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THE SEARCHLIGHT SCHEDULING PROBLEM*

KAZUO SUGIHARA, ICHIRO SUZUKI:, AND MASAFUMI YAMASHITA

Abstract. The problem of searching for a mobile robber in a simple polygon by a number of searchlights
is considered. A searchlight is a stationary point which emits a single ray that cannot penetrate the boundary
of the polygon. The direction of the ray can be changed continuously, and a point is detected by a searchlight
at a given time if and only if it is on the ray. A robber is a point that can move continuously with unbounded
speed. First, it is shown that the problem of obtaining a search schedule for an instance having at least one
searchlight on the polygon boundary can be reduced to that for instances having no searchlight on the
polygon boundary. The reduction is achieved by a recursive search strategy called the one-way sweep
strategy. Then various sufficient conditions for the existence of a search schedule are presented by using
the concept of a searchlight visibility graph. Finally, a simple necessary and sufficient condition for the
existence of a search schedule for instances having exactly two searchlights in the interior is presented.
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1. Introduction. We consider the problem of searching for a mobile robber in a
simple polygon by a number of searchlights. A searchlight is a stationary point which
emits a single ray. The ray cannot penetrate the boundary of the polygon, but its
direction can be changed continuously. A point is detected at a given time if and only
if it is on the ray of a searchlight. A robber is a point which can move continuously
with unbounded speed. We refer to this problem as the searchlight scheduling problem.
The objective is to decide whether there exists a search schedule for detecting a robber
regardless of its movement, for a given instance. A possible application ofthe searchlight
scheduling problem is security enforcement in industrial plants where searchlights or
TV cameras are used to find an intruder.

In the searchlight scheduling problem, the locations of searchlights are given as
part of a problem instance. Obviously, there exists a search schedule for an instance
only if every point in the given polygon is visible from at least one searchlight. The
problem of obtaining a set of locations of searchlights having this property is known
as the art gallery problem [2]-[6].

First, we present a recursive search strategy called the one-way sweep strategy,
and show that this strategy can be used to reduce the problem of obtaining a search
schedule for an instance having at least one searchlight on the polygon boundary to
that for instances having no searchlight on the polygon boundary. Next, we give a
number of sufficient conditions for the existence of a search schedule by using the
concept of a searchlight visibility graph which represents the visibility relations among
searchlights. Finally, we consider the case in which no searchlight is located on the
polygon boundary, and present a simple necessary and sufficient condition for the
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existence of a search schedule for instances having exactly two searchlights in the
interior.

It is not a goal of this paper to investigate the computational complexity of the
problem. We also note that to our knowledge, the searchlight scheduling problem has
not been addressed in the literature.

The problem is stated formally in 2. The one-way sweep strategy is described
in 3. Searchlight visibility graphs and a number of sufficient conditions for the
existence of a search schedule are discussed in 4. Instances having two searchlights
in the interior are considered in 5. Concluding remarks are found in 6.

2. Problem formulation. We denote by b(R) the boundary of a two-dimensional
region R. The term simple polygon is used to denote the union of a closed simple
polygonal chain and its interior. For a simple polygon P and points a, be b(P),
[a, b]b, (or (a, b)b,)) denotes the closed (or open) continuous segment of b(P) from
a to b taken in the counterclockwise direction.

An instance of the searchlight scheduling problem is a pair S (P, L), where P
is a simple polygon and L is a set of distinct points P called searchlights. A point
x is said to be visible from a searchlight if and only if lx

_
P. Note that a searchlight

does not block visibility from other searchlights. We denote by V the set of points
visible from I.

DEFINITION 1. A schedule of a searchlight lL is a continuous function
f/" [0, T] , where [0, T] is an interval of real time and is the set of real numbers.
The ray of at time [0, T] is the intersection of V/ and the semi-infinite ray with
direction fl(t) emanating from /.1 We say that is aimed at a point x P at time if
x is on the ray of/. A point x P is said to be illuminated at time if there exists a
searchlight which is aimed at x.

DEFINITION 2. TWO points in P are said to be separable at time [0, T] if every
path between them within P contains an illuminated point; otherwise they are said to
be nonseparable.

DEFINITION 3. Let x P be any point.
(1) At time zero, x is contaminated if and only if x is not illuminated.
(2) At time 0 < t-< T, x is contaminated if and only if there exists a point y P

such that (1) y is contaminated at some 0 =< t’< t, (2) y is not illuminated at any time
in the interval [t’, t], and (3) x and y are nonseparable at t.
A point which is not contaminated is said to be clear. A region R

_
P is said to be

contaminated if it contains a contaminated point; otherwise it is clear.
It is easy to see that x P is contaminated at [0, T] if and only if a robber

who has not been detected in the interval [0, t] can be located at x at t, where a robber
is detected only when it is illuminated. Definition 3 is based on the assumption that
a robber can move continuously with unbounded speed.

By definition, an illuminated point is clear, and a contaminated point remains
contaminated until it is illuminated. The following lemma is immediate from the
definition.

LEMMA 1. At time [0, T], if two points x and y P are nonseparable, then x is
contaminated if and only if y is contaminated.

By Lemma 1, a maximal contaminated region is a nonempty connected open
region not containing any illuminated point, and hence it cannot consist-only of points
on the boundary of P. Therefore we have Lemma 2.

The value off,(t) is taken in radian. Directions are measured counterclockwise from the positive x-axis.
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LEMMA 2. Any maximal contaminated subregion ofP contains a point in the interior
of P.

Our objective is to detect a robber in P regardless of the.movement. Thus we have
Definition 4.

DEFINITION 4. F {f/ If/ [0, T] is a schedule of l L} is a search schedule
for S if P is clear at T.

In the following, we describe a schedule of a searchlight by using expressions
such as "aim at a point x" and "turn clockwise," instead of specifying a function
f/ explicitly.

Example 1. Consider the instance shown in Fig. 1. Searchlights l and 12 are aimed
at point a at time zero. (b, d)b(p) is a maximal open segment of b(P) not visible from
11. If we turn ll counterclockwise from a to b without turning 12, then the shaded
region determined by segment [a, b]b(p) and the rays of l and 12 becomes clear. Since
triangle bcd is still contaminated, the clear region becomes contaminated if l is turned
counterclockwise any further.

d

FIG. 1.

d

clear

a

Illustration for Example 1.

Example 2. The following is a search schedule for the instance shown in Fig. 2(a).
Clear regions are shown shaded in Fig. 2.

(1) Aim 12 at a.
(2) Aim 13 at a and turn it counterclockwise until it is aimed at b (Fig. 2(b)).
(3) Aim l at b and turn it counterclockwise until it is aimed at c (Fig. 2(c)).
(4) Turn 13 counterclockwise until it is aimed at d (Fig. 2(d)).
(5) Aim l at g.
(6) Turn 12 clockwise until it is aimed at h (Fig. 2(e)).
(7) Turn l counterclockwise until it is aimed at h (Fig. 2(f)).
(8) Turn l clockwise until it is aimed at g (Fig. 2(g)).
(9) Turn 13 counterclockwise until it is aimed at e (Fig. 2(h)).

(10) Aim 12 at e and turn it counterclockwise until it is aimed at f
(11) Turn 13 counterclockwise until it is aimed at g (Fig. 2(i)).
An instance for which there exists no search schedule is given in Example 4 at

the end of 5.
Throughout this paper we assume that any given instance S (P, L) satisfies the

following conditions (P1) and (P2), since obviously, otherwise there cannot exist any
search schedule.

(P1) P LJ IL Vl. (Every point in P is visible from at least one searchlight.)
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11

b b

(a) (b) (c)

b

(d) (e) (f)

(g) (h) (i)

FIG. 2. A search schedule for an instance of the searchlight scheduling problem.

(P2) For each e L, either b(P) or e Vr for some l’ L-{l}. (Every searchlight
is either on the boundary of P or visible from another searchlight.)

3. One-way sweep strategy. In this section we show that the problem of obtaining
a search schedule for an instance having at least one searchlight on the polygon
boundary can be reduced to that for instances having no searchlight on the polygon
boundary. The reduction is achieved by a recursive search strategy called the one-way
sweep strategy.

It is convenient to describe the one-way sweep strategy as a method for clearing
a subregion of P determined by the rays of searchlights. For this reason, we begin the
discussion with the following definition.
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DEFINITION 5. Let S (P, L) be an instance. Semiconvex subpolygons of P suppor-
ted by a set of searchlights at a given time are defined recursively as follows.

(1) P is a semiconvex subpolygon of P supported by at any time t-> 0.
(2) Let R

_
P be a semiconvex subpolygon of P supported by K c L at time _-> 0.

For an arbitrary searchlight L- K and an arbitrary maximal open segment (a, b)b(P)
of b(P) not visible from l, let Q be the closed simple region whose boundary is
[a, b]b(p)l,..J ba. If (1) R f-I Q and (2) is aimed at a and b at t, then R f"I Q is a
semiconvex subpolygon of P supported by K U {/} at t.

In Fig. 3, the boundary of a semiconvex subpolygon R supported by K {/1,12}
is shown in thick lines.

R\ Jb".................
/bin ............................ bI

FIG. 3. The one-way sweep strategy OWSS R, K, 1), where K {11,12}.

If R is supported by K at time t, then (1) it is. "enclosed" by a segment of b(P)
and the rays of (some of) the searchlights in K, and (2) the interior of R is not visible
from any searchlight in K. In the following, the qualifier "at time t" may be omitted
when it is understood from the context. The term "semiconvex" is due to the following
fact which is straightforward from definition: any reflex vertex of R is a vertex of P.

Let S- (P, L) be an instance. Let R be a semiconvex subpolygon of P supported
by K c L. Suppose that there exists a searchlight L-K such that

(1) ! R- b(R) (l is either on the boundary of R or external to R), and
(2) (R-b(R))f’l V! (at least one point in the interior of R is visible from l).

Let W be the smallest wedge with apex such that R (’l V/_ W. Let dR and d/ be the
bounding semi-infinite rays of W where the interior of W lies to the left of dR and to
the right of d/. Let (aJ, bj)b(R)b(R)-Vt, l<-j<-m, be the maximal open segments
of b(R) not visible from l, where the line segments albl, a2b2,’", amb, appear in
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counterclockwise order within W when viewed from /. Let Rj be the closed simple
region whose boundary is [aj, bj]bR (-J bjaj (see Fig. 3). Then the one-way sweep strategy
OWSS (R, K, l) for R (with respect to K and l) is the following.

OWSS (R, K, l)
1. Aim in the direction of
2. forj=l to m do

2.1. Turn counterclockwise until it is aimed at aj and
2.2. If there exists a searchlight 1’ L-(K LJ {1}) such that 1’: Rj- b(Rj) (1’ is

either on the boundary of Rj or external to Rj) and (Rj-b(Rj))CI Vl,#
(at least one point in the interior of Rj is visible from 1’), then execute
OWSS (Rj, K CJ {1}, 1’). Otherwise, if there exists a search schedule for the
instance SRj (Rj, L Rj), then execute it; otherwise output failure and
halt.

3. Turn counterclockwise until it is aimed in the direction of d/.
In OWSS (R, K,/), we clear R by sweeping it by in one direction, in such a way

that every region Rj not visible from is cleared in step 2.2 (if possible) without turning
any searchlight in K t_J {1}. Since R is supported by K, it is easy to see that if each
can be cleared without turning any searchlight in K U {l}, then R becomes clear when
step 3 is completed.

In step 2.2, to clear Rj we apply the one-way sweep strategy recursively if there
exists a searchlight I’ L-(K U {1}) which is not in the interior of Rj and from which
at least one point in the interior of Rj is visible. Note that the idea of applying the
strategy to Rj is valid, since Rj is a semiconvex subpolygon of P supported by K U {1}
when is aimed at aj and bj. If there exists no such l’, then the interior of Rj is visible
only from the searchlights in the interior of Rj (and hence there exists no searchlight
on the boundary of Rj, since at least one point in the interior of Rj would be visible
from any searchlight on the boundary of Rj). In this case we regard SRi--
as a separate instance and clear Rj by executing a search schedule for SR., if such a
search schedule exists. If there exists no search schedule for SR.i, then the strategy
outputs failure and halts.

THEOREM 1. Let S (P, L) be an instance. Let R be a semi-convex subpolygon of
P supported by K c L. Suppose that there exists a searchlight L-K such that
R- b(R) (1 is either on the boundary of R or external to R) and (R- b(R))
(at least one point in the interior of R is visible from l). Then R can be cleared without
turning any searchlight in K if and only if there exists a search schedule for the instance
So (Q, L f3 Q) for every semiconvex subpolygon Q of R found during the execution of
OWSS R, K, l) to which the strategy cannot be applied recursively.

Proof (If) Execute OWSS (R, K, l). As is discussed above, R becomes clear when
the execution terminates, since (1) R is supported by K and (2) every semiconvex
subpolygon Q of R found during the execution of OWSS (R, K, l) can be cleared
either by a recursive application of the one-way sweep strategy or the execution of a
search schedule for the instance So (Q, L fq Q).

(Only if) Let Q be a semiconvex subpolygon Q of R found during the execution
of OWSS (R, K, l) to which the strategy cannot be applied recursively. Let F=
{f" [0, T]- [l L-K} be a collection of schedules which clears R without turning
any searchlight in K starting from the state in which R is supported by K. Suppose
that there exists no search schedule for So (Q, L fq Q). Then Q is contaminated when
the execution of Fo {f F]l Q} terminates at T, and hence by Lemma 2 there exists
a contaminated point x in the interior of Q. Here, since the interior of Q is visible
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only from the searchlights in the interior of Q, for any 0-<_ _-< T, a point in the interior
of Q is illuminated at during the execution of Fo if and only if it is illuminated
at during the execution of F. This, together with Lemma 2, implies that x is contam-
inated when the execution of F terminates at T. This contradicts the assumption that
F clears R. [3

Let S (P, L) be an instance having at least one searchlight on the boundary of
P, and let L b(P) be an arbitrary searchlight on the boundary of P. Since P is a
semiconvexsubpolygon of P supported by and at least one point in the interior of
P is visible from l, we can execute OWSS (P, , l). Then by Theorem 1, there exists
a.search schedule for S if and only if there exists a search schedule for the instance
So (Q, L Q) for every semiconvex subpolygon Q of P found during the execution
of OWSS (P, , l) to which the strategy cannot be applied recursively. Since there
exists no searchlight on the boundary of such Q, the problem of finding a search
schedule for an instance having at least one searchlight on the polygon boundary has
been reduced to that for instances having no searchlight on the polygon boundary.

Example 3. Consider the instance S (P, {ll, 12, 13,/4}) shown in Fig. 4. It is easy
to see that the one-way sweep strategy can be recursively applied to every semiconvex
subpolygon of P found during the execution of OWSS (P, , 11), and hence by
Theorem 1 there exists a search schedule for S.

P
FIG. 4. An instance having a search schedule.

4. Searchlight visibility graphs. In this section we present a number of simple
sufficient conditions for the existence of a search schedule. The conditions are stated
by using the concept of a searchlight visibility graph introduced below.

DEFINITION 6. Let S (P, L) be an instance. The searchlight visibility graph of S
is an undirected graph SVG (S)= (L, E) with vertex set L and edge set E such that
for any and l’ L, (l, l’) E if and only if l’ and V/,.

THEOREM 2. Let S (P, L) be an instance. There exists a search schedule for S if
for every connected component Gi (Li, Ei) of SVG (S), there exists at least one search-
light Li such that b(P).
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Proof Suppose that we execute OWSS (P, , 1), where L b(P) is an arbitrary
searchlight on the boundary of P. By Theorem 1, it suffices to show that the one-way
sweep strategy can be applied recursively to any semiconvex subpolygon Q of P found
during the execution of OWSS (P, , l). Suppose that the strategy cannot be applied
to some Q. Consider the instance So (Q, L 71 Q). Note that the interior of Q is visible
only from the searchlights in the interior of Q and there exists no searchlight on the
boundary of Q. This observation, together with condition (P1), implies that (1) there
exists at least one searchlight in the interior of Q, (2) any connected component of
SVG(So) is a connected component of SVG(S), and (3) Lib(P)= for any
connected component Gi (L, Ei) of SVG (So). This contradicts the assumption. [3

LEMMA 3. Let S =(P, L) be an instance. For an arbitrary searchlight L, let
(a, b)b(P) b(P)- V! be a maximal open segment of b(P) not visible from l, and let R
be the closed simple region whose boundary is [a, b]b(p) ba. If SVG (S) is connected,
then R can be cleared while is kept aimed at a and b.

Proof Aim at a and b (Fig. 5). Then R is a semiconvex subpolygon of P
supported by {/}. By condition (P1) and the connectedness of SVG (S), there exists a
searchlight l’ such that l’.R-b(R) and (R-b(R)) VI,. Thus we can execute
OWSS (R, {/}, l’). By Theorem 1, it suffices to show that the one-way sweep strategy
can be applied recursively to any semiconvex subpolygon Q of R found during the
execution of OWSS (R, { 1}, l’). Suppose that the strategy cannot be applied recursively
to some Q. By condition (P1) and the fact that the interior of Q is visible only from
the searchlights in the interior of Q, there exists at least one searchlight in the interior
of Q. But then the searchlights in the interior of Q are not visible from any searchlight
outside of Q, and thus SVG (S) cannot be connected. [3

FIG. 5. Illustration for Lemma 3" is aimed at a and b.

THEOREM 3. Let S= (P, L) be an instance. If SVG (S) is connected, then there
exists a search schedule for the instance S’--(P, L {/’}), where l’6 P is an arbitrary
searchlight not in L.

Proof By condition (P1), l’ is visible from some searchlight l L. Let p be the
first intersection of b(P) and the ray emanating from in the direction from l’ to
(Fig. 6). Aim and l’ at p, and then turn counterclockwise through a rotation of 2r.
During this rotation, whenever is aimed at points a and b b(P) such that (a, b)b(p
b(P) VI is a maximal open segment of b(P) not visible from l, clear the closed region
R whose boundary is [a, b]b(p .J ba without turning I. This is possible by Lemma 3,
since SVG (S) is connected and R is a semiconvex subpolygon of P supported by {l}
when is aimed at a and b. Since l’ need not be turned while R is being cleared, P
becomes clear when the rotation of is completed. [3
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b R

FIG. 6. An additional searchlight l’.

THEOREM 4. Let S P, L) be an instance. If SVG S) is connected and there exist
two searchlights and l’ L such that Vt fq Vr f, then there exists a search schedule
for P.

Proof Let (a, b)bp)_ b(P)- V! be the maximal open segment of b(P) not visible
from such that l’ R, where R is the closed simple region whose boundary is
[a, b]bp) ba. Similarly, let (a’, b’)bp_ b(P)-V/, be the maximal open segment of
b(P) not visible from l’ such that R’, where R’ is the closed simple region whose
boundary is [a’, b’]bpt-J b’a’ (Fig. 7). Since SVG (S) is connected, by Lemma 3 we
can aim at a and b and then clear R without turning I. At this state P-R’ is clear,
since Vt V/,= . Next, we aim l’ at a’ and b’ and clear R’ without turning l’. Again,
this is possible by Lemma 3. Then P becomes clear. [3

5. Instances having two interior searchlights. In this section we present a simple
necessary and sufficient condition for the existence of a search schedule for instances
having exactly two searchlights in the interior.

THEOREM 5. Let S=(P, {/1,/2}) be an instance such that ll, 12: b(P). Letp (or q)
be the first intersection of the boundary ofP and the extension of l112 in the direction from
l to ll (or from ll to le). Let Wu-[p, q]b<P> and Wl=[q,p]b<p>. There exists a search
schedule for P if and only if one of the following conditions holds.

b O

FIG. 7. Illustration for Theorem 4.
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(1) There exist points cu6 Wu and Cl W’t such that [Cu, Cl]b(p) CC VI, and
It,, C.]b() =_ v,.

(2) 1112(3 Wu # ( and 112(3 W! (.
(3) l12 0 W, and either W

_
Vi, or WI Vt2.

(4) lleO W! ( and either Wu
_

Vl, or W, VI2.
Note that S is assumed to satisfy conditions (P1) and (P2) given at the end of

2. Since l12fqb(P)=f holds if there exist points cue W, and ce W such that
[c,, C]b(p) V6 and [ct, c]b(p)_ V, Theorem 5 follows from Lemmas 4 and 5 given
below.

LEMMA 4. If llzf’)b(P) Q3, then there exists a search schedule for P if and only
if there exist points c, W, and ct Wt such that [c,, Cl]b(p)___. Vii and [Cl, Cu]b(p)___ Vl2.

Proof (If) The following is a search schedule for P (Fig. 8).
(1) Aim 1l at c,.
(2) Aim 12 at
(3) Turn ll counterclockwise until it is aimed at q.
(4) Turn lz clockwise until it is aimed at p.
(5) Turn l counterclockwise until it is aimed at Cl.
(6) Turn 12 clockwise until it is aimed at ct.
(Only if) Assume that such c, W, and Cl W’t do not exist. We consider the case

in which there exist maximal open segments (al, b)b(p W,- V and (a2, b2)b(p)
W,- Vt, not visible from 12 and ll, respectively, such that a, b, a_, and b2 appear in
counterclockwise order in W, (Fig. 9). The argument for the case in which there exist
similar open segments in W/ is basically the same. By llf-’l b(P)= and condition
(P1), we have a, bl, a2, b2C:pq. We may assume that a, b, a2, and b2 have been
chosen so that [p, al]b(p)__ Vie and [b, q]b(P) Vt,. For i= 1,2, let Ri be the closed
simple region whose boundary is [ai, bi]b(p)J bias. Let Ro be the closed region whose
boundary is W LJ --.

Before we proceed, we prove the following proposition.
PRO’POSITION 1. In any search schedule for P, if R is changed from contaminated

to clear at time t, then there exists some 6 > 0 such that in the interval t-6, t), is
aimed at a point in (al, bl)b(p) and lz is aimed at a point in [p, al]b(p).

Cu

FIG. 8. Points c. and ct.



1034 K. SUGIHARA, I. SUZUKI, AND M. YAMASHITA

R2 R1

b2// aI Wu

q P

R0

FIG. 9. Illustration for the proof of Lemma 4.

Proof Let 6 > 0 be any value such that R1 is contaminated in [t-6, t). Suppose
that in [t-6, t), either 11 is not aimed at any point in (a, b)b(p) or 12 is not aimed at
any point in [p, a]b(p) (Fig. 10). At any time in It-6, t), since R1 is contaminated
and any two points in R1 which are not illuminated are nonseparable, by Lemma 1
any point in R which is not illuminated is contaminated. Then it is impossible
to change R1 from contaminated to clear at t, since contaminated points remain
contaminated until they are illuminated. [3

The proof of the following proposition is basically the same as that of
Proposition 1 and is thus omitted.

PROPOSITION 2. In any search schedule for P, if R2 is changed from contaminated
to dear at time t, then there exists some 6 > 0 such that in the interval t- 3, t), 2 is
aimed at a point in (a2, bz)b(p) and 11 is aimed at a point in [b, q]b(P).

We return to the proof of Lemma 4. Assume that there exists a search schedule
for P. Let F be a search schedule in which the total number of times R1 and R2 are
changed from contaminated to clear is smallest among all search schedules. Suppose
that during the execution of F, R is changed from contaminated to clear at t and R
remains clear after q. Since R1 and Rz cannot be changed from contaminated to clear
simultaneously by Propositions 1 and 2, without loss of generality assume that R is
contaminated at or at some time after tl. Let t2 > tl be the first time after tl at which
R2 is changed from contaminated to clear.

R1

a1

FIG. 10. Illustration for the proof of Proposition 1; any two points in R which are not illuminated are
nonseparable.



THE SEARCHLIGHT SCHEDULING PROBLEM 1035

First, we show that both Ro and R2 are contaminated at tl. Let 61 > 0 be a value
satisfying the conditions of Proposition 1 with respect to tl, that is, 11 is aimed at a
point in (al, bl)b(p) and 12 is aimed at a point in [p, al]b(p) in [q-- 61, tl). Then by the
assumption that 1112("1 Wt , in [tl- 6, tl) any two points in Ro R2 which are not
illuminated are nonseparable, and hence by Lemma 1 either Ro and Rzare both clear
or both contaminated. Suppose that Ro and R2 are clear in tl- 61, t), and hence by
Lemma 1 the points in Rot3 R2 are separable from any contaminated point. Since
[P,a]b(P) VI2 and 11 W/=, there are only two possibilities at any time in
[tl-6,tl).

Case 1. 12 is not aimed at al, and the region determined by some segment of
[13, bl)b(p) and the rays of 11 and 12 is the only contaminated region (Fig. 11).

Case 2. l is aimed at al, and some of the regions determined by some segments
of [al, a2]b(p) and the rays of ll and 12 are the only contaminated regions (Fig. 12).
(Without the assumption that [p, al]b(p) Vl2, there may exist a contaminated region
determined by the ray of 12 and some segments of [p, al]b(p). Also, if
then there may exist a contaminated region determined by the ray of 12 and some
segments of W/.) In Case 1, P can be cleared by turning 11 and l to al clockwise and
counterclockwise, respectively. In Case 2, the contaminated regions are visible from
ll by condition (P1), and thus P can be cleared without changing any of R1 and R
from clear to contaminated after tl. In either case, there exists a search schedule for
S in which the number of times R1 and R2 are changed from contaminated to clear
is smaller than that in F. Since this contradicts the assumption on F, it cannot be the
case that Ro and R are clear in [tl- 61, tl). Thus both Ro and R2 are contaminated
in t- 61, tl). Then, since by Proposition 1 it is impossible to change either of Ro and

cle ntaminated

FIG. 11. Case in [tl-6, t) in the proof of Lemma 4.

contaminated

a1

clear

FIG. 12. Case 2 in [t-6, t) in the proof of Lemma 4.
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R2 from contaminated to clear at tl, both Ro and R2 are contaminated at tl. Also,
note that by the argument given above, q is contaminated at t since a2, b2 : pq.

Let 62 > 0 be a value satisfying the conditions of Proposition 2 with respect to t2,
that is, 12 is aimed at a point in (a2, bz)b(p) and 1 is aimed at a point in [b2, q]b(P) in
t2-62, t2). Then by the assumption that lll2 W/- , in t2-62, t2) any two points

in Ro R which are not illuminated are nonseparable. Thus by Lemma and the
assumption that R1 remains clear after t, Ro is clear in [t2-62,

In summary, we have found that R1 is clear in [tl, t2], R2 is contaminated in
[tl, t2), Ro is contaminated at t, and Ro is changed from contaminated to clear in
[tl, t2). In the following we show that at least one of p and q is contaminated at any
time in [tl, t2), and hence R0 cannot become clear in [t, t2).

Since in [t, t2) R1 is clear and R2 is contaminated, by Lemma 1 the points in R
should be separable from any contaminated point in R2. Thus we have Proposition 3.

PROPOSITION 3. In the interval t,
(1) Whenever Ii is aimed at p, 12 is aimed at a and bl (Fig. 13), and
(2) Whenever, 12 is aimed at q, ll is aimed at a2 and b2.
Also, by Lemma 1, a, b, a2, b2-pq and the condition on R1 and R2, we have

Proposition 4.
PROPOSITION 4. In the interval [tl, t2)
(1) Whenever ll is aimed at q, 12 is aimed at a point in [b, a2] (Fig. 14), and
(2) Whenever 12 is aimed at p, ll is aimed at a point in b, a2].
Furthermore, since a, bl, a2, b2 --, we have Proposition 5.
PROPOSITION 5. At any time, if neither p nor q is illuminated, then p and q are

nonseparable.
By al, bl, a2, b2 and Propositions 3 and 4, (1) at most one of p and q is

illuminated at any time in [tl, t2), and (2) if p and q (or q and p) are illuminated at

a1
b1

FIG. 13. Illustration for Proposition 3; 11 is aimed at p.

a b1

FIG. 14. Illustration for Proposition 4; 11 is aimed at q.
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sl and s2 for some S ( S2 < t2, respectively, then there exists some s < < s2 such
that neither p nor q is illuminated at t. This observation, together with Proposition 5,
Lemma 1, and the fact that q is contaminated at tl, implies that p and q cannot
be clear simultaneously in [t, t2). Thus Ro cannot be clear in [tl, t2). This is a
contradiction.

LEMMA 5. If l12f3 b(P) (, then there exists a search schedule for P if and only
if one of the following conditions holds:

(1) l12f-] Wu ( and l12fq Wt (.
(2) l12 (q W,, ( and either Wt V or W

_
V2.

(3) l12 fq Wt and either Wu
_

V, or Wu
_

Vt2.
Proof (If) Note that l12 P by condition (P2). The following is a search schedule

for P if 1112 fq Wu and l 12 71 W (Fig. 15).
(1) Aim l at q.
(2) Aim 12 at p.
(3) Turn l counterclockwise through a rotation of 27r.
(4) Turn 12 counterclockwise through a rotation of 27r.

If llzf] W, ( and Wt___ Vt,, then P can be cleared by the following (Fig. 16).
(1) Aimlatq.
(2) Aim l at p.
(3) Turn 11 clockwise through a rotation of 27r.
(4) Turn 12 counterclockwise through a rotation of

Search schedules for other cases are similar and are thus omitted.
(Only if) Since the argument is similar to that in the (only if) part of Lemma 4,

we only give an outline. Consider the case in which l Iz W, , l l (q W , and

Wu

FG. 15. I 12 (-’1 W ( and I I 0 Wt (.

Wu

FG. 16. ll2 W,, ( and Wt_ V6.
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W/ V/, for 1, 2. The argument for the other case (1112 0 Wu , 1112 f) W/ , and
W, V/, for i= 1, 2) is similar and is thus omitted.

Since ll,l:,_b(P) and lll2(q W,(, there exist maximal open segments
(al, bl)be) W,- VI2 and (a2, b2)be) W,- V/1 not visible from 12 and 11, respectively,
such that al, bl, a2, and b2 appear in counterclockwise order in W (Fig. 17). By
condition (P1), if bl a2 then bla2_ b(P). For i= 1,2, let Ri be the closed simple
region whose boundary is [ai, bi]bp) ba. Let Ro be the closed region whose boundary
is W/U --.

R2 R1

/
b

b2
"..

2

/ll’ P
al

Ro
FIG. 17. Illustration for the proof of Lemma 5.

Assume that there exists a search schedule for P, and let F be a search schedule
in which the total number of times R1 and R2 are changed from contaminated to clear
is smallest among all search schedules. First, as we did in the proof of Lemma 4, we
can show that R1 and R2 cannot be cleared simultaneously. Thus without loss of
generality we can assume that R is changed from contaminated to clear at tl, R1
remains clear after tl, and R2 is contaminated at tl or at some time after t. Let 2 > t
be the first time after tl at which R2 is changed from contaminated to clear. Then by
l12 fq Wt , the assumption on F and an argument similar to that in the proof of
Lemma 4, we can show that Ro and R2 are contaminated at tl (more specifically, any
point in RoU R2 which is not illuminated is contaminated at q). Next, by using the
assumption that 1112 ("l W/-- , we can show that Ro must be clear at t2 6 for some 6 > 0.

In summary, R1 is clear in tl, t2], R2 is contaminated in tl, t2), Ro is contaminated
at tl, and Ro is changed from contaminated to clear in [tl,/2). Since by assumption
W/ V/,, for 1, 2, Ro cannot be cleared unless each of ll and 12 is aimed at the points
in W/ not visible from the other searchlight. Here, since R1 is clear and R2 is
contaminated in tl, t2), 12 must be aimed at al and b whenever 11 is aimed at a point
W not visible from 12 (Fig. 18), and 11 must be aimed at a2 and b2 whenever 12 is aimed
at a point in W/ not visible from l (Fig. 19). Thus (1) at any time in [tl, t2) at most
one of 11 and 12 can be aimed at a point in Wt not visible from the other searchlight,
and (2) if 11 and 12 (or 12 and 11) are aimed at a point in W not visible from the other
searchlight at s and s2 for some tl--< s < s2 < t2, respectively, then there exists some
sl< t<s2 such that any two points in W/ visible from only one of l and 12 are
nonseparable at t. This observation, together with Lemma 1 and the fact that any point
in Ro which is not illuminated is contaminated at tl, implies that Ro contains a
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Ro
FIG. 18. Illustration for the proof of Lemma 5; 11 is aimed at a point in W not visible from 12

R2 R1

b2 ,,, 1

Ro
FIG. 19. Illustration for the proof of Lemma 5; is aimed at a point in W not visible from

contaminated point at any time in [tl, t2), and hence Ro cannot be clear in [tl, t2).
This is a contradiction. [2

Example 4. Consider the instance $ (P, {l, 12, /3)) shown in Fig. 20. When the
one-way sweep strategy is applied to S, we obtain a semiconvex subpolygon Q of P
supported by {/} containing two searchlights 2 and 13 in the interior. Note that the
strategy cannot be applied to Q, since the interior of Q is visible only from 12 and 13.
Also, the instance SO (Q, {12,/3}) does not satisfy any of the conditions of Theorem
5, and hence there exists no search schedule for S0. Thus by Theorem 1, there exists
no search schedule for S.

6. Concluding remarks. We have posed the searchlight scheduling problem and
presented various conditions for the existence of a search schedule. In particular, we
have shown that the problem of obtaining a’ search schedule for an instance having at
least one searchlight on the polygon boundary can be reduced to that for instances
having no searchlight on the polygon boundary, and then presented a simple necessary
and sufficient condition for the existence of a search schedule for instances having
exactly two searchlights in the interior. Some preliminary results for the case in which
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Q

clear

FIG. 20. An instance having no search schedule.

there are three searchlights in the interior have been reported in [8], but obtaining a
necessary and sufficient condition for this case remains as a challenging open problem.

As a final note, we remark that given an n-sided simple polygon P we can compute,
in O(n log log n) time, a set L of searchlights such that (1) ]L In/3] and (2) the
instance S (P, L) has a search schedule. This is an immediate corollary of Theorem
2 and a linear time coloring algorithm (see [1], [6, Chap. 1]) for computing, given a
triangulation of P, a subset L of the vertices of P such that L In/3] and every point
in the interior of P is visible from at least one vertex in L. It is known that a triangulation
of an n-sided polygon can be computed in O(n log log n) time [9]. If P is rectilinear,
then a set L with the desired property such that ]L]= In/4] can be computed in
O(n log log n) time [7].

Acknowledgments. We wish to thank the anonymous referees for their careful
reading of and helpful comments on this paper.
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