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ABSTRACT

In this paper we study the motion planning problem for multiple objects where an
object is a 2-dimensional body whose faces are line segments parallel to the axes of R 2 and
translations are the only motions allowed. Towards this end we analyze the structure of
configuration space, the space of points that correspond to positions of the objects. In par-
ticular, we consider CONNECTED, the set of all points in configuration space that
correspond to configurations of the objects where the objects fgrm one connected com-
ponent. We show that CONNECTED consists of faces of various dimensions such that if
there is a path in CONNECTED between two O-dimensional faces (vertices) of CON-
NECTED then there is a path between them along 1-dimensional faces (edges) of CON-
NECTED. It is known that if there is a motion between two configurations of CON-
NECTED then there is a path in CONNECTED between the configurations. Thus by the
result of this paper the existence of a motion between two vertices of CONNECTED
implies a motion corresponding to a path along edges of CONNECTED. Hence we have
reduced the motion planning problem from a search of a high dimensional space to a graph

searching problem.

Searching the graph of vertices and edges of CONNECTED for a path has a prohibi-
tive worse-case complexity because of the large number of vertices and edges. However, if
the search generates edges and vertices only as they are needed, a practical and efficient

algorithm may be possible using some effective heuristic.



From this result it is shown that motion planning for rectangles in a rectangular boun-

dary is in PSPACE. Since it is known that the problem is PSPACE-hard we conclude it is

a PSPACE-complete problem.
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0. Introduction

Motion planning is an important problem in robotics and computer-aided manufac-
ture. Probably the most influential work in motion planning is due to Lozano-Perez and
Wesley [6] whose paper brought to the academic community the realization that motion
planning was a rich mathematical area with practical applications. They considered the
motion of a single object in the presence of obstacles by shrinking the object to a point and
growing the obstacles in such a manner that the original object could be moved from A to
B if and only if the point could be moved from A to B in the presence of the enlarged obs-
tacles. The enlarged obstacles were called configuration space obstacles thereby introducing
the notion of representing a configuration by a point in a space. The points inside a confi-
guration space obstacle represented illegal configurations where the moving object overlaps

an obstacle.

The next major contribution was a series of papers by Schwartz and Sharir [9 - 11].
They provided a precise framework for general motion planning sufficient to encompass not
only coordinated motion of multiple rigid objects but also of objects whose shape could
change such as a robot arm. By applying techniques from the theory of reals they proved
that even in this general setting motion planning was decidable. In fact, for problems with
a fixed bounded number of degrees of freedom they gave a polynomial time algorithm. The
consideration of multiple objects introduced a new aspect to motion planning; namely, the

coordination of motion. Simply calculating trajectories was no longer sufficient.

The complexity of motion planning has been considered by a number of researchers.
Reif [13] showed that motion planning for a spider like object in a 3-dimensional cave was
PSPACE-hard. Hopcroft, Joseph, and Whitesides [3] showed that the motion planning

problem for linkages, even in two dimensions, was PSPACE-hard. Hopcroft, Schwartz, and



Sharir [4] showed that the coordinated motion planning problem for rectangles inside a 2-
dimensional rectangular box was PSPACE-hard even if translation was the only allowable
motion. However, there was a fundamental difficulty in establishing that these problems
were in PSPACE. The difficulty is that there could conceivably be a motion but not a
motion that could be described in polynomial space. For example, what if the only possible
motions involved moving objects to positions that were not even algebraically related.
Although the work of Schwartz and Sharir [10] showed this not to be the case, it did not
rule out moving objects to algebraic positions of high degree, too high to represent in an

obvious manner in a polynomial amount of space.

Hopcroft and Wilfong [5] considered motion as a special case of a transformation. In
their setting an object was a parameterized mapping from a canonical object to a region of
3-space. A motion was a path in the séace of parameters and thus included not only trans-
lations and rotations but growth and parameterized continuous deformations. They proved
the basic theorem that any motion of n objects between two configurations where they
were in contact could be transformed to one in which the objects remained in contact
throughout the motion. This reduced motion planning from searching an entire space to
searching the surface of some generalized configuration space obstacle. An appealing
method of searching the surface of the obstacle would be to move to lower and lower
dimensional surfaces until a 0-dimensional surface or vertex was reached. If the vertices of
the object in configuration space were connected by paths consisting solely of vertices and
edges then the sez;rch of the geometrical surface could be reduced to the search of a purely
combinatorial structure, i.e., the graph consisting of the vertices and edges of the surface.
Although the number of vertices of the graph may be astronomical, the entire graph need
nolt be constructed. By means of some heuristic, a search could proceed by generating an

edge only when it was to be traversed in the search. If in practical cases, where objects are



being moved in a work space, only a small number of vertices need be generated, then a
practical and effective algorithm might be possible although the worst-case complexity
would be prohibitive. The search process envisioned is somewhat analogous to linear pro-

gramming where only a small number of vertices of a polytope are examined.

The process of searching by following features of the configuration space obstacle also
removes one of the difficulties of establishing the computational complexity of motion plan-
ning. It appears to bound the algebraic complexity more closely than the method of

Schwartz and Sharir [10] of applying the theory of reals.

In this paper we study the motion of two dimensional objects with linear surfaces.
These objects will be allowed to translate but not to rotate. The arrangements of the
objects are in an obvious one to one relationship with a point in a high dimensional
Euclidean space, called configuration space. We define classes of configurations by specify-
ing the faces of the objects that touch one another. The classes that correspond to confi-
gurations that are such that the objects form a connected arrangement are actually various
dimensional hyperplanes in configuration space. The classes that contain only one confi-
guration are called vertex configurations and the classes that correspond to one dimensional
hyperplanes are called edges. We show that if there is any motion of the objects between
two vertex configurations then there is a motion that follows edges from vertex to vertex.

This result is not true for more general situations in which rotation is allowed.

Consider the situation in Figure 1 where rotations are allowed. This is an example of
a V:eftex configuration but the only other vertex configuration that can be reached from this
one along edges is the one resulting from moving the objects as a rigid piece to the left.
Notice that when corners @ and b of objects A and B come apart, object A is free to

rotate by sliding ¢ along L and d along M, and object B is free to rotate and move corner



e along N. Such configurations lie on a higher dimensional surface and not on an edge. A

similar phenomenon occurs if any other constraint is moved.

L

M

Figure 1. Vertices not connected by edges when rotations allowed.

The edge connectedness property provides a simple strategy for planning the motion
of such objects. Call a subset of the objects that form a vertex configuration a part. A
motion along an edge corresponds to moving a part so that a face of the part moves along
the face of the remaining part. The strategy is to find a subset of the objects that is a part
and for which the remaining objects form a part and move the face of one part along the
face of the other part. Continue this process of moving along edges in configuration space

until the required vertex configuration is reached.

Using the result about edge connectedness of vertex configurations it is shown that
deciding whether there exists a motion between two configurations is a problem in
PSPACE. This is done by showing that a vertex can be stored in polynomial space since it
is the solution of a linear system of equations. Thus, a nondeterministic algorithm using
polynomial space can guess the path vertex by vertex and the result follows from the fact

that PSPACE=NSPACE. Thus, deciding if a motion of rectangles within a rectangular



boundary exists is in PSPACE. Combining this result with the result of [4] we conclude
that the problem of deciding if a motion of rectangles in a rectangular boundary exists is

PSPACE-complete.

1. Partitioning configuration space

In this section the basic definitions will be presented and a result from algebraic topol-
ogy known as the Mayer-Vietoris Theorem is stated. Using these concepts the existence of

certain paths in the boundary of a surface in configuration space is shown.

A pathin a set S is a homeomorphism p:[0,1] = S. An object is a two dimensional,
path connected, compact region with a finite number of faces that are closed line segments
parallel to one of the two axes of R% Each object is the closure of its interior but it is not
necessarily convex. Fix some point on each object and call it the origin of the object.
Unless otherwise stated we will assume there are n+ 1 objects. The objects are denoted by
Ag A, ...,A,. Object A, has its position fixed and the others are allowed to translate
but not to rotate. Thus the location of object A; is completely determined by the position
(z;,y;) of its origin in R% A configuration is a vector (21,yy, - - -, Zn, ¥n) € R2?". The
arrangement of a set of objects determines a configuration and a configuration determines
the arrangement of the objects. Thus when we speak about a configuration, we may be
talking about a point in R2" or an arrangement of the objects but the two notions are
interchangeable. The set of all configurations, R 2" is called configuration space. For

notational purposes we use lower case v's to denote points in configuration space. -

Two objects are said to overlap if the interiors of the objects have a nonempty inter-
section. Let NONOVERLAP denote the set of all configurations in which no two objects
overlap. Two objects touch if the intersection of the objects is nonempty but the objects do

not overlap.



For every configuration v we define the graph of v, denoted by G,, to be the graph
with a node corresponding to each object of v and an edge between nodes if the
corresponding objects intersect in v. We say that a configuration is a connected configura-
tion if the graph of the configuration is connected. Define CONNECTED to be the set of

all connected configurations in NONOVERLAP.

We say that the face a; of object A; touches face a; of object A; if the intersection of
6; and a; is nonempty and 4; and a; are a top and bottom face respectively, or a left and
right face respectively. Thus objects A; and A; touch if and only if there are faces of A,
and A; that toucix. For every pair of faces that touch there is a corresponding linear equa-

tion that is satisfied.

‘A description is a predicate that is a conjunction of clauses of the form ‘face a; of
object A; touches face a; of object A;.” Such a clause will be satisfied if the corresponding
linear equation is satisfied and a; and a; intersect. With each description D we associate a
linear system Mpv = cp where for each clause of D the corresponding linear equation is in

the system and v =(21, Yi, - - -5 Iy, yn)'

We say that a configuration v ezactly satisfies a configuration D if v satisfies D and
the only faces that touch in v are those implied by D. For each configuration v there is a
description D that v exactly satisfies. Thus when we speak of a matrix M, we mean the
matrix M, where D is the description that v exactly satisfies. Throughout this paper we
will consider only descriptions D such that any configuration that satisfies D is a con-

nected configuration.

Define Hp, to be the set of all configurations that satisfy the linear system correspond-
ing to D. That is Hp ={v |Mpv=cp}. Thus if k =rank(Mp) then Hp is a 2n-k-

dimensional hyperplane. Notice that a configuration can satisfy the system of linear



equations without satisfying the predicate D. In Figure 2 the objects have faces that are

aligned and so satisfy the linear equation but the faces do not touch.

L

Figure 2. Objects satisfy the linear system but do not touch.

Let Ep be the set of all configurations in NONOVERLAP that exactly satisfy descrip-
tion D. Notice that Ep is not necessarily path connected. In Figure 3 the description D
states that the bottom faces of A and C touch the top face of B. However there is one
path connected component of E, where A is to the left of C and another path connected
component of E, where A is to the right of C. We will denote a path connected com-
ponent of Ep by Pp. Let Kp be the closure of Pp in f‘ID. Kp is called a face of CON-

NECTED of dimension d if rank(Mp)=2n-d.

Figure 3. Ep with two path connected components.

Notice that a face as defined here may not conform to what one would usually call a

face. For example, in Figure 4 consider faces K; and K,. Although they are colinear
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surfaces with nonempty intersection, they are two distinct faces by the definitions used in

this paper.

Nk, Ak,

Objects CONNECTED

Figure 4. A surface of CONNECTED divided into more than one face.

The Mayer-Vietoris theorem from algebraic topology is used to show that a face and

its boundary have the same number of path connected components. The theorem shows

that a sequence of groups 1is an exact sequence. An exact sequence
by  h, g h,
A —=B —C — -+ — {0} is such that the image of h;, Im(h;), is the kernel of A, ,

ker(h;,,). The notation H, and H, in the theorem is as follows:

(i) Hy(S) is the zeroth homology group of S where

Hy(S)=2Z ® --- ® Z if S has m path connected components.
—_—
m copies

(i) H,(S) is the first homology group of S where H,(S) = {0} if H,(S) is contractible to
a point.

Note that a set S is contractible to a point if there is a continuous function

[:S X [0,1] = S such that
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J/(z,0)=z2

Vz €S
f(z,1)=y
[(y,t)=y vt € [0,1].

Theorem 1.1 (Mayer-Vietoris): Let A and B be two closed sets. Then the sequence

hy h, hs hy
H,(AUB) —» Hy(AnB) — Hy(A) ® Hy(B) = H(AuB) — {0}

is an exact sequence.

Proof: See Massey [8]. O

Ultimately we wish to show that path connected components of CONNECTED are
edge connected. For every configuration v there is a description D such that faces touch in
v if and only if they touch according to D. In other words, v exactly satisfies D (i.e.
v € Ep). Since a configuration cannot exactly satisfy more than one description, the sets
of configurations that exactly satisfy descriptions partition CONNECTED . That is, CON-
NECTED can be partitioned into Ep’s. As noted earlier not all E,'s are path connected
and since distinct path connected components must be disjoint, we can further partition
CONNECTED into the path connected components of the sets of configurations that

exactly satisfy descriptions. That is, we partition CONNECTED into Pp’s.

We will then show that if there is a path in K, a face of CONNECTED, where Kp
is the closure of a path connected component Pp, between two configurations in Kp-Pp,
the boundary of the face, then there is a path between them in the boundary. This will be

done by using the Mayer-Vietoris Theorem which requires the following facts:

1) Hp is contractible to a point and is path connected
D
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(2) Kp is closed in Hp
(3) Hp-Pp is closed in Hp and path connected.

(1) follows from the fact that Hj, is a hyperplane and (2) is immediate because of the
definition of K. Lemmas 1.2 to 1.8 are used to establish (3). Starting with Lemma 1.7 we
will show that each path connected component of a face of CONNECTED contains exactly

one path connected component of its boundary.

First it will be shown that the set of configurations Ep that exactly satisfy a descrip-
tion is open in the set of configurations that satisfy the linear system of the description.
We will then conclude that those configurations that satisfy the linear system of the
description but are not in some fixed path connected component of the configurations that

exactly satisfy the description form a closed set.
Lemma 1.2: Ej is open in Hp.

Proof: Let v € E,. Then v exactly satisfies D and v € NONOVERLAP. Let ¢>0 be
the minimum distance between any two right and left faces or top and bottom faces of
objects such that the faces do not touch in v. Then any configuration v' in Hp where the
objects are closer than ¢/2 from their positions in v is suc<h that no faces touch in v ' that
do not in v. That is, there is an open ball B in Hp about v such that any faces that touch

in v' also touchin v.

Suppose two objects overlap in v' € B. By the definition of B no objects that do not
touch in v can overlap. Since B C Hp any v' € B must satisfy the linear equations
corresponding to the clauses of D. Thus no objects that touch according to D can overlap
in v'. But v € E, and so no objects that touch in v can overlap in v'. That is

B C NONOVERLAP.
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Suppose v' € B and there is a face a, of A, and a face a, of A, that touch according
to D, and hence touch in v, but do not touch in v'. Since B is a ball, between v' and v
there is a path contained in B C Hp. Let m be the motion corresponding to the path.
Throughout m, A, and A, must be aligned along a, and a,. Since a; and a, touch in v
but not in v' and m is continuous, we conclude that there is a point in the motion when
A, and A, touch at corners. That is, at this point there are two faces that touch but they

do not touch in v. This contradicts the definition of B.

Therefore, for any v' € B, faces touch in v’ if and only if they touch according to D

and v' € NONOVERLAP. Thatis B C Ep and so Ej, is open in Kj,. 0

Next we show that each path connected component of Ej, is open in Hp.
Lemma 1.3: Pp is open in Hp.

Proof: Hp is locally pathwise connected and Ep is open in Hp. Thus any path connected

component of Ej, is open. See Willard [14]. O

We can now conclude one of the facts required to use the Mayer-Vietoris Theorem
that is needed to establish that a path exists in the boundary of a face of CONNECTED
between two configurations in the boundary whenever there is a path in the face between

the configurations.
Corollary 1.4: Hp-Pp is closed in Hp.

Proof: Immediate from Lemma 1.3. 0

Let D be some description and S be a subset of the objects. Choose one of the
objects of S (take it to be Ay if Ay € S) to be considered the object of S whose position is

fixed. As above we can construct a linear system from D for the objects in S. If the rank
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of the resulting coefficient matrix is full and S is maximal with respect to this property
then we say that S is a vertez object of D.

In Figure 5 there are two vertex objects {0,1} and {2,3,4}. Notice that although tak-
ing S = {2,3) results in a coefficient matrix of full rank, § is not maximal and so {2,3} is

not a vertex object.

Figure 5. Two vertex objects.

Lemma 1.5: Let D be such that rank(Mp) <2n-2. Then D has at least three vertex

objects.

Proof: If D has only one vertex object then by definition rank(Mp)=2n. Suppose D
has exactly two vertex objects and one has m, objects and the other has m, objects where
m,+ my,=n+1 the total number of objects. Then the number of independent rows of
M, that correspond to two objects of the first vertex object touching is 2(m,-1). Similarly
we have 2(m,-1) independent rows for the second vertex object. Since the two vertex
objects must touch there must be an additional independent row. Thus
rank(Mp) > 2(m,+ my-2)+ 1 =2(n-1)+ 1 =2n-1. Hence if rank(Mp) < 2n-2 then D has

at least three vertex objects. a

Next we show that the set of configurations that satisfy the linear system of a con-

" nected description D but are not in the interior of a fixed face is path connected if the
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dimension of the space of configurations that satisfy the linear system of D is large enough.
Lemma 1.8: If rank(Mp) < 2n-2 then Hp—Pp is path connected.

Proof: It will be shown that there is a fixed configuration v, in Hp—Pp such that there is
a path in Hp—Pp from any v in Hp—Pp to v,. The existence of such a v, establishes that

Hp-Pp is path connected.

Let v, € Hy—Pp be a configuration such that if the positions of any two vertex
objects are held fixed to their positions in v;, no motion of the remaining vertex objects
within Hp can result in a connected configuration and thus cannot result in a configuration
in Ep.

We proceed in two steps. First, we show how to move within Hp-Pp from any confi-
guration in Hp-Pp to one in Hp-Ep. Then we show how to move within Hp-Pp from
any configuration in Hp-Ep to v,.

Let v € Hy-Pp. If v ¢ Ep then our first step is completed. Suppose v € Ep but
v ¢ Pp. Move a vertex object along an edge of another vertex object that it is touching
until a new pair of faces touch. The resulting configuration is in Hp-Ep. The entire

motion except the final configuration is in Ep-Pp and so the motion is in Hp-Pp.

Next we show that any v € Hp—Ep, can be moved in Hp-Ep (and hence in Hp-Pp)
to vy. Let A and B be two vertex objects of D that touch according to D but in v they
either touch along faces not specified by D, overlap one another, or do not touch along
some face specified by D. Since A and B touch according to D their relative positions
have only one degree of freedom in Hp. Fix the relative positions of A and B as they are
in v. This adds one constraint to the system. Since rank(Mp) < 2n-2 there is still a col-

lection of vertex objects that is unconstrained in one of the z or y directions.
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Suppose that object C of this collection touches, according to D, object E of the ver-
tex objects that are fixed relative to the fixed object made up of .A and B. Then we can
move all the objects keeping the same relative positions until E is in its position as speci-
fied by v,. Since C is free to move while E is kept fixed we can move C to its position in
v, keeping the positions of A and B fixed. By the definition of v, the rest of the vertex
objects can now be moved within Hp—Ep to their positions in v,. The entire motion is in
Hp-Ep because either A and B do not touch exactly as specified by D or the objects are

not connected.

Suppose all vertex objects that are supposed to touch according to D touch correctly.
Then there must be two vertex objects A and B such that A and B do not touch accord-
ing to D but touch or overlap in v. If adding the constraints that A and B retain their
relative positions leaves a degree of freedom, then proceed as in the previous case. If not,
then by Lemma 1.5 there must be a vertex object C' that touches A and has its z-
coordinate dependent on the z-coordinate of A and its y-coordinate dependent on the y-
coordinate of B (or vice versa). Without loss of generality assume that the lowest point on
the face of C that touches A is at least as high as the lowest face of B. Then since A and
B are path connected and they have no constraints in their relative positions B can be
moved so that it is always intersecting A until the lowest face of B touches the highest
face of A. Thus either C is no longer touching A or C and A touch at a new pair of

faces. In either case we are back to the first situation.

Hence it has been shown that there is a path in Hp—Pp from any v € Hp-Pp to a

fixed vy € Hp—Pp. Thus we conclude that Hp—Pp, is path connected. O

The previous proof depended on the fact that there were at least three vertex objects.

The result for the two dimensional objects holds if D has as few as two degrees of freedom.



17

With three dimensional objects we might only have two vertex objects when there are two
degrees of freedom but the result holds if there are at least three degrees of freedom. We
will later conclude that the path connected components of CONNECTED have their O-
dimensional faces (vertices) connected by 1-dimensional faces (edges) in the case of objects
in R2. For objects in R 3 with planar faces all the proofs in this paper hold except the pre-
vious one because of the possibility of only two vertex objects when we have two degrees of
freedom. However we can conclude that edges of path connected components of CON-
NECTED are connected by 2-dimensional faces because there must be at least three vertex

objects when there are three degrees of freedom and so Hp-Pp is path connected if
rank(Mp) < 3n-3.
Now the Mayer-Vietoris theorem is used to show that the number of path connected

components of the boundary of a face of CONNECTED is equal to the number of path

connected components of the face of CONNECTED .

Theorem 1.7: H(Kp-Pp) =~ HyKp) when rank(Mp) < 2n-2.

Proof: Hp-P, and K| are closed sets in Hp by Corollary 1.4 and the fact that
Kp = cly,(Pp). Hp =(Hp-Pp)UKp is clearly contractible to a point and path connected.
By Lemma 1.8, Hy-Pp is path connected. Thus taking A =Hp-Pp and B=Kp in

Theorem 1.1 we get that Hy((Hp-Pp) N Kp)= HyKp-Pp) = H\(Kp). 0

We have now shown that a face of CONNECTED and its boundary have the same
number of path connected components. However, we further need that each path con-
nected component of a face of CONNECTED contains exactly one path connected com-
ponent of its boundary. This would follow immediately if we could show that the face was

path connected. However we have been unable to prove this and so the following two lem-
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mas are needed.

Lemma 1.8: Each path connected component of Kp-Pp intersects exactly one path con-

nected component of Kp.

Proof: This follows from the fact that Kp-Pp C Kp. O

Next it is proved that each path connected component of a face of CONNECTED
contains a path connected component of its boundary provided that the objects do not
form a vertex object.

Lemma 1.9: Each path connected component of K, contains at least one path connected

component of Kp-Pp, if rank(Mp) < 2n-1.

Proof: It is sufficient to show that for; any configuration v, in K there is a configuration
v, in Kp-Pp and a path in Kp from v, to v,.

Thus the result is trivial if v, € Kp-Pp. Otherwise v, € Pp. Since
rank(M, ) =rank(Mp) < 2n-1 there is a vertex object B, of v, with a face b, that touches
a face b, of another vertex object B, of v,. Moving B, in Pp so that b, moves across b,
until some face of B, touches some face that was not touching in v, results in a configura-
tion v, where v, ¢ E;, and so v, ¢ P,. Clearly v, € K, by definition of v,. Thus the

Lemma follows. n|

The precediﬁg results can be combined to conclude that there is a one-to-one
correspondence between the path connected components of a face of CONNECTED and
those of its boundary. This is stated in the following theorem.

Theorem 1.10: Each path connected component of K contains exactly one path con-

nected component of Kp—-Pp.



19

Proof: The Theorem follows from Theorem 1.7 and Lemmas 1.8 and 1.9 by a simple

counting argument. O

As a consequence of Theorem 1.10 we can now conclude that a path in the boundary
of a face exists between configurations in the boundary if there is a path in the face

between the configurations.

Theorem 1.11: If rank(Mp) < 2n-2 and there is a path in K, between two configura-

tions in Kp—-Pp, then there is a path in Kp—Pp between these configurations.

Proof: Let v,,v, € K,~Pp and p be a path in K, between v, and v,. Thus, v; and v,
are in the same path connected component of K and hence by Theorem 1.10, v; and v,
are in the same path connected component of Kp—Pp. That is, there is a path in Kp-FPp

between v, and v,. o

2. Paths in lower dimensional faces

In this section we will show that the boundary of a face K, of CONNECTED consists
of faces of CONNECTED of dimension less than that of the face Kp. Thus, by the previ-
ous section, if there is a path in a face of CONNECTED between two configurations in the
boundary of the face, then there is a path between the two configurations contained in
faces of CONNECTED of dimension less than that of the face K. We begin by showing

that a configuration in a face satisfies the description that defines the face.

Lemma 2.1: Let v be a configuration in Kp. Then v satisfies D and so

rank(M, ) > rank (Mp ).

Proof: Suppose v does not satisfy D. Then there must be two faces that touch according

to D but do not touch in v. Let ¢>0 be the distance between the two closest such faces.



Any configuration in H,, where each object has been moved less than ¢/ 2 from its position
in v also does not satisfy D. Thus there is a ball B in Hy about v such that B n Pp=4¢.
Since K, is the closure of Pp in Hp, v is not in Kj, a contradiction. Hence each v in K)p

satisfies D and thus M, has at least the rows of Mp. Therefore rank(M,) > rank(Mp). O

We continue to classify those configurations in the boundary of a face of CON-

NECTED. Towards this end we show a simple fact about CONNECTED .
Lemma 2.2: CONNECTED n Hp is closed in Hp.

Proof: Both CONNECTED and Hj are closed. O

Recall that a face of CONNECTED, Kp, is the closure of a path connected com-
ponent P, of the set of configurations that exactly satisfy a description D. We now show
that a configuratibn v in the boundary of a face, Kp, of CONNECTED lies in a face of

CONNECTED with dimension less than that of the face K.
Lemma 2.3: If v € Kp-Pp then rank(M, ) > rank(Mp).

Proof: By Lemma 2.1, rank(M,) > rank(Mp). Suppose rank(M,)=rank(Mp). Since
Pp, C CONNECTED n Hp and by Lemma 2.2, CONNECTED n Hp is closed in Hp, we
conclude that Kp = cly (Pp) C cly (CONNECTED n Hj,)=CONNECTED n Hp.

Thus v is in CONNECTED .

Suppose v € @, where Qp is a path connected component of E, other than Pp. By
Lemma 1.3, Qp is open in Hp and so there is an open ball B about v such that B C @p.
However, v is in Kp, the closure of Pp in Hp. This implies that B n Pp % ¢. Thus
Qp N Pp % ¢. This contradicts the assumption that P, and Qp are distinct path con-

nected components of Ep. Thus v ¢ Ep.
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Let D, be a description such that v € Ep . Then Hp & Hp. Suppose Hp #Hp.

Then rank (M, ) =rank (Mp ) > rank (Mp).

Suppose that Hp = Hp. Since v € Ep and by Lemma 1.2, Ep, is open in Hp and
hence in Hj,, we know that there is an open ball B about v in E, C Hp =Hp. Thus
any configuration in B exactly satisfies D, and hence does not exactly satisfy D. Thus
B n Pp,=¢ and so v ¢ cly (Pp)=Kp which is a contradiction. Hence if v € Kp-Pp

then v ¢ Ep and rank(M,) > rank(Mp). a

It is now possible to prove that the boundary of a face of CONNECTED , Kp-Pp, is
exactly those configurations satisfying D that lie in faces of CONNECTED of dimension

les§ than that of the face Kp.
Lemma 2.4: K,-Pp =K n {v |rank(M,) > rank(Mp)}.
Proof: Let v € Kp-P,. By Lemma 23, rank(M,)>rank(Mp) and so
Kp-Pp C Kp n {v |rank(M,) > rank(Mp)}.

Let v € Kp n {v |rank(M,) > rank(Mp)}. Since rank(M,)>rank(Mp) we know
that v ¢ Ep and hence v ¢ Pp. Thus K n {v |rank(M,) > rank(Mp)} C Kp-Pp and

so Kp-Pp = Kp n {v |rank (M,) > rank(Mp)}. u]

Combining the results of Theorem 1.11 and Lemma 2.4 allows us to conclude that if
there is a path in a face of CONNECTED of dimension d between two configurations in
faces of CONNECTED of dimension less than d then there is a path between them con-

tained in faces of CONNECTED of dimension less than d.



3. Edge connectedness

In order to further examine the structure of CONNECTED, we introduce the notion
of a complex. Recall that a face of CONNECTED is the closure in Hp of a path connected
component P, of Ep for some D. The face has dimension d where 2n-d is the rank of
Mp. A d-complei, C,, is the union of all faces of CONNECTED of dimension d or less.

The faces of CONNECTED in C, and C, are called vertices and edges respectively.

AWe shall show that two vertices connected by a path in NONOVERLAP are con-
nq;ted by a path consisting solely of edges and vertices of CONNECTED . In the previous
sections it was shown that there is a path in C; between two configurations in the boun-
dary of one face in C,, , if there is a path between them in the face. Now we wish to use
this fact to show that a path in C, exists between two configurations in Cj if there is a
path in Cy,, between them, even if the path goes through more than one face of Cy, ;.
The proof proceeds by showing in Lemma 3.2, that configurations in the intersection of two
faces of dimension d, lie in faces of dimension d-1 or less. This result is used to show in
Theorem 3.3 that any two configurations in C;, d >0, that are connected by a path in
C4. are connected by a péth in C;. An inductive argument is then used in Theorem 3.6
to show that there exists a path consisting of vertices and edges. To begin the induction,
we use a result from [5] to argue that a path in NONOVERLAP implies a path in CON-

NECTED and Lemma 3.5 that establishes that CONNECTED equals C,,.

We now proceed to establish these results. Lemma 3.1 is a technical lemma concern-
ing the intersections of closed sets. The reader may wish to skip immediately to Lemma

3.2.

Lemma 3.1: Let A and B be closed sets and let p:[0,1] = P be a path in A UB from

z€AtoyeB. Then PnAnB 5 ¢.
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Proof: Suppose P n A n B=¢. Then p(P n A)n p (P n B)=¢. Since P is in
AuB, pY(P n A)up™ (P n B)=[0,1]. Since p (P n A) and p”'(P n B) are closed we

conclude that [0,1] is not connected, a contradiction. Therefore, P N A n B 3 ¢. O

Suppose there is a path p in C,, ; between two configurations v and w in Cy,_;_;.

Let Kp,Kp, - . ., Kp, be the sequence of faces that the path p intersects between v and
w. Thus Kp # Kp_,. By Lemma 3.1 for each i, 1<i<t-1 there must be a ¢; € [0,1]
such that p(¢;) € Kp n Kp . Let p(t;)=1v; and p; be the path on K. To be able to
a;;ply Theorem 1.11 to the section of the path in a particular K, we must show that

rank(M, ) > k. Lemma 3.2 will establish this fact.

Lemma 3.2: Let K and K, be two faces of dimension at most 2n-k. That is Kp and
Kp, are contained in Cy, ;. Let v be in their intersection. Then rank(M,) > k. In other
words v € Cyp_4 4.
Proof: Suppose D, =D,. Since Kp 7 Kp, it must be that P, 5 Pp, where Kp is the
closure of Pp in Hp for i =1,2. Thus Pp and Pp, are two distinct path connected com-
ponents of Ep and so Pp, N Pp,=¢. In particular, v ¢ Pp n Pp and so v € Kp -Pp or
v € Kp-Pp,. In either case, by Lemma 2.3, rank(M,) > k.

Suppose D; 5% D,. Then v cannot exactly satisfy both D, and D, and so
v ¢ Pp nPp, and hence v € Kp-Pp or v € Kp-Pp, Then, again by Lemma 2.3,

rank(M,) > k. O

If the dimension of Kp, is less than 2n-k then p; is contained in C,,_;_;. Suppose
the dimension of Kp is 2n-k. By Lemma 3.2, rank(M, ) >k and rank(M, ) > k. Since

rank(Mp ) =k, v;,v; 4, € Kp—Pp_by Lemma 2.4. Thus p; is a path in Kp between two
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configurations in Kp-Pp, and so by Theorem 1.11 there is a path in Kp-Pp between

them. By Lemma 2.4 we conclude that there is a path in C,,_;_, between v;_; and v;.

Thus there is a path from v to w in Cy,_;_;.

Theorem 3.3: If there is a path in C,,_; from v to w where v,w € C,,_;_, then there is

a path in C,, ;_, from v to w where k <2n-2.

Proof: See preceding discussion. O

We are going to want to apply Theorem 3.3 inductively and so we will first show two

results about CONNECTED to provide a starting point for the induction.
Lemma 3.4: If v is a connected configuration of n+ 1 objects, then then rank(M,) > n.

Proof: The proof is by induction on the number of objects. Suppose v is a connected
configuration of 2 objects. Then there is at least one face of the object that is free to move
that touches a face of the fixed object. Thus M, has at least one nonzero row and so

rank(M,) > 1.

Assume the result holds for configurations of n objects. Let v be a connected confi-
guration of n+ 1 objects. As before, let G, be the graph with a node for each object and
an edge between nodes if the corresponding objects touch in v. Let T be a depth first
spanning tree of G, with the node corresponding to A, the fixed object, as the root. Then
the leaves of T are not articulation nodes of G, (see [1]). That is, removing an object
corresponding to a leaf of T results in a connected configuration w of n objects. By the

induction hypothesis, rank(M, ) > n-1. Without loss of generality assume that the object

M,
removed was A,. Then M, = [ . OB] where B contains nonzeroes because A, touches

at least one of the other objects. Thus rank(M,)> rank(M,)+ 1 > n as required. 0O
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Lemma 3.5: CONNECTED = C,.

Proof: By Lemma 3.4, v € CONNECTED implies rank(M,)>n. But rank(M,)>n

means v € C, for some p<n. Since p <n implies C, C C, we conclude that v € C,.

Let v € C,. Then v € K, for some D with rank(Mp) > n. Let Pp be the path con-
nected component of Ep such that cly(Pp)=Kp. By definition of Ep,
Pp, C CONNECTED n Hp and so we get that

Kp C cly,(CONNECTED n Hp)=CONNECTED n Hp
by Lemma 2.2. Thus K, C CONNECTED and so C, C CONNECTED. Hence

CONNECTED = C,. 0O

We now are in a position to prove our main goal. That is, we will show that if there
is a path in NONOVERLAP between two vertices of CONNECTED then there is a path
contained in the edges of CONNECTED between them.

Theorem 3.8: Let v and w be vertices of CONNECTED . If there is a path in NONO-
VERLAP between v and w then there is a path contained in the edges of CONNECTED
between v and w.

Proof: By [5] we know that there is a path in CONNECTED from v to w. Thus by
Lemma 3.5 there is a path in C, from v to w. Applying Theorem 3.3 inductively we con-
clude that there is a path in C, from v to w. In other words, there is a path along edges

from v to w. ]

Notice that by Lemma 3.2 the path along edges in Theorem 3.6 is actually a path that
starts at a vertex, follows an edge to another vertex, then follows another edge to a vertex

and so on. That is, the path is as shown in Figure 6b, not as in Figure 6a.
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(a) (b)

Figure 8. Edge path goes from vertex to vertex.

4. A PSPACE-complete motion problem

In this section we will show that the problem of determining whether a motion exists
between two configurations of two dimensional rectangles within a rectangular enclosure
with integer sizes where the fixed object is at an integer location is in PSPACE. To accom-
plish this, a nondeterministic method will be described and will be shown to require polyno-
mial space. Since NPSPACE equals PSPACE we will conclude that the problem is in

PSPACE.

First it must be shown how to get from an arbitrary configuration to a vertex confi-
guration. Move the object which is closest to the fixed object in the z or y direction until
it touches the fixed object. Considering these two objects as one fixed object, repeat this
until a configuration in CONNECTED results. Now the motion in Lemma 1.9 can be

repeated until a vertex configuration is encountered.

It is now sufficient to show how to determine if there is a motion between vertex con-
figurations. From a vertex configuration, nondeterministically guess a subset of objects and
face of an object to move this subset along. Check to see if this is a motion along an edge

of CONNECTED. If so, move the subset of objects until a new pair of faces touch. By
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the previous results, this new configuration must be a vertex configuration. Continue this

process until the desired vertex configuration is encountered.

Since the position of the objects in a vertex configuration constitute the solution to an
integer linear system of equations, the positions of the objects in a vertex configuration can
be stored in polynomial space (see [2]). Clearly finding the next faces to touch when mov-
ing objects in the direction of one of the coordinates axes can be done in polynomial space.
Calculating the rank of the matrix M, where D is the description resulting from moving
thp subset of objects to see if the motion is along an edge of CONNECTED also can be

done in polynomial space. Thus the problem is in NSPACE and so in PSPACE.

In [4] it was shown that the problem of deciding whether there is a motion between
two configurations of two dimensional rectangles in a two dimensional box is PSPACE-

hard. Hence the problem is PSPACE-complete.
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