
SIAM J. COMPUT.
Voi. 18, No. 3, p. 559-578, June 1989

(C) 1989 Society for Industrial and Applied Mathematics
O09

TWO APPLICATIONS OF INDUCTIVE COUNTING
FOR COMPLEMENTATION PROBLEMS*

ALLAN BORODIN?, STEPHEN A. COOKt, PATRICK W. DYMOND$,
WALTER L. RUZZO, AND MARTIN TOMPA

Abstract. Following the recent independent proofs of Immerman [SLAM J. Comput., 17 (1988), pp.
935-938] and Szelepcs6nyi [Bull. European Assoc. Theoret. Comput. Sci., 33 (1987), pp. 96-100] that
nondeterministic space-bounded complexity classes are closed under complementation, two further applica-
tions of the inductive counting technique are developed. First, an errorless probabilistic algorithm for the
undirected graph s-t connectivity problem that runs in O(log n) space and polynomial expected time is

given. Then it is shown that the class LOGCFL is closed under complementation. The latter is a special
case of a general result that shows closure under complementation of classes defined by semi-unbounded
fan-in circuits (or, equivalently, nondeterministic auxiliary pushdown automata or tree-size bounded alternat-
ing Turing machines). As one consequence, it is shown that small numbers of "role switches" in two-person
pebbling can be eliminated.

Key words, complementation, inductive counting, connectivity, symmetric computation, probabilistic
algorithm, random walk, LOGCFL, NC, semi-unboundedness, pebbling, hierarchy

AMS(MOS) subject classifications. 68Q15, 68Q25, 68Q75, 68R10, 60J15, 94C99, 03D55, 90D05

1. Introduction. Let NL denote the class of languages accepted by nondeterminis-
tic Turing machines running in O(log n) space. Let

STCON {(G, s, t)]G is a directed graph containing
a directed path from vertex s to vertex t}.

Using any reasonable encoding of graphs, it is well known that STCON is in NL and,
moreover, is complete for NL with respect to deterministic log space reductions (Savitch
[29]). In a surprising development, Immerman [17] and Szelepcs6nyi [33] have shown
independently that STCON, the complement of STCON, is also in NL; that is, NL
is closed under complementation.

Their proofs rely on an inductive counting technique similar to counting techniques
used in related results, for instance, Mahaney [24], Lange, Jenner, and Kirsig [22],
Hemachandra [15], Toda [34], Buss, Cook, Dymond, and Hay [4], and Sch6ning and
Wagner [30]. (For additional background and references see Hartmanis 14].) It seems
inevitable that this technique should have further application and in this paper we
develop two such applications.

For our first application, we consider reachability in undirected graphs, a problem

Received by the editors October 28, 1987; accepted for publication (in revised form) May 26, 1988.
This material is based on work supported in part by the Natural Sciences and Engineering Research Council
of Canada, and by the National Science Foundation under grants DCR-8604031 and CCR-8703196. Much
of the work was performed while Allan Borodin and Larry Ruzzo were visitors at the IBM Thomas J. Watson
Research Center, and Patrick Dymond was a visitor at the University of Toronto.

? Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.
Department of Computer Science and Engineering, C-014, University of California at San Diego, La

Jolla, California 92093.
Department of Computer Science, FR-35, University of Washington, Seattle, Washington 98195.
IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598.

559

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

560 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

not known to be complete for NL. Indeed, Aleliunas et al. [2] have shown that

USTCON {(G, s, t)lG is an undirected graph containing
a path from vertex s to vertex t}

is in RLP, the class of languages accepted by probabilistic Turing machines running
in O(log n) space and polynomial time. In this model, the machine never reaches an
accepting state on any input not in USTCON, and has probability at least of reaching
an accepting state on any input in USTCON. USTCON is a complete problem for
SL, the class of languages accepted by symmetric Turing machines (Lewis and
Papadimitriou [23]) running in O(log n) space. It follows that SL

_
RLP

_
NL.

It is tempting to believe that Immerman’s and Szelepcs6nyi’s proofs extend to
show that SL is closed under complementation. However, a direct translation of their
technique fails to establish this result, as explained in 2.2. In that section we prove
the somewhat weaker result that USTCON is in RLP or, equivalently, that USTCON
is in ZPLP, the class of languages accepted by errorless probabilistic Turing machines
running in O(log n) space and polynomial expected time. (The equivalence is due to
the fact that RLP 71 coRLP ZPLP.) This answers a problem raised by Aleliunas et
al. [2]. In 2.3 we extend this result to show that Reif’s symmetric log space com-
plementation hierarchy [26] is also contained in ZPLP.

In our second application we show the closure under complementation of a number
of complexity classes that are (seemingly) more powerful than NL. The classes we
consider may be characterized in terms of several different models. The most intuitively
appealing model is perhaps the semi-unbounded fan-in circuit model (see Ven-
kateswaran [37]). In this model, we allow o1 gates with arbitrary fan-in, whereas all
AND gates have bounded fan-in. Input variables and their negations are supplied, but
negations are prohibited elsewhere.

For simplicity we will restrict the discussion to polynomial-size circuits, although
the results can be generalized. Of particular interest is the class SACk of languages
accepted by polynomial-size, O(logk n) depth, uniform semi-unbounded fan-in circuits.
(See Cook [7] for an appropriate definition of uniformity.) SAC is the most often
studied of these classes. SAC is equal to the class LOGCFL of languages log space
reducible to context-free languages [32], [37]. It is known that NCI NL_ SAC_
AC where, as is customary, we let NCk and ACk denote the classes analogous to
SACk for bounded fan-in and (respectively) unbounded fan-in uniform circuits. More
generally, NCk

_
SACk ACk

_
NCk+.

Both NCk and ACk are easily seen to be closed under complementation by
application of De Morgan’s laws. However, SACk does not yield to the same technique,
since it would produce circuits with unbounded fan-in AND gates. In fact, it is known
that there is a language accepted by polynomial size, constant depth, uniform semi-
unbounded fan-in circuits, but whose complement is not accepted by semi-unbounded
fan-in circuits of depth o(log n) and arbitrary size, even nonuniformly (Venkateswaran
[36], [37]). The main result of 3.1 is to show that polynomial-size semi-unbounded
circuit classes are closed under complementation for all depths that are f(log n).
Closure under complementation of classes defined by auxiliary pushdown automata,
tree-size bounded alternating Turing machines, and simple first-order formulae then
follows by known equivalences (see 3.1).

In 3.2, we examine some consequences of the closure of semi-unbounded circuit
classes under complementation. In the same way that the alternating and oracle
hierarchies based on NL [5], [28] collapse because of Immerman’s and Szelepcs6nyi’s
result, hierarchies based on semi-unbounded circuit classes also collapse. As a con-

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 561

sequence, the "role switch" resource in the pebble game introduced by Venkateswaran
and Tompa [38] is shown to be much weaker than previously seemed plausible. For
instance, we demonstrate that any fixed number of role switches can be eliminated.

2. Errorless algorithms related to undirected reachability.
2.1. Probabilistic complexity classes. An explanation of our taxonomy for prob-

abilistic complexity classes is in order. Table 1 illustrates the sense in which the names
RLP and ZPLP encountered in are consistent with the notation ZPP, BPP, and
PP of Gill 12], RP of Welsh [40], and BPL and PL of Ruzzo, Simon, and Tompa [28].

TABLE
Taxonomy for probabilistic complexity classes.

O(log n) space
Polynomial and polynomial

Type of error expected time O(log n) space expected time

Zero- ided ZPP ZPL ZPLP
One-sided RP RL RLP
Bounded two-sided BPP BPL BPLP
Unbounded two-sided PP PL PLP

Since this section concentrates on the classes RLP and ZPLP, we give them careful
definitions here. We say that a language A is in RLP if and only if there is a probabilistic
Turing machine M such that

(1) For all inputs, M runs in space O(log n) and expected time n1,
(2) If w A, Pr[M reaches an accepting state on input w]-> 1/2, and
(3) If w A, Pr [M reaches an accepting state on input w]--0.

ZPLP is the class obtained by replacing condition 2 by 2"
(2’) If w A, Pr [M reaches an accepting state on input w] 1.
The class RLP remains unchanged if we require polynomial time rather than just

polynomial expected time. Results of Gill [12], Immerman [17], and Szelepcs6nyi [33]
show that, when the polynomial time bound is removed, the corresponding one-sided
(RL) and zero-sided (ZPL) classes are equal to NL. Ruzzo, Simon, and Tompa [28]
and Simon [31] have shown that PL and BPL are closed under complementation. Jung
[20] has shown that PL PLP. These relations and others (including those proved in
this paper) are summarized in Fig. 1. (Those complexity classes whose complements
are not explicitly shown in Fig. 1 are closed under complementation. DL denotes
DSPACE (log n). DET is the set of languages reducible to computing integer matrix

SL
determinants [7]. k C Yk is the symmetric log space hierarchy, discussed in 2.3.)

2.2. An errorless algorithm for undirected reachability. Immerman’s and
Szelepcs6nyi’s proofs that STCON NL rely on computing

Nk #{vl v is within distance k of s}
by induction on k. As mentioned in 1, it is tempting to believe that the same method
can be used to show that SL is closed under complementation. Perhaps the easiest
way to see the difficulty (and importance) of such a result is to observe that Immerman’s
and Szelepcs6nyi’s algorithm also computes the length of a shortest path from s to t.
By a known reduction (Ladner (personal communication)), STCON is log space
reducible to the problem of determining if the length of a shortest path from s to in
an undirected graph is n-1. Hence a direct translation of Immerman’s and
Szelepcs6nyi’s proof to SL would also solve this problem, thus implying SL--RLP
NL.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

562 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

AC

DET

PL PLP

LOGCFL SAC BPL

NL RL PL BPLP

RLP

PLP RLP c eollLP

5L coSL

NC

FIG. 1. Inclusion relations among O(log n) space bounded complexity classes.

The specific obstacle in applying Immerman’s and Szelepcs6nyi’s proof technique
to SL is that a symmetric computation cannot "nondeterministically count," which
seems to be the key feature in their method. (This was also noted in 16].) In particular,
suppose that, for any value of count, there is a configuration (R, count) from which
the computation can proceed nondeterministically on either of the following paths:

1 (R, count) t---* (R’, count).
(2) (R, count) -* (R’, count + 1).

Since all moves in a symmetric machine are reversible, the machine can realize the
computation sequence (R, count) * (R’, count + 1) *- (R, count + 1). Hence the count
can be increased (or decreased) arbitrarily.

The main result of this section is Theorem 1.
THEOREM 1. USTCON ZPLP (or, equivalently, SL

_
ZPLP).

This theorem will follow immediately from Lemma 6.
In proving Theorem 1 we no longer face the handicap of symmetric computations

discussed above, but we do face another difficulty: the random walk approach of
A|eliunas et al. [2] does not seem to provide any useful information on the distance
between vertices. To circumvent our inability to compute undirected distances with an
RLP computation, we use the following idea, which is basic to the algorithms of
Kleene [21], Floyd [9], and Warshall [39]. Let u k* V denote the existence of a path
between u and v that does not pass through any intermediate vertices with > k. Let

Pk={(U, V)[U *k V}.

The ZPLP algorithm for USTCON is outlined in the remainder of this paragraph,
and described fully thereafter. It proceeds similarly to Immerman’s and Szelepcs4nyi’s
algorithm, by iteratively computing : Pk, the cardinality of Pk. Having computed P,,

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 563

we alternately attempt to verify that (G, s, t) USTCON via a random walk, or that
(G, s, t) USTCON by verifying that there are # P, pairs (u, v) (s, t) that are in
We compute : Pk from Pk-1 by determining, for each pair (u, v), whether or not it
is in Pk. We note that (u, v) Pk if and only if either (u, v) Pk-1, or both (u, k) Pk-
and (k, v) Pk-1. Again, :It-Pk_ is used to insure that the algorithm never makes a
mistake when claiming some (g, h) is or is not in Pk-.

The following lemma is obvious.
LEMMA 2. (U, V) Pk if and only if u and v are in the same connected component

of the subgraph G(k, u, v) of G induced by vertices {1, 2, 3,..., k, u, v}.
The basis for our algorithm is the random walk technique as used in Aleliunas et

al. [2]. It is modified slightly for our purposes in the following algorithm.

ALGORITHM WALK k, u, v).
comment: WALK (k, u, v) simulates a random walk on the subgraph

G(k, u, v) starting at u, returns FOUND if v is encountered, and
NOT FOUND otherwise;

begin
if u v then return FOUND;
nV;
x-u;
repeat 2n log2 (2n2) times

begin
choose y randomly and uniformly from among the neighbors

of x in G(k, u, v);
if y v then return FOUND else x -y

end;
return NOT FOUND

end.

LEMMA 3. (1) If (U, v)G Pk, Pr[WALK(k, u, v)= FOUND]>= I-1/2n2.
(2) If (u, v): Pk, Pr[WALK(k, u, v)= FOUND]=O.
(3) WALK(k, u, v) uses space O(log n).
(4) WALK(k, u, v) uses expected time O(nSlogn) (on a probabilistic Turing

machine).
Proof The main result of Aleliunas et al. [2] is that the expected number of edge

traversals a random walk requires to visit all vertices of a connected undirected graph,
beginning at any vertex, is at most n 3. By Markov’s inequality [3] and Lemma 2, the
probability is at most 1/2 that WALK (k, u, v) does not encounter v within any specified
2n iterations of the repeat loop, given that (u, v) Pk. The correctness assertions follow
from this.

For the time complexity, we assume that G is presented as an n x n adjacency
matrix. Locating the row of this matrix corresponding to x, computing the degree in
G(k, u, v) of x, and selecting a neighbor y can be done in O(n2) time. There is a
technical detail if we assume {0, 1} valued probabilistic choices when the degree need
not be a power of 2. Suppose 2 =<degree (X)<2r+. We then choose r+ 1 random bits
to compute a random integer i[0,2r/-l]. If />degree(x) we discard and try
again. The expected number of random integers that need be generated (to obtain
/=<degree (x)) is at most 2. Thus WALK(k, u, v) uses expected time O(n2n310g n)--
O(n log n). l-1

If :Pk is known exactly, we need an errorless probabilistic algorithm that
determines whether or not (u, v) is in Pk.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

564 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

ALGORITHM PATH(k, cpk, u, v).
comment: PATH k, # Pk U, V) returns TRUE iff u, v) Pk
repeat forever

begin
if WALK k, u, v) FOUND then return TRUE
c<-0;
for all (g, h) (u, v) do

if WALK k, g, h FOUND then c - c + 1;
if c cpk then retnrn FALSE

eml.

LEMMA 4. (1) If PATH(k, Pk, U, V) returns TRUE, then (u, v)
(2) If PATH k, 41: Pk U, V) returns FALSE, then u, v) Pk.
(3) PATH(k, Pk, u, v) uses space O(log n).
(4) PATH(k, Pk, u, v) uses expected time O(n log n).
Proof. The correctness and space complexity of PATH are immediate from Lemma

3. For the expected time, note that each iteration of PATH’s repeat loop uses at most
n2 calls to WALK, that is, expected time O(n7 log n). The probability that a given
iteration of PATH fails to return a value is equal to the probability that an incorrect
answer is given by one or more of its invocations to WALK, which is at most n2/2n2 1/2,
by Lemma 3. Hence, the expected number of iterations is at most 2.

We now show how to extend Pk-1 to Pk.
ALGORITHM COUNT(k, cpkm 1).
comment: COUNT(k, Pk-) returns the correct value for Pk;
begin

cpk 0;
for all (u, v) do

if PATH(k-1, cpkml, u, v)
or (PATH(k- 1, cpkml, u, k) and PATH(k- 1, cpkml, k, v))
then cpk cpk + 1;

return cpk
end.

LEMMA 5. (1) COUNT(k, 4 Pk-1) returns 44: Pk.
(2) COUNT(k, : Pk-) uses space O(log n).
(3) COUNT(k, 4Pk-) uses expected time O(n9 log n).
Proof By Lemma 4, the calls to PATH correctly determine whether or not

(u, v), (u, k), (k, v) are in Pk-. Correctness follows since (u, v) Pk if and only if
(u, v) Pk- or ((u,k)6 Pk- and (k, v)Pk-I). For the time complexity, there are
O(n2) invocations of PATH, each of which runs in expected time O(n log n), by
Lemma 4.

It only remains to state the main routine.

ALGORITHM USTCON(G, s, t).
begin

comment: Initialize #Po: P0= {(u, u)} (_J {(u, v)[{u, v} E};
cpk # V+2#E;
for k from to # V do cpk ,- COUNT(k, cpk);
comment: cpk is now set to # P;
return PATH # V, cpk, s, t)

end.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 565

LEMMA 6. (1) USTCON(G, s, t) returns TRUE if and only if (G, s, t)
USTCON.

(2) USTCON uses space O(log n).
(3) USTCON uses expected time O(n lO log n).
Proof. This follows immediately from Lemmas 4 and 5.
It is interesting to compare the running time of the errorless algorithm (Lemma

6) to that of the version with one-sided error (Lemma 3).

2.3. An errorless algorithm for symmetric space hierarchies. As previously men-
tioned, USTCON is a complete problem for SL, the class of languages accepted by
nondeterministic O(log n) space machines whose next move relation is symmetric.
Reif [26] defined an "alternating" hierarchy based on SL in a manner analogous to
the alternating hierarchy based on NL defined by Chandra, Kozen, and Stockmeyer
[5]. While Immerman and Szelepcs6nyi’s result shows that the NL-based hierarchy
collapses to NL, the SL hierarchy may be infinite. For example, "bounded degree
planarity" is in the hierarchy but is not known to be in SL [26]. The main result of
this section is Theorem 9, which extends Theorem 1 by showing that the entire SL
hierarchy is in ZPLP.

For technical reasons related to the problem of nondeterministic counting dis-
cussed in 2.2, Reif’s hierarchy is defined in terms of Turing machines with com-
plementing moves, rather than existential and universal states as is standard for
alternating machines. In Reif’s complementing machines, a configuration Po is "accept-
ing" if and only if there is a finite computation sequence P0 Pl P2" Pj,j--> 0,
with no complementing moves such that either

(1) pj is in an accepting state, or
(2) there is at least one complementing move fro p and for all complementing

moves (pj, p’), p’ is not "accepting."
In a symmetric complementing machine, all noncomplementing moves must be

symmetric. The kth level of the symmetric complementation hierarchy is

CEL= {B] B is accepted by an O(log n) space-bounded symmetric
complementing machine making at most k-1
complement moves on any computation sequence}.

The following result is an easy modification of Theorem 5 in Ruzzo, Simon,
and Tompa [28]. (See that reference for a discussion of space-bounded oracle
machines.)

LEMMA 7. [,.J
k
C, DLsL.

Proof Consider a CEks computation. Let E(p) be the set of configurations q
reachable from p using only noncomplementing moves. Note that an SL oracle can
decide if q E(p), since all noncomplementing moves are symmetric. Let ACC(p, k)
TRUE if and only if there is a p E (p) such that either

(1) p is an accepting state, or
(2) k->_ 1, and there is a complementing move from pj, and -ACC(p’, k- 1) for

all complementing moves (p, p’).
If Po is the initial configuration, then the CE computation accepts if and only if
ACC(po, k-l)= TRUE. We determine the existence of p by deterministically
enumerating all configurations and calling the appropriate SL oracle. The recursive
calls on ACC are tested by maintaining a stack of k configurations.

Ruzzo, Simon, and Tompa [28] use the notation A<m to denote a restricted form
of relativization in which the query tape is subject to the relativized machine’s space

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

566 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

bound, but the oracle receives that machine’s input together with each query. This
restriction is required to ensure the space bound in the following simulation.

LEMMA 8. ZPLP<zeLe>= ZPLP.
Proof Consider a relativized ZPLP machine M that uses an oracle A accepted

by a ZPLP machine M2. Let w be the input to M1. MA) is simulated by a ZPLP
machine M3. M3 operates as if it were M until M invokes the oracle with some query
x. M3 then simulates M2 on input w$x. Whenever M2 decides its output, M3 is able
to continue its simulation of M1. If M(M2) runs in expected time p (respectively,
P2) then the expected time of M3 is O(pl(n)p2(n+ O(log n)))= n1. [3

THEOREM 9. U k CE c_ ZPLP.
Proof By Theorem 1 and Lemmas 7 and 8,

U CE
_
DLs c_G_ DLzmv ZPLP<zv’) ZPLP.

k

The third inclusion follows from the fact that the deterministic oracle machine can be
assumed to write short queries, namely its configuration as it is about to write a long
query. (See [28, Lemma 7] for more details.) [3

This improves Reif’s result that U k CEc_ BPLP (defined in 2.1).
Reif also considered the implications of his result for probabilistic parallel models.

Simulation of DL by O(log n) time parallel models such as concurrent-read, exclusive-
write, parallel random access machines (CREW-PRAMs) [10] and hardware
modification machines [8] was well known. It has been observed (see, for example,
Reif [25], [26]) that these simulations extend to the simulation of RLP and BPLP by
one-sided and (respectively) bounded two-sided error probabilistic parallel machines.
Reif noted that, as a corollary, any language in U k CE

s can be recognized by such
a probabilistic parallel machine with bounded two-sided error in O(log n) time.

Theorem 9 improves this result also, since any language in ZPLP can be accepted
by an errorless probabilistic hardware modification machine (and thus by an errorless
probabilistic CREW-PRAM) in expected time O(log n) using polynomially many
processors. The simulation of an expected time p(n) ZPLP algorithm proceeds as
follows. Simulate 2p(n) steps of the ZPLP algorithm in time at most c log n using at
most (p(n)) processors (for some constant c) as in Reif [25], [26]. If the simulated
algorithm has not halted within that time, restart the simulation, using independently
chosen random moves. The expected number of repetitions of this procedure is at
most two.

Finally, an oracle hierarchy based on SL could be defined in the same manner
as the OE hierarchy of Ruzzo, Simon, and Tompa [28]. If we are careful about the
definition of a symmetric oracle machine (see [16] for one possible definition), we
would expect to find that, for all oracles A, SL<a> ZPLP(a> and thus by induction
that t_J

k OEL--- ZPLP. However, we have not pursued this question.

3. Semi-unbounded circuits, LOGCFL, and pebbling.
3.1. Complementation of semi-unbounded fan-in circuits. In this section we show

closure under complementation of the class of languages accepted by semi-unbounded
fan-in circuits.

The class of languages recognizable by size- and depth-bounded semi-unbounded
fan-in circuits has been characterized in terms of several other models. The oldest is
the nondeterministic auxiliary pushdown automaton of Cook [6]. Ruzzo has related
space and time on such machines to space and tree-size of alternating Turing machines,
where tree-size is the number of nodes in the smallest accepting subtree of the
computation tree [27]. Venkateswaran has related them to space and alternations on

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 567

semi-unbounded alternating Turing machines--ones where there are no two consecutive
universal configurations on any path in the computation [37]. The relation to semi-
unbounded fan-in circuits follows from this. Immerman has shown relations to uniform
families of short first-order formulae with a fixed number of variables and Boolean
universal quantifiers--a property analogus to the semi-unbounded fan-in restriction
18]. These equivalences are summarized in the propositions below. They also generalize

to larger space bounds.
PROPOSITION 10 [18], [27], [37]. For T(n)=l(log n), the following (uniform)

complexity classes are identical.
(1) NauxPDA Space, Time (O(log n),2rn))).
(2) ATM Space, Tree-size (O(log n), 2Tn))).
(3) Semi-Unbounded ATM Space, Alternations (O(log n), O(T(n))).
(4) Uniform Semi-Unbounded Fan-in Circuit Size, Depth (2gn, O(T(n))).
(5) Uniform Var&Sz (B’V’)[O(1), O(T(n))].
PROPOSITION 11. The equivalences in Proposition 10 also hold among the nonuniform

versions of the models.
In all these models, closure under complementation seems surprising. In nondeter-

ministic auxiliary pushdown automata we face the usual problems of nondeterminism,
in addition to the difficulties introduced by large stacks, and perhaps by super-
polynomial running times. Although alternating Turing machine space and/or time
classes are easily seen to be closed under complementation, the same proof (basically
De Morgan’s laws) converts a computation of small tree-size into one of large tree-size.
Similar issues thwart the De Morgan approach to complementing circuits with bounded
fan-in AND gates and formulate with Boolean universal variablesmthey become
bounded fan-in OR gates and Boolean existentials instead. Nevertheless, closure under
complementation follows for all these models from the theorem below.

THEOREM 12. There is a constant ? such that, for any n-input semi-unboundedfan-in
circuit ce ofsize (number ofgates plus inputs) Z and depth D, there is a semi-unbounded

fan-in circuit ce--- ofsize at most ?DZ2 log Z and depth at most ?(D + log Z) that computes
the complement of the function computed by an. The same result holds uniformly for
uniform families of circuits { ten }.

Proof The key idea in the proof is again the use of inductive counting to verify
"negative" information. In this case we are interested in counting the number of gates
at a given depth that evaluate to 1.

Suppose we are given a circuit an of size Z and depth D. It is convenient to first
convert it to a circuit/3n of size 2DZ + 2n and depth 2D that is"

(1) Synchronousmi.e., vertices can be assigned to levels so that input variables
and their negations are on level 0, any gate on level receives all its inputs from
vertices on level i-1, and all output gates are on level 2D;

(2) Fixed width--i.e., each level i>= 1 contains exactly Z gates;
(3) Strictly alternating--i.e., for all i-> 0, all gates on level 2i + 1 are OR gates and

all gates on level 2i + 2 are AND gates; and
(4) Equivalent--i.e., it computes the same function as
This normal form is easily achieved. For example, for each level of/3n except the

0th, make a replica of each vertex of an. The replica on level of an input vertex g
is a trivial gate (of the appropriate type) whose only input is the replica of g on level
i- 1. Similarly, the replica of an AND gate g on an OR level is a trivial OR gate whose
only input is the replica of g on level i-1. A replica of an AND gate g on an ANI

level has as inputs the replicas on level i-1 of g’s inputs. OR gates are handled
similarly, but with nontrivial replicas only on OR levels. Level 0 contains only the 2n

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

568 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

vertices representing the input literals. Level 1 replicas of gates whose inputs are not
all input literals are arbitrarily connected to literals. We can show by induction that
all vertices of depth at most in a, will be correctly computed by their replicas on
levels greater than or equal to 2i in

The "counting" we need in the construction is easily accomplished by threshold
functions. Thus, rather than producing the circuit advertised by the theorem directly,
it is easier to first produce a circuit y, containing THRESHOLD gates. (A C-THRESHOLD

gates has unbounded fan-in, and outputs 1 if and only if at least c of its inputs have
value 1.) This circuit will have the following properties:

(1) It has bounded fan-in AND gates and unbounded fan-in OR gates, i.e., it has
semi-unbounded fan-in.

(2) It contains arbitrary THRESHOLD gates.
(3) No path from output to input contains more than two THRESHOLD gates.
(4) It has size 4D(Z+ 1)2+2DZ+2n 1 O(DZ2).
(5) It has depth at most 2D/3.
(6) It computes the complement of the function computed by

The theorem will then follow by replacing the THRESHOLD gates by monotone SAC
threshold circuits. (Monotonicity is needed to preserve the semi-unbounded fan-in
property. By property (3) above, the depth of the threshold subcircuits will increase
the overall depth only additively.)

For 0 _-< k -<_ D, let

Pk {gig is a vertex of ft, on level 2k having value 1}.
The main quantities we will be interested in counting are 4# Pk, the cardinalities of the
sets Pk.

Our main construction, of y, from /3,, follows. It is sketched in Fig. 2.
Construction Step 1. The entire circuit/3, is a subcircuit of y,. The gates in this

subcircuit will be referred to as "original" gates. (Note that this means original to
not to

Construction Step 2. For 1 -< k -< D, each original gate g on level 2k- 1 or 2k, and
each 0_-< c_-< Z, there is a "contingent complement" gate cc(g] c) whose value will be
the complement of the value of g ifc 4# Pk-; if C # 4# Pk-1, then the value of cc(gl c)
is irrelevant. We compute cc(g] c) as follows:

(1) If g is an AND gate, say AND(t/, b), then cc(g]c) is the OR of cc(a]c) and
c(b c). (Fan-in greater than two is handled similarly.)

(2) If g is an OR gate (on level 2k 1), then cc(g] c) is a C-THRESHOLD gate whose
inputs are all original gates on level 2k-2 that are not inputs to g.

We now argue the correctness of this part of the construction.
LEMMA 13. For k >- 1, and all original gates g on level 2k-1 or 2k,

Proof.
Case 1. g is an OR gate on level 2k- 1, k >- 1. Then g evaluates to 0 if and only

if all g’s inputs evaluate to 0, if and only if all 4#Pk- original gates on level 2(k-1)
that evaluate to are not inputs to g, if and only if the WRESOLD gate cc(g[4# Pk-)
evaluates to 1.

Case 2. g is an AND gate on level 2k, k_-> 1. Its inputs a and b are OR gates on
level 2k 1. From Case 1 we know that co(a[# Pk-) -aa and c(b[4# Pk-1) - -rib, so

-g -(a ^ b) --- a vb cc(a[4# Pk-1) V cc(b 4# Pk-1) =- cc(gl 4# Pk-1).

The proof for fan-in greater than two is analogous.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 569

-I

o

--,
;’,’,

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

570 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

Construction Step 3. Continuing the construction, there is a "counting" gate
COUNT(C, k), for all O<=c<=Z and O<=k<=D-1, whose value will be 1 if and only if

Pk C. This is computed as follows:

I<=>(c n)
zCOUNT(g, k) V AND(COUNT(d, k- 1), THI(C, k), TH0(C, k, d))
d=0

if k=0,

if k->_l,

where

THI(C, k)
TH0(C, k, d)

is the C-THRESHOLD of all original gates on level 2k, and
is the (Z-C)-THRESHOLD of the contingent complement
gates cc(gld), where g ranges over all original gates on
level 2k.

LEMMA 14. COUNT(C, k)= 1 if and only if #Pk=C.
Proof. The proof proceeds by induction on k.
Basis (k 0). There are exactly 2n vertices on level 0, namely the n inputs and

their complements. Exactly n of them evaluate to 1.
Induction (k> 0). By induction, COUNT(d, k-1) evaluates to 1 for exactly one

value of d, namely d- #Pk_I. Thus the only term in the disjunction /zd=o."" that
could possibly evaluate to is d # Pk-I. For this term, each contingent complement
gate cc(gl d) counted by TH0(C, k, d) computes -g by Lemma 13. Thus, THI(C, k) ^
TH0(C, k, d) evaluates to 1 if and only if, on level 2k, there are at least c original gates
with value 1 and at least (Z-c) original gates with value 0, and hence exactly c with
value 1. Thus, COUNT(C, k) evaluates to 1 if and only if c : Pk.

Construction Step 4. We complete the construction by defining the outputs of
For all original gates g that are outputs of fin (hence on level 2D), Yn contains a gate
COMP(g) that evaluates to if and only if g evaluates to 0. COMP(g) is computed as
follows:

z
COMP(g)-- V AND(COUNT(C, D- 1), cc(g[c)).

=0

Correctness is easily shown. By Lemma 14, COUNT(C, D- 1) evaluates to 1 if and only
if PD_I=C, and by Lemma 13, cc(gl:PD_l)=--(-g). Hence COMP(g)---- (-g).

Thus /n correctly computes the complement of the function computed by an.
Analysis. Next we will analyze the size and depth of yn.
Define the THRESHOLD-depth of a gate g of 2’n to be the maximum number of

THRESHOLD gates, including g, along any path from g to an input vertex.
For each original gate g on level k, g is also at depth k in yn, and has THRESHOLD-

depth 0. For all 0_-< c<-Z, gate cc(g c) also has depth k, and THRESHOLD-depth 1,
since the THRESHOLD gates among cc(gl c) depend only on original gates, not on other
contingent complement gates.

The gates THI(c,k) have depth 2k+1 and THRESHOLD-depth 1. The gates
TH0(C, k, d) have depth 2k + 1 and THRESHOLD-depth 2.

The gates COUNT(C, k) have THRESHOLD-depth 2 and depth dk, where

dk {02 + max (dk_, 2k + 1

if k=0,
if k_->l.

Thus dk <-- 2k + 3.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 571

Finally, the output gates COMP(g) have THRESHOLD-depth 2 and depth 2+
max (dD_I,2D)<=2D+3.

The size of the circuit is easily seen to be polynomial in Z and D. The dominant
contributions are from the contingent complement subcircuits, which contain O(DZ2)
OR and THRESHOLD gates, and from the COUNT subcircuits, which contain O(DZ)
AND and THRESHOLD gates. A careful analysis gives the exact bound of 4D(Z + 1)2+
2DZ + 2n 1 claimed above.

To complete the proof of Theorem 12, we need to replace the THRESHOLD gates
in 3’, by monotone SAC threshold circuits, and analyze the size and depth of the
resulting Boolean circuit a,.

The existence of monotone SAC threshold circuits is easily established. A simple
divide-and-conquer technique gives n input monotone SAC circuits of size O(n)
and depth at most 2 [log n]: the k-THRESHOLD of n bits can be computed as the OR
over 0_--<j--< k of the AND of the j-THRESHOLD of the first half of the bits and the
(k--j)-THRESHOLD of the last half of the bits:

k-THRESHOLD(X,,’’’, Xn)

k

V AND(j-THRESHOLD(X1," "’, X[n/2]),
j=0

k--j)-THRESHOLD(X[n/2]+I "’, X2n)).

Asymptotically, the smallest known monotone SAC threshold circuits are actually
NC circuits" the O(n log n) size "AKS" sorting networks of Ajtai, Koml6s, and
Szemer6di [1]. Replacing each THRESHOLD gate in y, by one of these subcircuits, and
noting that each THRESHOLD gate has at most Z inputs, would give an overall size for
the Boolean circuit a, of O(DZ log Z).

One observation reduces this substantially. Namely, a single n-input AKS network
computes the c-threshold of its inputs for all 1 <= c <-n. Thus, although an OR gate g
gives rise to Z THRESHOLD gates cc(gl c), 1 =< c =< Z, all of these values can be computed
by one AKS network. Similar combination is possible among the TH0(C,--,--) and
THI(c,--) gates, I<=c<=Z. This reduces the size of a-- to O(DZ21ogZ), as claimed.

The depth of a, is the depth of 3’, plus twice the depth of the AKS network (since
3", has THRESHOLD-depth 2), which is O(D+IogZ), as claimed.

For the uniform case of the theorem, we observe that the transformation from
to a, is quite simple and regular. We leave it to the reader to verify that this
transformation preserves uniformity. (The AKS networks are known to be
uniform.)

COROLLARY 15. For all k>= 1, SACk and nonuniform SACk are closed under
complementation.

Cook [7] defined CFL* as the set of functions each computable by a uniform
family {a,} of circuits, where a, has n inputs, bounded fan-in AND, OR, and NOT

gates, unbounded fan-in oracle gates for some context-free language, and O(log n)
depth. An oracle gate with fan-in f is defined to contribute [log2f] to the depth of
any path containing it.

COROLLARY 16. Any function in CFL* can be computed by a uniform family of
polynomial size, O(log n) depth, semi-unbounded fan-in circuits.

Proof. Let a. be a CFL* circuit with oracle gates for some context-free language
L. With a doubling of size and no increase in depth, a can be simulated by a CFL*

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

572 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

circuit/3, whose NOa" gates appear only at the inputs, provided/3, is allowed oracle
gates for both L and L. (See, for example, [13].) The result now follows from the fact
that LOGCFL= SAC [37], together with Corollary 15. 0

Similarly, it is true that any 0-1 valued function in NL* (see Cook [7]) is also in
NL. This follows from Immerman’s [17] and Szelepcs6nyi’s theorems [33], and was
noted independently by S. Buss (personal communication).

3.2. The weakness of role switches in pebbling. There are a number of ways in
which we might define a "LOGCFL hierarchy." One consequence of Corollary 15 is
that, for many reasonable ways of doing so, the resulting hierarchy collapses to
LOGCFL. In this section we consider one such hierarchy that collapses. As a con-
sequence, the "role switch" resource [38] in pebbling is shown to be much weaker
than previously seemed plausible.

(In contrast, following a preliminary version of the present paper, Jenner and
Kirsig [19] considered an alternative formulation of a hierarchy based on LOGCFL,
showing that it coincides with the polynomial hierarchy and hence presumably does
not collapse.)

We begin by presenting the hierarchy. Define a (z, d, k, f)-circuit as an unbounded
fan-in circuit of size z and depth d, where negations appear only at the inputs, and
the vertices can be partitioned into k "layers" that alternately have ANO fan-in at most

f and OR fan-in at most f More precisely, the vertices can be partitioned into blocks
Bk, Bk_l, ", B1 (B containing the outputs) such that"

(1) Any wire (u, v) with u B and v Bj satisfies i>=j;
(2) All ANO gates of odd-numbered blocks have fan-in at most f; and
(3) All OR gates of even-numbered blocks have fan-in at most f.

For any fixed k, let

XkcFL= {L{ L can be recognized by a (nonuniform) family of
(n), O(log n), k, O(1))-circuits}.

For instance, EcFL is nonuniform SAC 1. Corollary 18 demonstrates that this hierarchy
collapses.

THEOREM 17. Let {an} be a family of (z, d, k, O(1))-circuits, where z, d, and k may
be functions of n. Then there is a family {fin} of (O(dz2 log z), O(d + k log z),
1, O(1))-circuits such that fin computes both the outputs of an and their negations.

Proof This is proved by induction on k, using Theorem 12 and De Morgan’s laws
in a straightforward way. 1-]

COROLLARY 18. For any fixed k >- 1, EFI= E ClFI.
Proof This follows from Theorem 17 by substituting z=n) and d=

O(log n). [3

To see how much more general Theorem 17 is than Corollary 18, consider the
case z= n1) and d O(log n), for any i_-> 1, which might be called the "SAC
hierarchy." Not only does k=O(1) fail to add power to nonuniform SAC, but
k O(log-1 n) does as well.

The purpose of this section is to apply this result to a pebble game introduced by
Venkateswaran and Tompa [38]. They defined a new resource called "role switches."
It will follow from Theorems 19 and 20 that EFL is the set of languages recognized
by polynomial-size circuits pebbleable with O(1) pebbles, O(log n) rounds, and k- 1
role switches. Hence, by Corollary 18, any such circuit can be simulated by one pebble-
able with O(1) pebbles, O(log n) rounds, and zero role switches. Similarly, any

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 573

polynomial-size circuit pebbleable with O(1) pebbles, O(login) rounds, and
O(logi-1 n) role switches can be simulated by one pebbleable with O(1) pebbles,
O(log n) rounds, and zero role switches.

The pebble game introduced by Venkateswaran and Tompa is referred to as the
dual interpreted two-person pebble game. This game is played by two players, called
Player 0 and Player 1, on a circuit c, together with values for its n inputs and their
negations (referred to collectively as literals). There are two minor differences between
Venkateswaran and Tompa’s game and the one used in this section: for convenience,
we assume that c, is nonuniform and has unbounded fan-in. The latter condition does
not affect the resources considered, provided the depth of an is 12(log n).

At any point, one of the players takes on the role of the Challenger and the other
that ofthe Pebbler. The Challenger is responsible for selecting the "currently challenged
vertex"; the Pebbler has a collection of pebbles that it can place on or remove from
the vertices of an. The role of a player is automatically determined as part of the circuit
information as follows. The vertices in an are partitioned into two sets, those of
"challenge type" 0 and those of "challenge type" 1. If the currently challenged vertex
is of challenge type 0 (challenge type 1), then Player 0 (Player 1) is the Challenger in
the next round. A Boolean circuit augmented with this role information for each of
its vertices will be referred to as an augmented circuit. For convenience, it is assumed
that the output vertex has challenge type 0.

The objective of Player 0 (Player 1) is to establish that the output of the circuit
evaluates to 0 (1). A pebble placement or challenge on a vertex v by Player 0 (Player
1) corresponds to asserting that v evaluates to 0 (1). A pebble placed by Player 0
(Player 1) will be referred to as a 0-pebble (1-pebble).

The initial challenge is on the output vertex. The game proceeds in rounds, with
a round consisting of the following three parts. (a) If the game is not over at the
currently challenged vertex u according to the conditions below, then Player 0 is the
Challenger for this round if u is of challenge type 0 and the Pebbler otherwise. (b) In
the pebbling move, the Pebbler picks up zero or more of its own pebbles from vertices
already pebbled and places pebbles on any nonempty set of vertices. (c) In the
challenging move, the Challenger either rechallenges the currently challenged vertex
or challenges one of the vertices that acquired a pebble in the current round.

Player 1 wins the game if, immediately following the Challenger’s move, the
currently challenged vertex is a literal with value 1, or an OR gate at least one of whose
immediate predecessors is 1,pebbled, or an AND gate all of whose immediate pre-
decessors are 1-pebbled. Player 0 wins if, immediately following the Challenger’s move,
the currently challenged vertex is a literal with value 0, or an OR gate all of whose
immediate predecessors are 0-pebbled, or an AND gate at least one of whose immediate
predecessors is 0-pebbled. It is also possible to have a winner in an infinite play of
the game, namely that player (if either) who is the Pebbler in only finitely many rounds.
(The purpose of this last rule is to force each player to make progress as the Pebbler.)

These notions are defined more precisely below. Fix an augmented circuit an and
its input x.

A configuration of the game is a tuple (t, P1, Po, R1, Ro, v), where
{P, C} indicates whether it is the Pebbler’s or the Challenger’s turn to move,

P is the set of vertices with 1-pebbles on them from previous rounds,
Po is the set of vertices with 0-pebbles on them from previous rounds,
R is the set of vertices 1-pebbled in the current round,
Ro is the set of vertices 0-pebbled in the current round, and
v is the currently challenged vertex.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

574 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

The initial configuration of the game is (P, , , ,, s), where s is the output
of the circuit.

A configuration (P, P1, Po, , , v) is terminal if v is a literal, or an OR (AND)
gate with some (all) of its immediate predecessors in P1 or all (some) of its immediate
predecessors in Po.

A move in the game is made in accordance with a binary relation on configur-
ations defined as follows (where Po, P1, So, and S are arbitrary sets of vertices, and
Ro and R are arbitrary nonempty sets of vertices)"

(P, P, Po, , , v) (C, P $1, Po, R1, , v), for all configurations
(P, P, Po, , , v) that are not terminal and where v is of challenge type 0,

(P, P1, Po, , , v) - (C, P, Po- So, , Ro, v), for all configurations
(P, P, Po, , , v) that are not terminal and where v is of challenge type 1,

(C, P1, Po, R1, , V) b- (P, P, U R1, Po, , , v’), for all v’ e R, U {v},

(C, P,, Po, , Ro, v) - (P, P1, PoU Ro, , , v’), for all v’ e RoU {v}.

The game tree T is a maximal rooted tree whose nodes are labeled by configurations
of the game, whose root is labeled by the initial configuration, and whose edge relation
is given by -. Note that the leaves of the tree are labeled by terminal configurations.

A finite play of the game is a finite path in the game tree from the root to some
leaf labeled by the terminal configuration (P, P1, Po, , , v). It is a winningfinite play
for Player if v is a literal with value 1, or if v is an OR gate at least one of whose
immediate predecessors is in P1, or if v is an AND gate all of whose immediate
predecessors are in P1; otherwise it is a winning finite play for Player O. An infinite
path II in the game tree is a winning infinite play for the player (if either) that is the
Pebbler in only finitely many configurations on I-I.

A winning strategy for Player 1 (if it exists) is a subtree W of T such that:
(1) W contains the root of T;
(2) W contains exactly one child of every nonterminal node in W that is labeled

by a configuration in which it is Player l’s turn to move;
(3) W contains all children of every nonterminal node in W that is labeled by a

configuration in which it is Player O’s turn to move; and
(4) All paths in W are winning (finite or infinite) plays for Player 1.
A winning strategy for Player 0 is defined dually.
Let {a} accept the language L, where each member a of the family is an

augmented circuit with n inputs. The game on a with input x L f3 {0, 1}" can be
played simultaneously in p(n) space, r(n) rounds, and s(n) role switches if and only if
there is a winning strategy for Player 1 in which"

(1) Every pebbling configuration (P, P, Po, , , v) along every path satisfies

(2) On any path, there are at most r(n) edges (P, P, Po, , , v) (C, P-
$1, Po, R1, , v) with v or challenge type 0, and

(3) On any path, there are at most s(n) edges
(C, P1, Po, R, Ro, v) (P, P, P, f, , v’) having the challenge types of v and v’
unequal.

Resources on inputs x L are defined dually, considering winning strategies for
Player 0 in place of those for Player 1.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 575

Finally, un is pebbleable simultaneously in p(n) space, r(n) rounds, and s(n) role
switches if and only if, for all x of length n, the game on cn can be played simultaneously
in p(n) space, r(n) rounds, and s(n) role switches. Note that only the resources used
by the winning player are counted.

Theorems 19 and 20 demonstrate the intimate relationship between layered circuits
and pebbling.

THEOREM 19. Suppose {c,} is a family of (z, r, s + 1, p)-cireuits, where z, r, s, and
p may be functions of n. Then there is an assignment of challenge types to the vertices of
c, such that c, is pebbleable simultaneously in p space, r rounds, and s role switches.

Proof Any vertex in a layer with AND fan-in (OR fan-in) bounded by p is assigned
challenge type 0 (respectively, 1). Suppose c, outputs on input x. A winning strategy
for Player follows from the claim below. The winning strategy for Player 0 when c,
outputs 0 is dual.

CLAIM. Let v be the currently challenged vertex of c. Suppose v evaluates to
on input x, no predecessor of v is 0-pebbled, and the subcircuit induced by v and its
predecessors is a (z’, r’, s’+ 1, p’)-circuit. Then Player 1 can win the game with p’
pebbles, r’ rounds, and s’ role switches.

The claim is proved by induction on r’. The basis r’= 0 is immediate. The induction
depends on the role of Player 1, as follows.

Case 1. The challenge type of v is 0; i.e., v is in a layer with bounded AND fan-in.
Then Player 1 is the Pebbler, and begins by removing all 1-pebbles from the circuit.

Case 1.1. v is an oR gate. Then Player 1 pebbles any one immediate predecessor
u of v that evaluates to 1. (Note that Player does not lose immediately, as no
predecessors of u are 0-pebbled.) Player 0 must move the challenge to u in order not
to lose immediately. If the challenge type of u is 1, then a role switch occurs and s’
decreases by at least 1. In any case, the claim now follows from the induction hypothesis.

Case 1.2. v is an AND gate with bounded fan-in. Then Player 1 pebbles every
immediate predecessor of v. The claim follows as in Case 1.1.

Case 2. The challenge type of v is 1. Then Player 1 is the Challenger. If Player
0 never pebbles a predecessor of v that evaluates to 1, Player retains its challenge
on v and wins using no resources. Suppose Player 0 pebbles a predecessor of v that
evaluates to 1. Consider the first such move. Let u be such a predecessor of minimum
depth among the vertices that are pebbled. Player moves its challenge to u. Notice
that no predecessor of u is 0-pebbled. The depth of the challenged vertex is decreased
without Player 1 using any resources (with the possible exception of a role switch),
so the result again follows from the induction hypothesis. [3

THEOREM 20. Suppose a family {cn} of augmented circuits of size z is pebbleable
simultaneously in p space, r rounds, and s role switches, where z, p, r, and s may be

functions of n. Then there is a family {/3,} of ((r+l)Z(s+l)z(P),4r+5, s+l,
p + 1)-circuits that recognizes the same language as {c,}.

Proof Construction. has one vertex g(A, r, ro,) for every 0 <- r, r0 =< r, every
0=<=<s, and every configuration A=(t, P, Po, R, Ro, v) with +(P LJ R)<=p and
+(PoLJ Ro)<-p. r(ro) will be used to count the number of rounds in which Player
(respectively, 0) has been Pebbler, and will be used to count the number of role
switches that have occurred. If A (t, P, P0, R, Ro, v) is terminal with v a literal x,
then g(A, r, ro,) is the literal x. If A (t, P, Po, R, Ro, v) is terminal with appropri-
ate immediate predecessors of the challenged gate v in Pi, then g(A, r, ro,) is the
constant i. Otherwise g(A, r, ro,) is a gate of type oR (AND) if and only if in A it is
the turn of Player (respectively, 0). The output gate is g(/, 0, 0, 0), where 1 is the
initial configuration on c,. Let g(A,r,ro,) be a gate of /3,, where A=

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

576 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

(t, P1, Po, R1, Ro, v) and let A’=(t’, P, P’o, R’I, R’o, V’) satisfy A - A’. Fori{0,1}, let

ri-- r
if P and v is of challenge type 1- i,

otherwise,

if the challenge types of v and v’ are unequal,
otherwise.

If ri> r or #(Pi Ri)>p, then there is a wire from the constant 1-i to g(A, rl, ro, g)
(indicating that Player 1-i must win from A’, since the winner never exceeds its
resources). If ’> s, there is a wire from an arbitrary constant to g(A, rl, ro, g).
Otherwise, there is a wire from g(A’, r, r’o, ’) to g(A, rl, ro,).

Correctness. Suppose a, evaluates to on x. The fact that/3, evaluates to on x
is shown by arguing that there is an "accepting subcircuit" S of/3,, that is, a set of
vertices including the output all of which evaluate to 1. (The proof when a, evaluates
to 0 is dual.)

Since a, evaluates to 1 on x, there is a winning strategy W for Player 1 in which
Player uses at most p pebbles, r rounds, and s role switches. By construction, there
is a corresponding subcircuit S of/3, that contains the output, and in which one
immediate predecessor of each OR gate in S and all immediate predecessors of each
AND gate in S are also in S. The major difference between W and S is that some plays
(in particular, all infinite plays) in W are truncated in S due to the conditions r0> r
or #(PoU Ro) >p. (Neither rl> r nor #(PIU R1)>p nor s> s ever occurs in S, since
Player l’s strategy uses at most r rounds, at most p pebbles, and at most s role switches.)
All literals or constants of S that correspond to leaves of W evaluate to 1, since Player
wins at all leaves of W. Furthermore, any literal or constant of S that does not

correspond to a leaf of W is the constant by construction, since it arises from a
truncation due to ro> r or # (P0 R0)> p. Thus,/3, outputs 1.

Analysis. The size bound of/3, follows from the fact that the number of configur-
ations of the pebble game is z(p. The depth bound of 4r+ 5 follows from the fact
that either r0 or rl increases each round, and there are two moves (one for each player)
per round. The fan-in bound follows from the fact that, whenever it is the turn of
Player 0 (1) who is the Challenger in A, the AND fan-in (respectively, oR fan-in) of
g(A, rl, ro,) is at most p+ 1, since only p+ configurations (corresponding to the
possibilities for the next challenged vertex) follow from A by a move of the Challenger.
Finally, there is one layer for each of the s+ 1 values of g, since the same player
remains Challenger as long as remains unchanged. [3

Let ROUNDS, SWITCHES(r(n), s(n)) denote the set of languages each of which
is accepted by a nonuniform family of polynomial-size circuits pebbleable simul-
taneously with O(1) pebbles, r(n) rounds, and s(n) role switches.

COROLLARY 21.

ROUNDS, SWITCHES(r(n), s(n))

ROUNDS, SWITCHES(O(r(n)+ s(n) log n), 0).

Proof This follows from Theorems 17, 19, and 20, noting for the size bound that
r(n) and s(n) are n O(1).

The final corollary states an explicit threshold beyond which role switches appear
to add power. Equations (1) and (3) are the nonuniform analogues of Theorems 4 and
5 in [38].

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

TWO APPLICATIONS OF INDUCTIVE COUNTING 577

()
(2)
(3)

COROLLARY 22. For any >- 1,

nonuniform SACi= ROUNDS, SWITCHES(O(log n), 0)
ROUNDS, SWITCHES(O(log n), O(logi-1 n));

nonuniform AC= ROUNDS, SWITCHES(O(log n), O(log n)).

Proof Equation (1) follows from Theorems 19 and 20, since nonuniform SAC
is, by definition, the set of languages each of which is accepted by a family of
(n, O(log n), 1, O(1))-circuits. Equation (3) follows by the same argument, since
nonuniform AC is characterized similarly by (n, O(log n), O(log n), O(1))-
circuits. Equation (2) follows from Corollary 21.

4. Open problems. Figure indicates the relationships among space-bounded
complexity classes between NC and NC2. Since it is still possible that NCl= NC
(or indeed NC NP), there are no proven proper inclusions orincomparability results
among these classes.

In addition to the problems identified by Cook [7], we call attention to certain
questions suggested by this paper:

(1) Is SL closed under complementation? If so, then the U k CZL hierarchy
collapses to SL.

(2) Is RLP closed under complementation? If so, then RLP ZPLP. If not, what
is a new candidate for a language in RLP (or BPLP) that is not in ZPLP?

(3) Assuming that RLP NL RL ZPL, we see that the expected polynomial-
time bound is important in the case of errorless and one-sided error probabilistic
O(log n) space computations, whereas PL PLP in the case of two-sided unbounded
error. The case of two-sided bounded error remains open; that is, is BPL BPLP? Is
there a candidate for a language in BPLP (or BPL) that is not in NL?

It seems surprising that the NC AKS networks [1] provide the best known SAC
networks for Boolean sorting. An interesting question is whether we could exploit the
availability of unbounded fan-in OR gates to get a simpler O(n log n) size monotone
Boolean sorter, and/or one with a more favorable constant hidden in the big- O. Indeed,
size o(n log n) is not out of the question for this model. See Friedman 11 and Valiant
[35] for other recent approaches to threshold computation.

REFERENCES

[1] M. AJTAI, J. KOML6S, AND E. SZEMERIDI, Sorting in c log n parallel steps, Combinatorica, 3 (1983),
pp. 1-19.

[2] R. ALELIUNAS, R. M. KARP, R. J. LIPTON, L. Lov,sz, AND C. RACKOFF, Random walks, universal
traversal sequences, and the complexity of maze problems, in 20th Annual IEEE Symposium on
Foundations of Computer Science, San Juan, Puerto Rico, October 1979, pp. 218-223.

[3] P. BILLINGSLEY, Probability and Measure, John Wiley, New York, 1979.
[4] S. R. Buss, S. A. COOK, P. W. DYMOND, AND L. HAY, The log space oracle hierarchy collapses, Tech.

Report CS103, Department of Computer Science and Engineering, University of California, San
Diego, CA, 1987.

[5] A. K. CHANDRA, D. C. KOZEN, AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28
(1981), pp. 114-133.

[6] S. A. COOK, Characterizations of pushdown machines in terms of time-bounded computers, J. Assoc.
Comput. Mach., 18 (1971), pp. 4-18.

[7] ., A taxonomy ofproblems with fast parallel algorithms, Inform. and Control, 64 (1985), pp. 2-22.
[8] P. W. DYMOND AND S. A. COOK, Hardware complexity and parallel computation, in 21st Annual IEEE

Symposium on Foundations of Computer Science, Syracuse, NY, October 1980, pp. 360-372.
[9] R. W. FLOYD, Algorithm 97: shortest path, Comm. ACM, 5 (1962), p. 345.

[10] S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, in Proc. 10th Annual ACM
Symposium on Theory of Computing, San Diego, CA, May 1978, pp. 114-118.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

578 BORODIN, COOK, DYMOND, RUZZO, AND TOMPA

[11] J. FRIEDMAN, Constructing O(n log n) size monotone formulae for the k-th elementary symmetric
polynomial ofn Boolean variables, in 25th Annual IEEE Symposium on Foundations of Computer
Science, Singer Island, FL, October 1984, pp. 506-515.

[12] J. GILL, Computational complexity of probabilistic Turing machines, SIAM J. Comput., 6 (1977), pp.
675-695.

[13] L. M. GOLDSCHLAGER, The monotone and planar circuit value problems are log space complete for P,
SIGACT News, 9 (1977), pp. 25-29.

[14] J. HARTMANIS, The structural complexity column, Bull. European Assoc. Theoret. Comput. Sci., 33
(1987), pp. 26-39.

[15] L. A. HEMACHANDRA, The strong exponential hierarchy collapses, in Proc. 19th Annual ACM Sym-
posium, on Theory of Computing, New York, NY, May 1987, pp. 110-122.

[16] R. R. HOWELL, L. E. ROSIER, AND H.-C. YEN, Unary minimum costpath problems, alternating logspace,
and Ruzzo, Simon and Tompa’s DLNL, Department of Computer Sciences TR-87-13, University of
Texas, Austin, TX, May 1987.

[17] N. IMMERMAN, Nondeterministic space is closed under complementation, SIAM J. Comput., 17 (1988),
pp. 935-938.

[18] Upper and lower bounds onfirst order expressibility, J. Comput. System Sci., 25 (1982), pp. 76-98.
[19] B. JENNER AND B. KIRSIG, Characterizing the polynomial hierarchy by alternating auxiliary pushdown

automata, University of Hamburg, Federal Republic of Germany, 1987.
[20] H. t NG, On probabilistic time and space, in Automata, Languages, and Programming, Springer-Verlag,

Berlin, 1985, pp. 310-317.
[21] S. C. KLEENE, Representation of events in nerve nets andfinite automata, in Automata Studies, C. E.

Shannon and M. McCarthy, eds., Princeton University Press, Princeton, NJ, 1956, pp. 3-40.
[22] K.-J. LANGE, B. JENNER, AND B. KIRSIG, The logarithmic alternation hierarchy collapses" AZ AH,

in Automata, Languages, and Programming, Springer-Verlag, Berlin, 1987, pp. 531-541.
[23] H. R. LEWIS AND C. H. PAPADIMITRIOU, Symmetric space-bounded computation, Theoret. Comput.

Sci., 19 (1982), pp. 161-187.
[24] S. R. MAHANEY, Sparse complete sets for NP: Solution of a conjecture of Berman and Hartmanis, J.

Comput. System Sci., 25 (1982), pp. 130-143.
[25] J. H. REI F, On synchronous parallel computations with independent probabilistic choice, SIAM J. Comput.,

13 (1984), pp. 46-56.
[26] ., Symmetric complementation, in Proc. 14th Annual ACM Symposium on Theory of Computing,

San Francisco, CA, May 1982, pp. 201-214.
[27] W. L. Rtzzo, Tree-size bounded alternation, J. Comput. System Sci., 21 (1980), pp. 218-235.
[28] W. L. Ruzzo, J. SIMON, AND M. TOMPA, Space-bounded hierarchies and probabilistic computations,

J. Comput. System Sci., 28 (1984), pp. 216-230.
[29] W. J. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J. Comput.

System Sci., 4 (1970), pp. 177-192.
[30] U. SCHtNING AND K. WAGNER, Collapsing oracle hierarchies, census functions, and logarithmically

many queries, in 5th Annual Symposium on Theoretical Aspects of Computer Science, Springer-
Verlag, Berlin, 1988, pp. 91-97.

[31] J. SIMON, Space-bounded probabilistic Turing machine complexity classes are closed under complement,
in Proc. 13th Annual ACM Symposium on Theory of Computing, Milwaukee, WI, May 1981, pp.
158-167.

[32] I. H. SUDBOROUGH, On the tape complexity of deterministic context-free languages, J. Assoc. Comput.
Mach., 25 (1978), pp. 405-414.

[33] R. SZELEPCSINYI, The method offorcingfor nondeterministic automata, Bull. European Assoc. Theoret.
Comput. Sci., 33 (1987), pp. 96-100.

[34]. S. TODA, Z2SPACE(n) is closed under complement, J. Comput. System Sci., 35 (1987), pp. 145-152.
[35] L. G. VALIANT, Short monotoneformulaefor the majorityfunction, J. Algorithms, 5 (1984), pp. 363-366.
[36] H. VENKATESWARAN, Characterizations of parallel complexity classes, Ph.D. thesis, University of

Washington, Seattle, WA, August 1986; available as Department of Computer Science Tech. Report
No. 86-08-06.

[37] Properties that characterize LOGCFL, in Proc. 19th Annual ACM Symposium on Theory of
Computing, New York, NY, May 1987, pp. 141-150.

[38] H. VENKATESWARAN AND M. TOM PA, A new pebble game that characterizes parallel complexity classes,
SIAM J. Comput., this issue, pp. 533-549.

[39] S. WARSHALL, A theorem on Boolean matrices, J..Assoc. Comput. Mach., 9 (1962), pp. 11-12.
[40] D. J. A. WELSH, Randomised algorithms, Discrete Appl. Math., 5 (1983), pp. 133-145.

D
ow

nl
oa

de
d

07
/0

8/
13

 to
 1

28
.1

00
.3

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

