Efficient Simulations among Several Models of

Parallel Computers (Extended Abstract)

Friedhelm Meyer auf der Heide

Fachbereich Informatik

Johann Wolfgang Goethe-Universitdt

6000 Frankfurt am Main

Fed. Rep. of Germany

2bstract: ¥e consider parallel computers (PC's) with fixed
communication network and deal with the question, how fast can we si=-.
mulate PC's with n processors whose communication network has un-
bounded dearee (unfair PC's) bv PC's where this decree is bounded
(fair PC's). An important class of unfair PC's is thatone of PC's
with predictable communication {pred.com.). In such a PC each pro-
cessor can compute in 0(t) steps the sequence of processors it wants
to communicate with durina the next t steps. A famous example of such
PC's are cubes initialized with ascend-and descend proarams as intro-
duced by Preparata and Vuillemin in [5]. Thev could simulate such un-
fair PC's with pred.com. with constant time loss using only as many
processors as the cube has. We ceneralize this result by presenting
a fair PC which can simulate each unfair PC with pred.com., n pro-
cessors, and 0{log(n)) storace locations per processor with constant

: . 1+€ .
time loss using 0(n } processors for an arbitrarv e>0.

I. Introduction

In this paper we deal with the followino question:

How efficientlv can one parallel computer (PC) with fixed communica-
tion network with bounded decree simulate all members of a certain
class of PC's?

By a PC we mean a finite set of n processors which have usual
sequential capabilities. They are partially joint bv wires. The graph
defined by the processors and the wires is its communication network.
In one step each processor is allowed to read an information from a
(relative to the communication network) neichborinc processor. Ve
allow that several processors read from the same processors at the
same time. We assume the PC is syncronized.

Technological restrictions demand the degree of a PC, i.e. the
dearee of its communication network to be bounded bv a small con-—
stant. *

We shall call such PC's fair. Those with larce deoree we call un-
fair. Later we shall alwavs assume that their decree is n-1, i.e.
that their communication network is the complete araph. We further-—

218

more ass
ume that each processor only has 0(loai(n}) storagelocationsu

each for one integer.

An i
important class of unfair PC's are those with predictable

communication (unfair PC's with pred.com.).
Such a L.
ot PC has the additional property that for each integer t,
ch proc . .
o processor can compute for itself the sequence of addresses of
cessors i
S it wants to read from during the next t steps in 0(t)

steps.

Famous .
examples of unfair PC's with pred.com. are the ascend-and

ined by Preparata and vuillemin in [5].

des -
cend- programs for cubes def
and its communication network

Thi :
' is unfair PC has N=2% processors,
1s a k-4di .

mensional cube. The prediction of the communication 1is

r in direction of the first

dimensi
S1on i . . .
+ neighbour in the direction o f the second dimension,

on,
is special, very regular

Pre .
parata and Vuillemin could simulate th
t+he Cube-Connec-

PC with
pred.com. by a fair PC which N processors-

ted ¢
ycles~ and constant time loss.

In thi
is paper we shall present a fair pC which can simulate each

unfair P .
C with pred.com. with n processors, a so-called n-simulator.
tructed such that

Thig .
n-si

mulator can for an arbitrary €>0 be cons
e loss. (For a more

it hag 0(n1+g
) processors and only a constant tim

detaj
a@lled construction see [10].)

In
[10] the above method of simulating and ideas from [4] are

Combin
ed for constructing a so-called n-universal PC. Such a fair PC

Can si
mulate each fair PC with n processors and fixed degree. In

[3] an ;
const n-universal PC with 0({(n) processors and time loss 0(log(n}) is
Str
son ucted. In [4] an n-universal PC with 0(n'*®) processors for
e a i
rbitrary >0 is constructed which has only a time losS

0{log1o
Jiog(n)).
[10] has the samé number of

The n-uni
n-universal PC constructed in
This result even

PI'OCQS
hold Sors as above but a constant time loss only.
8 i .
if we remove the restriction of the storage capacity of the

proceSSOIS
fast simulati-

wn that we cannot hope for

I .
n [10), it is also sho
such a fair PC is

ons if
abl we want to build a general n-simulator.
e : . . :
to simulate each unfair PC, also those whose communication 18

Izzspz:diCtable. A lower bound of R{log(n)) is proved for the time

cessors a g?neral n-simulator, independent on the number of its P?O'

of the é Tﬁls result holds when assuming some reason?ble_?rqperties_
esign of simulations as they are already defined in [4]

220

for proving a time~-processor trade-off for n-universal PC's.

By results from (11, [6], [7} or [8] one can prove that this lower
bound is tight.

I11I. The Construction of an n-Simulator.

In this chapter we shall construct an n~-simulator. The construction
of the n-simulator proceeds in three steps. First we describe for
each integer t a fair PC T; which can simulate t steps of each upn-
fair PC with pred.com. in 0(t) steps. Afterwards we define what we
mean by weak n-simulators. Based on such fair PC's we construct
our n-simulators. Finally we guote from [10] some ways of con-
structing weak n-simulators which completes our construction.

First we describe a fair PC T} for some fixed integer t. T§ can
simulate t steps of each unfair PC with pred.com. in 0(t) steps if
it is initialized in an appropriate way. T% consists of n exempla-
ries T1,...,Tt of a fair PC T, which we will define noww

Its communication network is a tree whose vertices are replaced
by cycles. The cycle corresponding to its root is called the root
cycle, each processor on it is a root processor and one of them is
" the main root.

'I't is inductively defined as follows:

Ty consists of one processor, it is its main root and forms its root
cycle.

For t>0, T, consists of exemplaries of T

0""'Tt~1 and t new pro-
cessors P

0""'Pt—1’ These processors form the root cycle of T, by
between Pp and ?P+1)mod(t) for p £ {0,...,t-1}.

the main root. Furthermore, for each p © {0,...,t-11},

pp is joint to the main root of T .

wires

PO is

An example of this fair PC is shown in figure 1.

The following lemma can easily be proved by evaluating the obvious

recursion for the number of processors of Tt and by the above defi-
nition.

Lemma 1: For t>1, T, has 3-2t~1-1 processors and degree 3.

Now let H be an unfair PC with pred.com. and n processors R1,....Rn-
A configuration K=(K1,...,Kn) of H consists of configurations K; for
each processor R, of H, i€ {1,...,n}. Recall that each processor

only has 0{log{n)} storage areas. Thus each K; can be represented bY

a coding of its program and a Jist of the conteats of its storage

locations. This representation is a string of integers of length

221

®log(n)). In the sequel we shall identify this string with the

configuration.

Now suppose that H started with K executes p steps for som
K) then is called the p'th

i is the p'th

e integer

p. The resulting configuration K—(K1,..
successor configuration of K and for i € {11---rn}l
successor configuration of K for R;

For an integer p and i € {1,...,n}, com (K, R, /P
reads from during p steps of H

) denotes the

string of addresses of processors R,
start i
ed with K. For g £ {1,...,p}, Com(K,Ri,p)q denotes the g'th

el
ement of Com(K,Ri,p). If for some such g,
anoth ;

er processor in the g'th step started with K, we assume that

Com(K,Ri,p)zi.

H doesn't read from

L i .
et 1 € {1,...,n}. We say T, 18 prepared for K and Ry for t steps.

if the following holds:

If t=0 the Tt contains Ki'

Let t>0. Then each root processor contains K.,
P€{0,...,t-1} the exemplary T _ joint to th; p
Prepared for K and RJ for p stegs, if j=Com(K,R;,t) p+1 and

and for each
'+h root processor is
3 # i.

If §=
j=1i, Tp may be arbitrary.

T* 5
¥ is prepared for X if for each i€ {1,...,

K ang R, for t steps.
T
he Processor of H being attached by the above

Proc

essor P of T} is said to be represented by P relative to K.
W .

€ say TE simulates t steps of H started with K, if T§ executes a

com : . i i
putation which finishes with the t'th successor confiquration of
i ¢ {1,...,n}.

n}Ti is prepared for

preparation to some

K for i
R, in each root processor of T,

Lemm . .
ma 2: If T is prepared for X, it can cimulate t steps of H

st 5
arted with K in 0(t) steps.

Proof: .
=Toof: Let i € {1,...,n} be fixed, Pore--rPpoq be the root proces-

SOI‘S
of Tt Suppose that T; is prepared for K.
For p € {1,...,t} we say that the root cycle of Tt

if p
and tion of
K fog ; Py mod(t) contain the p'th successor configurati
a —
nd for each g £ {1,...,P 1}, P (prq)mod{t)

{p~-
p-q)’ th successor configuration of K for R, -

We now want to find an algorithm which tra
For this
ot 0 of the exemplary of
for the

is p-prepared
contains the

nsfers a p-PrePaIEd

r
00t cycle to a (p+1)—prepared one. purpose we first assume

th
at for each q € {0,...,t-1} the main rd
sor configuration of K

T Y01
q301nt to P_ contains the g'th succes
ins the message Ry

Pr
Ocessor Rj being represented by 0. Thus 0 conta

222

wants to read from Rj in the (g+1)'th step of H started with K.
Now if the root cycle is p-prepared for p € {0,...,t-2}, it be-
comes (p+1)-prepared by the following algorithm.

. - i h
Part 1: For each q £ {1,....,p}, P(p+q)mod(t) simulates the
{p-g+1) 'th step of R, with the help of P(p+q—1)mod(t)'

: j tep b
Remark 1: As P(p+q—1)mod(t) has already executed this step bY

definition of "p-prepared", Part 1 can be done in constant time.
Part 2: Pp simulates the (p+1)'th step of R

Remark 2: This can be done in constant time because we have assumed
that the message Ri perhaps wants to read from another processor is
stored in the main root of the TP joint to Pp.

Part 3: For each q € {1,...,p+1}, P(p+q)mod(t) simulates the

-g+2)'th st . wi .
{p-q+2) step of R, with the help of P(p+q—1]mod(t)
Remark 3: This works in constant time, because in step 1 resp.
step 2, P(p+q—1)mod(t) just has simulated this step.

Thus T; is (p+1)-prepared in a constant number s' of steps. Now
we may inductively assume that after s' -« p steps, the root cycle of
the exemplary of Tp joint to Pp is p-prepared. But this means that

its main root contains the message Ri needs to execute its (p+1)'th
step after s' - p steps.

By our algorithm this message is needed after s'-s p+(time for step
1) many steps that means it is available when it is required by Pp-
Thus PO contains the t'th successor-configuration of K for Ri after
s' » t steps. Clearly in further s" -« t steps each root processor can
have stored this configuration.

Executing this algorithm in parallel for each i ¢ {1,...,n} we bave

simulated t steps of M started with K in (g'+s")-t steps.

Figure 2 shows the states of the p-prepared root cycle of T; for
some 1 £ {1,...,n} and each p € {1,...,8}. A number 2 in the g'th
column and p'th row, g ¢ {0,...,7}, p ¢ {1,...,8} means:

If TS is p~prepared, Pq contains the £'th successor gonfiguration of
X for Ri.
In order to obtain a fast simulation of arbitrarily many steps of

H we have to prepare Tg before each phase of t steps for the

223

n order to obtain an n-simulator of

o choose t=0{(log(n)) because of

appropriate configuration of H. I
at most polynomial size we have t

lemm
a 1. But then we have to prepare TE before each phase of t
o obtain a constant time loss.

d need at least Q(loq(n)z) steps.

lization each time pefore d such
It turns out that this

steps in 0(log{n)) time in order t
Unfortunately such algorithms woul
Therefore we will execute an initia
?hés§s of t steps, where d is chosen suitably.
initialization for 4 preparations can be done in parallel and doesn't

need :
e much more time than one preparation.
afterwards d preparations can

teps. This trick will

This initialization effects that

become executed, each in 0(log(n)) s

Let in the sequel >0 be fixed

u
guarantee the constant time loss.
1+€ processors

and t.=
NEQ gglog(n)J'.Then by lemma 1, T} has at most 3n
e shall first define a type Bf fair PC's, so-called weak

n-si .
mulators, which will be used for constructin
n be found in [10].

ollowing properties:

g n-simulators.

Explici .
plicit constructions of weak n-simulators ca

h .
weak n-simulator M is a fair PC with the f

M contains an exemplary of T;.

- If K= .
(K1r---,Kn) is some configuration of H and for each

contains Com(K,Ri,t), then
s the following holds:

or of 7t contains K,
t 1

ieg
{Tv---,n}, each root processor of T
M can initj i i :
o ialize itself such that afterward
for i
each i € {1,...,n}, each root process

then
M can prepare T for K in 0(log(n)) steps.

itialization of M for K and

T e ey s
N he above initialization we call the in
e ti .
ime it needs the initialization time of M.
W
Lt e now shall construct n-simulators.
et M
© M be some weak n-simulator with initi
falr Pc M* o . r . 0
onsists of r:=|d/t] exemplaries of M called M, ...,

Fo
r each 2 € {0,...,r=1}, i € {1,....0}s

alization time d. Then the
r-1
M .
i
each root processor of Tt

(£+1)m0d(r).

i 3
in M* ig <04
is joint to the corresponding processor in

or with initialization time 4.

arbi-
If

Theo
=fleorem 1: Let M be a weak n-simulat
imulate & steps pf some

Then M* 3
M* is an n-simulator which can S
processors in 0{d+%) steps-

tra .

y hry unfair PC with pred.com. and n
as m processors, M* has d; ¢l. m processors.

umber of processors of M* is clear.

d':=t-r steps of H

KJ=(K%,...,xg) be

Proof.
;a_*i; The computation of the n
e wi
ot will construct an algorithm which simulates
a .
rted with k0= (x%, ..., k). For 3 € {T,. cox) 2€F

the -3 '
{t+j) 'th successor-configuration of K=

224

- 0 . .
Assume that for each i £ {1,...,n}, g €{0,...,r-1}, K; is stored in
each root processor of Tt in MY,

0 .
Now d' steps of H started with K can be simulated as follows.

Part 1: For each g ¢ {0,...,r-1}, 1 ¥ {1,...,n}, each root processor
of Ti in M9 computes Com(Kq,Ri,t).

Remark 1: This can be done in 0(r+t) = 0(d'}) steps because of the

definition of predictable communication.
Part 2: For each g € {0,...,r-1}, MY initializes itself for x4,

Remark 2: This can (after having executed Part 1) be done in d steps
as 4 is the initialization time of the M%'s.

Part 3: For g=0,...,r-1 do (seguentially)

Begin

a}) M4 prepares the exemplary T' of T; in MY for x%.

b) T' simulates t steps of H started with Kq. .
Comment: Now for each i ¢ {1,...,n} each root processor of T;

in T' contains K{q+1). .

c) For each i ¢ {1,...,n}, each root processor of Tr in T' transports

K;q+1) to the corresponding processor in M(q+1)mod(r)_

End

i
Remark 3: Now for each i 7 {1,...,n}, each root processor of Tt in
0

r
M~ has stored K;, the d'-th successor-configuration of KO for R,.

Remark 4: Each pass of the loop of part 3 needs 0(t)=0(log(n})
steps: 0{log(n)) for a) because of the definition of a weak n- simu-
lator, 0(t) for b) because of lemma 2, 0({logi{n)) for c) because we
have assumed that each configuration of a processor is represented

by an integer string of length 0(log(n)}. Thus part 3 needs O{r*t)=
0{d') steps.

Part 4: For each q € {0,...,r-1}, i € {1,...,n}, Ki is transported

to each root processor of Ti in M9,

Remark 5: This can be done in CG(r-log(n))=0(d') steps because of

225

the ab
ove bound for the lengthes of the representations of configura-

ticns.

Now we
have ach.eved all preconditions for starting this algorithm

again with K0 « kY. Remark 1,2,4 and 5 guarantee that we have only

needeé 0(d') steps for simulating d' steps of H. Repeating this

;ngzlzzg(zf obtain.that we need 0(L) steps for simulating ¢ steps of
. If % is smaller, we still have to execute Part 1 and 2

once. Thus we need 0(d) steps also in this case. Therefore in general

we need 0(d+4%) steps for simulating £ steps of H.

Now the problem of constructing n-simulators is reduced to construc-

ting weak n-simulators.

For i i i
f . this construction we define so-called (a,b)—distributors Da b
Oor integers a,b, acb. |

Such :
a fair PC has a+b distinouished processors,
and has the following

a input processors

Bovenn
1r---sA and b output processors Byseo«rByr
Property: b
If .
each By, 1 € {1,...,b}, has stored an integer C;
1f such that afterwards the follow

then D ST c{1,...,a+1},
holds:a'b n initialize itse ing
It each ag, 3¢ {1,...,a}, contains an integer strind xj
,...,xa) according to

c {1,...,a}, to each By

of length

0(1lo
g(n)), then D, 1 can distribute (X,

(c.,. .
Wilh -+sC), i.e. can transport each x., J
CiZ1, 1 € {1,...,a}, in 0(log(b) * log{n)) steps.

The ab P x4 .
ove initialization is called the initialization of Da b for
r

(c.,.
1! '-er), and the time it needs 1is the initialization time of

D
a,b"

NOW Wi
e shall construct weak n-simulators with the help of (a,b) -

distributors.

Let f .
or j € {0,...,t-1} L, be the following subset of the set of

Processors of T*.
t n

L, is
0 the set of root processors of Ti,..., £

For 1 .
j > 0, L. is the set of all processors whic
and which do not belon

T

whi h belona to cycles
ic o1

h are joint to processors of L. 4 g 0

L._ or L J

J 2 ._1.

I
nformally, L., consists of tho ong to 2

=:M. s j E{O,..-,t"“}.

Cycle j . i
in depth j of some ! in T;. Let #Lj-
ith jnitiali-

Let . t
for j €{0,...,t-1} Dy be a (n,) distributor W

Zation time 4.
J.

se processors which bel

226

Then the fair PC M based on Dy,...,Di_, 1s defined as follows:

M consists of T; and Dyy... /Dy where for j €{0,...,t=1} Lj is
the set of output processors of Dj and the j'th root processors of
T;,...,TE are its input processors.

Lemma 3: M is a weak n-simulator with initialization time
2 t-1
0(log(n)”™ + T 4d.).
j=0 7
Proof: Let K= (K1,....K } be a configuration of H, and suppose that

for each i €{1,...,n}, each root processor of T has stored
Com (K,Ri,t).
Let for each processor P of TE 2(P) be the address of the processor
of H being represented by P relative to K. Clearly,.for each
ir{1,...,n}, 2{P)=1i for each root processor P of Tt.
The following algorithm initializes M for K.
For j=0,...,t-1 do {(sequentially)
Begin
a) Dj initializes itself for (L{P), P ¢ L.).
b) Dj distributes (Com (K,Ri,t), i€ {1,...,n})according to
(L(Ppy, P E Lj).
¢) For each P € Lj; if for q €{1,...,t=-1}, p €{0,...,9-1},

P is the p'th root processor of an exemplary of Tq in T} .

t
.= 1 i in
then P sends z: Com(K,R“P),t)p+1 to its neighbour Q
L. and L{(QD):=z,

1+
Comment : Now for each cycle whose processors belong to L.,

one of its processors O knows 2{(D).

d) For each Q C Lj+1' which knows &(Q): O transports £(Q) to

each processors Q' of the cycle it belongs to, and
2(0%) :=21(0) .
End

Obviously this algorithm attaches the correct address R(P) to
each processor P of T;. Because of the initializations of

DO""’Dt-1 in step a) of the passes of the loop, finally M is
initialized for K.

For j € {0,...,t~1}, the j'th pass of the loop needs

dj+0{log(n))+0(t)=0(dj+log(n)) steps. Thus the initialization time

-1

. 2
of M is O(log(n)” + b dj). Now a preparation of T} in M can be
j=0

227

executed in O(max] {loq(d)} + loq(n)}) = 0(log(n)) steps
—distributor with

Using ideas from [4] one can construct an (a,b)
4) with the

0{b log(b)) processors ans initialization time 0 (log (b)
help of Waksman permutation networks [9]. (See [(101).
Applying lemma 3 and theorem 1 we obtain:

T . . .
heorem 2: M* is an n-simulator with 0(n1+6)lOg(n)S)processorS-

1
M* -
; can simulate & steps of some arbitrary unfair PC with pred.com.
and n processors in 0(log(n)5 + 1) steps.
Finally we note two possible improvements of this theorem. We can

c
onstruct (a,b)-distributors with initialization time 0(log(b)) if
we

are able to sort b numbers in 0(log(b)) steps. Ajtai, Komlos and
S .
zemeredi [1] have done so with the help of a fair PC with

0
(blog (b)) processors. This fair PC can also sort packets ©O
wWith this result we

f length

s
according to some keys in 0{log(b)+s) steps.
ca

n construct an (a,b)-distributor with 0 (blog (b)) processo
i
nitialization time 0(log(b}). Call the associated weak n-simulator
M

rs and

gt
A similar result can be achieved when using the sorting algo-

r
ithm from [6] due to Reif and Valiant. They have sorted b numbers

)
0 Cube-Connected Cycles using 0(log(b}) steps with overwhelming

Probability. In order to sort packets of length 0{log(n)) we here
n
eed 0(log(n)) such fair PC's in order to do so in 0 (1og (b} +1og{n}}

b) -distributor with 0(blog(n)) proces-—

S
teps. Thus we obtain an (a,
g distributions

s

ors and initiatisation time 0(log(b)”) which allow
u

sing 0(log(b)+log(n)) steps with overwhelmindg probablllty

led M M., and M3 both

The associated weak n-simulator let be cal 2

ha 1+€
ve 0(n’' “log(n)) processors.

Applying M, and M, to theorem 1 we obtain:

Theor

;;"Jai;iL M3 (M) is an n- -simulator with 0(n1+€'109(n)2) proces-
Ts * : .
M7 (M}) can simulate ! steps of some arbitrary unfair pC with

pPred, .
com. and n processors in 0(1oa(n)2+2) steps (with overwhelming

Probability).

228

References:
= rences:

[1]

(2]

[3]

[4]

[5]

(6]

[7]

(8]

(9]

M.Ajtai, J.Komlos, E.Szemeredi:

An 0(nlog{n)) Sorting Network, Proc. of the 15'th Annual ACM
Symposium on Theory of Computing (1983), Boston, USA, 1-9.
K.Batcher:

Sorting Networks and their Applications, AFIPS Spring Joint Comp.
Conf. 32 (1968), 307-314,

Z2.Galil, W.J.Paul:

A General Purpose Paralle] Computer, Journal of the ACM 30(2)
(1983), 360-387,

F.Meyer auf der Heide:

Efficiency of Universal Parallel Computers, Acta Informatica 19
(1983) 269-29¢.

F.P.Preparata, J.Vuillemin:

The Cube-Connected Cycles: A Versatile Network for Parallel
Computation, Communications of the ACM 24 (1981), 300-310.
J.H.Reif, L.G.vValiant:

A Logarithmic Time Sort for Linear Size Networks, 15'th Annual

ACM Symposium on Theory of Computing (1983), Boston, uUSa,10-16.
E.Upfal:

Efficient Schemes for Parallel Communication, Proc. of the ACM

SYmposium on Principles of Distributed Computing (1982), Ottawa,
Canada.

L.G.valiant, G.J.Brebner:

USA, 263-267.
A.Waksman:

A Permutation Network, Journal of the ACM, 15(1) (1968), 159-163.

{10]F.Meyer auf der Heide:

Interner Bericht des Fachbereichsg Informatik der J.W.Goethe-

Universitit, Frankfurt, 2/83, to appear in SIAM J.on Comp.

229

main root
root cycle
]

v

Figure 1: The fair PC T4.

kel
o
o
o)
[
i)
w
o
N
e}
&)
o
N
o}
~

O ~ N U e W =
o NN O O =
- W - 0o o N =
- S N R = B B A UV N B
U W =2 O W = O
¥ S N o N (U2 B SR N R e
W = v W - o ©
[N RN Y- S-S SR I = I
oo N U w = o O O

e.
Fiogure 2: The desiagn of a p-prepared root cycl

	Seite 1
	Seite 2
	Seite 3
	Seite 4
	Seite 5
	Seite 6
	Seite 7
	Seite 8
	Seite 9
	Seite 10
	Seite 11
	Seite 12

