, for all n > 0, 
the input/ output behavior of B during the first n steps, the atomic inputs and outputs 
ordered according to their occurrences in time, is exactly mimicked by A within the 
first T(n) steps. That is, if for every input sequence ii, i2 , · • • read from the input 
terminal: (i) the output sequences written to the output terminals by A and B are the 
same, and (ii) if t1 ~ t2 ~ • • • ~ tk ~ tk+t · · · are the steps at which B reads or writes a 
symbol, then there are corresponding steps t\ ~ t~ ~ · · · ~ tk ~ tk+t · · · at which A reads 
or writes the same symbols, and ti ~ T( t;) for all i?;. 1. For a linear time simulation it 
is required that T(n) E O(n); for a simulation with constant delay that t~+ 1 - t~ ~ 

c(tn+t - tn) for some fixed constant c and all n; for a real-time simulation that T(n) = n. 
It is well known that a constant delay simulation can always be sped up to a real-time 
one, but not a linear time simulation in general. We use simulation in the above strong 
sense of on-line simulation [6] throughout. 

Obliviousness. A Turing machine is oblivious if the movements of the storage tape 
heads are fixed functions of time independent of the particular inputs to the machine. 
Many problems seem inherently oblivious: the usual algorithms for computing the 
four main arithmetic operations, a table look-up by sequential search, can easily be 
programmed obliviously without sacrificing worst case time efficiency. Other tasks like 
binary search or sorting are, it appears, nonoblivious in nature. For many purposes, 
there are excellent reasons to restrict attention to oblivious computations [6], [7]. Here 
we show yet another, more heuristic, motive for doing so. Viz., restriction of the 
considered model of computation to its oblivious version may shift the emphasis in 
the problem to be solved, from one difficulty to a completely different one, thus 
directing us to a solution. Whereas the difficulty in real-time simulating k-counter 
machines by k' -tape Turing machines, k' < k, stems from the fact that k' < k, the same 
problem with the simulating machine restricted to its oblivious version knows as 
difficulty but the obliviousness of the simulating device alone. 

For suppose we can simulate some abstract storage device Sin time T(n) by an 
oblivious Turing machine M. Then we can also simulate a collection of k copies of S, 
say S1, 52, • • • , Sk, interacting through a common finite control, by dividing all storage 
tapes of M into k tracks, each of which is a duplicate of the corresponding former 
tape, and by an appropriate modification of M's finite control. The same head move-
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ments of the resulting machine M' can now do the same job, on each of the k collections 
of tracks, as they formerly did on the collection of tapes of the original machine M. 
So the resources used by M' are, apart from sizes of finite control and alphabets, the 
same as those used by M. In particular this holds for time and storage complexity. 
Therefore the following two statements are equivalent: 

(i) "o/e can simulate an abstract storage device S by an oblivious Turing machine 
M in time T(n) and storage S(n). 

(ii) For each k > 0 we can simulate a collection of k copies of S, interacting 
through a common finite control, by an oblivious Turing machine M' in time 
T(n) and storage S(n), where M' has the same tape/head constellation as M 

We are in particular interested in the following specialization of the above maxim. 
Define the quintessential counter S as a 1-CM with input commands "add 8'', 

8 E {-1, 0, l}. At each step S reads an input command from the input terminal, modifies 
the stored count in the obvious way, and outputs either "count equal zero" or "count 
unequal zero" in concordance with the current state of affairs. 

PRoPosrnoN 1. If we can real-time simulate the quintessential counter S by an 
oblivious one-head tape unit then we can real-time simulate each multicounter machine 
by an oblivious one-head tape unit (which for each multicounter machine makes the 
same head movements as a function of time alone). 

Background. Counter machines are relatively old devices in computer science. 
Unrestricted 2-counter machines were shown to be as powerful as Turing machines 
in [5]. Subsequently the efficiency of implementations on Turing machines was investi
gated. On linear arrays, as formalized by Turing machines, the use of a tally representa
tion for each count either requires a separate access pointer (storage tape head) per 
count or unbounded update time in between simulated steps. Curiously, even with the 
use of a separate pointer for each count, binary representations also require unbounded 
update time, although minimal storage space. This sorry state of affairs was improved 
in [1], [2] which both presented linear array simulations using minimal space, while 
[1] eliminated the unbounded update time at the cost of retaining all access pointers 
and [2] eliminated all access pointers but one at the cost of retaining unbounded update 
time. Thus, [2] exhibited the classic linear time/logarithmic space simulation of multi
counter machines by one-tape Turing machines. Efforts to reduce this simulation to 
a real-time one using a fixed number of storage heads failed, but did produce some 
weaker problems. For the Origin Crossing Problem, where the task is to recognize 
the set of sequences of unit basis vectors in k-space, k ~ 1, which leave from and end 
in the origin, an ingenious solution by a real-time one-tape Turing machine was 
constructed in [1]. The result implies that each k-counter machine can be real-time 
simulated by a k-tape Turing machine in logarithmic space, k ~ 1. Next in difficulty 
comes the Axis Crossing Problem, where the task is to recognize the set of sequences 
of unit basis vectors in k-space, which leave from the origin and end in one of the 
(k-1)-dimensional hyperplanes with one zero coordinate, k>l. For no k>l, a 
real-time solution on but a (k-1)-tape Turing machine was found, for the k
dimensional Axis Crossing Problem, after its proposal in [2]. 

In [8] we made the linear time/logarithmic space one-tape solution of [2] oblivious, 
retaining the same resource bounds. This is a matter of some significance, since by its 
nature an oblivious Turing machine is usually far slower than a nonoblivious one. For 
example, each oblivious multitape Turing machine needs n log n steps to simulate n 
steps of a single pushdown store, although an oblivious 2-tape Turing machine can 
achieve this bound [6]. For oblivious one-tape Turing machines the lower bound on 
this simulation time increases, perhaps, up to n2 • Due to the compact way the counts 
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can be stored, the situation for counter machines was somewhat better. In [7, Cor. 2] 
it was shown how to simulate each multitape Turing machine, using at most S(n) 
storage inn steps, by an oblivious 2-tape Turing machine inn log S(n) steps and S(n) 
storage. So the previously best simulation of multicounter machines, by combining [2] 
and [7], yielded a n log log n time and log n storage simulation by an oblivious 2-tape 
Turing machine. Since the thrust of [8] was to achieve fast low-cost combinational 
logic networks implementing multicounter machines, as an expedient intermediate 
next result a real-time simulation by, basically, a linear iterative array with a restricted 
amount of oblivious local rewriting was proposed. Although not very elegant, this 
intermediate model served its purpose in yielding an optimal implementation of 
multicounter machines on combinational logic networks and, perhaps more important, 
the ideas embodied in the method suggest the approach to the final simulator presented 
here. 

Outline of the paper. The objective is to construct an oblivious one-head tape unit 
capable of simulating any multicounter machine in real-time. In § 2 a stylized version 
of such a simulator is exhibited and shown to work. This version, one of many which 
are possible on the basic underlying principles, is chosen because it is at once amenable 
to short rigorous proofs of validity and achieves, it seems, the utmost frugality of 
machinery. To a large extent this gain is obtained at a cost of loss of intuition as to 
how and why it does what it is supposed to do. To counterbalance this expository 
defect, we insert some informal comments. The reader may also follow the genesis of 
the result by consulting [8] and the earlier version in the STOC Proceedings. In § 3 
we enlarge on the optimality of the result, its connection with number representations, 
and on additional fruit borne. 

2. The simulation. After some vain attempts to real-time simulate multicounter 
machines by Turing machines with a fixed number of tapes, one gets the feeling that, 
anyway, a real-time simulation by an oblivious one-head tape unit is out of the question. 
In the event, intuition is wrong; but let us informally consider the matter in some 
more detail. It quickly becomes apparent that updating a count, in real-time on an 
oblivious machine, requires a redundancy in notation which seems to make a simul
taneous real-time check for zero impossible. To achieve the latter, we allow only 
encodings of integers such that an integer is zero iff the scanned position of the encoding 
(the "first" position, so to speak) shows this uniquely. Since the head motion is supposed 
to be oblivious we must, roughly speaking, update each "initial" !!(log i) length segment 
(situated around the head) of the encoded integer within each interval of i steps, for 
all i?; 1. While moving the head to update longer segments of code in an oblivious 
manner, we may have actually stored small counts which may reach zero during this 
motion. So the machine has to simultaneously shift and update smaller segments of 
code, while updating larger segments of code, and so on recursively down to the 
smallest segments. Such considerations force compact encodings, and, apart from giving 
us some feel for what behavior is necessarily involved in a simulation as desired, they 
show that the integer representation used must be positional in nature. 

Outline of the simulation. The simulation splits naturally into two parts. First we 
introduce a redundant binary representation for the integers, and formulate certain 
minimal requirements for real-time maintaining the representation of the stored integer 
under the counter operations. These requirements consist in a fixed strategy, of 
accessing constant length segments of this representation, for all input streams. Second, 
we construct an oblivious one-head tape unit capable of implementing these require
ments in real-time. 
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The current count of the quintessential counter, as figuring in Proposition 1, is 
stored on the single tape in a (garbled form of) redundant binary representation, with 
marked most significant nonzero digit and leading distinguished blank symbols. As a 
consequence of preserving some invariants, the stored count equals zero iff the "first" 
position of the representation is a blank. Since this first position shall reside in the 
finite control of the simulator, that situation is instantly recognized. 

Hence the problem is solved, if we can real-time update the representation of the 
current count while preserving the invariants. In the chosen representation it suffices 
to update each segment of the 2ith through (2i + 3)th position of the representation 
at least once within each interval of 3; consecutive steps, for all i 6; 0, while also 
processing the current input commands, by an update of the first two positions, in 
each step. Intuitively speaking, the timing allows us to propagate carries and borrows 
(negative carries) fast enough. Although there is a considerable freedom about how 
to implement the required datamovement on an oblivious one-head tape unit, we 
choose for frugality in attendant machinery and minimal bit compression (that is, a 
small storage tape alphabet). Therefore, we divide the representation into blocks of 
two digits each, and store the first three blocks in the finite control. Each digit of the 
representation residing on the tape is tagged with an opening or a closing bracket, viz. 
the first digit of a block with an opening bracket and the second one with a closing 
bracket. To access each segment of the 2ith through (2i + 3)th digits of the representa
tion at least once in every interval of 3; steps, we develop a method of recursively 
transporting the digits of block j, from one side of the combination of the first i blocks 
to the other side, back and forth, for all i, j, 1 ;;:;; i < j. This transport, which entails 
moving the total combination of the first i blocks, in its turn supplies the necessary 
motion for the combination of the first i + 1 blocks, while it also allows the single head 
to access blocks i + 2 and i + 3 within the timing constraints. The single head, without 
being able to determine the positional index of the scanned digits (since there will be 
all in all but four tags, viz. two types of opening brackets and two types of closing 
brackets), preserves a topology which allows it to single out and update due segments. 
The net effect will be that, for all i simultaneously, the combination of the first i blocks 
acts like a very fat head, moving slower the greater i is, but fast enough to do the 
same job to blocks i + j as the head itself does to blocks j, for all i, j 6; 1. 

On notation. To be able to express and prove the subsequent constructions, it is 
convenient to introduce some notation first. The objects operated upon are linear 
arrays or strings of symbols from a finite alphabet. Arrays can be finite or one-way 
infinite. In a one-way infinite array A[O: oo], A[O] is the first element and A[i] is the 
(i + l)th element, i 6; 0. A[i :j] denotes the (j- i + 1)-length subarray consisting of the 
(i + l)th through (j + l)th elements, 0 ;;:;; i ;a j. The concatenation A[ i : j]A[j + 1 : k] 
equals A[i: k], 0;;:;; i;;:;; j < k, and we identify A[i: i] with A[i], i 6; 0. Finite arrays are 
treated similarly. Arrays are operated upon by functions from arrays to arrays. Since 
these functions shall be partial we introduce the undefined array 0. By definition, for 
any array A, 0A = A0 = 0. The undefined array should be distinguished from the 
empty array e for which by definition, for any array A, eA = Ae =A. Mappings from 
arrays to arrays are defined in terms of length preserving functions from finite arrays 
to finite arrays. If a function P maps an array S to an array S', with S, S' finite and 
of equal length, then we write P: s- S'. By definition P: 0-0 for all functions P. 
Functions induce relations amongst one-way infinite arrays in essentially two ways. In 

Q 
the first type of relation ~ the argument of Q determines integers i, j, i ~ j, and for all 
arrays A[O:oo], A'[O:oo] if P:A[i:j]-A'[i:j], for a function P associated with Q, 
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Q 
A'[O: i-1] = A[O: i-1] and A'[j+ 1: oo] = A[j+ 1: oo], then Ai=;> A'. In this case, 

Q 
clearly i=;> is a function from one-way infinite arrays to one-way infinite arrays. In the 

p p 

second type of relation I=>, Pisa function, and A I=> A' if A= S1SS2, A'= S1S' S2 and 
P: S.....:; S'. It will be shown that all such relations of the second type we consider are 
also functions when restricted to a set of well formed arrays. In both cases, if for 

Q Q I Q 
some I=> and some array A, there is no A'¥ 0 such that Ai=;> A , then A I=> 0. 

Considering the relation~ amongst arrays as rewriting, the rewriting shall thus be 
Q Q 

proved to be always monogenic, that is, if Al=>A' and Al=>A" then A"=A'. We 
compose functions Pi. P2 , • • • , Pn to a function P, or decompose or expand a function 
P into a sequence of constituent functions PI> P2 , • • • , Pn as follows. If for some 

p 

P, PI> · · · , Pn and all arrays A there exist arrays Ai. A 2 , • • • , An such that A I=> An 
P 1 P2 Pn 

and A!==;> A 1 I=> A 2 • • ·I=> An then P = P1 ; P2 ; • • • ; Pn. The function composition 
operator";" denotes sequential rewriting from left to right. Whenever necessary, we 
denote the value of an array A at time t, t~O, by A 1 and A 0 is the initial array. We 
dispense with the superscript if t is understood or when we view A as a variable. 

Main objective. We concentrate on real-time simulating the quintessential counter 
of Proposition 1 by an oblivious one-head tape unit. 

2.1. An integer representation. Consider a positional base 2 notation for rep
resenting the integers, which may be called redundant symmetric binary, using the 
digits-2, -1, 0, 1, 2. So the integer c represented by c0 c1c2 ···cm, c; E {-2,-1, 0, 1, 2}, 
equals :L::o c;i. Such a representation is binary because of the weight of digits in 
distinct positions, symmetric because of the used digits, and redundant since each 
integer has infinitely many representations, even without leading nonsignificant zeros. 
To represent the stored integer count on a, potentially infinite, linear tape we essentially 
use a restricted version of this representation, with a marked most significant nonzero 
digit and distinguished leading nonsignificant zeros. Let A= {-2, -1, 0, 1, 2} and X = 
{ -2, - I, 0, I, 2}. The barred digits have the same value as their non barred counterparts, 
X-{O} is reserved for the most significant nonzero digit, and "O", called blank, is 
reserved for the nonsignificant zeros. Let I= AU X and let code: Z ~ 21:"' be a function 
of the integers into the power set of l:.00 , where I 00 is the set of one-way infinite strings 
over~- The function code satisfies restrictions (A)-(D) below, for all c0c1 • • • C; • • • e 
code(c), ceZ. 

Separation of a finite significant initial segment and nonsignificant zeros: 

3i~O[c;=O] & 'Vi>O[(ci=O ~ (c;_ 1 eX& C;+ 1 =O)) 

& (c;e:L-{O} ~ C;- 1 e A)]. 
(A) 

Correct representation: 
00 

(B) L C;i =c. 
i=O 

To identify representations of 0 by just a small initial segment: 

(C) 'v'i E:O [(C;+J > 0 ~ C; ~ O) & (C;+J < 0 ~ C; ;;a O)]. 

Under (A)-(C), (-2);0l0"° represents the integer 2 for all i ~ 0. To prevent racing 
of ~he m~st significant nonzero digit to the first position, in just a few steps of the 
desired smgle head real-time simulator: 

(D) 'Vi~O[iisodd~ \c;\<2]. 
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Now if c0c1 · · ·Cm-I Cm·· • E code (c), with C; E 6. for 0 ;;iii ;;ii m-1, and C; EK form~ i, 
then form= 0 we have 0 ;;ii lei ;;ii 2, form= 1 we have 2;;.;; lei~ 4 and in general form~ 2: 

with 

m-2 m-2 m.-1 m-1 

r=2 I 2i+ I 2i, r'=2 I i+ I 2i 
i=O, i even i=l, i odd i=O, ieven i=I, iodd 

which yields 

m-3<log2lel< m+2. 

Thus the length of the initial significant segment of the representation of c E "1L. 

follows by and large the length of the usual binary representation of lei. We are 
particularly interested in representations for zero. Note that the following proposition 
holds for code functions satisfying only (A)-(C). 

PROPOSITION 2. Let c0c1 • • • CmCm+I · · • E code ( c) with c E "!L.. Then c = 0 iff C; = 0 
for all i ~ 0 iff c0 = 0. 

Proof. By (A) c0 = 0 iff C; = 0 for all i ~ 0. So we only have to prove c = 0 iff c0 = 0. 
Assume C; = 0 for all i ~ 0. By (B) c = 0. Assume C; # 0 for some i ~ 0. Then by (A) there 
exists a least m ~ i such that ci = 0 for all j > m, and leml # 0. For m = 0, lei~ 1, and 
for m = 1 we have lei~ 2. For m ~ 2: 

lei= I I C;2i I (by(B)) 

~ l 2nt-l~~l: C;i 11 
(triangle inequality) 

m-2 

~r-2 I 2i (by(C)) 
i=O 

=2. 0 

2.2. Maintenance of the count. Let S be the simulated quintessential counter and 
let 8i. 82, · · ·, 8,, · · ·, 8; E {-1, 0, 1}, be any fixed sequence of unit additions/subtrac
tions. So at time t~O, S contains the integer I;= 1 O;. We maintain the count in an 
array C[O: oo] such that the value of the array at time t ~ 0 is C'[O: oo] E code (I;=, 8;), 
for any such input stream. The initial array C 0 [0: oo] at time t = 0 is defined by C 0[i] = 0 
for all i ~ 0, and therefore C 0[0: oo] E code (0). In the tth simulated step, t ~I, the 
current value c'- 1 of the array is mapped to the next value C' by a function 
COUNT (t, 81). The mapping COUNT is defined in terms of a composition of mappings, 
with the aid of an auxiliary function I: N -7 i'", called the parameter selection function, 
which has as values sets of bounded cardinality (cardinality four suffices). 

DEFINITION. For t~l, let l(t)={ii,i1_1>''·,i1} with i1>i1_ 1 ···>i1, and let 
8 E {-1, 0, l}. COUNT (t, 8) is defined as a composition of mappings: 

def 
COUNT (t, o) =UPDATE (i1); UPDATE (i1_ 1); ···;UPDATE (i1); INPUT (B). 

Hence 

COUNT(t,11) 
C C', with C' # 0, 
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if there exist Cl> C1-i. • · · , C1 ¥= 0 such that 

C UPDATE(i1) Ci UPDATE(i1_ 1) UPDATE(i1) INPUT(8) 
1======~ C1-1 · · · C1 I====~ C'. 

COUNT(r,8) 
In all other cases C 0. 

DEFINITION. Let i EN and let C[O: oo] be a one-way infinite array, C ¥= 0. 

UPDATE(i) 
C[O:oo] C'[O:oo], 

C'[O:oo]r!':0, if UPDATE: C[2i:2i+3]- C'[2i:2i+3]¥=0 and C'[0:2i-1]= 
C[0:2i-1] and C'[2i+4:oo]=C[2i+4:oo], with the function UPDATE:~4 ~~4 

defined below. For convenience we first define UPDATE: !::i. 4 ~!::i. 4 and then extend the 
mapping to ~4• 

UPDATE: 2 0 x y ,_,. 0 1 x y for xye{OO, 01, 0-1, 10, 11, 20, 21} 
2 0 x y ...... 0-lx+ly forxye{-10,-20,-1-1,-2-1} 
2 1 x y ...... 0 Ox+ly forxye{00,01,10,11} 
2 1 0 -1 ...... 0 0 -1 0 
2 1 2 y ...... 0 

-2 0 x y ...... 0 -1 x y 
-2 0 x y ,_,. 0 1 x-1 y 
-2-1 x y,_,. 0 Ox-ly 
-2-1 0 1 ...... 0 0 10 

for ye{O, 1} 
for xye{OO, 0-1, 01, -10, -1-1, -20, -2-1} 
for xye{lO, 20, 11, 21} 
for xye{OO, 0-1, -10, -1-1} 

-2 -1 -2 y ,_,. 0 for ye{O, -1} 
v w x y ,_,. v w xy forvit{-2,2} 
v w x y ,_,. 0 for vwxy not in the above list. 

Extension of UPDATE to mappings from ~4 into ~4 : if vwxy It' !::i. 4 then 

UPDATE: vwxy - v' w' x' y' 

for all vwxy, v'w'x'y' E l::i..*(A-{O}){O}* U {0000} such that the unbarred version of the 
mapping is in the previous list, and UPDATE: vwxy-0 in all other cases. (Recall 
that if V is a finite alphabet, then V* is the set of all finite strings over V including 
the empty string s.) 

DEFINITION. Let 6 E {-1, 0, 1} and let C[O :oo] be a one-way infinite array, C ;i: 0. 
INPUT(B) 

C[O:oo] C'[O:oo], 

C'[O:oo]¥0, if INPUT8 :C[0:1J-C'[O:l]#0 and C'[2:oo]=C[2:oo] with 
INPUT8 : ~2 ~ ~2 defined below. For convenience we first define INPUT a: l::i..2 "' l::i..2 and 
then extend the mapping to ~2 • 

INPUT_1 : 

INPUT0 : 

x y ,_,. x-1 y forxye{00,0-1,-10,-1-1, 10, 11} 
0 1...... 1 0 
x y...... 0 
x y...... x y 
x y...... 0 
x y ...... x+ly 
0 -1...... -1 0 

for xy e {-20, -2-1, 20, 21} 
for xye {00, 0-1,-10, -1-1, 10, 01, 11} 
for xy e {-20, -2-1, 20, 21} 
for xy E {00, 01, 10, 11, -10, -1-1} 

x y,...,. 0 forxye{-20,-2-1,20,21}. 

Extension of INPUT8 to mappings from L2 into ~2 : if xylt'.6.2 then 

INPUT8 : xy - x'y' 

for all xy, x' y' e .6. *(A-{O}){O}* U {00} such that the unbarred version of the mapping 
is in the previous list and INPUT 8 : xy- 0 in all other cases. 
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If for some array C[O:oo] and P=UPDATE(i), i~O, we have 
p 

UPDATE: C[2i: 2i + 3}-~ 0 then C ~ 0, by definition. If for some array C[O: co] 
p 

and P=INPUT(8), 8E{-l,O,l}, we have INPUT8 : C[O:IJ~0 then C~0, by 
definition. For all PE{INPUT(8), UPDATE(i)l8E{-l,0,1}, i~O} we have by 

p p 
definition 0 ~ 0, and thus ~ is a mapping from l 00 U {0} into L'"' U {0} and not just 
a relation. Basically, INPUT ( 8) adds the current input to the currently represented 
integer and UPDATE ( i) propagates carries and borrows in a segment of the rep
resentation, both preserving representations from the code function. 

For each input sequence D = 81' 82 , • • • , 8,, · · · , with 8r E {-1, 0, 1} for t ~ 1, the 
sequence of mappings 

def 
COUNT (I, D) =COUNT (1, 81); COUNT (2, 82); ···;COUNT (t, 81); • • • 

defines a sequence of (a priori possibly undefined) arrays C 0 , C1, · · ·, C', · · · such 
that C 0 is the all-blank initial array C 0[0: co]= 000 , and for all t ~ 1: 

ct-l COUNT(t,6,) er. 

Decomposing COUNT (t, 81) into its constituent functions for all t~ l, with l(t) = 
{ir,1(1), i,,1(1)-i. · · · , i,,1} and ir,I(t) > i1,1crJ-I > · · · > it,1, we obtain for each input sequence 
D = 81, 82 , • • • , 8,, · · · the sequence of basic mappings 

COUNT (I, D) =UPDATE (i1,10 )); UPDATE (i1,1<o-1); ···;UPDATE (i1,1); 

INPUT (81); UPDATE (i2,1(2)); · · ·. 

In this sequence, the subsequence of mappings 

COUNT (t, 8,) =UPDATE Ur,l(li); UPDATE Ur,l(r)-1); ... ; UPDATE (i,,l); 

INPUT (01 ) 

is said to constitute the tth step of the maintenance of array C. Starting from c 1- 1 the 
sequence of intermediate arrays defined by the tth step is 

C'- 1( = Cr-1.0), Cr.1cr» Cr.1cr)-1, · · ·, C,,1, Cr.o( = C') 

defined by 
UPDATE(i,,l(<J) INPUT(.S,) 1 

ct-I,O Cr,l(r). . . Cr,O =c. 

Note that in the decomposition of COUNT (I, D) in the basic mappings UPDATE ( ·) 
and INPUT ( ·) the parameter t does not occur explicitly; the sequence of basic 
mappings is defined totally by the sequence of successive values of I and the sequence 
of inputs. This is important in the next sections. In this section we show in Lemma 1 
that, for any input sequence D = 81 , 82 , • • • , 

C 0, C1,1o» · · · , Cu E code (O) U {0} 

and for all t~ 1 

Cr-1,0( = c-1), c,,/(r), ... 'C,,l E code (I 8;) u {0}. 

In Proposition 3 it is demonstrated that for certain choices of the parameter selection 
function l we have that C,,(I: 0 for all t ~ 1 and all j, l(t) ~ j ~ 0, whence er E 
code (2:;= 1 8;) for all t~O. 
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LEMMA I. Let array C E code ( c) for some integer c. If, for some i;:;;; 0, 
C uPDATE(•l C'' C' 1" 0, then C' E code ( c ). If, for some o E {-1, 0, l}, 

INl'UTl.•'I ) C C', C' 1" 0, then C' ecode (c+o . 
UPDATE(i) 1 

Proof. Let C E code ( c) for some integer c and C C', C -¥-_ 0, for some 
i ~ o. If jC[2i]! 1" 2 then C' = C and

1 
t~ere is ~othin~ to prove. So l~t \ C[12z Jj = ~- E~7~ 

for j<2i and j>2i+3, C[1]=C[1]. Smee also Lj=0 C[21+1]2 -
) 3 . C[2i + j]22i+i, we haver: C'[i]2; = I:o C[i]2' =c. It is easy to check from the ~1~0 . 1 O UPDATE(i) / 
definition of UPDATE (i), that if (A), (C) and (D) hold for C, C C and 
C' ;e then (A), (C) and (D) also hold for C'. Hence C' E code (c).Let C E code (c) 
for some integer c and C INPUT<Bl C', C' #- 0, for some 8 E {-1, 0, 1}. Since C' #- 0 
we have !C[O]l<2. For all j>l, _C'[j]=C[j]. Because also C'[0]+2C'[_l!= 
C(0]+2C[l]+o we have L:~=0 C'[i]2'=c+o. It is easy to check from the defimt10n 

!NPUT(B) 
of INPUT ( o) that if (A), (C) and (D) hold for C, C C', and C' #- 0, then 
\A), (C) and (D) also hold for C'. Hence C'ecode(c+o). 0 

PROPOSITION 3. Let T: N-'>-N be any function such that T(i) ~ 3i for all i ~ 0. Let 
the parameter selection function I: f\1-'>- 2N, associated with the mapping COUNT, be 
such that for all indices i ~ 0 and steps t ~ 1 there exists a t', t ~ t' < t + T( i) and i E I ( t'). 
Then for each input sequence Di, 82 , • • • , 81, • • • , 8, E {-1, 0, l}, t;:;;; 1, there exists a 
sequence of one-way infinite arrays C0 , C 1, • • ·, C', · · ·, with C0 the all blank initial 
array and C'- 1 is mapped to C' by COUNT (t, 81) for all t~ l, such that C' E 

code Q::=i 8,) for all t ~ 0. 
Proof Roughly speaking the proposition states that if, starting from the all blank 

initial array C0 , UPDATE (i) is executed at least once in every interval of 3i steps, 
for all isO, and INPUT(8) is executed each step, with 8e{-l,O, 1} the currently 
polled input, then the array at time t represents the stored integer at time t according 
to the code function. By Lemma 1 and the definition of COUNT this is the case if, 
under the timing assumption on the parameter selection function I, each time 
UPDATE (i) and INPUT (8) map an array satisfying (A), (C) and (D), the result is 
not the undefined array 0. The only way UPDATE (i) can map an array C[O: oo], 
satisfying (A), (C) and (D) to 0 is for C[2i:2i+2]e{212,212,-2-l-2,-2-1-2}. 
Similarly, the only way INPUT(8) can map an array C[O:oo] satisfying (A), (C) and 
(D) to 0 is for C[O]E {2, 2, -2, -2}. Hence we have to prove that, under the assump
tions on I, and starting from the all blank initial array c 0 , these undesirable subarrays 
do not occur at the crucial moments. Induction is on the number of steps t. 

Base case: the first step. Since C 0 is all-blank, for all is 0 we have C 0[2i: 2i + 3] = 
---- 0 COllNT(l,8 11 l . _ _ 
0000. Hence C C with C 1[0] = 81 and C 1[i] = 0 for all i ~ 1. That is, 
C 1 E code (81). 

Induction: t ~ 1. Assume, by way of contradiction, that for the input sequence 
81, 8~,- · · , 8, ( 81 E {-1, 0, 1 }, 1 ~ j ~ t) we have for all j, 1 ~ j ~ t: 

COUNT ( j,8 ) . . 

ci-l I C1, C1 ""0 (induction assumption), 

and 

1 COUNTtt+l,8) 

C 0 (contradictory assumption), 

for so~~ 0 E {-1,_ 0, I}. F~r all j, 1 ~ j ~ t, by Lemma 1, cj E code (2:;=1 8i). Let J(t+ 
l)={1i,l1-1.···,11} and 11>i1-1>-·->i1. Decomposing COUNT(t+l,8) into its 
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constituent mappings we have 

r UPDATE(i1) UPDATE(i1_ 1 ) UPDATE(i 1) INPUT(5) 
C = C1+1 C1 C1-1 · · · C1 Ca=0, 

for some intermediate, possibly undefined, arrays C1, C1_1, • • • , C0 • By the contradic
tory assumption there must be a first undefined array in this sequence, say Ci-l = 0 
and Ci "1':- 0 for some j, 0 <j~ I+ 1. Note that, by Lemma l, Ci E code 0_:;= 1 8;). 

Case 1. j > 1. Setting i to ii-I• to avoid subscripts, 

UPDATE(i) 
cj 0. 

Since ci E code o:::=! 8;) and therefore satisfies (A), (C) and (D), this can happen only 
if Ci[2i: 2i +2] E {-2-1-2, -2-1-2, 212, 212}. Assume Ci[2i: 2i + 2) = 212, the other 
cases being symmetrical. Since the initial array C 0 contained only blanks, there must 
be a t', 0 < t' ~ t, with t- t' minimal, such that 

cr'-1 COUNT(r',8,.) et', 

cr'[2i +2] = 2 and cr'- 1[2i +2] "1':- 2. (A previous mapping UPDATE (k), with k> i, in 
the ( t + 1 )th step could not have set C[2 i + 2) to 2 from another value, so if CJ2i + 2] = 2 
then Ck[2i + 2] = 2 for all k, I+ 1 ~ k ~ j. Since C1+1 =er indeed t' ~ t.) From the 
definitions it follows that C[2 i + 2) can be set to 2, from another value, only by the 
mapping UPDATE (i). So i E J(t'), and we denote by C' the array mapped upon by 
the occurrence of UPDATE(i) in COUNT(t',8t')=UPDATE(i/·); 
UPDATE (i/._ 1); ···;UPDATE (i;); INPUT (8,.). By the definition of UPDATE (i) 
we must have C'[2i: 2i + 2) = 002. Since during the mappings, following UPDATE (i) 
in COUNT(t', 8r), subarray C[2i+2:ro] is not accessed, and we have by Lemma 1 
that C' E code o:::,:-: 8;) and er' E code o:::·=I 8;), it therefore follows that 

(1) 

2i+l 2i+I 2i-1 
L C 1'[k]2k= I C'[k]2k+8,.= L C'[k]2k+8,.;;;;;(4i+!_l)/3 (by(C)and(D)). 

k=O k=O k=O 

Any first occurrence of an UPDATE(i+l) in a COUNT(t", 8r"), t'<t"<t+l, so in 
between the mappings by the two occurrences of UPDATE ( i) in steps t' and t + l, 
would have set C[2i + 2) to 0, resulting in 1Cr"[2i + 2JI;;;;; 1, contradicting the minimality 
of t - t'. Therefore, for all t", t' < t" < t + 1, i + 1 ft I ( t"). By the assumption on I in the 
proposition it follows that 

(2) 

We are now ready to derive a contradiction. For the only mappings which can alter 
something in C[2i+2:2i+3] are UPDATE(i) and UPDATE(i+l). However, in 
between the mappings according to the occurrence of UPDATE (i) in step t' and that 
of UPDATE ( i) in step t + 1, no occurrence of UPDATE ( i) has changed C[2i + 2: 2i + 
3] (since this would contradict the minimality of t-t'), and UPDATE (i+ 1) has not 
occurred at all (since Cl2i+2)"1':-0 by assumption, i+l is not in J(t+l) too). So, by 
the definitions of COUNT and UPDATE we obtain: 

co 00 

(3) L: c''[k]2k = L: Ci[k]2k. 
k=2i+2 k=2i+2 
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Furthermore, by Lemma 1, 

(4) 

Thus: 

(5) 

00 t 00 

L C1[k]2k = L j)k = L Cj[k]2k. 
k=O k=l k=O 

2i+l 00 00 

I q[k]2k = I Cj[k]2k - I Cj[k]2k 
k=O k=O k=2i+2 

t 00 

= L 8k- L Cj[k]2k 
k=l k=2i+2 

t 00 

= I 8k - I C1'[k]2k 
k=l k=2i+2 

I I' 2i+l 
=I 8k- l: 8k+ I c''[k]2k 

k=l k=l k=O 

;;'ii t- t' + (4i+l_ 1)/3 

< 3i+l + (4i+l _ 1)/3. 

(by (4)) 

(by (3)) 

(by Lemma 1) 

(by (1)) 

(by (2)). 

But, by way of contradiction, it was assumed that q[2i: 2i + 1) = 21. Therefore, 

2i+l 2i-l 
(6) L Cj[k]2k =4i+t+ L Cj[k]2kE;;4i+l_(4i-4)/3-4i/2, 

k=O k=O 

for i E;; 2 (and ~14 for i = 1, E;;4 for i = 0), by (C) and (D). Since for all i ~ 0 the 
contradictory assumption leads to the contradictory inequalities (5) and ( 6) we conclude 
that j = 1 and case 2 holds. 

Case 2. j= 1 and 

INPUT(.5) 
C1 0. 

However, under the assumptions in the Proposition, 0 E I(t) for all tE;; 1, so COUNT (t+ 
1,8)=···; UPDATE(O); INPUT(8). But if C1[0:oo)~0 is the value of 
UPDATE (0) then C1[0]!2'{-2,-2, 2, 2}. Therefore, the contradictory assumption also 
fails in this case and 

INPUT(~) 

C1 Co~0. 

Since the contradictory assumption has now been proven false, by Lemma 1 
Ct+l> Cl>···, C1 Ecode cz::=t Si) and CoE code (L:=t 8i+8). Setting C'+t = C0 com
pletes the induction. 0 

Proposition 3 shows us a way of real-time simulating the quintessential counter 
S figuring in Proposition 1. Let C0 be the all-blank initial array, and let the parameter 
selection function I meet the timing conditions in Proposition 3. If we map in the tth 
step, for each t ~ 1, the current array value to the next one by COUNT (t, 8), where 
"add 5", 8 E {-1, 0, 1}, is the input command polled from the input terminal in the 
tth step, then the array at each time t ~ 0 is a representation from code (stored integer 
at time t). Since the mapping COUNT (t, 5) = · · · ; INPUT (8), and INPUT (8) maps 
C[O: 1] to a next value, we can simultaneously output "count equals zero" if the next 
value of C[O] = 0, or "count unequal zero" if the next value of C[O] ~ 0, according to 
Proposition 2. 
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Note that the requirement of an initial zero count is not essential. We can as well 
prove Proposition 3 starting from C 0 equals a representation of an arbitrary integer 
c. For instance, a representation from code ( c ), containing only equal signed digits of 
absolute value less than 2, for C 0 , lets Proposition 3 go through as well. Thus, the 
arrangement can real-time simulate initially nonzero counters. 

2.3. An oblivious one-head tape unit. Proposition 3 puts a heavy burden on a 
one-head tape unit: C[O: 3] must always be under scan, C[2: 5] within each third step, 
and in general C[2i: 2i + 3] at least once within each interval of 3; steps, for all i G; 0 
simultaneously. This requires that, basically, at all times all C[i] must be on the move, 
drifting inward or outward from the location occupied by the single head, so to speak. 
This data motion must be due to the swapping of array elements amongst the momen
tarily simultaneously scanned tape squares. To be able to scan C[2i: 2i + 3] within 
certain time intervals, for all i ~ 0, it is necessary that at certain times arbitrarily many 
of such quadruples are split and the pieces geometrically far apart. The piece C[2i: 2i + 
1] must be joined to piece C[2i -2: 2i- l] at certain times and to C[2i + 2: 2i + 3] at 
other times, for all i G; l. Apart from performing the splitting, moving and glueing, 
the head must also recognize quadruples C[2i: 2i + 3] to perform UPDATE, and also 
know the relative order amongst pairs of such foursomes. Hence we need to maintain 
some order and identification of the array elements. Yet we cannot identify the 
individual elements of C with respect to their position, since such an identification tag 
for C[i] needs log i space and log i time to evaluate. All this points in the direction 
of a recursive process, but again we cannot maintain depth of recursion parameters. 

The process exhibited below rests on the following intuition. The goal is roughly 
to access quadruples of consecutive elements of C, of index 0(i), at least once in each 
interval of 2°<il steps, for all i ~ 0. We call the individual array elements cells and 
consider them as packets of information to be swapped amongst simultaneously scanned 
squares. Assume we are able to move a block of cells, called A1' by, according to 
some regime, moving the head, centered on the cells constituting At> from the left 
end of Ai, where it scans some squares left _adjacent to Ah to the right end of Ai, 
where it scans some squares right adjacent to Ai, and back again to the left end of 
Ai. Let A 1 be contained in a block of cells called A 2 • Then Ai moves by transporting 
cells of A 2 -Ai through Ai to the other side of A 11 while simultaneously shifting the 
cells of A 1. Thus, we will shift the total block Ai from the left end of A 2 to the right 
end, and back again to the left end. During such a full sweep of A 1 over A 2 , we will 
shift block A 2 within a larger block A 3 by a single square. So the relation between 
A 2 and A 3 is analogous to that between A 1 and A 2 • See Fig. 1. 

Fro. 1. The blocks are individually "moving" in the indicated directions. 

In general, we env1s1on an infinite series of nested blocks, 
Ai, A 2 , • ··,A;, A;+ 1 , • • ·,with A; properly embedded in A;+i, i 6 l, such that a full 
sweep of block A; over block A;+i shifts block Ai+i one square in the currently desired 
direction. In the above arrangement, the head is always centered on block Ai, and 
therefore, since it is allowed to scan but a fixed number of squares, when it is centered 
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"d s· the ends at the end of block A1 it scans but a fixed amount of squares outs1 e. mce 1 11 
of the individual blocks govern the action the single head. ought _to take, and ~:~e c~h~ 
Of A - A. have to be transported through A1 for arbitrary i, we cannot d 

1+1 1 A · b t een the head centere physically present ends of all of blocks A2, A3, · · · , 1 m e w . 
on A 1 and a cell, to be transported, in A1+1-A1. So we want the blocks to _mo~e, m 
a sense, completely out of each other. That is, an arrangement as below m Fi~. 2, 

where we denote the cells in Ai+1 -A, as B1+i. for all i ~ 1, and A1 by B1. (x ~ Y 
denotes that y occurs after x.) 

r->--. 

···E::J~}··IB; llsi.1 I··· 

~ ···~~,···~ I~ ···B;J;Jc;J 
,,-"--.. 

~···~~ ~~~ ... 

~ ···~"., ~~ ••• ~~&i+1 I··· 
FIG. 2 

- 3-.. ,.......,.__ 
I Ai I~ ... b I Aj I~ -,_.....__, 

b I Ai [ Bi+1 I~ -,..-..J--.. 

~ ... I [Bi+t At I~ 
c+ 

... ,.~1+1 ' 
* I I~ I=> Ai ... 

.;::> ___.._....., 
* ~IA; I I=:> 

~ 

~ ~,, 
Ai I~ 

~ 
b ... I Ai I~ 

FIG. 3. The action of block A;+ 1 =A; U B;+ 1 with respect to blocks Bi, j> i + 1 is not depicted. 

In this manner we telescope the blocks, as it were, inwards and then outwards in 
the other direction, subsequently reversing the process. To achieve this behavior, we 
transport, for all i ~I, elements of block Bi+1 through A 1 = U J=i B; while simul
taneously shifting the cells of A 1 to accommodate the transport. The motion of the 
head through A 1 is governed by recursively moving B;+i through Aj, for all j, j';{i i. 
Schematically, level i of the process is depicted in Fig. 3. When the head was at the 
ends of block A1+1 = A1 U B1+1' it now could have picked up or deposited a cell outside, 
that is, of a block Br j> i + 1. Assume that all blocks B;, i ~ 1, have the same number 
of cells, say x. By a full sweep of the head over block A 1 we shall mean the action the 
head has to perform, starting from one end of A 1, to pick up a cell of B;, j > i, deposit 
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it on the other side of A;, and finish at the same end of A; from which it started. So 
basically a full sweep of the head is a traversal of block A; from one end to the other 
end and back again. Let a full sweep of the head over A; take at most S( i) steps, i "?;; l. 
Then to transport all of B;+ 1 from one end of A; to the other end, and back again, 
takes at most cxS(i) steps for some constant c. Since this constitutes a full sweep of 
the head over block A;+ 1 , we have S(i+l);;;;icxS(i), for all i"?;;l, and obviously 
S(l)~cx. So S(i)E2°(il_ 

In the formal construction below we set the block size to 2, and represent the 
loosely described block B; by "L ]; ", in the understanding that the two cells concerned 
are tagged with 'T' and"]". The subscripts on the tags are just there to aid the reader, 
but do not occur in the actual simulation. An element of block Bi in transport through 
block A;, j > i, is identified by a curly bracket of the appropriate type. Thus each 
individual cell has permanently assigned to it a tag, consisting of either an opening or 
closing bracket, which may at different times be square or curly. Fig. 4 sketches a 
descriptive situation: 

FIG. 4 

After these preliminaries we formally define a one-head tape unit M It is con
venient to view the instantaneous descriptions (i.d.'s) (momentary snapshots of M's 
tape contents and the head position) as one-way infinite linear arrays T, with "<"or 
">" denoting the center of the head position. We tag the cells, containing elements 
of the array C of the previous section, with "[", "]", "{" or "}". Below we display 
only these tags, since for the moment we are not interested in the cell contents. The 
identity of the underlying squares is not important, but the identity of the tagged cells 
is fixed, wherever they end up. For convenience of the reader we index the tagged 
cells (or rather the tags). The eventually defined machine, however, has no indexes 
associated with the cells, only one out of the four mentioned tags. The initial i.d. is, 
now focussing on the tags only, 

T 0 = > Ci11 bh · · · L ]; L+di+1 · · · 
We describe transformations of the array T in the form of six parametrized recursive 
functions, and four nonparametrized functions, each of two types. Each such function 
X will, for a unique subarray of T, rewrite this subarray by reordering its elements, 
specified by X( · ): a<> {3 !-,)>a'<>' [:3' with a, a', {3, {:3 1 being strings of (for clarity 
indexed) tags and <>, <>' E {>,<}. A definite requirement for the process is that, at 
some time, it has to scan "L+2 ];+2 L+3 ];+3 " for the first time. So we define, for all i ~ 0: 

A(>' i): > [il1Cz1z ... L ]; L+ili+J !-,)> L+dd; L-di-1 ... [i] 1>1H1· 

For symmetry we also define: 

A(<, i): L+di+J [;]; L-1 );_I ... [d1 < !-,)> L+1 <[d1 [z h ... L]; h1· 

To abbreviate notation we shall henceforth denote shortly, for all i ~ 0, 

def 
<>[d1 = <>[d1bh ... [;];, 
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with 
<> E {<,>},and [r)1 = e for i =O. 

So for all i~O: 
A(>, i): > l111 L+1 l+1 - L+1C111 > 1;+1 • 

A(<, i): L+di+1l111 < - L+1<l11r 1;+1· 

By execution of A(>, i) on the appropriate unique substring of T 0 we have therefore, 
using the same rewriting denotation as in the previous section: 

with 

and 

,,.,a A(>,i) 1 
1-~T· 

rt• = L+1 L); L-di-1 · · · L 11>1i+1 L+2 l+2L+31i+3 · · · 

where t; is the number of steps it takes to execute the mapping A(>, i), to be specified 
later, i 6 0. 

With the head scanning at least five squares right of the center position, indicated 
by">", the subarray "L+2];+2 L+3 1;+3 " is scanned at time t;, for all i ~ 0, while at time 
t= 0 the subarray "[i]1 lzh" is scanned. 

DEFINITION. To achieve the required interchange of tagged cells, define the 
functions below. Recall that"}/' denotes the same cell as "1/', only the attached tags 
have changed. Similarly for "{/' and "[/'. For all i 6 0 and j > i + 1: 

A(>, i): >[111 L+1X H- L+1(111 >x 

A(<, i): x1;+1(111< - x<[111 l+1 

B(>, i): ];+1 (1]1>11x H> }1<[1h1;+1X 

B(<, i): x[1 <lr11 [;+1 H> xL+1Ci1r >{1 

C(>, i): h1£111>11 l1+1 H> };{i+1<[1111;+1 

C( <, i): 11+1 £1<[111 L+1 H> L+1 [1 Ji> l1+1 {1 

D(>, i): >[1 l1X - £111>X 

D( <, i): x[111 < H- x<[111 

E(>, i): [;+1 Cd1 > l+1X H- [;+iJ;+d11i >x 

E( <, i): xL+1<[111 ];+1 H- x<[111[;+11;+1 

F(>, i): L+1Cd1>1H1 L+2x H> L+2 L+di+1 l11r > x 

F( <, i): x];+2L+1 <[1 lr ];+1.....+x<[111 L+1l+d;+2 

G(> ): >{i 1; L+1 - > ]; [;+1 {i 

G( <): 1;+1 L }1< - }1 li+1 L < 

H(> ): > l1+dj]; L+1 H> >]; L+1 h+1 {1 

H(<): h1Lh{1+1< H> };{1+1];+1L< 

J(>): >{;+1];l+1 H> <];[i+di+l 

J( <): [;+1 [; h+i < _. [;+di+1 L> 

(x;t[) 

(x;t]) 

(x;t [) 

(x;t 1) 

(x;t [) 

(x;t 1) 

(x;t [) 

(x;t]) 

(x;t [) 

(x.e]) 
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K (> ): > h+2 {i+l ]; ];+1 ~ <]; L+11+1 ];+2 

K(<): L+1L};+di+2< ~ L+2L+1t+1L> 
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The parametrized functions A through F set the basic pattern to transport tagged cells 
from one side of [1 ] 1 to the other side. (The index j is always greater than i + 1.) The 
nonparametrized functions G and H serve to move (linked pairs of) curly brackets 
through "] [" interfaces. If curly brackets are adjacent to a (linked) pair like "] [" then 
they have not yet reached their destination. If curly brackets are adjacent to a pair of 
square brackets of equal type, then they have reached their destination, and are fitted 
in place and changed back to square brackets, by the functions J and K. In the G and 
H functions, the index j is again greater than i + 1. However, to make the point once 
more, the indexes are only put there to aid the reader. The intention of the described 
rewritings is that the arrays concerned consist of nonsubscripted brackets, each bracket 
viewed as tagging a particular cell. The rewriting reorders these tagged cells in the 
array, and possibly changes brackets from square ones to curly ones of the same type, 
or vice versa, as indicated in the indexed version above. Note that A(>, i): Y~ Y' 
and A ( <, i): Z ~ Z' are related by the fact that Z is the mirror image of Y and Z' 
is the mirror image of Y'. With mirror image we do not mean only the reverse, but 
the reverse with every constituent symbol changed to its mirror image, so ">" to 
"<","["to"]","[" to"]","{" to"}" and"}" to"{". Similarly for the other functions. 

LEMMA 2. For all i > 0, the functions are related as follows: 

a) A(>, i)=A(>, i-1); F(>, i-1) 

A(<, i) =A(<, i-1); F( <, i-1) 

b) B(>, i) = B(>, i-1); G( <); F( <, i-1) 

B(<, i)=B(<, i-1); G(>); F(>, i-1) 

c) C(>,i)=C(>,i-l);H(<);F(<,i-1) 

C(<,i)=C(<,i-l);H(>);F(>,i-1) 

d) D(>,i)=A(>,i-l);E(>,i-1) 

D(<, i)=A(<, i-1); E(<, i-1) 

e) E(>, i) = B(>, i-1); J(<); D(>, i-1); E(>, i-1) 

E(<, i) = B(<, i-1); J(>); D(<, i-1); E(<, i-1) 

f) F(>, i)=C(>, i-1); K(<); D(>, i-1); E(>, i-1) 

F(<, i) = C( <, i-1); K(> ); D( <, i-1); E( <, i-1) 

that is, six parametrized functions recursively calling each other. (Since D(>, O) and 
D(<, fl) are "no operation'" s which do not change anything we leave them out, cf below.) 

Proof For a) through f) we prove one equality each; the other one is symmetric. 
For all i > 0, with [1- 1 ] 1 - 1 = e for i = 1 by definition: 

a) Forx~[: 

> £111 L+1X = > £1-111-1 L ]; L+1X 

A(>,i-1) 

I====~ L l1-i11-1> ]; L+1X 

F(>,i-1) 

I====~ L+1 L]; C1-1 h-1>x = L+1[111>x; 
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b) For x 1'= 1: 

c) 

x[j<[111 L+1=x[;<l1-111-1 L l; L+1 
B(<,i-1) 

G(>) 

F(>,i-1) 

1=====> xL+1L];£1-111-1>{; 

= xL+1 Ci11>{;; 

C(<,i-1) 

H(>) 

I====?[; l1-111-1> ]; L+1 };+1 {; 

F(>,i-1) 

[;+1 [; l; l1-111-1 > };+1 {; 

= L+1£111 > };+1 {;; 

d) For x;6 [: 

> (1 l1X = > (1-111-1 (; l;X 

A(>,i-1) 

i======> l1lr-d1-1>11x 

E(>,1-1) 
I====~ Llil1-il1-1>X 

e) For x # 1: 

x[1+1<[111 l+1 = xL+1<l1-111-1[;1111+1 

f) For x # ]: 

B(<,i-1) 

x[; lr-1 h-1>{;+1];1;+1 

J(>) 

I====? xL l1-111-1 <11 L+1 l+1 

D(<,i-1) 

xL<C1-111-1 ]; L+11i+1 
E(<,l-1) 

x<C1-111-1 L]; L+1 ];+1 

= x<[111[;+11H1; 

C(<,i-1) 
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K(>) 

~ xL l1-111-1 <1; L+11i+11i+2 

D(<.i-1) 

x[;< l1-111-11; L+11;+11;+2 

E(<,i-1) 

x<C1-d1-1L1; L+di+1 l+2 

= x<C111L+11;+11;+2· 

19 

0 

The mappings D(>, O): >x'"'>x(x ¥ [) and D( <, 0): x<~x<(x ¥]) are "no 
operation" or "skip" instructions. Deleting them henceforth in the expansion rules of 
Lemma 2e) and 2f), for i = l, those become: 

ad Lemma 2a) E(>, 1) = B(>, O); J( <); E(>, 0) 

E( <, 1) = B( <, O); J(> ); E( <, 0) 

ad Lemma 2f) F(>, 1) = C(>, O); K(<); E(>, 0) 

F( <, 1) = C( <, O); K (> ); E( <, O). 

A level i expansion of a function X(>, j) or X( <, j), j?;. i?;. 0, results from expanding 
that parametrized function with parameter j into a sequence of parameter i functions 
and non parametrized functions, according to Lemma 2 (with the "no operation" 's 
D(>,0) and D(<,O) left out in case i=O). So if Y~0 ; y~il; · · ·; y~> is a level i 
expansion of X( ·) then X( ·) = y~il; Y~0 ; • • ·; Y~i) with Yi0 e {A(>, i), A(<, i), 
B(>, i),B(<, i), · · ·, F(<, i), G(> ), G(<), · · ·, K(<)}-{D(>, O), D(<, O)}, 1 ~ l~ 
n. We extend the concept in the obvious way to sequences of functions X 1(0i.j1); 

X2(02,jz);···; Xrn(<>m,jm), j1,jz,···,jm?;.i and <>1,<>2,···,<>me{<,>}. For 
example, the level 0 expansion of A(>, 3) is found by way of the level 2 and level 1 
expansions: 

A(>, 3) =A(>, 2); F(>, 2) 

=A(>, 1); F(>, I); C(>, 1); K(<); D(>, 1); E(>, 1) 

=A(>, O); F(>, O); C(>, O); K(<); E(>, O); C(>, O); H(<); 

F(<,0); K(<); A(>,O); E(>,O); B(>,O); J(<); E(>,O). 

The atomic mappings of the level 0 expansions of the parametrized functions are called 
the local rewriting rules, and govern the switching of the tagged cells, in the squares 
scanned, by the basic steps of the oblivious one-head tape unit M. Note that a fat head 
covering four squares left and four squares right of the displayed center ">" or "<" 
suffices to execute these atomic mappings. Below we use superscripts to distinguish 
the identity of the various tagged cells before and after rewriting. 

Local rewriting rules: 

G(>): >{1 12[3 ~ > 12[3{1 

G( <): 11 [2}3< '"'}3]1 [2< 

H(>): >}1{2l3[4'"' >]3(4}1{2 

H(<): 11[2}3{4< ~ }3{4]1[2< 

J(>): >{1)213'"' <]2[113 

J(<): [1[2}3< ~ (113£2> 
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K(>): >}1{213]4'"' < 13[2]4]1 

K(<): [1[2}3{4<'"' [4[1 13[2> 

A(>, O): >['"' [> 

A(<, O): 1<'"' <1 

B(>,O): 11>]2x'"' }2<1 1x 

B(<, 0): x[1<[2 '"' x[2>{1 

C(>, O): 11> 12[3'"' }2{3<11 

C(<,O): 11[2<[3'"' [3>}1{2 

E(>,0): [1>]2x'"' [112>x 

E(<, O): x[1<]2'"' x<[1 ] 2 

F(>,O): [1>]2[3'"' [3[1 12> 

F(<, O): 11 [2<]3'"' <[2]311 

(x>= [) 

(x>=]) 

(x>= [) 

(x>=]) 

The only use of the context symbols x in the definitions of A(>, i), A(<, i), F(>, i) 
and F( <, i) was to force a unique expansion into functions with parameter j, j < i, 
according to Lemma 2. Since A(<, O), A(>, O), F( <, O) and F(>, O) are atomic 
indivisible actions, because the local rewriting rules shall not be decomposed any 
further, we do not need these context symbols at the lowest level. 

In the sequel it is useful to talk about well formed arrays, that is, the set of arrays 
from which the consecutive i.d. 's of M are taken. 

(i) T0 is a well formed array. 
(ii) If T is a well formed array and X (.) is any local rewriting rule, with the dot 

X(.) 
standing for any appropriate argument, such that T ~ T', T' >= 0, then 
T' is a well formed array. 

(iii) No array is well formed except by (i) and (ii). 
Since no mapping either deletes or multiplies a headmarker, i.e.,"<" or">", all well 
formed arrays contain a single headmarker. By the mutual exclusion of the subarrays 
they rewrite, if a well formed array T is rewritten to T' ~ 0 by a local rewriting rule, 
then T is rewritten to 0 by all other local rewriting rules. We now show that a well 
formed array T is always rewritten by some local rewriting rule to a another well 
formed array, which rewriting rule and array are therefore unique. 

Earlier, we observed that, for all i ~ 0, 

0 A(>,i) 1 
T~T•. 

If Y~0>; Y~0>; Y~0>; • • ·; Y~0l=A(>, i) is the level 0 expansion of A(>, i) then, by 
Lemma 2, there exist well formed arrays T6°>, T~0>, T~0>, • • · , T~0>, r&0> = r 0 and 
T~0> = T\ such that 

for all j, 1 -;a j-;a n. By the uniqueness of application of local rewriting rules it follows that 
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for all j, 1 ~ j ~ n, X ;t. Y]0 > and X is a local rewriting rule. Hence each well formed 
array in the sequence Y&0 >, Y~0>, • · • , Y~02 1 has exactly one local rewriting rule which 
is applicable to it, and the application of this local rewriting rule yields exactly one 
next well formed array. 

By Lemma 2a) we have A(>, i) =A(>, i-1); F(>, i-1) for all i > 0, which leads 
to 

with 

and 

A(>, i) =A(>, O); F(>, O); F(>, 1); · · · ; F(>, i-1) 

0 A(>,0) I 
Y~Yo 

F(>,j) 
y1;~y11+1 

for all j, O~j <i. Define A(>, oo) by 

A(>, oo) = ~im A(i) =A(>, O); F(>, O); F(>, 1); · · ·; F(>, i); · · · 
1-+<Xl 

and the level 0 expansion of A(>, oo) as the infinite, or unbounded, sequence of local 
rewriting rules resulting from the level 0 expansions of the constituent functions F(>, i), 
i > 0, above. So 

=A(>, 0); F(>, O); C(>, O); K( <); E(>, O); · · · 

and there exists an infinite sequence of well formed arrays 
y~O>, • • ·, Yl0 >, • · ·, YbO) = Y0, SUCh that for all j~ 1 

y<,Ol 

Y\0) ,__.:__,,_ y~O) 
1-l ,...._.....,, I 

and for no local rewriting rule X ,e Y]0> and Y ,e 0 

(0) x 
Yi-11=} T, 

y<O) 
0 ' 

i.e., Y]0> is the only local rewriting rule applicable to T)'!Y1• Consequently, a machine 
which wants to execute the sequence of local rewritings of the level 0 expansion of 
A(>, oo), starting with i.d. Y0 , needs only to select the single local rewriting rule Y}0 >, 
applicable to the current Y]'!Yi. by considering the length 9 subarray of Y}1!!1 with the 
current headmarker in the center, to obtain the next Tj0 >, j?; 1. From the expansions 
in Lemma 2 we see that a nonparametrized function of G, H, J, K is always followed 
by a parametrized function from A, B, C, E, Fin the level 0 expansion of A(>, oo). 
In a single step of M we shall first execute a local rewriting according to G, H, J, or 
K, if possible, and then execute a local rewriting according to A, B, C, E or F, which 
by the above is always possible, starting with initial i.d. T 0 • So the oblivious one-head 
tape unit M at each step shall examine the squares around the headmarker, and 
switches tagged cells and head position amongst the scanned squares according to the 
only local rewriting rules applicable. Fig. 5 shows an initial segment of the sequence 
of well formed arrays Y&0 >, Y~0>, • · · , Tl0>, · · · produced by the successive execution 
of the local rewriting rules in the level 0 expansion of A ( >, oo) using the simple 
procedure SWITCH below. 
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Start i .d. 
j=A(>,0)=> 
j=f(>.0)=> 
j=C(>. 0)=> 
j=K(<)= 
j=E(>. 0 )=> 
j=C(>. 0 )=> 
j=H(<)= 
j=F(<, 0 )=> 
j=K(<l= 
j=A(>. 0 )=> 
j= E(>. 0 )=> 
j=B(>. 0)=> 
j=J«l= 
j=E(>.0)=> 
j=C(>. 0)=> 
j=H(<) > 
j=f(<,0)=> 
j=H(<) > 
j=C(<.0)=> 
j=K(>)= 
j= E(<. 0)=> 
j=K(<) > 
j=A(>,0)=> 
j=F(>,0)=> 
j=B(>,0)=> 
j=J(<) > 
j=E(>.0)=> 
j=B(>.0)=> 
j=G(<) > 
j= F(<. 0 )=> 
j=J(<l= 
j=A(>.0)=> 
pE(>.0)=> 
i=B(>. 0 )=> 
i=J(<)= 
i=E(>.0)=> 
i=C(>. 0)=> 
i=H(<l= 
i= f(<. 0 )=> 
i=H(<l= 
f=C(<. 0 )=> 
i=K(>) > 
f=E(<.0)=> 
i=H(<)= 
!=C(<.0)=> 
i=H(>)= 
i=F(>.0)=> 
i=K(>l= 
i=A(<.0)=> 
i=E(<,0)=> 
f=B(<.0)=> 
f=J(>)==> 
f=E(<.0)=> 
i=K(<)= 
j=A(>,0)=> 
f=F(>.0)=> 
j=C(>.0)=> 
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>[ l [ l [ l! ][ I [ I [ l [ l [ I [ l ... 
[>][][][J[l[][](][][ l· .. 
[[]>][][](](](][][][] .. . 
[ [ }( <11 [ l [ I [ ][ l [ l [ l [ l .. . 
([][>]][][](][][][][] .. . 
[[l[l>J[l[l[J(l[J[][] .. . 
[ [ l [ }{ <J ][ I [ I [ l [ l l J [ l .. . 
[ [ }{ l [<J l [I [I [I l I [ J l J .. . 
[ [ }{<[ 11 J( I [I [ l [I [I [ J .. . 
[ [ l [>[ l J I [ ][ I [ ][ I l [ l .. . 
[ [ ]['[> 11 ][ I l ][ I l l l l l .. . 
[ [ l [ l J>l ][I [I [ l [ l l [ 1- .. 
[[l[[}<Jl[J(][J[l ][l .. . 
l [ l [ l [>I][ I [I [ l [I [I [ J .. . 
([](][]>][](][][][][] .. . 
[[][][)(<]][][][][](] .. . 
[ l l [}(][<I I l I [ ll I [ l [ 1- .. 
l [ l l )(<[ 11 ll I [ l [ l [ l [ J .. . 
[ [ )(l [<[ 11 l [I [ l l l [I [ J .. . 
l l }{ [> }( 111 [ I [ ][ I l I l l .. . 
[ [ }{ [<J [ 111 [I [I Ill I l J .. . 
I l }{<[ l I J J ][ l I l I J [ l [ l .. . 
[[][>[}[]]](][][][][] .. . 
[[][[>][]]][][][][][ ] .. . 
[[][[[]>]]][][][][][] .. . 
[[][[[}<]]][][][][][ ] .. . 
[[][[][>]]][][][][][] .. . 
[(][(][]>]](][][][][] .. . 
[[][[][)<]][](][][][ ] .. . 
[ [ l [I} I 1<11 I I [ l I I [ l [ J .. . 
[[][[}<[]]J[][][][l[l.,. 
[[l[J[>[J]l[J[][][][ ] .. . 
lll[J[[>J]][][][][][] .. . 
[[][][[]>]J(][][l[l[ l- .. 
[[][}[[}<]][][][][][ ] .. . 
l I][ I [I 1>11 l I I I l I I I I l .. . 
[[][][][]>J[][lllll[] .. . 
l I J [ l l I [}{<I Ill [ l [ l [ J .. . 
[[][][}{][<]J[][J[l[ ] .. . 
I I ][ ll }{ <[ 111 [ ][ l [ ][ l .. . 
l l l [){I[<[ l l l [ l I J l l I J .. . 
I [I I}{ I>}( 111 [ ll I Ill J .. . 
[Ill){ [<I [ 111 [I [ l I l [ I .. . 
I I l I){<[ l I 111 I I I l [I [ J .. . 
[ I }{ I [<I I I 111 [ ll l I l [ I .. . 
[ [ }{ [>} (ll J l l [ I [ l [ I [ I .. . 
[ [ ){ l>l [ l (] 11 [I [ l [ I [ J .. . 
[ [ }{ [ [I>}{ 111 [I [ l [ I [ I .. . 
[ [ }{ I [ J<l [ 11 l [ ll l I ][ l .. . 
I l }{I [<J l I 111 [I I l [ ][ l .. . 
I I}{ [<I 11 [ l l l l I [ l [ l l J .. 
[[}{[>{]][]]][][][][] .. 
l l l{[<J I I [ 111 l l Ill I [ J .. 
I [ }{<[ ll I [ 111 l I I l [ ][ I .. 
[[l[>[][J[lllll[ l[][ ] .. 
[[l[[>][J[l]J[][][J(l .. 
[[][[[]>][]]][][][][] .. 
I l l! [ [ }{ <l 111 [ I [ l [ l [ I .. 

f=K(<)= 
j=E(>,0)=> 
f=B(>.0)=> 
f=G(<) > 
f=F(<.0)=> 
f=J(<)= 
f=A(>,0)=> 
f=E(>.0)=> 
f=B(>.0)=> 
!=J (<) > 
f=E(>.0)=> 
f=B(>.0)=> 
f=G(<)= 
i=f(<,0)=> 
f=G(<) > 
!=C(<,0)=> 
f=K(>)==> 
f=E(<,0)=> 
f=J(<)==> 
f=A(>.0)=> 
i=f(>.0)=> 
f=B(>,0)=> 
f=J(<) > 
f=E(>.0)=> 
f=B(>,0)=> 
f=G(<) > 
j=f(<.0)=> 
i=J(<) > 
f=A(>.0)=> 
f=E(>.0)=> 
j=B(>.0)=> 
f=J(<)-=> 
j=E(>.0)=> 
f=C(>. 0 )=> 
f=H«)= 
f=F(<,0)=> 
f=H(<) > 
f=C(<,O)~"> 

f=K(>)==> 
j=E(<,0)=> 
f=H(<)==> 
j=C(<,0)=> 
f=H(>)==> 
j=F(>,0)=> 
f=K(>) > 
f=A(<, 0 )=> 
f=E(<.0)=> 
i=B(<.0)=> 
f=J(>) > 
f=E(<.0)=> 
f=H(<) > 
f=C(<.O )=> 
j=H(>) > 
f=F(>. 0 )=> 
i=H(>)· > 
f=C(>. 0 )=> 
f=K(<) > 
f=E(>.0)=> 

[I l! [I I [>J l l l [I [Ill I J .. . 
I I l! [ l I I l>l l l I I l Ill l l .. . 
[[][[[][}<lllll(J[J[l. 
l Ill [ [ l I (<J l ][I [I [I I I. 
I I ll l I }<[ l l l l [ l [ l l ][ I .. . 
[[][[][>[]]]][][][][] .. . 
I Ill [I I l>l l l l I I l I l I I J .. . 
Ill! [I [ [ l>l l l [I [ l I I I l - .. 
[ l I [ l l l [ }<l 11 l l [I l I l J .. . 
[[][[l[][>]]][][][][] .. . 
[lllll[J[J>]][J[l[l[] .. . 
[[][[][][}<]][][][][l .. . 
[[][[][}}[<]][][l[][] .. . 
[[][[][}<illl[l[l[][] .. . 
l l ll I l I I <I l l l I l l l l ll l .. . 
[ l ][I} I>}( 111 I ][I l ll I .. 
[ l ][ I l I <I I 11 ll I [ l [ I I l .. 
[[ ][[}<[Jllll[ }[l[][ ]. 
[ l ll l [>[I Ill l l I [ l [ ll I .. 
[[][][[>][lll[l[lllll .. 
I [ ll l [I [ l>J J l [ l I l Ill l .. . 
[[][][[[)<Jll[J[][][] .. . 
[[][][lll>lllllllllll .. . 
I I ][ ][ [ l [ l>l l l l [ I [ ][ I .. . 
[[][][[][}<]][][l[][] .. . 
I I I [ l[[ l I 1<11 l I l I l I I J .. 
[ l[][ }<llllllllllll-· 
l ][ ][ l>l 11 l l I [I [ ll l ... 
[ ][][ [[>Jlllll][][] .. 
[ ][][ ([]>]][lll[][] .. 
[[l[][][[}<]][][][][] ... 
[ [ ll I l I I I 1>11 I I [I I I I J . · 
[[][][}[][l>lllllll[]. 
l [ l [I l I [I I }{<I l [ l l I I l. 
[ [I [I [Ill {I [<J JI I I][ I. 
I [ ][ ][I l }{<[ l 11 [I [ I [ I. 
[ [I [I [ {I [<I 111 [I [I I I 
[ [I [I [ { [>}{ 111 [I [I I J ... 
([I[ ll {[<][ 1111 II I[ J. 
[ [ I I][ {<[ ll 11 l [I I I l I. 
[ [I [ { [<[ ll 11 l [I [I l I .. 
[ [ I [ {[>)(I 111 [I [I [ I ... 
[ [I [ {l>l I l 111 I I [ l I J .. 
Ill [ { [I I>} 111 l l [ ll I .. 
l I l I { [ l l<l 111 l I [I I J .. 
l I I [ { [ l<l ][ 111 l I [I l J .. 
([J[ ([<[]][]]][][J[]. 
l [I I {[>( 11l111 I l [I I J .. 
[ [I l {l<J I I I 111 I I [I [ J .. 
[[][ {<[l[J[lllllll[J ... 
l [ { [<[ l I l [ 111 I I [ ll J. 
l I [>}{I I ][ 111 I I l I I I .. . 
[[ [>][}{][]]][][][] .. . 
I [ [I J>)( I l 111 I I I I [ J .. . 

I l [ l l>ll l 111 l I [I l J .. . 
l I [ [ }{<] l 111 I I [I [ J. 
[[ [ [][>]} ]]][][][] .. . 
[[ [[][]>} ]]][][][] .. . 

FIG. 5. The first 116 well formed arrays Tj0 l, 0 ;;;;j < 116. 

Procedure SWITCH: 
Step 1. Examine the length 9 subarray, centered on the headmarker, of the current 

i.d. and switch tagged cells and headmarker position according to the 
single, if any, local rewriting rule from the G, H, J, K rules which is 
applicable. The result is a well formed array T. 
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Step 2. Examine the length 9 subarray, centered on the headmarker, of array T 
from step 1, and switch tagged cells and headmarker position according 
to the single local rewriting rule from the A, B, C, E, F rules which is 
applicable. The resultant well formed array is the next i.d. 

LEMMA 3. Starting from the initial i.d. T°, a one-head tape unit M, executing 
SWITCH at each single step, executes exactly the local rewriting rule sequence of the 
level 0 expansion of A(>, oo). For each t > 0, in the first t steps M executes this sequence 
up to and including the tth occurrence of a local rewriting rule of the A, B, C, E or F type. 

The goal of introducing the present bracket manipulator was to scan the subarray 
"L ]i L+ 1 ]i+1" at least once in each interval of 2°<i> steps, i ~ 0. We can express precisely 
what the tth i.d. T' is. T 0 is the initial array at time t = 0, and T' results from an 
execution of SWITCH on T'- 1, for all t > 0. According to Lemma 3, t equals the 
number of occurrences of A, B, C, E, F-type local rewriting rules executed. We need 
to recognize "L ]i L+ 1 ]i+t" as being the correct sequence of cells, which, since the cells 
are tagged with nonindexed brackets in the manipulator proper, cannot go by way of 
identifying the individual cells. For this purpose, the next lemma establishes a topology 
for the well formed arrays. Before proceeding, we review a few facts about well formed 
arrays which are pertinent to the proof of that lemma. By definition, and the discussion 
preceding Lemma 3, the set of well formed arrays equals the set { T]0>ij~ O} defined 
by the level 0 expansion of A ( >, oo). 

A(>,oo)= y~o>; y~o>; ... ; y~o>; ... 

and for all i ~ 1 

By the definition of the initial array T 0 , and those of the various procedures, each 
well formed array contains exactly one symbol from {<,>}and, for each i ~ l, exactly 
one symbol from {L, L} and exactly one symbol from {h }J. Recall that the indices 
are not really there but serve to identify the individual cells for the reader by 
distinguishing between the individual attached tags. 

If a well formed array T contains a pair of adjacent brackets "[i h" then j = k; 
if it contains "]i h" then k = j + 1 in case the headmarker is to the left and j = k + 1 
in case the headmarker is to the right. More precisely: 

LEMMA 4. Let T be a well formed array, and let<> E {<,>}and a, ,B, 'YE{[,],{,}}*. 

Then: 

(i) T= a<> ,B[j]k'Y =!> k = j; 
T= a[di,B <> 'Y =!> k = j; 

(ii) T= a<> ,B]ih'Y =!> k = j+ 1; 

T= a]di,B <> y =!> k = j+l. 

Proof. We basically prove the lemma by induction on the sequence of well forme1 
arrays T~0>, as defined by the level 0 expansion of A(>, oo), j~ 0. To do so, we conside 
the initial segment~ Tj0>[o: 2(i + 1)], j ~ 0 and i ~ 0, in isolation and show by the claii 
below that they internally satisfy the lemma. Viz., in executing the level 0 expansi1 
of A(>, i) to obtain T 11 from T 0 the elements of the sequence of subarrays T&0>[o: 2( 
1)], T~0l[O: 2(i + 1) ], · · · , T~%[0 : 2( i + 1 )], with T&0> = T 0 and T~% = T\ will be shm 
to internally satisfy the lemma. Since during the execution of A(>, i) the final segmer. 
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T[2( i + 1): oo] is not changed at all, and y 0 satisfies the lemma, the elements of the 

sequence of subarrays T~0l[2( i+ 1) : co], Ti0 l[2(i + 1): oo ],. · · , Y~%[2( i + 1) : 00 J do 

internally satisfy the lemma. Because we have an overlap of one symbol betwee~ 
y 101[0: 2(i + 1 )] and y(0 l[2(i + 1): oo] for all j, 0 :;;;;;j:;;;;; a(i) with T~0l = Y 0 and Y~% = T ', 
w~ can conclude tha/ each well formed array Tj0l, O;;i2j-;£ a(i), satisfies the lemma. 

Taking the limit for i-HxJ, that is, considering A(>,oo), it follows that the lemma 

holds for all well formed arrays. 
CLAIM. Let, for all i ~ 0, X E {A, B, C, D, E, F}, 0 E { <, >} and T, T' be well 

X(O,i) 

formed arrays such thatX(<>, i): T[p: q}~ T'[p: q],forsomep, q ~ 0 and T ~ ~,, 
and let Y\%; Y\212; • • • ; Y~~)x(il be the level 0 expansion of X ( 0, 1) with 

ytm 
T\~j ... 1 ~ T\Ti for all j, 1 ~j:;;;; x(i) with T\0 l = Y and T\Tx(i) = T'. Then, for all j, 

l:;:;:;; j ~ l + x( i), Tj0>[ p : q] internally satisfies the lemma. 
Proof of claim. Base case i = 0. Since for i = 0 the procedures are essentially but 

the local rewriting rules, we only have to verify that in the definitions of the various 

functions the subarrays left and right of the arrow internally satisfy the lemma. Note 
de! 

that [1 ] 1 = e for i = 0. 
Induction. Assume, by way of contradiction, that for some X( <>, i), with X E 

{A, B, C, D, E, F} and 0 E { <,>} and i > 0, the claim does not hold. But in the 

execution of the level i - 1 expansions of six of these functions with parameter i in 

the proof of Lemma 2, the other six cases being symmetrical, the displayed subarrays 

all satisfy the claim. Hence it must follow that a nondepicted subarray arising in the 

execution of the level 0 expansion of some X'( <>', i-1), X' E {A, B, C, D, E, F} and 

<>' E { <, > }, violates the claim. Regressing in this fashion all the way down to i = 0, 
we contradict the established base case, and the claim is proven. 0 

By the discussion preceding the claim we have established the lemma. 0 
LEMMA 5. Let T be a well formed array and let <> E { <, >} and a, {3 E {[, ], {,}} *. 

Then 

(T = aO[j]k.8 or T = a[d;<>.B)~(k = j= 1). 

Proof. That k = j follows already from Lemma 4. Considering the level 1 expansion 
of A(>, oo) 

A(> oo) = y<l). y(l) ..... y\n .... 
' 1 ' 2 ' ' } ' 

and 

ym 

T}.:!1 ~ Tj1l with T61l = T 0 , 

we observe that it follows from the definitions of the various procedures that for all 
11 f (I) • , 

we . orme.d arrays Ti , J ~ 0, the lemma holds. Expanding each A, B, C, D, E, F 
function with parameter 1 to level 0, and examining the intermediate well formed 
a T (O) ...,(, yOl .. , > 0 . Id h rrays 1· .,... 1 , ], J = , y1e s t e lemma. 0 

Lemma 4 and Lemma 5 show that a certain topological connectedness between 

the ~ndexe~ brackets is preserved throughout the array at all times, and that, in 

parhcular, m each well formed array a<> .BL JdilmY holds k = j and l = m = j + 1. So 

whenever there occurs a length four subarray "[] [)" right of the headmarker the 

tagged cells. concerned are in the correct consecutive left to right order. Without further 

proof we give a more exhaustive characterization of the topology. Let T be a well 

formed array. Then, for each i ~ 1, T satisfies precisely one of the following forms. 
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For i = 1: 

a(111<>~ 

a<>[d1~ 

a(1<>J1~ 

a(1>{d1 bh · · · li-di-t1i~ 
a(1> h+1 {d1 bh · · · li-tli-1 ]j~ 

a [i Ci-di-1 li-21i-2 · · · lzh (1 }i<h~ 

a(jlj-dj-1L-2Jj-2 · · · hhl1h{j+1<J1~ 

with the obvious modification for j = 2. 
For each i> 1: 

a[;]; [;-1~<>-y 

a<> ~];-1 L ];'Y 

(somej6;2) 

(somej6;2) 

(somej6;2) 

(some j6; 2), 

a L~O-y};{;-di [j+1 h1 [i+21i+2 · · · L-2J;-2]i-18 

aO~{; Ui+ili+ili+21i+2 · · · L-d;-d;'Y 

(somej< i-1) 

(somej;;!i-1) 

(somej < i-1) 

(somej;;! i-1), 

aL-1 L-21;-2 L-31i-3 · · · Ci+ili+di h-d;~O y ];8 

a(; L-1 l-1 L-21;-2 · · · [j+1b1 [j };~Oy 
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with the obvious modification for i-3;;;ij;;!i-1. Here<> can be either"<" or">" 
and a,~. y, 8 E {[,],{, }}*. Considering the fact that 

T0 =>Ct11lzh · · · LJ;L+di+1 · · · 

and that, by definition, for i 6; 0 and t;;;; t;, 

T' =a<> ~li+1 L+2 ];+2 · · · L+i ];+i L+j+1 ];+j+1 · · · , 

j6;3, the formats express, but for the choice of 0 as"<" or">", the format each 
well formed array T 1 can have, by applying in sequence the requirements for i + 
l, i, · · ·, 1. According to Lemma 4, whenever we scan a subarray "(] (]" right of the 
headmarker, we know for sure that this is the subarray "L ]; L+di+ 1" for some i 6; 1. 
In the next lemma we give an upper bound on the number of steps, that is, executions 
of SWITCH, in between scanning"[;]; L+1b 1" right of the headmarker, for all i?;;, 1. 
To express the timing we consider expansions of A(>, oo) of level i, i 6; 1: 

A(> ao) = y<il. y<o ..... y\il .... 
' 1 ' 2 ' ' J ' 

and define for all j 6; 1 
y(_i) 

T}~1 ~ T}0 with T&0 = T 0 • 

The level 0 expansion of yy>=X(<>,i), with Xe{A,B,C,D,E,F} and OE 
{ <, > }, is fixed and, but for the headmarker arguments, is the same whether <> = < 
or 0=>. Thus, by Lemma 3, the number of steps of M to execute X(O, i) equals the 
number of occurrences of A, B, C, E, F local rewriting rules in its level 0 expansion, 
and does not depend on the orientation of the headmarker 0, or the position j in the 
level i expansion of A(>,ao) where Y}1l occurs. We denote the number of steps, used 
by M, to execute X(O, i), by Tx(i). 
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LEMMA 6. There exists a function S: N ~ N such that for each t s;:; 0 there is a t' > t 
such that for some a, a', ,B, ,B' E {[,], {,}}* and <>, O' E { <, >} 

(i) T1=a0[1 h,B ~ T 1'=a'O'[i]1,B' and t'-t~S(l). 
(ii) T1 = aO[i]i[2 h/3 ~ T" = a'O'[i] 1 izh/3' and t' -t ~ 5(2). 

(iii) For all i > 2 and x E { s, {, }{} there is a x' E { e, {, }{} such that: T' = 
a<> x];-2 L-d;-d;];,B ~ T'' =a'<>' x']i-2 L-1 ];_1 L ];,B' and t' - t ~ S(i). 

Moreover, S(i) = 2 TA(i) + Tp(i), for all is;:; 1, is such a function. 
Proof Consider the level i expansion of A ( >, co), i ~ 1, 

and 

A(> cx:i) = y<il. yci) ..... y(i> . ... 
' 1 ' 2 ' ' J ' 

y(i) 

y\i) ~ yen with To(i) = T°. 
1-l ,....__..,,, I 

Then Tji> is of the form a <> lr lr/3 or a [ 1 ]r<> /3, for all j ~ 0. All such ry>·s, with Yji> 
not G, H, J or K local rewriting rules, are i.d.'s of M. We restrict attention to the 
particular subsequence Tj~>, Tj;>, · · · , Tj~>, · · · for which T}2 is of the form a< lr.11/3 
for all k>O and T]2=T0 . For each k~O there exists a sequence Yj~~1; 
y\i) · · · · · y\i> such that Jk+z, ' Jk+1 

(1) 

By the use of the recursive expressions in Lemma 2 we can determine all such sequences. 
Subsequently, we have to determine which such sequences take the most steps to 
execute. So we first determine Tx(i) for all X E {A, B, C, D, E, F}. It follows from 
Lemma 3 that Tx(i) equals the number of occurrences of A, B, C, E, F procedures in 
its level 0 expansion. We see from Lemma 2 that: 

TA(i) = TA(i-1) + Tp(i-1), 

TB(i) = TB(i-1) + Tp(i-1), 

Tc(i)= Tc(i-l)+Tp(i-1), 

Tv(i)= TA(i-l)+TE(i-1), 

TE(i) = TB(i-1) + Tv(i-1) + TE(i-1), 

T F ( i) = Tc ( i - 1) + TD ( i - 1) + TE ( i - 1)' 

'1d TA(O) = T8 (0) = Tc(O) = TE(O) = Tp(O) = 1 and Tv(O) = 0. For this system of 
~urrence equations with initial values we find TA(i)=T8 (i)=Tc(i), for all i?;O, 
j consequently TE(i) = Tp(i), for all i~O, which in its tum yields T0 (i) = TA(i), 
·all i~ 1. Hence for all i?; 1: 

TE(i) = Tp(i) ~ TA(i) = T8 (i) = Tc(i) = T0 (i). 

ow let Yj~~ 1 ; Y}~~2 ; • • • ; Yj~~ 1 be a sequence of functions as in (1 ). Erasing the 
J, H, J and K procedures (because they do not contribute to the number of steps it 

takes to execute this sequence, by Lemma 3) and replacing all E's by F's and all B's, 
C's and D's by A 's (because they take the same number of steps for i ~ 1) the resulting 
sequences are F( <, i), A(<, i); A(>, i) and A(<, i); F(>, i); A(<, i).So for i = 1, 2, 
S(i)=2TA(i)+TF(i) satisfies the lemma. For i>2 we note that, for all k~O (with 
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the obvious modification for k = 0), 

T}2 = a<l1-3h-3 L-2t-2 [i-1 Ji-1 L ];,B 

z. 
~ a'[i-2[1-3)1-3> X];-2 L-1 l-1 [; ];/3 

with Z; and x one of the following: 

Z;E{l(<);A(>,i-3),K(<);A(>,i-3)} and x=e; 

Z;=B(<, i-3) and x={; 

Z;e{C(<, i-3), G(<); C(<, i-3),H(<); C(<, i-3)} and x=}{. 
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In all cases, the execution time of Z; is TA(i-3), which shows that S(i) =2TA(i)+ Tp(i) 
satisfies the lemma for all i > 2 too. 0 

COROLLARY. LetS:N~N bedefinedbyS(i)=2TA(i)+Tp(i),foralli"ii!;;l. Then: 
(i) For each t "ii!; 0 there exists at', t < t' ~ t+ S(l), such that the t'th i.d. of M has 

the form T 1' = a<[i]1,B for some a, ,BE{[,],{,}}*. 
(ii) For each t"ii!;; 0 there exists at', t < t' ~ t+ S(2), such that the t'th i.d. of M has 

r } * theformT =a<[i)1 [ih,Bforsomea,,Be{[,],{,}. 
(iii) For each i > 2 and t "ii!; 0 there exists a t', t < t' ~ t + S(i), such that the t' th i. d. 

of M has the form T1'=a>x];-2 L-d;-dd1/3 for some a,f3E{[,]{,}}* 'and 
X E { e, {, }{}. 

It remains to determine S analytically. 
LEMMA 7. S(i)=(l+.J2)i+l+(l-.J2)i+l. 
Proof From the system of recurrence equations, and the values for i = 0, in the 

proof of Lemma 6, follows: 

TA(i) = 2 TA(i-1) + TA(i-2) for i > 2. 

The solution for this homogeneous equation is of the form TA(i) = ax~ +bx~, where 
x1,2 are the roots of x2 -2x-1 =O and a and b follow from TA(l) =2 and TA(2) =4. 
So x1,2 =1 ±.J2 and 

a(l +J2) + b(l-J2) = 2, a(l +J2)2 + b(l -../2)2= 4 

yielding a= I/J2 and b = -1/.J2. Hence 

TA(i) = Jz (1 +.J2)i-Jz (l-J2)i, i "ii!; 1. 

From the system of recurrence equations, and the identities amongst the functions, it 
appears that Tp(i) = TA(i) + TA(i- I) whence the expression for S(i) follows. 0 

COROLLARY. S(i) < 31+ 1 for all i ~ 1. Viz., S(l) = 6 and lim; ... 00 S(i+1)/ S(i) = 
1+.J2. 

Of course we can obtain that S(i) < 3i+t by a cruder argument. The present 
analysis, however, is quite straightforward and precise. Running the bracket manipu
lator on a computer, by way of empirical verification, confirmed the first nine values 
of S. 

2.4. The real-time simulator. Having set the stage in the preceding sections, we 
now tie everything together to obtain the desired real-time simulator. 

Let M be a one-head tape unit with a one-way infinite tape divided into two 
tracks: the tag track and the count track. The finite control of M has a special register 
containing the initial segment C[O: 5] of the array C[O: oo] representing the current 
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count as in §§ 2.1-2.2. The single head of M covers 14 squares and its position is the 
intersquare boundary in the center. Initially, the head covers the leftmost squares, all 
squares on the tape contain special blank symbols and the finite control is in a 
distinguished initial state, in particular C[O: 5] contains O's only. Since M can always 
initialize previously unscanned squares, still containing blanks, by keeping a parity bit 
in the finite control, we assume that the tape is initially divided in the two tracks as 
follows. Number the tape squares from left to right by -7, -6, · · ·, 0, 1, 2, · · ·.Square 
i, i ~ 0, contains initially on the count track C0[i + 6] = 0 and on the tag track a tag 
"[", if i is even, and a tag "]", if i is odd. So the initial situation can be visualized as 
in Fig. 6, with the initial headmarker ">" kept in the finite control. At each step the 
head rewrites the contents in the squares under scan, and shifts left, right or not at 
all. Since the head shifts will be governed by the local rewriting rules of the last section, 
the marker ">" or "<'', positioned on the center intersquare border of the scanned 
squares, can shift at most two squares left or right in a single step. Whether this marker 
is">" or"<" can be maintained in the finite control; the initial marker is">". 

FINITE: CONTROL 

INPUT OUTPUT 

I c0 [o s] I CJ 
I 

STORAGE HEAD 

--
[ J [ 

\ - -
C0 [6) C0 [7] C0 [l:l.] 

] TAGS 

C0 [2i] C0 [2it1] COUNT 

- -'\ 

FIG. 6 

Each step of M consists of essentially two parts: first execute COUNT on the 
representation of the currently stored integer, check whether this integer is zero, and 
secondly execute SWITCH to switch cells containing digits of the integer representation. 
The information in the two tracks of a square may be thought of as a cell containing 
the current digit C[i], which is tagged by the tag on the tag track. 

To execute COUNT, M inspects the scanned cells right of the headmarker, so as 
to determine J(t) in the tth step, and also identify the squares containing C[2i], 
C[2i+l], C[2i+2] and C[2i+3] for all iEJ(t). To this purpose first procedure 
COLLECT is executed. Let P be the current local tape contents, i.e. 

p = 7"1 7"2 T3 7"4 7"5 7°6 T7 

Yi 'Y2 'Y3 'Y4 'Ys 'Y6 'Y1 

is the tape contents on the seven squares right of the headmarker. 

Procedure COLLECT (P): 
Let the seven squares right of the headmarker contain the string r 1 r2 • • • r7 on 
the tag track and the string Yi 'Y2 • • • 'Y1 on the count track. Then we distinguish 
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essentially four cases, implicitly specified by t: 
(a) T1 T2 = [] & T3T4 ~ [] ~ I(t) = {O, l, 2} & C[6: 7] = y 1 y 2 ; 

(b) Ti T2T3T4 = [)[] ~ I(t) = {O, l, 2, 3} & C[6: 9] = Y1 'Y2'Y3')'4; 
(c) T1 T2T3T4Ts = ][][] ~ I(t) = {O, l, i}, i > 3, & C[2i: 2i + 3] = 'Y2 'Y3'Y4'Ys; 

T1 T2T3T4T5T6 = { ][][] ~ I(t) = {O, l, i}, j > 3, & C[2i: 2i + 3] 

= 'Y3'Y4 'Ys'Y6; 
T1 T2T3T4T5T6T7 = }{ ][][] ~ I(t) = {O, 1, i}, i > 3, & C[2i: 2i + 3] 

(d) none of (a)-(c)::} I(t) = {O, l}. 
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Modulo the correctness of the implications in the definition of COLLECT, which 
remain to be proven, the execution of COLLECT (P) in the tth step of M both 
determines J(t) = {i1, i1-1> ···,ii}, i1 > i1- 1 > · · · > i1, and identifies the locations where 
C[2ii], C[2ii+ l], C[2ii+ 2] and C[2ii+ 3] currently reside, 1 ~j;f:. l. Since these loca
tions are either under scan on the tape, or in the finite control, viz. C[O: 5], the machine 
can in the tth step execute COUNT(t,8)=UPDATE(i1); UPDATE(i1_ 1);···; 

UPDATE ( i 1); INPUT ( 8) by executing the consecutive mappings in the decomposition 
on the relevant subarrays of C[O: oo], without explicitly knowing the value of t. Thus, 
in each single step, starting from the all-blank tape with the initial headmarker ">" 
positioned at the left end, the one-head tape unit M will do all of the following. 

Procedure STEP: 
Step 1. Initialize both tracks of right adjacent previously unscanned squares, still 

containing primeval blanks, by writing the correct square bracket on the 
tag track (check and update parity count in the finite control) and a blank 
"O" in the count track of such a square. 

Step 2. Execute COLLECT (P). 
Step 3. Let the current value of I determined by step 2 be {ih i1-1> · · · , i1} with 

i1 > ii- 1 > · · · > i1. READ the current value of 8 from the input terminal 
and execute COUNT (current step, 8), that is, 

UPDATE (i1); UPDATE (i1_ 1); ···;UPDATE (i1); INPUT (8). 

Step 4. WRITE "count equal zero" or "count unequal zero" to the output 
terminal, depending on whether or not C[O] = 0, for the C[O] resulting 
from step 3. 

Step 5. Execute SWITCH. That is, switch the contents of the scanned squares, 
considering the combined contents of the tag track and the count track 
on a square as a single package. Interchange these packages amongst 
squares, shift the head position and change the brackets and headmarker, 
governed by the current headmarker, head position on the scanned 
squares, and the scanned brackets alone. 

PROPOSITION 4. The constructed one-head tape unit M is oblivious and real-time 
simulates the quintessential counter. 

Proof The one-head tape unit Mis oblivious since the head movement is governed 
by the tag track and the headmarker, independent of the input. Attaching imaginary 
indexes i = 3, 4, · · · to the initial tag track contents, a shift of 2 from the ones in the 
initial i.d. in the previous section, the executions of SWITCH preserve that pairing of 
C[2i] with opening bracket indexed i and of C[2i + 1] with closing bracket indexed 
i, i ~ 3. Since C[O: 5] resides immobile in the finite control, Lemmas 2-5 ensure that 
the identification of array elements by COLLECT (P) in each step remains correct 
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under the interchange of the mobile array elements of C on the count track by 
SWITCH. In the tth step, for all t?; 1, COLLECT (P) determines the value I(t) of 
the parameter selection function I, as well as the high to low order of elements in I(t). 
By Lemma 6 and Corollary, for each t 6; 0 and each index i 6; 2, there exists a step t', 
t < t' ~ t+ S(i- l), such that i E I(t'). By the definition of COLLECT (P), {O, 1} s; I(t) 
for all t 6; 1. Since it follows from Lemma 7 that S (i- 1) < 3 i for all i ?; 2, the oblivious 
one-head tape unit M real-time simulates the quintessential counter by Propositions 2 
and 3. 0 

Let C be any k-counter machine, k 6; l. Clearly, C can be thought of as a finite 
control connected with k quintessential counters S1, S2 , • • • , Sk. At each step the finite 
control of C reads an input command from the input terminal if it is in a polling state, 
checks each S;, 1 ~ i ~ k, for zero contents, and governed by this information issues 
input commands "add 8/', .:5; E {-1, 0, l}, to each Si, 1 ~ i ~ k, and writes an output 
string to the output terminal. In the spirit of Proposition l, we can real-time simulate 
C by an oblivious one-head tape unit Mc, which is just like M, but with k count tracks 
(one for each quintessential counter) and one tag track. Storing the first six digits of 
the representation of each count in the finite control, which is connected to the input 
and output terminals through C's original finite control, we finally obtain. 

THEOREM. Each multicounter machine can be real-time simulated by an oblivious 
one-head tape unit using logarithmic space. 

Proof By Propositions 1 and 4. That the space used is logarithmic in the simulated 
number of steps follows since the head is centered immediately left of the square 
containing tag "];+1" for the first time after executing A(>, i), which takes TA (i) steps. 
To clean up some final details: we can get rid of the fat head, covering 14 squares and 
sometimes shifting its center two squares in a single step, by cutting out a piece of 
tape of 14 squares and buffering it in the finite control. The remains of the tape are 
glued together and the contents of the buffered piece are swapped from the buffer to 
the scanned tape square and vice versa, according to the desired head motion, cf. the 
speed-up technique in [3]. D 

On the required bits. Although the preceding simulation and its proof may not 
seem easy, the algorithm which does the work is pretty simple. As it happens, we are 
also frugal in the number of bits. On information-theoretical grounds we require about 
k log2 2n bits to represent any k-tuple of integers of absolute values up to n. In the 
exhibited simulation, we can use four bits for each digit of a count, need not more 
than log2 n digits for each count, and since there are but four tags, each tag can be 
encoded in two bits. Therefore, we use at most about ( 4k + 2) log2 n bits to represent 
k counts of absolute values at most n. By restricting the most significant nonzero digit 
to absolute value l, and appropriately modifying the mappings UPDATE and INPUT, 
everything goes through as before but code (c) s; {-2, -1, 0, l, 2, -I, 0, I}"', c E Z. Thus 
we only have to use (3k+2) log2 n bits to represent k counts of absolute values at 
most n. Using only digits from {-2,-l,O,l,2,0} also suffices, but complicates the 
proof. How good a real-time algorithm is can be measured in the size of the storage 
alphabet used. Realizing that actual machines use a constant size storage alphabet, we 
observe that a large, although finite, storage alphabet in an algorithm implies a.greater 
constant delay. That is, the reverse of a speed-up by decreasing the alphabet size. At 
the cost of a deterioration of the constant delay, implicit in the real-time solution 
presented, we can do better than using (3k+2) log2 n bits. Using in§§ 2.1 and 2.2 an 
analogous redundant symmetric r-ary representation, based on the digits -r, -r+ 
1, .. ·,-l,O,l,2,··-,r-1,r, we can get the bit count down to about (1+ 
4/log2 r) k log2 n bits for maintaining k counts of absolute value at most n. The implicit 
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constant delay, however, rises proportional to log r. In the limit, for r-'>co, we achieve 
about the information-theoretical minimum in bits, but the constant delay goes to 
infinity, that is, it takes infinite time to execute a single step. 

Note, however, that for no fixed finite storage alphabet a real-time simulation of 
but a single counter on an oblivious multitape Turing machine can reach the informa
tion-theoretical bit minimum. Such a simulation must use fl(log n) size representations 
for counts of size n, and we can argue that for each n there must be at least log n 
representations. Hence we use at least log2 2n + log2 log n bits per count. 

On the size of the fat head. In the simulation a head covering 10 squares suffices, 
which can be shown by a slight complication of the proof. Also, the head shift in a 
single step of M need not exceed one square. 

On the initially zero counts. As argued subsequent to the proof of Proposition 3, 
the assumption of initially zero counts is not essential. The theorem holds also for 
multicounter machines with each count initialized to an arbitrary integer. 

3. Conclusion. For various theoretical and practical reasons, multitape Turing 
machines, restricted in one or more resources, serve as a standard against which to 
calibrate the power of other devices, or to compare the power among themselves under 
different resource restrictions. The commonly considered resources are time, space, 
number of tapes/storage heads and oblivious versus nonoblivious. The present simula
tion is, perhaps, the first one which is optimal in all of these resources at once: the 
use of no resource can be improved by relaxing the other resource restrictions. Apart 
from the fact that the simulating device is real-time, oblivious and uses but a single 
storage head, it is worthwhile to recall that there do not exist on-line Turing machines 
using S(n) E o(log n) space, S(n) unbounded [4]. Thus, the simulation is performed 
by the simplest (with respect to the considered resources) Turing machine which is 
not an outright finite automaton. Another resource, which is sometimes considered, 
is the number of head reversals. Again, it is easy to see that each multitape Turing 
machine needs, in the worst case, a linear number of head reversals to on-line simulate 
a counter machine, as does the presented simulation. (Although a multihead Turing 
machine can simulate a multicounter machine without head reversals [8), the simulation 
of such a device by a multitape Turing machine needs a linear number of head reversals.) 

Some immediate applications. In a computation using k stacks we may want to 
keep track of which pairs out of the k stacks are of equal height at any time. Without 
slowing down the computation, we formerly needed k-1 stacks for doing so. Using 
the present method we need but one extra oblivious one-head tape unit, or two extra 
oblivious pushdown stores. A single pushdown store does not suffice. Similarly, we 
can keep track of the headpositions in multihead Turing machine computations. 

Number representations. The reader may appreciate the following comment of 
John Locke on the intimate relation between counting and number representation. 

For he that will count 20, or have any idea of that number, must know that 19 went before, with 
the distinct name or sign of every one of them, as they stand marked in their order; for wherever 
this fails, a gap is made, the chain breaks, and the progress in numbering can go no further. So 
that to reckon right, it is required: ( 1) that the mind distinguish carefully two ideas, which are 
different one from another only by the addition or subtraction of one unit; (2) that it retain in 
memory [a systematic method for deriving] the names or marks of the several combinations, from 
a unit to that number, and that not confusedly and at random, but in that exact order that the 
numbers follow one another; in either of which, if it trips, the whole business of numbering will 
be disturbed, and there will remain only the confused idea of multitude, but the ideas necessary 
to distinct numeration will not be attained to. 
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The one and only basic reason to denote numbers at all is for the purpose of 
comparing them, of whether the one is greater than the other, for without this capability 
no arithmetic is possible and with it all arithmetic is possible. Thus we must be able 
to distinctly represent all numbers, and if we have representations for all numbers up 
to a given one, then we must be able to derive the next one, or previous one, from 
the given one, while having a designated point of reference or benchmark number. 
This is the task expressed in the notion of a counter machine, and multicounter machines 
enable us to do arithmetic. The exhibited optimal implementation embodies a new 
representation for multituples of integers suitable for exercising that basic activity 
using minimal resources. Thus, for each n=(n1,n2,· • • ,nk)EZ\ k~l, each such 
representation for n consists of a linear string of symbols, and is about as compact as 
possible. Such a representation has a distinguished access position p, and by considering 
only the three symbols centered on the access position we can 

(i) add any vector 8 = ( 81, 82 , • • • , Bk) E {-1, 0, l}k to n to obtain such a rep
resentation for n + 8; 

(ii) for all i, 1 ~ i ~ k, determine whether n; + 8; = O; 
(iii) determine the new access position p' E {p-1, p, p+ l}, which is also indepen

dent of n and 8. In m successive additions the distance between the leftmost 
and rightmost intermediate access pointer positions is O(log m), for all m > l. 

Note that Gray codes, as representations of integers, have vaguely similar proper
ties for the case k = 1. There, the representation of n ± 1, n E Z, can be obtained from 
the representation of n by changing a single symbol. However, the symbol in the 
representation which must be changed to obtain n + 1 from n can lie arbitrary far from 
the symbol which must be changed to obtain n -1 from n. Moreover, these positions 
depend on n and whether we add or subtract, and do not allow us to test n for 0. The 
representation derivable from the simulation in [1] is closer to the one above, for the 
case k = 1, but the new access position p' in (iii) depends on n and 8. None of these 
representations have any of the properties (i)-(iii) in case k > 1. 

Augmented counter machines. Apart from the basic one-step multicounter 
operations, several other one-step operations can be synthesized using concealed 
auxiliary counters, such as tests for equality amongst counters (by maintaining all 
differences on auxiliary counters). It is known [2] that the operations "set counter i 
to zero" or "set counter i to the value of counter j" (i #- j) cannot be synthesized as 
one-step operations on a multicounter machine. At the end of § 2.2 we noted that the 
requirement of initially zero counters was not essential for the present simulation. It 
can be proved [9] (this issue, pp. 34-40) that with a suitable embellishment the 
present simulation can also support the one-step operation "set counter i to the value 
of counter j" (i #- j). Define an augmented counter machine (ACM) just like a multi
counter machine but with the one-step input operations "set counter i to the value of 
counter j" (for any pair of counters i, j) added and any initial counter contents in Z 
allowed. Such a machine can execute quite powerful instructions in one step. For 
example: 

L: if (x<y & y ~ c) then (x~ z; z~ d) else (x~ y; goto L') fi 

with x, y, z integer variables, c, d integers and L, L' labels, is a one-step instruction 
for an ACM. 

THEOREM. Each augmented counter machine can be real-time simulated by an 
oblivious one-head tape unit in logarithmic space. 

Uniform space complexity. Viewed in space-time, the bracket manipulator head 
describes an interesting curve. This is perhaps best expressed by stating that the 
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two-dimensional space-time trajectory described by the center of the greatest tape 
segment, delimited by brackets with indices j, j' ~ i, is the same as that described by 
the center of the greatest tape segment, delimited by brackets with indices j, j' ;';i; i -1, 
i > l, subsequent to multiplying the time scale of the latter by S(i)/ S(i -1) and the 
space scale of the latter by i/(i-1). This shows that the number of distinct squares 
visited in each time interval of n steps, for all n i::; 1, is @(log n). Generalizing this 
observation, we say that a multitape Turing machine M uses uniform logarithmic space 
if, for any unbounded input sequence, the total number of distinct squares, visited on 
M's storage tapes, for each interval of n steps, for all n i::; l, is O(log n). It can be 
shown [10] that each multitape Turing machine using uniform logarithmic space can 
be real-time simulated by an oblivious one-head tape unit using uniform logarithmic 
space. 

Oblivious simulations. Ir seems to us that also the converse of the maxim leading 
to Proposition 1 holds generally. Viz., if we can simulate arbitrarily many storage 
devices by a fixed number of, possibly different, devices then we can do so obliviously 
retaining the same resource bounds. The point here is that if the multitude of head 
movements of an arbitrary number of heads can be accommodated by the motion of 
a fixed number of heads, then there is no reason to suppose that any trajectory of the 
latter can make significant use of particular input streams. 
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