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FAST PARALLEL ALGORITHMS FOR SPARSE MULTIVARIATE
POLYNOMIAL INTERPOLATION OVER FINITE FIELDS*

DIMA YU. GRIGORIEV, MAREK KARPINSKI, AND MICHAEL F. SINGER

Abstract. The authors consider the problem of reconstructing (i.e., interpolating) a t-sparse multivariate
polynomial given a black box which will produce the value of the polynomial for any value of the arguments.
It is shown that, if the polynomial has coefficients in a finite field GF[q] and the black box can evaluate
the polynomial in the field GF[qr2g,tnt+37], where n is the number of variables, then there is an algorithm
to interpolate the polynomial in O(log (nt)) boolean parallel time and O(n2t log nt) processors.

This algorithm yields the first efficient deterministic polynomial time algorithm (and moreover boolean
NC-algorithm) for interpolating t-sparse polynomials over finite fields and should be contrasted with the
fact that efficient interpolation using a black box that only evaluates the polynomial at points in GF[q] is
not possible (cf. [M. Clausen, A. Dress, J. Grabmeier, and M. Karpinski, Theoret. Comput. Sci., 1990, to
appear]). This algorithm, together with the efficient deterministic interpolation algorithms for fields of
characteristic 0 (cf. [D. Yu. Grigoriev and M. Karpinski, in Proceedings of the 28th IEEE Symposium on the
Foundations of Computer Science, 1987, pp. 166-172], [M. Ben-Or and P. Tiwari, in Proceedings of the 20th
ACM Symposium on the Theory of Computing, 1988, pp. 301-309]), yields for the first time the general
deterministic sparse conversion algorithm working over arbitrary fields. (The reason for this is that every
field of positive characteristic contains a primitive subfield of this characteristic, and so this method can be
applied to the slight extension of this subfield.) The method of solution involves the polynomial enumeration
techniques of [D. Yu. Grigoriev and M. Karpinski, op. cit.] combined with introducing a new general method
of solving the problem of determining if a t-sparse polynomial is identical to zero by evaluating it in a slight
extension of the coefficient field (i.e., an extension whose degree over this field is logarithmic in nt).
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1. Introduction. The polynomial interpolation algorithms play an important role
in the design of efficient algorithms in algebra and their applications (cf. [G83], [G84],
[K85], [BT88]). For the case of finite fields there were no deterministic polynomial
time algorithms known (cf. [BT88]) for the sparse interpolation problem. The existing
methods required large extension fields of order GF[qn]; so, for example, no effective
procedures for finding primitive elements over an actual interpolation field were known
without using randomization.

Here we remedy the situation by considering what we call a "slight" extension
of fields, which is an extension whose degree over the coefficient field is logarithmic
in nt, GF[qrclgq(nt)]. The method of solution involves two major steps" (1) solving
the zero identity problem of polynomials from GF[ q] by evaluating in a slight extension
GF[qr21g,,n’+3], and (2) using inductive enumeration of partial solutions for terms
and coefficients over GF[q] by means of recursion on (1). We develop a general
method involving Cauchy matrices to solve the zero-identity problem in Step 1, and
combine this with the refined polynomial enumeration techniques of Grigoriev and
Karpinski [GK87] to solve Step 2.

Because of the lower bound of ’(g/lgt) (cf. [CDGK88]) for the interpolation over
the same field GF[q] without an extension, our slight field extension is in a sense the
smallest extension capable of carrying out the efficient interpolation.
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In what follows we shall use the basic notions of the theory of finite fields (cf.
[LN86], [MS77]) and algorithms for computing in finite fields (cf. [L82]), and the
basic models of parallel computation (cf. [C85], [G82]).

2. Interpolation problem over finite fields. We consider the problem ofinterpolation
for multivariate polynomials given by black boxes (special cases of it are the explicit
interpolations of polynomials given by straight-line programs (cf. [K85]), or poly-
nomials given by determinants (cf. [L79], [GK87]). In this setting we are given a
polynomial f in GF[q] as a black box that allows us to evaluate f in extensions of
GF[q] and information about its sparsity (the bound on the number of its nonzero
coefficients). Given this, we must determine an extension GF[qs] of GF[q], s as small
as possible, and an efficient polynomial time interpolation algorithm working over
GF[q] to determine all coefficients off in GF[q].

We say that the black box interpolation problem (over a finite field extension
GF[qS]) is in NCk (cf. [C85]), if there exists a class of uniform (ntq)l)-size and
O(logk (ntq))-depth boolean circuits with oracle nodes S (returning values of a black
box over the field extension GF[qS]) computing for an arbitrary n-variate polynomial

f GF[q][xl,’’’, x,] all the nonzero coefficients and monomial vectors off, with the
oracle S, defined by S(xl,. ., x,, y) if and only iff(x ,. , x,) y over GF[qS].
If the lifting of a black box (given explicitly by a straight-line program, determinant,
boolean circuit, etc.) from GF[q] to the extension GF[qS], and the computation of
f(x,..., x,) over GF[qs] by a black box, are both in boolean NC (in P), then the
explicit interpolation problem lies also in boolean NC (in P).

We note that the interpolation problem over finite fields deals not only with the
interpolation of polynomials but with arbitrary functions in their t-sparse ring sum

expansion representation (RSE) ([W87]).
We shall develop an interpolation algorithm (for polynomials over GF[q]) for

the slight extension of a field of order s =r2 log (nt)+ 37. This allows us for the first
time to efficiently find the generators in GF[qS], as the size of this field is polynomial
in the size of the input polynomial under interpolation. Our slight field extension is
in a sense the best possible, as the efficient interpolation over the same field (i.e., for
s 1) is not possible. In [CDGK88] the tight lower and upper bounds (R)(ngt) have
been established for the number of steps needed to determine identity to zero of
polynomials f GF[2][Xl,.

3. The algorithm. We now formulate the Interpolation Theorem and the under-
lying Interpolation Algorithm over Finite Fields.

THE INTERPOLATION THEOREM. Given any t-sparse polynomial f
GF[q][x,..., Xn]. For an arbitrary q, there exists a deterministic parallel algorithm
(NC3) for interpolating f over a slight field extension GF[qr2g, (n’+3] working in

O(log (ntq)) parallel boolean time and O(n2l6 log2 (ntq)+ q2.5 log q) processors. For
afixedfield the algorithm works in O(log nt)) parallel boolean time and O( n2t6 log:z nt)
processors.

SPARSE INTERPOLATION ALGORITHM OVER FINITE FIELDS
Input" A black-box oracle allowing one to evaluate a t-sparse polynomial f
GF[q][Xl, xn] for s 1,. .. (A t-sparse polynomial is a polynomial with
at most nonzero coefficients.)
Output" All (k, fk) such thatf=YfkxkwhereO#fk GF[q] andx’ x "..." x

We begin by first describing a Subalgorithm.

SUBALGORITHM (IDENTITY-TO-ZERO TEST)"
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Input: Same as above.
Output: Yes, if f-= 0; No, if f 0.

Step 1: Choose s so that qS-1 >4nq(n-1)(). So let s=r21Ogq (nt)+3-.
Step 2: Construct the field GF[q] by looking over all polynomials of degree s with

coefficients in GF[q] and testing irreducibility with the help of the Berlekamp
algorithm [BT0]. We find an irreducible b GF[q][z], and then GF[q] is
isomorphic to GF[q][z]/(d). We find an to that is generator of the cyclic
group GF[q]* in the following way. Factor q-1 I] Pi prime. For any
a GF[q], calculate a (q.-l/"‘ for each i. We do this using the binary expansion
of the exponent and by techniques from [L82]. An element is a generator of
the cyclic group if and only if all these powers are distinct from 1.

Step 3: Denote N =(rq-1-)/4nq. Use the sieve of Eratosthenes to find a prime p
with 2N <p-<4N. Such a prime exists by Bertrand’s postulate (cf. [HW78]).

Step 4: Now construct an N x N Cauchy matrix C (cf. [C], [PS64], [MS77]) over the
field GF[p], yi--xi= i, l <=i<- N by C=[1/(xi+ yj)]=[1/(i+j)]. We have

det C---Hl<----i<j<=n (Xj Xi)(YJ--Yi)
H l<:i,j<n (Xi -t- Yi)

For any of its minors S0, a similar formula holds. Therefore any minor of
any size is nonsingular. Compute, using the Euclidean algorithm cij 7/, such
that cij=-1/(i+j)(modp) and O<-ci<p<=4N.

Step 5: Denote by C [g0.] an arbitrary submatrix of C of size N n.

Step 6: Pick out in parallel any row i (i), 1 <=j -< n, of the matrix C and, for each
l, 0_-< < t, plug tolC/ for each x in the black-box (with s =2 logq (nt)+ 37)
for the polynomial f fk Xk fk xkl X kn, where k (kl, k) and the
number of k’s is less than t, 0 -< k < q 1, fk GF[q ].

We now pause to justify that iff 0, then for some /1 as above f(tole,) : O, where
tolgo has been substituted for xj. We first show that for a suitable vector gi, 1-<iN N,

X
k’after substituting toe for x, any two monomials xk, would give different elements

of GF[q]. Suppose that for some pair k, k’ and 6i we have toe,.k= toe,.k’. This means
that kC)i-- kC’o(mod q-l) and so (k-k)=-O(modq-l). Since Ik-kl <
q 1, Cij < 4N, we have I,1<=<= (k k)6i[ < (q 1)n4S < (q- 1); therefore (k
kfi)cij =0. For any pair of monomials xk, xk’, we consider all the "bad" vectors i,
l<-i<-N, i.e., those C for which 1-<__-<, (k-k’)go=O. There cannot be more than
(n- 1) "bad" vectors for this pair, since if there exist such n vectors gil,’", C5,,, the
corresponding n x n submatrix of C would have determinant zero. As there are at
most () pairs of monomials, there is a vector , 1 -< ion N, that is not "bad" for any
pair of monomials k, k’, since ()(n- 1)< N.

Let be some vector such that distinct monomials xk, xk’ yield distinct elements
of GF[q] after substituting toio. We now show that f(tolg) 0 for some 0<_-l < t. If
f(tolg) 0 for all l, 0 _-< < t, then XV 0, where X (fk)k and V (tol" k) is the x
matrix whose rows are indexed by l, 0_-< < t, and columns are indexed by the k that
appears as an exponent in f

Note that det (V)= I-Ikek’ toy’- toy’) 0 (it is a Vandermonde matrix), so
we have a contradiction. Therefore the identity-to-zero subalgorithm is correct.

We now continue with the main algorithm. Assume n =2" for simplicity of
k k

notation. Define S. {(kl, ", k2-,)" x-+ ..... X,5-l+z-I occurs as a subterm
in some nonzero term off}, where 1 -< a -< m + 1 and 0 _-</3 < 2 m+l-. We produce S,
recursively for a 1,. ., m+ 1.
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Basis Step: Let a 1. Let {a l, a2,""" } be an enumeration of GF[q]. In parallel for
each a GF[q], substitute a for x+1 in f Find a vector utE(GF[q])q such that
u. (a)--(0,..., 1,...,0) where all entries of this latter vector are 0 except for
a 1 in the /th place We then have ut’(f(xl,"’,x,al,x,+2,"’,xn),’",
f(xl," ", xt, aq, X/3+2 ", Xn) Pt where f= x+Pt and P/6 GF[q][xt,. .,
xt,X+z,...,xn]. We see that P may be evaluated at any point (bl,"’, b-1,
b+1,..., b) by evaluating f at the q points (b,..., b-1, ai, b+,..., b,), i=
1,. ., q and using this last formula, where u has been found by inverting the matrix
(a) and extracting the /th row. This gives a black box for Pt. The identity-to-zero
subalgorithm now allows us to determine which P’s are not identically zero, and so
to determine Sl..

Recursion Step: Assume that we have produced S,t for all/3, 0-</3 < 2m+-. We now
produce S/, for fixed/3, 0-</3 <2m-". For each element from the set S,,2 and for
each element from the set S,2t+, consider the corresponding product
k k2cx2/l,"" ", x/. For all such products (observe that the number of them is at

most 2, since 1Sce,2/3+1[ < t), we can find (in parallel) a vector v N2" as in Step
6 such that v-(vl,’’’,v-), O<=vi<4N1, where Sl is chosen such that (V-q sl-
1-)/4nq N1 > (n 1)( ‘2 k, k2 andz) and for any two products X/32,+l’...’X/32+2,
k k

Xfl2+l Xf12+2o, q -1 ( kiv- kirk). Let tol GF[q ,] be a generator of the
Consider thecyclic group GF[qS,]* For any 0-< l< 2, we replace xt2+ with tol.

x 2 matrix B (to ]yk),) (bu, 1). Note that det (B)2 HkCk’ to
’jkivj)

to jk;vj)) 0,
since q,-1X(Yjkjv-,kfiv). Calculate vectors u(GF[q,])2 such that uB=
(0,...,0, 1,0,...,0) where this latter vector has in the ith position and zeros
everywhere else. We then have ui" Y=fii where f=kXk, where xk=

x02+l x +2 and /3k GF[q][xl, , xt., xt+l)2+l, , x,], and Y is the
1 vector whose lth entry is f(xl," , xoo, to viI v2l Xn).tol X(/3+1)2’+1
Using this last formula with black box evaluations of f gives us the new black boxes
for the Pi as before. The identity-to-zero subalgorithm now allows us to determine
which P are not identically zero and thus to determine S+l,. Notice that when
a rn + 1 we have determined all the terms of f in the form of (k, fu) such that

kf--Zkfkxk, OCfkF[q] and X
k xkll,’’’,Xgln, [-]

4. Analysis of the Algorithm. Let N=(-q’-l/4nq). Note that N<ntZq. The
parallel time of our algorithm is O(log N). This is because the identity-to-zero test
takes O(log2 N) parallel time, the recursive step calls this test and uses matrix inversion,
which requires O(log N) parallel time [M86], and the recursion depth is O(log n).
Steps 1-5 take O(N log (Nnq))processors. Step 6 takes O(Nnt logz (Nnq))processors.
Therefore the total cost (in processors) of the identity-to-zero subalgorithm is
O(Nnt log (Nnq)).

We now proceed to analyze the complexity of the rest of the algorithm. In the
basic step, we must invert the q q matrix (a) over GF[q]. This requires O(q log q)
processors by [M86]. In applying Steps 1-6 to test whether P/is identically zero, we
refer q times to substituting to in a black box and calling the identity-to-zero test.
Thus we need Nntq log Nnq processors. In the recursion step, we calculate N1 sums

Z .k.v.kv of length n and compute tol, in the field GF[q,]. This takes Nltn log2 N
processors. Notice that N1 < nt4q. Inverting the matrix B over GF[q,] requires
tlog2 N processors [M86]. Therefore the total number of processors would be
O(t6n2q log (tnq)+ q25 log2 q). For a fixed field, the algorithm works in O(log nt)
time and O(nt610g nt) processors.
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5. Further research. Our parallel algorithm enjoys very good parallel time bound.
Concerning the number of processors, would it be possible to improve on the number
of processors of the interpolation algorithm?
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