ON MAINTAINING DYNAMIC INFORMATION IN A
CONCURRENT ENVIRONMENT

by
Udi Manber

Computer Sciences Technical Report #535

February 1984

ON MAINTAINING DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT

(Preliminary Version)

vdi Manber'

Department of Computer Science
University of Wisconsin
Vadison, W[, 53706.

1. Introduction

This paper studies the amount of cooperation required
for independent asynchronous processes to share a sim-
ple dynamic data structure. We define an abstract data
structure, called a concurrent pool, consisting of a mul-
tiset with the operations add and remove. Concurrent
pools are used for task sharing, resource management,
garbage collection, interprocess communication, and
more.

We present a scheme for designing efficient concurrent
algorithms for the operations listed above. The effi-
ciency is measured mainly by the number of non-local
operations that a process may have to make (we also
have to make sure that the local computation is effi-
cient). In general. non-local operations may involve
writing into a shared variable. locking, or waiting for a
message, hence they introduce interference (or required
cooperation). Our goal is to derive upper and lower
bounds on the interference in the worst case.

The algorithms consist of two parts. The first partis an
‘efficient sequential algorithm for another, more compli-
cated, data structure, which includes a split operation.
The second part is a concurrent algorithm to locate ele-
ments distributed among the processes. This is done by
having (active) processes search throughout the system
leaving marks indicating where they have already
gearched so that other processes will minimize their
search. The search is based on a tree traversal,
although the actual concurrent algorithm is more cotm-
plicated due to the fact that elements are changed
dynamically.

“This research was supported in part bv the National
Science Foundation under Grant MCS83-03134.

We also present a model of concurrent computation,
based on a shared memory model and prove lower
bounds on the amount of interference. The gap between
the upper bounds achieved by our algorithm and the
lower bounds is small {(a factor of 0(k*. where k is the
number of processes and £ > 0).

2. The problem

We want to develop an efficient data structure to
represent multisets. We make no assumptions on the
type of elements in the multisets. The data structure
should support the following operations:

Add(M.x) : add the element x to the muitiset M. Whether
or not x is already in M has no effecton this operation

Remove(M,y) : if M is not empty then choose an arbitrary
element of M (any element wiil do), delete it from M, and
assignittoy.

Data structures that support the operations listed
above will be called paols. Pools can be used to store
pointers to all waiting (independent) tasks in a muiti-
computer system. When a process {(or processor)
becomes available it removes a task from the pool; dur-
ing its execution it may generate tasks, which are added
to the pool. Pools can also represent available
resources in a system, available blocks of memory,
independent events ina simulation. etc.

Pools can be very efficiently irnplemented in a sequential
environment by stacks or queues, in which case every
operation takes constant number of steps. (Stacks and
queues are even more powerful than what we need since
we are satisfied with arbitrary order of removals and we
do not require LIFO (or FIFO) ordering) If there are oniy
two processes we can use a double-ended queue and let
each process add and remove from a different end.
Each operation still takes constant time; moreover, the
only time a process may interfere with the other one is
when the queue is almost empty. In this case interfer-
ence in unavoidable since the processes must compete
for the same elements. Double-ended queues were in
fact used in that way in the design of a parallel garbage
collection algorithm with two processes. a list process,
and a garbage collector {4]. This algorithm was general-
ized to many processes in [8] A shared pool was used
but there was no discussion on efficient implementation.
Obviously only one process can add or remove {rom one
end of a queue at any given time, so & better data struc-
ture is required in order to achieve a high level of con-
currency. We assume that, although at some times the

-2 -

multiset may be small or even empty, in general the
number of elements involved is much greater than the
number of processes. When the number of elements is
small interference is unavoidable

The processes perform add and remove operations in an
arbitrary order and frequency. It is possible, for exam-
ple, that only one process adds while all the others
remove, or that all processes oniy add.

3. The model

A shared memory model, similar to the one described in
[5]. is used throughout the paper. Some comments on
applications to distributed computation appear in sec-
tion 6. The main reason we use a shared memory modei
is because of its simplicity. [t allows us to gain some
insight to the required cooperation of asynchronous
processes that may be harder to get from a more com-
plicated model. Lower bounds for this model should
apply to other models with more expensive means of
communication.

We give here a brief description of the model. We assume
a random access memory shared by many autonomous
asynchronous reliable processes. A process is a state
machine with its own local memory. In one atomic step a
process can either read a variable of the shared
memory, write into the shared memorvy. or lock part of
the shared memoryv and change its own state (a more
general operation. test and set is allowed in {3])
Several processes can read the same variable at the
same time; however, if a process writes into a shared
variable then no other process can access that variable
at that time. Hence. some kind of locking is required. We
use the regular notion of read and write locks (see for
example [1.2]). A write lock gives exclusive access to its
holder while a read lock only prevent writers from
accessing the variable. We make no assumptions about
the implementation of the locks. If a process is denied
access to a variable that is locked by another process it
will have to wait. We call such occurrences collisions.
Our main goal in designing the algorithm is to minimize
the number of collisions.

We believe that the definition of collision captures the
simplest form of interference (or cooperation depending
on the point of view) among asynchronous processes.
This definition is also primitive enough to enable us to
prove lower bounds. We do not consider in this paper
issues of fairness or starvation. We think of the
processes as being servers rather than customers.

We make no assumptions on the order in which the
processes access the shared memory Thus. it is possi-
ble that some processes are much “faster” than others
or that a process "goes to sleep” for a period of time and
“wakes up” later. We do not deal with issues of fault
tolerance in this paper, although the algorithms can be
made robust rather easily using standard techniques
since processes depend very little on each other.

In order to prove lower bounds on the add and remove
operations we have to define them precisely. We assume
that for each element there is a unique variable that
changes its value when the element is removed or added
Removing or adding an element may involve changing
more than just one variable; however, the element is
"formally” removed only when the unique associated
variable has been changed. This assumption is required
to rule out the possibility of two processes removing the

same element concurrently

4. The algorithm

The algorithm was designed to work best when all the
processes have approximately the same behavior (iec. 1t
is designed for the average case). Surprisingly, it turns
out that the algorithm is not far from optimal in the
worst case as well {(see section 5).

The basic idea of the algorithm is as follows The mul-
tiset is initially partitioned among the processes Every
process maintains a segment of the multiset and per-
forms the operations add and remove locally as long as
possible. When a local segment becomes empty and the
process wishes to remove it searches for a non-empty
segment and performs the removal from it Since
removing an element from another process’ segment
may involve collisions we have to minimize such
occurrences. For example, if few processes are adding
and most processes only rermove then the solution above -
is almost reduced to the sequential solution We
improve this simple solution in the following way. Once a
process finds a non-empty segment and interrupts the
"owner”, it tries to take more than just one elementata
time. Since the size of a local segment may vary sub-
stantially, we should not take a fixed number of ele-
ments but a fixed portion. This will improve the algo-
rithm provided we can find a fast sequential algorithm
to split a sesment to two parts with sizes that differ by
no more than a constant factor.

The algorithm consists of two separate parts. The first
part 1s an efficient data structure and constant time
sequential algorithms for adding, removing and splitting
to two (approximately equal) segments The second part
is a scheme for finding a non-empty "donor”.

4.1. Splitting a local segment

We use balanced binary trees where each node
corresponds to an element of the multiset. Nodes are
added level by level from left to right and are removed n
the opposite order. One way of achieving constant time
per add and remove is to maintain a pointer to the last
inserted node at the bottormn of the tree, and at each
node pointers to its left and right "brothers”, father,
and two children. The father and children pointers are
then updated as new nodes are added or removed. It s
straightforward to perform add and remove in constant
time. [t seems, however, that in order to split the tree
we need to update O(log n) pointers. We can reduce the
O(log n) complexity to O(1) using the observation that
except for the bottom level all the levels are full In
order to find out whether a node is at either the left or
the right end of a level while we are adding or removing,
it is sufficient to know what level (depth) it is. When we
are adding (removing) and the level is full (empty) we
start a new level (go higher up using the father
pointers), keeping track of the level number and the
number of nodes in that level. To split we need only to
decrement the level number of the lowest level This
automatically makes the two children of the root two
new roots. There are two ways to take care of the old
root. We can either insert it at the bottom or maintain
two types of trees, one with an additional root. call it a
2-roots tree, and the regular 1-root tree; splitting a 1~
root tree forms a 1 -root and a 2-roots trees, and split-
ting a 2-roots tree forms two 2-roots trees. [n anycase,
we need to keep 2 pointer to the root. [t is easy to see

-3 -

that in the worst case we split to a third and two thirds.

We also have to find the middle of the lowest level (or
next to lowest level in case it is less than half full);
removals and additions from the other half should start
at that middle. We solve this problem by using arrays
instead of a linked list representation for each level (see
Figure 1). Since the size of each level is fixed the arrays
will never have to be extended. Using arrays in this
manner saves the "brother® pointers and one of the
children pointers (if one child is known then the other
one can easily be found). The children pointers are
needed in order to find the two new roots after a split
and the father pointers are needed to move up the tree
when a level becomes empty.

Overall, we have an interesting data structure consisting
of a linked list of variable sized arrays organized as a
tree, and we have shown that it can be expanded and
split, all in constant time. Obviously, a process that per-
forms split, add, or remove must lock the tree with a
write lock. One drawback for using arrays in this way is
that it makes memory allocation more complex.

Figure 1: The data structure

4.2. Finding a non-empty segment

The problem of finding a non-empty segment is an
interesting problem of locating resources in a dynamic
concurrent environment. We want a solution that
minimizes the amount of non-local access. [n particu~
lar, processes should not have to update any kind of a

global table while they perform local operations.

We first solve a very restrictive case of the problem and
then show how to extend the solution to the general
case. We assume that initially there is exactly one ele-
ment in the local segment of each process. Further-
more, no additions are made; each process performs
only removals. Let each process be associated with a
leaf in a complete binary tree (for simplicity we assume
that the number of processes is a power of 2). Each leaf
initially contains the element associated with the pro-
cess. Each node has a flag which signals that all the ele-
ments in the leaves in its subtree were removed, in which
case we call the node empty. Each process starts the
removals from its own leaf and traverses the tree
according to the procedure described below (an example
follows the procedure)

Procedure Traverse (node) ;
{ initially node is the process’ own leaf|

if node is a non-empty leaf then
remove the corresponding element
mark node as empty :
§{ at this point node rmust be empty |
if node = root then terminate
else if the father of node is empty then
Traverse (father of node)
else if node's brother is empty then
mark the father as empty .
Traverse (father of node)
else

f half of the subtree is empty while the other hall is not
vet empty ; in this case the process goes directly to a
leaf that is in the same relative position in the brother's
subtree as the initial node is in the original subtree; we
call this leaf the matching descendant. The idea of this
step is to distribute all processes that may arrive
together at the same internal node among the leaves.
Since the tree is static such a step can be implemented
in constant time using the binary representation of
nodes in a balanced binary tree |

Traverse (matching descendant of initial node)

Example 1: The tree is given in Figure 2. First con-
sider the case of having only one process, P, initially at
h, active. P traverses the tree in the following order:

h.d.id.b.e.je.keb.a.clim/fcgngo.gca
Let's start now with 3 proceeses: P at h, @ at i, and R at
m. and assume that in each time unit one process com-
pletes the computation on one node. The following 1s an
example of an order of execution. Each process is fol-
lowed by the node it visits such that a bold node means
that the node is marked as empty in this step.

P:h, P:d, Q:i, P:i, P:d, P:b, Q:d, Q:b, Pre, P:} Pe, P:k,

P:e. Q:e. Q:b, Q:a, P:b, P:a, Pic, Rim. Rif, R:L R:f. Rie,

P:l, P:f, P:c, Rig, Rio, Rig, Rin, Rig, P:g, Pic, Qic, Q:a,

VA NVAN
/\ j/ \ JANVAN

Figure 2: Example 1

-4 -

To analyze the algorithm we count not only collisions
but actual steps. Let S{k) denote the maximal number
of steps taken by k processes traversing a tree with k
leaves. The analysis of the algorithm relies on the fol-
lowing lemma.

Lemma 1: For any internal node v all processes that
visit leaves in both subtrees of v visit the left subtree
first, or they all visit the right subtree first.

Proof: Assume the contrary Let P be a process that
started in the left subtree of v and then visited the right
subtree and let Q be a process that visited the subtrees
in the opposite order In order to visit both subtrees P
and Q must have checked first if the root is empty. Lel's
assume that Q checked the root after P or at the same
time as P. In this case. at the time Q checked the root P
has already found the left subtree to be empty. Since Q
has to check the left child before it goes down the left
subtree it will find it empty and will not go down. 0

Theorem 1: The total number of steps taken by k
processes to remove k elements using procedure
Traverse is O(k! 99) in the worst case.

Proof: We use a recursive argument. Let T be a tree
rooted at r, and assume, without loss of generality, that
the first process that arrives atr started at the left
subtree. By lemma | no process that started at the right
subtree will visit the left subtree. Hence, the worst case
of traversing T occurs when all the processes in the left
subtree traverse it in the worst possible way, then they
are dispersed to the bottom of the right subtree and
then all processes traverse the right subtree together in
the worst possible way. [t is easy to see that we get the
following recurrence relation for S(k):

S(2k) s 35(k) + 0(k),
which implies that
S(k) =.0(k'°82%) = 0(k1%9). O

[t is possible to improve the asvmptotic behavior of the
algorithm by using multiway trees and distributing the
processes down froman internal node in an optimal way.
One can achieve a complexity of O(kl+¢) for any ¢ > 0.
However, while this leads to an asymptotic improvement
it is not a practical solution since for any realistic value
of k, ¢ = 0.5. We describe the modifications below only
for the purpose of comparing them to the lower bounds
in section 5. Consider a 4-way tree. Using a similar
traversal procedure and similar arguments as above one
can show that the worst case occurs when the processes
in one subtree traverse it in the worst possible way, then
they move down to a second subtree and. with the
processes in this subtree. traverse it in the worst possi-
ble way, then they all move to the third and then to the
fourth subtree. This leads to the recurrence relation
S(4k) = (1+2+3+4)S(k) + 0(k), which gives a slightly
worse solution. However, if. instead of "sending"’ the
processes from the first and second subtrees together
to the third subtree, we vspread” them and send each to
the remaining subtrees (the third and the fourth) we get
the recurrence relation S(4k) = (1+2+2+4)5(k) + 0{k),
which is slightly better (actually it gives the same bound
as the binary case). [n general given an m-ary tree. it is
not hard to show that we getl the recurrence relation
S{mk) = O(m log m)S(k) + O(k), which leads to S(k) =
O(k!+¢) where £ = O(log log m/ log m).

So far we discussed a restrictive case. In the general
case we divide the algorithm into rounds. We make sure
that in each round all segments are visited by at least
one “foreign” process seeking a donor. Since each wisit
splits the segment by at least a third we can have at
most O(log n) rounds before all n elements are deleted.
Notice that it is possible that the segment of one pro-
cess contains all the elements in the multiset. Hence all
segments must be searched and a complete round is
indeed necessary

We modify the algorithm by replacing the flag in each
node with a round counter An internal node marked
with a counter m implies that all of its leaves "donated"
in round m. Processes run the traversal algorithm.
starting with their own leaf. only when their local seg-
ments are empty and they are looking for a donor. Once
they find a donor theyv continue their local operations
until they empty their segments again, in which case
thev continue the traversal from the last node they
visited. Round m is terminated when the root is marked
m When a process reaches the root it starts the traver-
sal again from its leal incre menting its local round
number. If a Process finds a node with a later round
number it simply updates its own counter

Theorem 2: Let the multise t contain n elements that
are divided among the processes in an arbitrary way
The total number of coilisions resulting from k
processes executing n removals and arbitrar:ily many
additions is 0(S(k) log n) in the worstcase.

Proof: Assume first that no additions are perfo rmed
Every local segmunt 1s visited ina round, thus it is split
by some process [l 15 not necessarily true that in a
round of removals the total number of elements is cut
bv a constant. However if at the beginning of a round
the largest segment contains t elements then at the end
of the round the largest segrment will contain at most
273t elements. Hence, in the worst case O(log n) rounds
are required Lo remove n elements By Theorem | we gel
an upper bound of G(S(k) log m) on the number of steps
in this case.

Additions are alwavs performed localily; hence. the only
time thev can be invoived in a collision is when another
process (or processes) attempts to split the local seg-
ment. However, since we coun ted steps rather than col-
lisions in the traversal algorithm, a split operation
always contributes to S(k) whether it collides with the
local process or not. As a result, performing arbitrarily
many additions cannot cause an additional collision that
was unaccounted for.

if more than n removals are performed then obviously
the worst case occurs when all the elements are
removed and then repeatedly one element is added and
all processes attempt to remo ve it. The algorithm is not
very efficient for the case of multisets with very few ele-
ments. (The best solution in this case is probably to
decrease the concurrency and let only few processes be
active, assuming again that the processes are servers
and that fairness is not an issue; in any case, this is
beyond the scope of this paper-.)

5. Lower bounds

in this section we describe the lower bound results on
the number of collisions. Since the add operation in the
algorithm described in the previous section does not
cause collisions we ignore it for the lower bounds. We
consider the following scenario: There are n elerments in
the rnultiset, and k processes, P, P, ... , P, are trying
to remove all the elements. We do not count the time the
processes spend locally per operation: we count only
collisions. We use an adversary argument in the follow-
ing way. Given a data structure and algorithms, we will
produce a schedule for the processes that leads to many
collisions. Let Xy, X5, Xj, be the sequence of elements
P; removes provided that all the other processes are not
active.

Lemma 2: There existiand j, 1 sij< k. and rand s,
1 srs s |n/kpl, such that x;. = Xis

Proof: Using a simple pigeon hole argument: There
are more than n elements in the k subsequences of size
In/ kp-1, hence two of them must be equal.

Theorem 3: Every algorithm for concurrent removal
of n elements by k processes produces ((k log n) colli-
sions in the worst case.

Proof: Find {, j, r, and s that satisfy the conditions of
lemma 2. Let P; remove all the elements up to x;.and
then let P, start removing its elements. If P.does not
change its order of removals as a result of the removals
of P;then we can cause a collision by letting them both
attempt to remove x;. (= x}s) at the same time. Other-
wise, in order to know that P; has been active, P; must
read a variable that P; has written. Let w be the first
such common variable. The execution sequences of P,
and P. until they access w are independent. Hence we
can let them arrive at wat the same time thus producing
a collision. In any case, a collision occurs in the worst
case before a portion of O(1/k) of the n elements are
removed. After the collision we “allow" all the processes
to learn about it and change their removal orders
accordingly (this probabiy causes more collisions but we
do not count them). The number of remaining elements
is now n' = n{1-0(1/Kk)). We now use the same argument
repeatedly for n’, n* and so on. Overall, (k) iterations
are required to cut the number of elements by a con-
stant factor (using the fact that1/e =~ (1-1/k)X. Hence,
Q(k log n) iterations are required to remove all the ele-

ments and the theorem follows., i

In particular, theorem 3 implies that if k is a small con-
stant then the algorithm in section 4 is optimal; for
large k there is a gap of a factor of k?® between the lower
and upper bounds.

6. Extensions and further research

Each local tree in our algorithm acts as a stack. The
multiset as a whole does not follow a LIFO ordering since
a local tree can be split and be assigned to a slow pro-
cess. We have generalized the algorithm so that each
local tree acts as a queue, making it more adaptable to
some applications.

[t is possible to support processes that are allocated
and destroved dynamically. We need to be able to insert
and delete leaves from the global tree concurrently witn
the other operations. Efficient concurrent algorithms

for insertions and de:etions in external binary search
trees are described in [7], general concurrent binary
search trees are discussed in [3,6]. These algorithms
can be easily adapted to this appiication. [f a dy narmic
tree is used then it may not be possible to find the
matching descendant of a node (see algorithm Traverse
in section 4 2) in constant time. However, the search for
matching descendants need not interfere with the rermo-
vals or additions operations; it only interferes with
inserting or deleting a process

We are also working on adapting the algorithm to distri-
buted computation where processes reside at remote
sites. The aigorithm described in section 4 was designed
so that most actions take place locally The only excep-
tions are accessing the global tree to find a non-empty
segment (which we minimize), and splitting a local tree
The splitting can be done locally: then, assuming each
site has several processors, either we keep both parts in
the same site or shipped one part to the requesting site
with minimal interference with the processors doing
other local computation All the lower bounds still hold;
in this case they also apply to the amount of communi-
cation.

Several open questions remain.

First, can one improve the tree traversal algorithm? Is
it possible to adapt the algorithm to a message passing
model in an efficient way?

We defined collisions as being either read-write or
write-write conflicts. If we count only write-write con-
flicts, is it possible to improve the upper bounds or
(more likely in our opinion) prove the same lower
bounds?

We have not considered probabilistic algorithms in this
paper. There are several exarnples where proba bilistic
algorithms are proven to be better than deterministic
algorithms, especially in parallel computation {9,1 O]. At
first, it seems that partitioning the elements into
several stacks and letting each process choose a t ran-
dom which stack to remove from may lead to a better
algorithm. However, a simple analysis shows that this is
not the case and that choosing elements simply a t ran-
dom leads in general to an inferior solution. This does
not rule out, of course, the possibility of improving the
upper bounds with a more sophisticated probabilistic
algorithm.

7. Conclusions

We presented in this paper a design of an abstrac t con-
current data structure. We proved upper and lower
bounds on the amount of interference among com peting
processes under a shared memory model. Abstrac t data
structures have proven to be very helpful in the design
of sequential algorithms. Having an arsenal of data
structures and efficient implementations mal<es it
easier to formalize problems and to solve them. We hope
that the same will be true for concurrent computa tion.

References

{t] C. Ellis "Concurrent Search and [nsertion in AVL
Trees”, [EEE Transactions on Computers, Volume C-
29, September 19680, pp B11-817.

{2] J.N. Gray "Notes on Database Operating Systems”. in
Lecture Notes in Computer Science, Volume 60, 1978,
pp. 393-481.

[3] H.T. Kung and P L Lehman. "Concurrent Wanipula-
tion of Binary Search Trees”, ACY Transactions on
Database Systems, September 1980, pp. 354-382.

[4] H.T. Kung and S.W. Song “An Efficient Parallel Gar-
bage Collection System and its Proof of Correctness”,
In 18th Annual Symposium on Foundation of Com-
puter Science, October 1977, pp. 120-131.

[5] N. A Lynch and M. J. Fischer, “On Describing the
Behavior and Implementation of Distributed Sys-
tems"”, Theoretical Computer Science, Volume 13,
1981, pp. 17-43.

[6] U. Manber and RE. Ladner, "Concurrency Control in
a Dynamic Search Structure”, ACMH Symposium om
Principles of Database Systems. Los Angeles, March
1982, pp. 268-282.

{7] U. Manber. "Concurrent Maintenance of Binary
Search Trees”. To Appear in [EEE Transaclions on
So ftware Engineering.

{8] LA Newman and MC. Woodward, “Alternative
Approaches to Multiprocessor Garbage Collection”,
In 1982 I[nternational Conference on Parallel Pro-
cessing, Bellaire, Michigan, August 1982, pp. 205-210

[¢] M. O Rabin, "N-Process Mutual Exclusion with
Bounded Waiting by 4 logyN-Valued Shared Variable,
Journal of Computer and System Sciences, August
1982, pp 66-75

[10} M O. Rabin, "The Choice Coordination Problem".
Acta Informatica, 1 7(1982), pp. 121-134

