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COMMUNICATION COMPLEXITY OF COMPUTING THE
HAMMING DISTANCE*

KING F. PANGS" AND ABBAS EL GAMAL

Abstract. Let x, y {0, 1} n. Persons A and B are given x and y respectively. They communicate in order
that both find the Hamming Distance d(x,y). Three communication models, viz, deterministic, e-error
and e-randomized, are considered. Let C(d 7-/), Ce (d) and De(d) be the respective minimum number
of bits that must be communicated under the three models. It is shown that

n+log (n+ 1-v)<_-C(dI) <- n+ [log (n+ 1)].
It is also shown that both Ce (dt) and De(d) are lower bounded by (n), thus solving an open problem
posed by Yao.
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1. Introduction. Let , 0 and be three finite sets and f" x -> . Person A
is given x and person B is given y . They communicate according to an
agreed-upon protocol, with the objective of computing f(x, y). We consider three
communication models which differ in the types of protocols employed and the level
of correctness of the computation.

(i) Deterministic model" When A (or B) transmits, his message is a function of
x (or y) and all the previous messages. When the communication terminates, both A
and B are required to know the correct value of f(x, y), for all (x, y) e x . C(f) is
the minimum (over all deterministic protocols that satisfy the error-free requirement)
number of bits communicated under the worst case input.

(ii) e-error model" The e-error model is deterministic in the sense of (i). However,
when it terminates, both A and B are allowed to arrive at an incorrect value off(x, y),
for as many as e. IIll ll (arbitrary) pairs (x, y) x . The e-error communication
complexity of f, C(f), is then similarly defined as C(f), where the minimization is
over all deterministic protocols satisfying the e-error requirement. With a uniform
density on x , the average case e-error complexity C(f) can also be defined.

(iii) e-randomized model: When A (or B) transmits, he chooses randomly from
a set of messages. The messages in this set and the probability density on it are specified
by x (or y) and the messages already transmitted. The error requirement is the following:
averaged over all the possible sequences of messages sent during the communication,
for all inputs (x, y) x , the probability that the end result is different from f(x, y)
is no more than a constant 0-< e <_-1. With a uniform density on x , let Dp(f) be
the average (over all random outcomes) number of bits communicated in protocol P
averaged over all inputs. The e-randomized communication complexity of f, DE(f),
is then defined as the minimum of Op(f), over all protocols that satisfy the e-error
condition.
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In this paper, we examine the communication complexity ofthe Hamming distance
function according to the three models. The Hamming distance between x, y {0, 1}
is defined as

d(x, y) l(x, y,),
i-----1

where 1(.) is the indicator function. When the lengths of x and y are not explicitly
specified, the notation d,(x, y) is used for their Hamming distance. In 2, we consider
the deterministic model. Section 2.1 contains the formal definition of a deterministic
protocol and upper and lower bounds to C(f) for an arbitrary function f are shown
in 2.2 (Theorems 2.1 and 2.2). In 2.3, we prove a lower bound on C(d) that is
at most one bit less than the upper bound (Theorem 2.3). As a by-product of this
result, we solve an independently interesting two-family extremal combinatorial prob-
lem (Theorem 2.4 and Corollary 2.3). Section 3 is concerned with the e-error model.
We first formally define an e-error protocol. The communication complexity (under
all three models) of the Hamming distance function is then related to those of the
inner product function and the parity of the inner product function (Lemma 3.2). By
proving a lower bound on the e-error communication complexity of the latter (Lemma
3.3), we prove an l(n) lower bound for C(d) (Theorem 3.1) and C(dH) (Theorem
3.2). In 4, we combine the result of 3 and a Theorem of Yao [Yaol] to show that
D(dH) l)(n) (Theorem 4.1), thus solving one of the open problems posed in [Yao3].

2. Deterministic model.
2.1. Formal definition. To formally define a deterministic protocol for f, we need

the following definitions"
DEFINIrION 2.1 [Yao2]. A monochromatic rectangle (m-rect) is a product set 0-//x 7/"

where , F___ such that f(a, b) is constant for all u q/ and v . An m(f)-
partition is a partition of x into m-rect’s and k(f) is defined as the minimum
number of m-rect’s over all m(f)-partitions of x .

DEFINITION 2.2. Denote and the row-projection and column-projection of the
product set x . The pair of product sets (’ ’, "x ") is called a row-partition
of x if ’ "= and ’, " partition . A Column-partition is defined similarly.
A decomposition tree (d-tree) for x is a binary tree whose nodes are product
sets x od. Each internal node is the disjoint union of its children. The root of the
tree is x and the leaves-are m-rect’s of f. It is clear that since the tree is binary
each node is either row- or column-partitioned by its children.

Given a d-tree for f, we label the children of each node "0" and "1" and associate
with it a protocol P as follows" At each step of the communication A and B consider
one node in the tree (the first node being the root). If the node is column-partitioned
by its children, A transmits the label of the child whose row-projection contains x. If
the node is row-partitioned, B transmits the label of the node whose column-projection
contains y. Next, A and B move to the node whose label was transmitted and repeat
the process. The communication terminates when they arrive at a leaf and obtain the
value of f(x, y).

An easy induction (on the number of bits communicated) shows that at each step:
(i) A and B consider the same node of the tree.
(ii) This node contains (x, y).
(iii) If the node is internal then exactly one of its children contains (x, y).
An example of a d-tree for a function is shown in Fig. 2.1. Suppose in the d-tree

for protocol P, the length of the (unique) path joining the root and the leaf containing
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t Cp 2 bits for this protocol.

FIG. 2.1. An example of a protocol.

(x, y) is Cp(x, y). The complexity of the communication protocol P is defined as

Cp(f) a__ max Cp(x, y),
(x,y)xD

and the communication complexity of f is defined as

C(f) a__ min Cp (f).
P

Remark. In our model, the transfer of information occurs in both directions, but
not simultaneously. Since we are only concerned with the number of bits exchanged,
it is straightforward to show that the lower bounds proved in this paper are not affected
by this restriction.

2.2. General bounds for C(f). A simple upper bound for C(f) can be achieved
by the following algorithm: Using [log II llq bits, A communicates x to B, who
computes f(x, y). Another [log II llq bits are then sufficient for B to inform A of the
result. We therefore have the following theorems.

THEOREM 2.1. C(f)<- [log I1 11] / Flog
There are two general techniques for proving lower bounds for C(f) for an

arbitrary function f. The first one [Yao2] is based on m(f)-partitions of x . The
other lower bound [MS] is obtained from the rank of the function table of f, which
is being considered as an I111 IJll matrix. A statement of the first lower bound,
according to our model, is the following:

THEOREM 2.2. C(f) _-> [log (k(f)) ].
Proof. The theorem follows from two properties of the d-tree corresponding to

the protocol P:
(i) All the leaves ofthe d-tree are m-rect’s (otherwise the result ofthe communica-

tion is not always correct).
(ii) The product set corresponding to the node of the d-tree is either row- or

column-partitioned at each step of the protocol.

All logarithms in this paper, unless otherwise specified, are of base 2.
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By the definition of k(f), every d-tree off must have at least k(f) leaves. Hence,
the height of a d-tree is at least [log (k(f))] and the theorem is proved. I-]

2.3. Upper and lower bounds for C(d). In this section, we derive bounds for
C(dH). The upper bound follows immediately as a corollary to Theorem 2.1"

C(d)<-n+ [log (n + 1)].

We next give a lower bound for C(dT-/), matching the upper bound up to smaller
order terms, by a simple argument.

LEMMA 2.1. C(dH) >-_ n + 1.

Proof For any x {0, 1} n, d 7_/(x, x) 0 and d(x, ) n, where is the complement
of x. Hence there are exactly 2 m-rect’s of Hamming Distance 0 and n respectively
in any m(d)-decomposition of {0, 1}n x{0, 1} ". Subsequently, k(d)->2"+1 and by
Theorem 2.2, C2(d) -> n + 1. ]

This lower bound differs from the upper bound by [log (n + 1)]- 1 bits. A better
lower bound, differing from the upper bound by no more than 1 bit, is stated in the
following theorem.

THEOREM 2.3. C2(d /) >_- n + [log n + 1 /-) ].
Proof. We lower bound k(d) by upper bounding the sizes of all the m-rect’s in

the function table. For 0-<_ _-< n, define

S--a {7/x 7/’_ {0, 1}" x {0, 1} "" d(u, v) <3 for all u //and v //’},

M(n, a)Amax{llUll I1 11" x S:}.

In Lemma 2.2, we establish the fact M(n, <3)= M(n, n- <3) by showing that for
every m-rect S:, there exists an m-rect E S_ with equal size. This reduces the task
of upper bounding M(n, <3) to the range 0=< <3 =< [n/2J. We then prove in Theorem 2.4
the crucial result that for n =2, 3, 4...; <3 =0, 1,..., [n/2J,

M(n, <3) <- max 4,
M n 2, <3 -1) <3(n-<3

As corollaries to Theorem 2.4, we show that

(2.1) M(n, <3) <-

Now denote

i (r/--2j)2

j=o (<3 --j)(n <3 --j)

It is clear that

for all n and <3 < n/2-x/-/4,

for n >_-4 and tn/2-x/-] <= 6 <- [n/2J.

N(n, 6)-//{(x, y) {0, 1}" x {0, 1}"" dt(x, y) <3}1]

4 N(n, <3)
k(d"n) >

=o M(n, <3)
,,/2-,/--1 N(n, <3)

=2. +
=o M(n, 6)

S+$2

for 0_< <3-< n

r,,/-+e-l N(n, <3)

= r,,/2-,/-7 M n, <3)
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where $1 and $2 are respectively the values of the first and second summations. From
the first inequality of (2.1)

S, => 2. 2n. In

On the other hand, as we show in Appendix 1,

$2_>-2" for n =>4,

therefore k(d)>-2"[n+l-v/-ff] for n>-4. For l<_-n<_-3, k(d"H) can be verified from
the Hamming Distance Function tables to be 4, 10 and 32 respectively, which still
satisfy the lower bound above. Since C2(d) => [log (k(d 7-/)) ], we obtain

C2(d) -> n + [log n + 1 x/if) 1.
We are ready to state and prove Lemma 2.2 and Theorem 2.4.
LEMMA 2.2. M(n, 6) M(n, n 6) for 6 O, 1,. ., n.

Proof Since for any x and y {0, 1}",

I i" (’ ) ’H

d(x, y) 8:=> 7-/(i, y) n

,(x, ) n

the following are equivalent:
1) a//x U S"
2) //x T’ S,
3)
4) o//x T" S_.

Since 0u 0 and 11 11, the lemma is proved.
This lemma shows that the analysis of M(n, 8) can be reduced to the range

0-<8 <- [n/2J. The basis for upper bounding M(n, 8) for 8= 1,2,..., [n/2J is pro-
vided by the following theorem.

THEOREM 2.4. For n =3, 4..., 6 1, 2,..., [n/2J,

n(n- 1))M(n, 8) <-max 4,
M(n-2,6-a)- 6(n-6)

Proof We first introduce some notation: For a set C {0, 1}" and e {0, 1},
i) The ith bit of c C is denoted by
ii) C’-a {(cl,"" c.) C" c,= e}c_{0, 1}".
iii) C*t a={(cl c,_, ct+, c,)" (c, c,_ e, c,+, c,,) C}c

{0,
iv) Analogously, for two components s, we define C c_ {0, 1}" and C*S’c,

{0, 1}"-2.
v) For a {0, 1} and be {0, 1}j, aS {0, 1}+j represents the concatenation of a

and h.
Consider A x B S. Construct a//_ {0, 1}""-1)/2 from A by the following pro-

cedure"
i) Let F _a___ {(i,j). 1, 2,. , n 1; j + 1, , n}, i.e. the set of pairs of distinct

indices between 1 and n. Clearly u a___ IIFI n(n 1)/2. Order the pairs lexicographically
and denote the kth pair as (ki, k).
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ii) Map every aA to a u such that for k= 1,..., v,

Uk=l if(ak,,akj)=(0,1)or(1,0),
0 otherwise.

Similarly, 7/’ {0, 1}n(n-1)/2 is constructed from B.
FACT 1. ’U -// and v : d(u,v) 6(n-6).
Proof (of Fact 1). There is a one-to-one correspondence between each pair

(u, v) x and (a, b) A x B. u and v differ in a certain bit position iff there is
exactly one component different in the corresponding pairs of bits from a and b. The
number of such pairs is 6 (n 6).

FACT 2. Let

::!1 <= k<-_ n(n- 1)/2 such that either:

(2.2) Ak" /zk ---->
(n-)
n(n-1)’

or

(2.3) Ak /zk=>
(n-)
n(n-1)"

Proof (of Fact 2). Define rk
__a I1((,*) X : U V}II. Clearly, Crk= I111

I111"(/)" On the other hand,
n(n--1)/2

u0// v//"

u vY

I111" I111" (n-),
By the pigeon hole principle, there must exist an index k such that

26(n-6)-> IIUll" I111n(n-1)

and one of the two terms making up trk must be no less than half of this value, l-I

Without loss of generality, assume (2.2) is satisfied by the specific value of k and
that ki 1 and kj 2. To construct an m-rect S-, we consider the following cases.

Case 1. AUA=A and BU B1211 B" If W GAo*12 (resp. Bo*o12), then either
w,o (resp. B1"12), or 10w (resp. l lw) can be appended to A (resp. B), and this
only increases IIAII’ IIBll. we can therefore assume 31"o12= Ao*l1- and Bo*o12= BI*2. Define

A:12 and D a__ u,12 n--2C a Ao,l12 or ,1o ,-,oo or BI*I12. Clearly, C x D S_ and we have shown that

IIAII" B 4. C I1" DII

(n(n-1))-<_max 4,6(n_ "M(n-2’6-1)"

Case 2a. Ao2 UA2 A and BUBc B" If w Bo*o12, then either w B*:2, or 11w
can be appended to B which only increases IIAII" IIBII. We can therefore assume that
Bo*o2 B*2. On the other hand, if z Ao*2 then z A*o2, i.e. Ao*l2 f) Al*o2 . Consider
the following two cases"
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a) B(n- 3)/n(n- 1)->4" Recall from the proof of Fact 2 that we have Akfk
klk>2(n--)/n(n-l)- Al-A-Alo implies that Ak 1 and therefore *,1o

oo II(n-)/n(n-1)" ]]AI[. [[B]]. Define C A2UA and DBd
Clearly, C x D SZ and we have shown that

n(n-1)
A[. B

(n 6)" c I1 IID

M(n-2, 6-1).
1)

Nmax 4,(n_
b) (n )/n(n 1) < 4" We can construct an m-rect P x Q e S from A x B such

that P x Q > A x B II. Specifically,

*’: ({(1 0)} xA:)PA({(O, 1)}Xo

Q B BI,.
Note that

26(n-)
n(n-1)

Next, define C p2 or Pd2 and D& Qd2 or Q2. Clearly, C x D S_ and that

M(n-2, 6- 1).
n( 1)

A I1" e I1" 4. C I1" D max 4,
(n

Case 2b. AInU Ac A a BgU B= B" The argument used in Case 2a is
symmetric between A and B. Therefore we obtain the same upper bound on IA.

Case 3 *AOl U Alo A B U B c B: We observe that A]o = and00 11

B,12 B2 Consider the following two cases.
a) 6(n 6)/n(n 1) 4: Define C &A2 Ad2 and D & Bff2 U B2. It is clear

that C x D S"-2
_

and

(n(n-1))max 4, 3(n_. M(n-2’ 6-1)"

b) 6(n 6)/n(n 1) < 4: Define

P AaU al U ({(0, 1)} a) ({(1, 0)} a)),

Q =s s’,, ({(o, o)} x B)) ({( ,1)} x S).

Now P[[. ]]Q[[4" ]]A[[. ][B]]. (n-)/n(n-1)>ilall" 11. Oenne CP or
,2

o Qoo or Q) Clearly, C x D S_

[[a. B[[P.Q]

4. c. DI

M(n -2, 1).
1)

Nmax 4,(n_
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Hence in all the four cases, we have succeeded in proving that

where

M(n, 6) <-max 4,
M(n-2, 8-1)- 8(n-

The proofs of the following three corollaries are given in Appendix 2.
COROLLARY 2.1. For 8< [n/2-Vn/4] and 8> [n/2+v/n/4J, M(n, 8) ().
COROLLARY 2.2. For n/2-/n/4 <- 8 <= n/2+ n,J/4,

’-’ (n --2j)2

M(n, 8) <= 1-I
j=o 8’-j)( n 8’-j)

8 for 8 <= [n/2J,
8’=

[n/2J 8 otherwise.

COROLLARY 2.3. For n 1, 2, , maxo_____<, M(n, 8) 2" and the maximum is
achieved by n2J and n2 ].

The last corollary, being a special case of Theorem 2.4, was previously derived
using a less general argument and reported in [AEP].

3. The e-error model.
3.1. Definitions and general lower bound. In the e-error model, there is still a

one-to-one correspondence between a protocol and a binary tree, which we call an
e-tree. An e-tree is nearly identical to a d-tree defined in 2.1, except that since errors
are allowed by an e-error protocol, the leaves of an e-tree are no longer necessarily
m-rect’s. Each leaf is now a product set A B c__ Y such that most of its elements
yield the same function value. The following definitions parallel those in 2.1.

DEFINITION 3.1. Given a function f:xf, a q-monochromatic rectangle
(abbreviated as q-rect) with error e is a pair (07/x 7/’, z), where o//. x and
z , such that f(u, v) z for at least (1 e). I1" 11 pairs (u, v) x . We denote
the size of the largest q-rect with error e by M(f). An m(f) -partition is a partition
of f into q-rect’s S with error ei, where i= 1,. ., m(f), such that

me(f)

i=1

We define k(f) as the minimum of me(f) over all m (f) -partitions of x .
With these definitions, it is straightforward to pinpoint the differences between a

d-tree and an e-tree. In contrast to a d-tree which has m-rect’s as its leaves, the leaves
of an e-tree are q-rect’s. In addition, suppose there are k leaves in the tree, where the
jth leaf has weight (i.e. the number of elements in it) % and has error % then the
following condition (which we shall refer to as the "e-error requirement") must be
satisfied:

k

i=1

Let P be a protocol satisfying the e-error requirement and Ce(x, y) be the depth
of the leaf in the e-tree representation of P to which (x,y) belongs. The e-error
communication complexity of f is defined as

C(f) a= min max Ce(x, y).
P (x,y) ,f’x
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With a uniform density on x , the average case e-error communication complexity
of f can also be defined:

1(f) a__ nn E Ce(x, y).
I111" I111

The following lemma provides a lower bound for C(f) in terms of M(f).
La 3.1. Cf ->_ og 11 + og logf 1.

Proof The proof of the first inequality is similar to that of Lemma 2.1. To prove
the second inequality, consider the m(f)-partition which achieves m(f) k (f). For
convenience in notation, we shall abbreviate k(f) by k. Let Si, i= 1,..., k be the
q-rect’s constructed. The e-error requirement stipulates that

which can be written as

Clearly,

E ei Si 11 11,
i=1

E , s, + E , s, 11 11.
i: ei <_2e i: ei> 2e

Z IIsille(llll,

Suppose the number of q-rect’s involved in the above sum is k’; we have

1

k--7 E [[s, ll(llll" llll)/(2k’).
i" ei<=2e

The left-hand side of the above equation is the average size of k’ q-rect’s. There must
exist one q-rect Si whose size is at least as large as the average, i.e.

IIs, II->-(llll. [[)/(2k’)
Since s, II--< M2(T) and k’=< k, we have

M2(f) --> (1111. ll)/(2k),
which gives the second inequality.

There is a similar result for the average case complexity.
LEMMA 3.2. C(f)=> (log IIll /log IIll-log M2(f)-1)/2.
Proof. Let P be the protocol achieving C(f). Consider the e-tree representation

of P. As there is no ambiguity, we also call this e-tree P. Consider those leaves of this
tree with no more than 2e error. Without loss of generality, let them be the first m
leaves of the tree and denote their weights by ws, 1 _-<j-< m. We must have

w Z w, (1111" 11)/2,
i=1

for if otherwise, the remaining leaves already violates the e-error requirement. Clearly

E_C(f) Cp >-
11 I1

By the entropy bound for the external path length of a binary tree,

2 Isws >= ws" log
j=l j=l
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Since wj -<_ M2(f) for all j, the left-hand side of the above inequality is at least

Subsequently

j=l

C (f) =>
 11"  11" log

>= (log IIll +log IIll-log M2(f)- 1)/2. I-i

3.2. Lower Iounds for C(d) and C(dn). Letting x, y {0, 1} their inner product
is defined as

fT(x, y) & xy
i=1

and the parity of fT(x,y) is denoted by fTp(x,y). We first relate C(d), C(f’;) and
c(fT,,).

LEMMA 3.3. Given 0 -< s < 1, C(d) + 2 [log (n + 1) >= C(f’) >= C (f’e).
Proof. The second inequality is easily proved by noting that knowing the inner

product, the parity of the inner product can always be computed. However when an
erroneous value offT(x, y) is used to compute fip(X, y), the latter is not necessarily in
error. Hence in order to compute fip(X, y), with error no more than s, one can always
first compute fT(x, y) with the same designated error. To prove the first inequality,
consider the different values that the pair (xi, yi) can take. Let

tl, 1 (xi 1, Yi 1).
i=1

Similarly, tl,o, to,1 and to,o are defined. We have the following relations:
(i) d(x, y)= to,, + t,,o.
(ii) wt (x) t1,1 + tl,o, where wt (x) is the number of ones in x.
(iii) wt (y)= t1,1 + to,1.
(iv) fT(x, y)= t,l.

It is easy to see that

(wt (x) + wt (y) d 7-/(x, y)) 2fT(x, y).

Hence knowing the weights of both x and y, there is a one-to-one correspondence
between the Hamming distance and the inner product. Since the weight of one sequence
can be communicated to the other person in [log (n+ 1)] bits, we have the first
inequality.

Clearly, the argument also holds for the average case complexities. Thus
COROLLARY 3.1. C(d"u)+2[log (n+ 1)]_-> C(fT) >- C(fTp).
Finally, restricting Lemma 3.3 to the case e 0, we have the following relationship

among the deterministic communication complexities of the three functions.
COROLLARY 3.2. C(d"l-l)+2[log(n+ 1)]=> C(f’])>= C(f’]p).
We next prove an upper bound for M(f’]p).
LEMMA 3.4. For 0 <-- e <--_ , Me (flp) <- (1 + ce) 2 where c is a constant dependent

ol’lly ol .
Proof Define A(n), the function table for fi"P as a 2"2" matrix, whose (i,j)th

component is f’]p(b(i), I(j)) (where b(k) is the binary representation of 0 -< k-<2"- 1).
Consider {r, 1, , 2"}, the rows of A(n) as a set of binary 2" sequences. We have
the following:
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FAC’rS" (1) wt (rl) =0 and wt (ri)=2n-1 for 1 <i=<2n. (2) dH(ri, rj)=2-1 for all
i#j.

We prove the facts by induction. The case n I is easily settled by inspection.
Suppose that the claim is true for n, using A(n + I) (Fig. 3.1), we shall show that it
also holds for n + I.

A(n)

A(n)

A(n)

A(n)

A

A
L

FIG. 3.1. Inner product function table for sequence length n + 1.

To prove Fact 1, note that each row in A(n+l) is a concatenation of two
2"-sequences, each having weight 2"-1. To prove Fact 2, we denote by Av and AL the
upper and lower halves of A(n+ 1) respectively, as shown in Fig. 3.lb. Consider any
two sequences rl and r2 in A(n + 1). If both of them are in Av or AL, then the Hamming
distance between each half sequence is 2"-1. If one of them is in Av and the other in
A, then there are two cases.

(i) r; aa, i.e. the concatenation of two copies of a, which is a row in A(n); and
rj =a" The Hamming distance between the first half sequences is dH(a, a)=0 and
that of the second half is dn(a, )= 2".

(ii) ri =aa, and rj =bb, where a and b are rows in A(n): The Hamming distance
between the first half sequences is dH(a, b)--2"-1 and that of the second half is
all(a, ) 2"-1

In either case, the total Hamming distance is 2". l
For convenience of notation, denote 2" by N. We are ready to prove that M(f’p) <=

(1 + ce) N for 0-< e -<--. First consider q-rect’s giving function value 0. Suppose there
exists such a q-rect P A x B of size (L+ 1)x M, such that (L+ 1)M > (1 + ce). N.
Construct the product set Q A’x B, of size L x M from P by the following procedure"
If there is a row of all zeros in P, remove it, otherwise remove an arbitrary row.
Consider R A’x {0, 1}" (i.e. the rows of the function table of which Q is a part). We
define ai, 1,. ., N as the proportion of ones in the ith column of R. From Fact 1,

N

(3.1) L. Y a, LN/2.
i=1

From the restriction on the amount of impurities in Q (which is the first M columns
of R),

M

(3.2) 0-< L. a, -<_ eML.
i=1

Combining with (3.1),

N

(3.3) N/2 >- Y ai >= N/2- eM.
i=M+I
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Next, we compute the Hamming distance of all combinations of two rows of R, first
counting vertically and then horizontally. From Fact 2,

N L(L-1) N
whereL2. Oii

i=l 2 2

Separating the sum into two parts,

MN L(L- 1) N
L2 aiiL2. olii

iM+l 2 2 i=1

Substituting the right-hand inequality of (3.2) and dividing both sides by N-M,
N 1 (L-l) N1 , Olil > eM(3.4)

N-M i---M+ N-M 2L 2

Substituting the left-hand inequality of (3.3),
N (L+I) [ 4eLM]1 y c<(3.5)

N-M i=M/I ’=4L(N M) N+---i 3"

It is easy to see that

N-M i---M+I N-M i=M+i

Applying this to the left-hand inequality of (3.3),

1 N
2(3.6)

N-M i=M+ 4(N- M)2 1

Combining (3.5) and (3.6), we have

[ 4(L-1)eM]"1+
(L+ 1)N J

The assertion we have made is that (L+ 1)M> (1 +ce)N. Substituting this into (3.7)
and invoking the fact that e <= , we show in Appendix 3 that there exists a constant
c= c(e) such that (3.7) is a contradiction. Hence (L+ 1)=<(1 +ce)N as claimed.

To prove that the size of the largest q-rect for function value also satisfies the
same upper bound, note that Facts 1 and 2 still hold if we replace them by the
corresponding statement after taking componentwise complements. This completes the
proof of the lemma, fq

Applying Lemmas 3.1 and 3.3 to this result, the main theorem follows readily.
THEOREM 3.1. For 0 < e <-,

C(dn) + 2[log (n + 1)] >_- C(f’])>- C(f’]p)>- n -log (1 + ce)- 1,

where c is a constant dependent only on e.
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Similarly, for the average case complexity
THEOREM 3.2. For 0 < e <-- ,

C(d,)+ 2[log (n + 1)] -> C(f,) > C(f’]p) > (n -log (1 + ce)- 1)/2,

where c is a constant dependent only on e.

4. The e-randomized model. The e-randomized protocol was introduced by Yao
and a definition can be found in [Yao2]. The e-randomized communication complexity
of computing the Hamming distance, D(d), was investigated in [Yao3], where it
was proved that D(dn) grows faster than (log n). In the following Theorem, we
use the results derived in 3 to show that D(dH)= f(n), thus resolving an open
problem posed by Yao in [Yao3]. The proof uses the following.

LEMMA 4.1 [Yaol]. For anyfunction f and 0 <- e <1/2,
D(f)>-(C(f))/2.

THEOREM 4.1. For 0 <-- e < 1/2,

D(d"u)=a(n).

Proof For 0_-< e <, the theorem follows readily from Theorem 3.1 and Lemma
4.1. For _-< e <1/2, given a randomized protocol with complexity D(f) and error
probability e 1/2- 6, we can construct one with error probability less than 4 as follows"
Given the pair ofvalues (x, y), repeat the protocol 2m 1 times, such that m(1-462) <
4, and take the majority of the outcome as f(x, y). It is easy to show that the resulting
error probability is no more than

2
2 1 (l_e)2m_l_k<___

k<_m 64"

Clearly, m is a function of e only. Hence, there exists a constant c c(e) such that

c. D(d) > D1/64(d H

and the theorem follows from the lower bound on the left-hand expression.

5. Concluding comments. The upper and lower bounds for C(d) can be com-
pared by examining [log (n + 1-x/if) and [log (n + 1)]. One finds that for all n, the
two terms never differ by more than 1. (Actually, except for those n which satisfy
n+ 1 > 2" and n+ 1-x/-ff-<2 for some integer m, they are identical.) Hence, our
bounds are tight to within one bit. This difference is probably due to a combination
of the facts that we are only considering m-rect’s of maximal size for each 8, and that
the optimal m (f) -partition is simply not achievable. It does not seem likely that there
exists an algorithm whose complexity is lower than the obvious upper bound.

In Corollary 2.1, we showed that M(n, 6)=() for 8< In/2- nv/-/4] and 8>
In/2+ nx/-n-/4]. We also showed in Corollary 2.3 that M(n, In/2]) M(n, In/2]) =2".
However, it is not known whether the M(n, 8) upper bounds for n/2-x/-/4<= 8<-_

n2 + x/-h--/4 are achievable. We believe that they are not. The interesting question then
is whether one can prove tighter upper bounds for them.

Appendix 1. We prove in this Appendix the lower bound on

[n/2+x//4] N(n, 6)
S= E= r,/z-./-,- M n, 8)

defined in the proof of Theorem 2.3. There are two cases.
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Case 1. n 2m for some m" By Corollary 3, for each 6 in the range of $2,

N(2m, 6)
> r7 2m- 2i- 1
11M(2m, 8)- i=o 2m-2i

For 6 m, we have

N(2rn, m)>_{2m>
m(2m, m)- \ m ]

22m

For any values of 6 in the range, we have

N(2m, 6) 22’ "- 2i

M(Zm, 6)- i= 2i-1

Note that each of these terms _-->2(2m/) and there are [x/m of them. Hence

22m
&>_-(. rm]+)’m

Case 2. n 2m- 1 for some m" There are two middle terms.

N(2m-l,m)
M(2m-l,m)

and for any value of 6 in the range, we have

N(2m-1 6) 22"-1 "-2i+1

M(2m-l, 6)- i=1 2i

Note that each of these terms is -<. 2"-1//-4m and there are [/2m- 1 ]-2 of them.
Therefore

( ) 22m-l>22m-1$2=> ([/2m- 1]-2)+2 =
Hence in both cases, the assertion $2 >--2 is true.

Appendix 2. In this Appendix, we give the proofs for Corollaries 2.1, 2.2 and 2.3.
COROLLARY 2.1. For 6< [n/2-x/n/4] or 6> [n/2+x/n/4J, M(n, 6) ().
Proof By Lemma 2.2 and the fact that ()= (n_"), we only have to consider the

range 6 < [n/2-/n/4]. For any 6, define A a___ {0} and B & {x: d(x, 0)= 6}. It is clear
that A B S and that IIAx nil- (g). Therefore one side of the equality is proved.
To prove the other side, just note that the equation

n(n-1)
x(n-x)

has positive root x= n/2-x/-/4. Hence, for 6 < [n/2-x/-n-],

max (4, a(n-
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Moreover, this still holds if we replace n by n-2j and 8 by 8-j, for all j<8.
Subsequently, by Lemma 2.2,

M(n, 8)_-< 0
j=o(8-j)((n-2j)-(8-j))

M((n-28),0)=

COROLLARY 2.2. For n/2-v/-/4<= 8 <-- n/2+x/n/4,
8,-, (n -2j):

M(n, 8) <=
=o 8’-j)( n 8’-j)’

where

8’=
8 for 8 <= [n/2J,
[n/2J 8 otherwise.

Proof First note that for n->_4, the following holds for all 0-<_8-< In/2]"
n2

_> ( n(n- 1)
max 4,

(n-)- o)/(n-

and the relation is definitely true for the range of 8 in this corollary. Hence
M(n, 8)/M(n- 2, 8-1)-> n2/8(n- 8) and it is clear that this still holds true when we
replace n by n-2j and 8 by 8-j, for j =< 8. Apply Theorem 2.4 recursively 8 times
and since M(n-28, O)= 1

8--1 (n_2j)2 8-, (n_2j)2
M(n, 8)<= H H

j= (8-j)((n-2j)-(8-j)) = (8-j)(n-8-j)’

which completes the proof of the corollary. I-]

COROLLARY 2.3. For n 1, 2, , maxo__<__<, M(n, 8) 2" and the maximum is
achieved by 8 n/2J and In].

Proof We first show that M(n, [n/2J) =2". By Lemma 2.2, this also establishes
M(n, In/2])= 2". The crucial observation is that for 8= [n/2J, n(n-1)/8(n-8)<=4.
Hence M(n, [n/2J)/M(n-2, [n/2J -1)_-<4. Moreover, this relation is still true if we
replace n by n-2j and 8 by 8-j, for j <_-8. For even n, apply Theorem 2.4 recursively
n/2-1 times and since M(2,1)=2, we obtain M(n,n/2)<=2". For odd n, apply
Theorem 2.4 recursively (n + 1)/2 times and since M(1, 0) 1, we obtain M(n, [n/2J) _-<

2". On the other hand, for even n, define A& {01, 10}n/2 and B-a--{00, 11} n/2. Clearly
A x B S/2 and Ila BII 2". For odd n, define C =a a x {0} and C & B x {0} and
C x De S,/j. Therefore M(n, [n/2J)->2".

Now, suppose there exist A x B S such that [IA x BII > 2". Consider the following
two cases:

a) n=2m for some m. By Lemma 2.2, fi.xBS",_. Define Ca---Ax and
D & B x B. Clearly, C x D S’ and c x DII > 24m which is a contradiction to Corol-
lary 2.3.

4mb) n 2m + 1 for some m. Again C x D
and B CI/ (cf. Lemma 2.2). Hence C

4,,+2 and liP x QII > 24m+2 which is a contradictionand Q a D U/. Therefore P x Q e 028

to Corollary 2.3.

Appendix 3. We prove in this Appendix that

(A3.1) 1+ 1- =I+4(L-1)eM/((L+I)M)
is a contradiction if (L + 1)M A > (1 + ce)N for a constant c c(e) and e > . The



COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 947

left-hand side of (A3.1) is

1 A A
=14----

L N(L+I) NL(L+I)"

The right-hand side of (A3.1) is larger than

_->1- I+L+ 1(L+I)N

For (A3.1) to be a contradiction, we want

8eM 1
-> I+--
N L

A A
N(L+ I) NL(L+ I)’

which simplifies to

(A3.2)
L+I

1 L-8e
Since

L( 1 )1-8e< 1+ -8e
L+I

(A3.2) is true if

_->1
8eM

A(1-8e) > N

which is equivalent to A > (1 + ce)N for a constant c- c(e). Note that the condition
e < is certainly required for the above to hold. V1
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