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NONINTERACTIVE ZERO-KNOWLEDGE*
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Abstract. This paper investigates the possibility of disposing of interaction between prover and
verifier in a zero-knowledge proof if they share beforehand a short random string.

Without any assumption, it is proven that noninteractive zero-knowledge proofs exist for some
number-theoretic languages for which no efficient algorithm is known.

If deciding quadratic residuosity (modulo composite integers whose factorization is not known)
is computationally hard, it is shown that the NP-complete language of satisfiability also possesses
noninteractive zero-knowledge proofs.
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1. Introduction. Zero-knowledge proofs. Recently, Goldwasser, Micali, and
Rackoff [GoMiRa] have shown that it is possible to prove that some theorems are
true without giving the slightest hint of why this is so. This is rigorously formalized
in the somewhat paradoxical notion of a zero-knowledge proof system (ZKPS).

Zero-knowledge proofs have proven to be very useful both in Complexity Theory
and in Cryptography. For instance, in Complexity Theory, via results of Fortnow [Fo]
and Boppana, Hastad, and Zachos [BoHaZa), zero-knowledge provides us an avenue
to convince ourselves that certain languages are not NP-complete. In cryptography,
zero-knowledge proofs have played a major role in the recently proven completeness
theorem for protocols with honest majority [GoMiWi2], [ChCrDal, and [BeGoWi].
They also have inspired rigorously analyzed identification schemes [FeFiSh], [MiSh]
that are as efficient as folklore ones.

The ingredients of zero-knowledge. Despite its wide applicability, zero-knowledge
remains an intriguing notion: What makes zero-knowledge proofs work?

Three main ingredients differentiate standard zero-knowledge proofs from more
traditional ones:

1. Interaction: The prover and the verifier talk back and forth.

2. Hidden Randomization: The verifier tosses coins that are hidden from the
prover and thus unpredictable to him.

3. Computational Difficulty: The prover embeds in his proofs the computational
difficulty of some other problem.

In sum, quite a rich scenario is needed for implementing zero-knowledge proofs.
Can one achieve the same results “with fewer ingredients”? Properly answering this
question is the goal of this paper. Any such answer is not only important from a purely

* Received by the editors September 4, 1990; accepted for publication February 15, 1991.

t Computer Science Department, University of California, Berkeley, California 94720. This au-
thor’s research was supported by National Science Foundation grant # DCR85-13926.

t IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598.
The work of this author was done at IBM, while he was on leave from Dipartimento di Informatica
ed Applicazioni, Universita di Salerno, Salerno, Italy.

§ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts 02139. The works of this author was supported by National Science Foundation grant #
CCR-8719689.

9 Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138. The
work of this author was partially supported by Office of Naval Research grant # N00039-88-C-0163.

1084



NONINTERACTIVE ZERO-KNOWLEDGE 1085

theoretical point of view, but from a practical one as well: the ability to implement

zero-knowledge proofs in “poorer” settings would greatly enhance the applicability of
these ideas.

1.1. A new, simpler scenario for zero-knowledge. The new goal. Let A and
B be two mathematicians. A leaves for a long trip around the world, during which
he continues his mathematical investigations. We want to enable him, whenever he
discovers the proof of a new theorem, to write a postcard to B proving the validity
of his assertion in zero-knowledge. This is a noninteractive process. Better, it is a
monodirectional interaction: from A to B only. In fact, even if B would like to answer,
he couldn’t: A has no stable (or predictable) address and will move away before any
mail can reach him.

The new scenario. Achieving the new goal is a bit tricky. Without any shared
information, “monodirectional” and zero-knowledge proofs are possible only for trivial
statements. We shall see, however, that, under a complexity assumption, such proofs
exist for any “NP theorem” thanks to a simple, innocent-looking, ingredient: shared
randomness. That is, both prover and verifier have access to the same, short, random
string,.

Past and present. Blum, Feldman, and Micali [BlFeMi] were the first to conceive
that zero-knowledge proofs could be based on the above, simple ingredient, and pro-
posed the name of noninteractive zero-knowledge proofs for them, and presented some
noninteractive zero-knowledge proofs. De Santis, Micali, and Persiano [DeMiPel] im-
proved on their results by using a weaker complexity assumption. The present paper
summarizes and improves on both these results.

First, we contribute a crisper formalization of noninteractive zero-knowledge; sec-
ond, we modify their algorithms and provide a full proof of correctness for them, thus
removing a subtle bug (pointed out by Bellare) in some part of their argument.!

1.2. Shared random strings and public coins. As we have said, we have
prover and verifier share a common, random string. Actually, in our proof systems
the verifier will not toss any secret coins at all.

The idea of protocols with public randomness is not new. Protocols making use
of public randomness were already known in the literature, both in a cryptographic
and in a complexity-theoretic scenario. These protocols, however, were developed for
quite different ends, and differ from our scenario in the way the coin tosses are made
available.

Random beacons. In [Ra3], Rabin presents the notion of a random beacon. This
is a source broadcasting random bits at regular time intervals. He used this device
for “achieving simultaneity” in contract signing.

Note, though, that sharing a common random string is a requirement weaker than
having both parties access a random beacon (e.g., sharing the same Geiger counter).
In this latter case, in fact, all made coin tosses would be seen by both parties, but the
future ones would still be unpredictable. By contrast, our model allows the prover to
see in advance the outcome of all the coin tosses the verifier will ever make. That is, the
zero-knowledgeness of our proofs does not depend on the secrecy or unpredictability
of o but on the “well mixedness” of its bits!?

1 The part that presented a problem in their argument was the one relative to “many-theorems,”
that is, the equivalent of our §6.

2 This curious property makes our result potentially applicable. For instance, all libraries in the
country possess identical copies of the random tables prepared by the Rand Corporation. Thus, we
may think of ourselves as being already in the scenario needed for noninteractive zero-knowledge
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Note that sharing a random string o is a weaker requirement than being able
to interact. In fact, if A and B could interact, they would be able to construct
a common random string, for instance, by coin tossing over the phone [Bl1]; the
converse, however, is not true.

Arthur—Merlin games. The question of the power of hidden randomness versus
public randomness has already been discussed in Complexity Theory in the context of
proof systems. Goldwasser, Micali, and Rackoff [GoMiRa] and Babai and Moran [Ba],
[BaMo] consider proofs as games played between two players, prover and verifier, who
can talk back and forth. In [GoMiRal, the verifier is allowed to flip fair coins and hide
their outcomes from the prover. In [Ba], [BaMo], all coin tosses made by the verifier
are seen by the prover—called, respectively, Arthur and Merlin in proof systems of
this type. Actually, each message from the verifier to the prover consists of a random
string. Thus in an Arthur-Merlin proof system, the verifier can be substituted by
a random beacon: rather than having the verifier send his next message, one waits
for the next transmission of the beacon. That is, once again, all made coin tosses
are publicly known, but future ones are still unpredictable. Only if the verifier is
guaranteed to send a single message are we in a shared-random-string scenario. The
class of languages recognized by such a restricted proof system is denoted by “AMy”
or “AM][2]” (to specify that there are exactly two rounds of communication). We
show that, under proper complexity assumptions, this class coincides with the set of
languages possessing noninteractive zero-knowledge proofs.

1.3. Applications of noninteractive zero-knowledge. Powerful computer
networks are in place, and can be used for executing a huge variety of cryptographic
protocols. Zero-knowledge proofs are crucial to these protocols and, at the same
time, interaction is the most expensive resource.? Thus noninteractive zero-knowledge
proofs may be used to save precious communication rounds in cryptographic protocols.

Besides this, noninteractive zero-knowledge has been used by Bellare and Gold-
wasser [BeGo] as an alternative basis for secure digital signatures (in the sense of
[GoMiRi]). Also, following a hint of [BIFeMi], Naor and Yung [NaYu] exhibit public-
key cryptosystems secure against chosen cipher-text attack.

1.4. Organization. The next section is devoted to setting up our notation, re-
calling some elementary facts from Number Theory, and stating the complexity as-
sumption which suffices to show the existence of noninteractive ZKPS.

In §3 we define the notion of bounded noninteractive zero-knowledge; that is, the
“single theorem” case.

In §4 we show that a special number-theoretic language L possesses a bounded
noninteractive zero-knowledge proof. That is, if prover and verifier share a random
string, then it is possible to prove, noninteractively and in zero-knowledge, that any
single, sufficiently shorter x € L.

In §5, under the quadratic residuosity assumption, we prove that the “more gen-
eral” language of 3SAT is in bounded noninteractive zero-knowledge.

Only in §6 do we show that, if deciding quadratic residuosity is hard, the prover
can show in zero-knowledge membership in NP languages for any number of strings,
each of arbitrary size, using the same randomly chosen string.

In §7 we will discuss some related work.

proofs.

3 The internal computation of a typical cryptographic protocol can be performed in a few seconds,
but the time it takes to exchange electronic mail a hundred times may not be negligible.
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In §8 we will state an open problem that we would love to see solved.

2. Preliminaries.

2.1. Basic definitions. Notation. We denote by N the set of natural numbers.
If n € N, by 1™ we denote the concatenation of n 1’s. We identify a binary string o
with the integer  whose binary representation (with possible leading zeros) is o.

By the expression |z| we denote the length of z if x is a string, the length of the
binary string representing x if x is an integer, the absolute value of z if = is a real
number, or the cardinality of z if x is a set.

If o and 7 are binary strings, we denote their concatenation by either c o7 or o7.

A language is a subset of {0,1}*. If L is a language and k > 0, we set Ly = {z €
L: |z| < k}. For variety of discourse, we may call “theorem” a string belonging to
the language at hand. (A “false theorem” is a string outside L.)

Models of computation. An algorithm is a Turing machine. An efficient algorithm
is a probabilistic Turing machine running in expected polynomial time.

We emphasize the number of inputs received by an algorithm as follows. If algo-
rithm A receives only one input, we write “A(-)”; if it receives two inputs, we write
“A(-,-)” and so on.

A sequence of probabilistic Turing machines {T};, }nens is an efficient nonuniform
algorithm if there exists a positive constant ¢ such that, for all sufficiently large n,
T, halts in expected n® steps and the size of its program is less than or equal to n.
We use efficient nonuniform algorithms to gain the power of using different Turing
machines for different input lengths. For instance, T,, can be used for inputs of length
n. The power of nonuniformity lies in the fact that each Turing machine in the
sequence may have “wired-in” (i.e., properly encoded in its program) a small amount
of special information about its own input length.?

A random selector is a special (random) oracle. The oracle query consists of a
pair of strings (s,S), where the second string encodes a finite set. Such a query is
answered by the oracle with a randomly chosen element in the set S. If the oracle is
asked the same query twice, it will return the same element. The role of the first entry
in the query is to allow us, if so wanted, to make random an independent selection in
aset S. That is, if S is the same, and s; # s9, then, in response to queries (s1,S) and
(82,S8), the oracle will return two elements from S, each randomly and independently
selected.

A random selecting algorithm is a Turing machine with access to a random selec-
tor. Note that a random selecting algorithm is strictly more powerful than one with
access to coin or random oracle. For instance, a random selecting algorithm can select
with uniform probability one out of three elements. On the other hand, simulating
independent coin flips is easy with a random selector: If Select is a random selector,
to ensure the independence of b;, the ith coin flip, from all the other coin flips in a
computation on input z, one can set b; = Select(z o i,{0,1}).

Random selectors will simplify the description of our algorithms. In fact, we desire
a prover in a noninteractive proof system to be “memoryless.” That is, it needs not
remember which theorems it proved in the past to find and prove the next theorem.
However, for zero-knowledge purposes, it will be much handier to keep track of some
history, the history, that is, of previously made coin tosses. This will be crucial in
86. A random selector will, in fact, accomplish this record-keeping without having

4 This definition can be shown to be equivalent to the one of a poly-size combinatorial circuit and
to the one [KaLi] of poly-time Turing machine that takes advice.
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to consider provers “with history.” As we shall point out, random selectors can be
efficiently approximated, and thus only represent a conceptual tool.

Algorithms and probability spaces. If A(-) is a probabilistic algorithm, then for
any input z, the notation A(z) refers to the probability space that assigns to the
string o the probability that A, on input xz, outputs o.

Following the notation of [GoMiRi], if S is a probability space, then “z & S”
denotes the algorithm which assigns to = an element randomly selected according to
S. If F is a finite set, then the notation “z <~ F” denotes the algorithm which assigns
to x an element selected according to the probability space whose sample space is F'
and uniform probability distribution on the sample points.

If p(-,-,--) is a predicate, the notation Pr(z ESy& ... :p(z,y,--+)) de-
notes the probability that p(z,y,---) will be true after the ordered execution of the
algorithms z & 8, y & T, - - -.

The notation {x < S;y < T;--- : (z,y, --)} denotes the probability space over
{(z,y, )} generated by the ordered execution of the algorithms z & S, y & T, ---.

2.2. Number theory. Quadratic Residuosity. For each integer > 0, the set
of integers less than x and relatively prime to z form a group under multiplication
modulo z denoted by Z;. We say that y € Z; is a quadratic residue modulo z if and
only if there is a w € Z} such that w? = y mod z. If this is not the case, we call y a
quadratic nonresidue modulo z. For compactness, we define the quadratic residuosity
predicate as follows:

Q. (y) = { 0 if y is a quadratic residue modulo z, and
€ 1 otherwise.

FacT 2.1 (see for instance [NiZu)). If y1,y2 € Z2, then
L Qa(y1) = Qa(y2) = 0= Qu(y132) = 0.
2. Qu(y1) # Qu(y2) = Qu(yry2) = 1.

The quadratic residuosity predicate defines the following equivalence relation in
Z%: y1 ~y yo if and only if Q.(y1y2) = 0. Thus, the quadratic residues modulo z
form a ~, equivalence class. More generally, Fact 2.2 is immediately seen.

Fact 2.2. For any fixed y € Z, the elements {yg mod z | ¢ is a quadratic
residue modulo z} constitute a ~, equivalence class that has the same cardinality as
the class of quadratic residues.

The problem of deciding quadratic residuosity consists of evaluating the predicate
Q.. As we now see, this is easy when the modulus z is prime and appears to be hard
when it is composite.

Prime moduli. Primes are easy to recognize.

Fact 2.3 ([AdHu| extending [GoKi]). There exists an efficient algorithm that,
on input z, outputs YES if and only if z is prime.

For p prime, the problem of deciding quadratic residuosity coincides with the
problem of computing the Legendre symbol. In fact, for p prime and y € Z;, the
Legendre symbol (y|p) of y modulo p is defined as

(ylp) = { +1 if y is a quadratic residue modulo z, and
YP)=1-1 otherwise;

and can be computed in polynomial time by using Euler’s criterion. Namely,

(ylp) = y®~1/2 mod p.
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Composites are easy to recognize. It is easy to test compositeness.

Fact 2.4 ([Ral], [SoSt]). There exists a polynomial-time algorithm TEST(-,-)
such that

1. if z is composite, TEST(z,r) =COMPOSITE for at least g of the strings r
such that |r| = |z|.
2. if ¢ is prime, TEST (z,r) =PRIME for all r’s.

We say that the sequence (p1,hy),- - -, (Pn, hn) is the factorization of z if the p;’s
are distinct primes, the h;’s are positive integers, and = = H?___l p:'

While it is easy to test compositeness, no efficient algorithm is known for com-
puting the factorization of a composite integer. In fact, the following assumption is
consistent with our state of knowledge.

Factoring assumption. For each efficient nonuniform algorithm C = {Cp, }nen, let
pS denote the probability that, on inputing an integer z product of two randomly se-
lected primes of length n, C,, outputs—in some standard encoding—the factorization
of z. (This probability is computed over all possible choices of the two primes and
the internal coin tosses of Cy,.) Then for all positive constants d, and all sufficiently
large n, p¢ < n~<.

Often, computational problems relative to composite moduli are easy if their
factorization is known. For example, this is the case for the problem of computing
square roots modulo .

FacT 2.5 (see for instance [An]). There exists an efficient algorithm that, given
as inputs z, its prime factorization, and y, a quadratic residue modulo z, outputs a
random square root of y modulo z.

FacT 2.6 (|[Ra2]). The problem of factoring composite integers is probabilistic
polynomial-time reducible to the problem of extracting square roots modulo composite
integers.

Another computational problem modulo z that is easy given the factorization of
z is deciding quadratic residuosity.

FAacT 2.7 (see, for instance, [NiZu]). y is a quadratic residue modulo  if and
only if y is a quadratic residue modulo each of the prime divisors of x.

However, no efficient algorithm is known for deciding quadratic residuosity mod-
ulo composite numbers whose factorization is not given. Some help is provided by the
Jacobi symbol, which extends the Legendre symbol to composite integers as follows.
Let (p1,h1), -+, (Pn, hn) be the prime factorization of z, and y € Z2. Then®

n

(wlz) = [J(wlpa)™.

i=1

Define JF! and J! to be, respectively, the subsets of Z whose Jacobi symbol is +1
and —1. It can be immediately seen that if y € J !, then it is not a quadratic residue
modulo z, as it is not a quadratic residue modulo some prime p; dividing . However,
if y € JF1, no efficient algorithm is known to compute Q. (y). Actually, the fastest
way known consists of first factoring z and then computing Q(y). This fact was first
used in cryptography by Goldwasser and Micali [GoMil]. We will use it in this paper
with respect to the following special moduli.

5 Despite the fact that the Jacobi symbol is defined in terms of the factorization of the modulus,
it can be computed in polynomial time. (This can be derived by a time analysis of the classical
algorithm presented in [NiZu]; see also [An].)
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Blum integers. For n € N, we define the set of Blum integers of size n, BL(n),
as follows: = € BL(n) if and only if x = pg, where p and ¢ are primes of length n,
both congruent to 3mod 4. These integers were first used for cryptographic purposes
by [BL1].

Blum integers are easy to generate. By Fact 2.3 and the density of the primes
congruent to 3mod 4 (de la Vallee Poussin’s extension of the prime number theorem
[Sh]), it is easy to prove the following.

FacT 2.8. There exists an efficient algorithm that, on input 1™, outputs the
factorization of a randomly selected € BL(n).

This class of integers constitutes the hardest input for any known efficient factor-
ing algorithm. Thus no efficient algorithm is known for deciding quadratic residuosity
modulo Blum integers, which justifies the following,.

Quadratic Residuosity Assumption (QRA). For each efficient nonuniform algo-
rithm {Cp }nen, all positive constants d, and all sufficiently large n,

Pr(e & BL(n); y & JF: Ou(e,y) = Qulw)) < 5 +07%

That is, no efficient nonuniform algorithm can guess the value of the quadratic resid-
uosity predicate substantially better than by random guessing.

It follows from Fact 2.7 and Euler’s criterion that, if x is a Blum integer, —1 mod
z is a quadratic nonresidue with Jacobi symbol +1.

FAcT 2.9. On input of a Blum integer z, it is easy to generate a random quadratic
nonresidue in J}!: randomly select r € Z* and output —r% mod z.

Regular integers. A Blum integer enjoys an elegant structural property. Namely,
|JFt = |J;1|. More generally, we define an integer x to be regular if it enjoys the
above property. We define Regular(s) to be the set of regular integers with s distinct
prime divisors. By the definition of Jacobi symbol, Fact 2.10 is straightforward.

FacT 2.10. An odd integer z belongs to Regular(s) if and only if it has s distinct
prime factors and is not a perfect square.

Equivalently, by Fact 2.2, we have Fact 2.11.

FacT 2.11. An odd integer x belongs to Regular(s) if and only if it is regular and
Z% is partitioned by ~, into 2° equally numerous equivalence classes. (Equivalently,
J}! is partitioned by ~, into 2°~! equally numerous equivalence classes.)

3. Bounded noninteractive zero-knowledge proofs. A bounded noninter-
active zero-knowledge proof system is a special algorithm. Given as input a random
string o and a single, sufficiently shorter theorem T, it outputs a second string that
will convince (noninteractively and) in zero-knowledge that 7' is true for any verifier
who has access to the same ¢. It is important in this process that a “brand new” ran-
dom string is employed for each theorem. The word “bounded” refers to the fact that
if the same o is used over and over again for convincing the verifier of the validity of
many theorems, the produced noninteractive proofs may no longer be zero-knowledge.

DEFINITION 3.1. Let A; and Ay be Turing machines. We say that (Aj, A2) is
a sender--receiver pair if their computation on a common input x works as follows.
First, algorithm A, on input x, outputs a string m,. Then, algorithm As computes on
inputs  and m, and outputs ACCEPT or REJECT. If (A, A2) is a sender-receiver
pair, A; is called the sender and A, the receiver. The running time of both machines
is calculated only in terms of the common input.

Thus m, can be interpreted as a message sent by A; to As.
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Notation. In our sender-receiver pairs, the output of the sender is described in
terms of s “send instructions,” where s depends solely on the input length. If “send
v” is the ith such instruction, this is shorthand for “output (¢,v).” Without explicitly
saying it, the receiver always checks that for each ¢ = 1,---, s, exactly one pair with
first entry ¢ is received. If this is not the case, or if the second component of a pair
is not of the right form (i.e., is not of the proper length, is a string rather than a set,
etc.), the receiver immediately halts outputting REJECT. Thus if “send v” is the ith
instruction of the sender, “check that v---” means “check that the second component
of the pair whose first entry is ¢---.” That is, the receiver parses without ambiguity
the sender’s output.

DEFINITION 3.2. Let (Prover, Verifier) be a sender—receiver pair where Prover(-,-)
is random selecting and Verifier(:,-,-) is polynomial time. We say that (Prover, Ver-
ifier) is a bounded noninteractive zero-knowledge proof system (bounded noninterac-
tive ZKPS) for the language L if there exists a positive constant ¢ such that:

1. Completeness. For all x € L,, and for all sufficiently large n,

c 2
Pr(o & {0,1}"; Proof & Prover(o,z): Verifier(s,x, Proof) = 1) > 3

2. Soundness. For all x ¢ L,, for all Turing machines Prover’, and for all
sufficiently large n,

c 1
Pr(c & {0,1}™; Proof <~ Prover'(o,x): Verifier(o,x, Proof) = 1) < 3
3. Zero-Knowledge. There exists an efficient algorithm S such that for all z €
L, for all efficient nonuniform (distinguishing) algorithms D, for all d > 0,
and, all sufficiently large n,

Pr(s & View(n,z) : Du(s) = 1) — Pr(s & §(1",2) : Du(s) = 1)] <nd,
where
View(n,z) = {o < {0,1}""; Proof < Prover(o,z): (z, 0, Proof)}.

We call Simulator the algorithm S.
We define the class of languages Bounded-NIZK as follows:

Bounded-NIZK = {L: L has a bounded noninteractive ZKPS}.

A sender-receiver pair (Prover, Verifier) is a bounded noninteractive proof system for
the language L if there exists a positive constant ¢ such that completeness and sound-
ness hold (such a ¢ will be referred to as the constant of (Prover, Verifier)). We let
bounded noninteractive P be the class of languages L having a bounded noninteractive
proof system.

We call the “common” random string o, input to both Prover and Verifier, the
reference string. (Above, the common input is o and z.)

Discussion. Proving and verifying. As usual, we do not care how difficult it is
to prove a true theorem, but we do insist that verifying is always easy. Thus, we
have chosen our prover as powerful as possible, though it cannot use its power to find
“long” proofs, since the verifier is polynomial time (in the common input).
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Arthur—Merlin games. It is immediately seen that the notion of a bounded non-
interactive proof system is equivalent to that of a two-move Arthur—Merlin Proof
System [Ba], [BaMo|. Thus, letting AM, denote the class of languages accepted by
a two-move Arthur—Merlin Proof System, we have Bounded-NIZK C AM,. Actually,
as we shall prove in §5.5, this containment is an equality under a proper complexity
assumption.

Deterministic verification. Note that our verifiers are defined to be deterministic.
Thus, if they want to perform some probabilistic computation, they are forced to use
part of the reference string. A cheating prover may thus try to exploit this fact to his
advantage.

Probability enhancement. As for the case of BPP algorithms and interactive
proofs, the definition of completeness and soundness is independent of the constants
% and % In fact, these (or other “bounded away”) probabilities can be pumped
up (and down) easily by repeating the proving process sufficiently many times, each
using a distinct segment of a sufficiently longer reference string. This process is called
“parallel composition.” However, as noted by Micali, for the case of interactive zero-
knowledge proofs, parallel composition may also enhance the amount of knowledge
released! Indeed, zero-knowledge proofs do not appear to be closed under parallel
composition. The reason for which straightforward parallel composition fails in the
case of interactive zero-knowledge proofs is precisely that the interaction may be
exploited in subtle ways by a “cheating verifier.”® One advantage of noninteractive
zero-knowledge is exactly the fact that one does not have to worry about “cheating”
verifiers: as is immediately seen, bounded noninteractive zero-knowledge is closed
under parallel composition.

Completeness means that (after a sufficient enhancement) the probability of suc-
ceeding in proving a true theorem T is overwhelming. This is so even if T is selected
after the string o has been chosen. More precisely, a simple counting argument shows
that completeness is equivalent to the following:

1’. Strong completeness. For all probabilistic algorithms Choose-in-L(-) that, on
inputting an n®bit string, return elements in L,, and all sufficiently large n,

Pr(c & {0,1}"™; & & Choose-in-L(0);
Proof & Prover(o,z) : Verifier(a,x, Proof) =1) > 1—27".

That strong completeness holds can be seen by first using parallel composition so as
to replace the probability % of completeness with 1 — 272", and then noticing that
there are at most 2" theorems of length n.

Actually, completeness can be replaced by an even simpler property. Namely,

1", Perfect completeness. For all z € L,
Pr(o & {0,1}™; Proof & Prover(o,x) : Verifier(a,x, Proof) = 1) = 1.

In fact, we have Theorem 3.3.

THEOREM 3.3. Let L € Bounded-NIZK. Then L has a bounded noninteractive
ZKPS with perfect completeness.

Proof. Furer et al. [FuGoMaSiZa] have proved that any AM; language has an
interactive proof system with perfect completeness. Now let (P, V) be a bounded

6 Elaborating on this subtle point is not within the scope of this paper. For an explanation of it
(and pointers to related results) see [BeMiOs].
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noninteractive ZKPS for L for which completeness holds with overwhelming proba-
bility. Then modify P as follows. Whenever the proof generated by P is not accepted
by the verifier (something that can be easily computed), as bounded noninteractive
P=AM>, the new prover interprets the reference string as an Arthur move, and re-
sponds with a Merlin move so as to achieve perfect completeness. This extra step
guarantees that the verifier will always be convinced (of a true theorem), and thus
perfect completeness holds. It is immediately seen that soundness keeps on holding.
Also, zero-knowledge keeps on holding: the extra step may be “dangerous,” but it is
performed only too rarely.

Soundness means that the probability of succeeding in proving a false theorem T'
is negligible. This still holds if T" is chosen after ¢ has been selected. More precisely,
a simple counting argument shows that soundness is equivalent to

2/. Strong soundness. For all probabilistic algorithms Adversary outputting pairs

(z, Proof), where = ¢ L, and all sufficiently large n,

Pr(c & {0,1}™; (&, Proof) & Adversary(c): Verifier(o,z, Proof) = 1) < 2™,

Zero-knowledge guarantees that the proof gives no knowledge but the validity of
the theorem. All the verifier may see in our scenario, o and Proof, can be efficiently
computed with essentially the same odds without “knowing how to prove T.”

Note that in our scenario, the definition of zero-knowledge is simpler than the one
in [GoMiRa]. As there is no interaction between verifier and prover, we do not have
to worry about possible cheating by the verifier to obtain a “more interesting view.”
That is, we can eliminate the quantification “V Verifier’” from the original definition
of [GoMiRa)].

Analogously to [GoMiRa], we may define a bounded noninteractive proof system
(Prover, Verifier) to be perfect zero-knowledge if the following more stringent condition
holds:

3'. Perfect zero-knowledge. There exists an efficient algorithm S such that for all

x € L,, and all sufficiently large n,

View(n,z) = S(1", z),
where
View(n,z) = {o < {0, 1}™; Proof & Prover(o,z): (o, Proof)}.

Thus the notion of perfect ZK is independent of the computing power of “the
observer/distinguisher.”

While for completeness and soundness it is not important whether the true/false
theorem is chosen before or after the reference string, this need not to be the case for
zero-knowledge. It is actually important that the prover chooses the true theorem T
he wants to prove independently of o. This, in practice, is not a restriction, since o
does not have any special meaning. The sole purpose of ¢ is to provide a common
source of randomness, and thus it can be accessed only after the prover has chosen
which theorem to prove, in which case the “independence” condition is automatically
satisfied. Should the prover want to prove a statement “about” the reference string,
there is no guarantee that no knowledge would be revealed, while there is still a
guarantee that the statement cannot be false.



1094 BLUM, DE SANTIS, MICALI, AND PERSIANO

4. A bounded noninteractive ZKPS for a special language.
DEFINITION 4.1. Set QR = U, QR(n) and NOR = U, N QR(n), where

QR(n) = {(z,y) | = € Regular(2), |z| < n, and Q,(y) = 0}
and

NOR(n) = {(z,y) | € Regular(2), |z| <n, y € J}, and Q,(y) = 1}.

If one restricts the modulo z in the definition of QR and N QR to be a Blum
integer, then the quadratic residuosity assumption states that it is hard to distinguish
the languages QR and N QR.

For z € Regular(2), QR, denotes the set {y | (z,y) € QR} and NQR, the set
{y|(z,y) e NQR}.

DEFINITION 4.2. If (z,y) € NOR and z € J;!, we say that s € Z} is an (z,y)-
root of z if z = 52 mod x or zy = s? mod z. (Note that only one of the two cases may
apply.) If s is an (x,y)-root of z, we write s = “"*/z.

In this section we prove that NQR has a bounded noninteractive proof system
that is perfect zero-knowledge. The proof system below is based on an earlier protocol
of Goldwasser and Micali [GoMi2].

The Sender—Receiver Pair (A,B)
Input to A and B:
* (z,y) € NOQR(n)
e A n3-bit random string p.
(Set p=p,p, - p,,, where each p; has length n.)
Instructions for A:
e Fori=1,---,n? if p; € JF', then randomly choose and send s; = “'%)/p;.
Instructions for B:
B.0. If p; € J}! for less than 3n of the indices 4, then stop and ACCEPT. Else,
B.1. Verify that z is odd and that y € J}. If not, stop and REJECT. Else,
B.2. Verify that z is not a perfect square. If not, stop and REJECT. Else,
B.3. If z is a prime power, stop and REJECT. Else,
B.4. For each p; € JF! verify that s; = “%/p;. If not, stop and REJECT. Else
ACCEPT.

THEOREM 4.3. (A, B) is a bounded noninteractive ZKPS for NOR.

Proof. First, (A, B) is a sender-receiver pair. Second, B runs in polynomial time.
In fact, the Jacobi symbol can be computed in polynomial time, steps B.2 and B.4
are trivial, and step B.3 can be performed as follows:

B.3.1. Compute the largest integer a for which z = w® for some w € A. (Only
values 1,-- -, |z| should be tried for @ and a binary search can be performed
for finding w, if it exists.)

B.3.2. Compute z such that 2* = z.

B.3.3. If for all 1 <4 < n? TEST(z, p;) =PRIME, stop and REJECT.

Third, properties 1-3 of a bounded noninteractive ZKPS also hold.

Completeness. We actually prove that strong completeness holds. This implies
that the weaker property 1 also holds. If (z,y) € NOR(n), then step B.1 is trivially
passed. Step B.2 is passed because of Fact 2.10. B.3 is passed with probability
greater than 1 — 2™, This can be argued as follows. For any fixed T € Regular(2),
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the probability that TEST outputs PRIME on a single p; is at most %, and thus
(since the p;’s are independent) the probability that B.3 is not successfully passed is
at most (%)”2. Since there are at most 2™ z’s such that (z,z) € NQR(n) for some

z, the probability that step B.3 is not successfully passed is at most 2"(%)"2 <277,
Finally, step B.4 is passed with probability 1. In fact, as z € Regular(2), by Fact 2.11,
there are exactly 2 ~, equivalence classes in J}!. That is, either p; is a quadratic
residue modulo z or p; is in the same equivalence class as y, in which case yp; is a
quadratic residue.

Soundness. As for the completeness property, we actually prove that strong
soundness holds.

First, observe that B stops at step B.0 only with negligible probability. Indeed,
for a fixed T, the probability that p; € J-; ! is greater than %. By the Chernoff bound
(see [AnVa] and [ErSp]), the probability that p; € J3' for fewer than 3n of the indices
is (for large n) less than 272", Thus, the probability that there is an x for which B
stops at step B.0 is at most 272~2" = 2™,

Assume that (z,y) € NOR. Then, either (a) x € Regular(2) but Q,(y) = 0,
or (b) z ¢ Regular(2). For any fixed input (Z,y) for which case (a) occurs, the
probability that B.4 is successfully passed is at most 273", (In fact, B.4 is passed if
and only if all p;’s are quadratic residues modulo z.) Thus, the probability that step
B.4 is passed, for any input for which case (a) occurs, is at most 27273" = 2721,

Consider now the case that (z,y) ¢ N QR because of reason (b). Then either
(b.1) z is not regular, or (b.2) z € Regular(1), or (b.3) z € Regular(s) for s > 3.
In case (b.1), due to Fact 2.10, an odd = must be a perfect square which would be
detected in step B.2. In case (b.2), z is a prime power which would be detected by
step B.3. Let us now argue case (b.3). For any fixed (Z,y) with T € Regular(s), s > 3,
the probability that step B.4 is successfully passed is at most 27 ™. (In fact, this would
happen only if, for each p; € Jmi' 1 either p; or p;y is a quadratic residue modulo Z.
This happens with probability smaller than or equal to % since, because of Fact 2.11,
there are at least four ~, equivalence classes in J%' 1)) Thus the probability that, for
any input outside N'QR because of reason (b.3), step B.4 is successfully passed is at
most 2272737 = 27",

Zero-knowledge. Let us specify a (simulating) efficient algorithm M that, on input
(z,y) € NQR, generates a random variable which no algorithm can distinguish from
B’s view on input (z,y) € NQR.

M’s program
Input: (z,y) € NOR(n).
1. Set Proof = empty string.
2. For i =1 to n?
Randomly select an n-bit integer s;, with possible leading 0’s.
If s; ¢ J}! then set p; = s;.
else
Toss a fair coin.
If HEAD set p; = s? mod = and append s; to Proof.
If TAIL set p; = y~'sZ mod x and append s; to Proof.
3. Set p=p1-- pp2.
Output: (p, Proof).

Now, let us prove that M is a good simulator for the view of B when interacting
with prover A on input (z,y) € NOQR. Actually, (A, B) is perfect zero-knowledge.
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That is, the random variable output by M is the very same random variable seen by
B (and thus the two random variables cannot be distinguished by any nonuniform
algorithm, efficient or not). In fact, it can be easily seen that p is randomly distributed
among the n3-bit long strings. Moreover, if p; € JI !, the corresponding s; is a random
(z,y)-root of p;. Thus s; has the same probability of belonging to M’s output as it
has of being sent from prover A to verifier B on inputs (z,y) and p. O

Note that the proof system (A, B) does not have perfect completeness; that is,
there is a negligible probability that the prover, following the protocol, may not
succeed in proving a true theorem. We can achieve perfect completeness and still
retain perfect zero-knowledge at the expense of further complications which are not
necessary in our context.

Robustness of the result. The above proof system is zero-knowledge if the reference
string p is truly random. We may rightly ask what would happen if p is not truly
randomly selected. Fortunately, we shall see that the poor randomness of p may
perhaps weaken the zero-knowledgeness of our proof system, but not its completeness
and soundness. In fact, all we require from p is that it contain a not too low percentage
of quadratic residue and nonresidues modulo any integer in Regular(2) of a given
length. The same remark applies to all proof systems of this paper. This robustness
property is important, as we can never be sure of the quality of our natural sources
of randomness.

5. A bounded noninteractive ZKPS for 3SAT. In this section we exhibit
a bounded noninteractive ZKPS for 3SAT. A boolean formula ® = ¢; Agda A--- A
¢ in conjunctive normal form over the variables uy,---,ur, where each clause ¢;
has three literals, is in the language 3SAT if it has a satisfying truth assignment
t: {u1,---,ux} — {0,1} (see [GaJo] for a more complete treatment). If & € 3SAT,
we say that ® is 3-satisfiable.

The following definition was informally introduced in [BlFeMi], but used in a quite
different way.

DEFINITION 5.1. For any positive integer z, define the relation ~, on J}! x
JH x J¥! as follows:

(al,ag,ag) Ny (bl,bz,bg) < a; ~Vg bl for i = 1,2, 3.

Let (a1,az2,a3) =4 (b1,b2,b3). An (ai,as2,as)-root modulo z (more simply, an
(a1, az, az)-root, when the modulus z is clear from the context) of (b1, b2, b3) is a triplet
(s1,82,83) such that (s? mod z, s2 mod z, s2 mod z) = (a1b; mod z, azb; mod z,
azbs mod z). If Qu(by) = Qu(b2) = Qu(bs) = 0, a square root modulo z (more
simply a square root, when the modulus z is clear from the context) of (b1, b2, b3) is
a triplet (s1, s2,s3) such that (s? mod z,s3 mod z,s2 mod z) = (b1, ba, b3).

From Fact 2.11, one can prove the following fact.

FacT 5.2. For each odd integer x € Regular(s), =, is an equivalence relation on
JFt x JF x J}! and there are 23(°~1) equally numerous ~, equivalence classes.

We write (a1,a2,a3) #z (b1,b2,b3) when (a1,a2,a3) is not =, equivalent to
(bla b2, b3)'

We now proceed as follows. In §5.1, we describe a sender-receiver pair (P,V). In

§85.2, 5.3, and 5.4 we will prove that (P,V) is a bounded noninteractive ZKPS for
3SAT.

5.1. The sender—receiver pair (P,V).
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Input to P and V:
e A random string p o 7, where |p| = 8n® and |7| = 2n?;
o &=y Ao A+ Ay, a 3-satisfiable formula with n clauses over the variables

UL, U, "+ +, Uk, k < 3n.

Instructions for P.

P.1.
P.2.

P.3.

Randomly select z € BL(n) and y € NQR,.

“Prove that (z,y) € NOQR(2n).”

Send the auziliary pair (z,y) and run algorithm A of §4 on inputs (z,y) and
p. (Call Proof; the output.)

“Prove that ® € 3SAT.”

Let t:{uj,---,ux} — {0,1} be the lexicographically smallest satisfying as-
signment for ®.

Execute procedure Prove(®,t,z,y, ) (see below). (Call Proof, the output.)

Procedure Prove(®,t,z,y,7)

“D = 1 Ao A--- A ¢, is a 3-satisfiable formula with n clauses over the variables
Uy, U,y Uk, kK < 3n. t:{ug,---,ur} — {0,1} is a truth assignment satisfying ®.
(z,y) € NQR(2n) and, moreover, z € BL(n). 7 is a 2n*-bit long string.”

begin{Prove}

1.

“Break 7 into members of J}1.”

Consider 7 as the concatenation of n3 2n-bit integers. If there are fewer than
33n? integers in J;! then stop. Else, let 7,,- - -, T33,2 be the first 33n? integers
belonging to J;1.

. “Assign triplets of elements with Jacobi symbol +1 to clauses.”

Group the 7;’s in 11n? triplets (7,,7,,7,), (T,, 75, 75 ), - - - The first 11n triplets
are assigned to ¢1, the second 11n triplets are assigned to ¢2, and so on.
“Label the formula ®.”

For each variable u;, randomly select r; € Z and compute the pairs (u;,w;)
and (%;, yw; mod x), where

_frimodz ift(u;) =0, and
Wi = {yr? mod z if t(u;) =1.
We refer to these pairs as the labeling of ® and to w; (yw; mod z) as the label
of the literal u; (u;).
“Since y is a quadratic nonresidue, by Fact 2.1, yr]2~ is a quadratic nonresidue.
Therefore the label of a literal is a quadratic nonresidue if the literal is true
under t.”
Send the labeling of ®.
“Prove that & is satisfiable.”
For each clause ¢ of ® do:
e “Randomly select the verifying triplets.”

Let (a1,61,71) be the labels of the three literals of ¢.

Choose at random seven triplets (a2, B2,72)," -+, (as,Bs,7s) in JF1 x

JF1 x JF! such that

(a) (ai)ﬁi»’yi) ?ém (ajaﬁ],’YJ) for 1 <i< J < 81 and

(b) Qu(a2) = Qu(B2) = Qa(72) =0.

Send (ah /81’ '71)7 T (a87 ﬂ8778)-
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The triplets (o1, 81,71), -+, (as, Bs,7s) are the verifying triplets of ¢.
“We omit writing (af,8%,7%), -+, (ag,8¢,7¢) not to overburden our
notation, hoping that clarity is maintained.”

e “Prove that (ag, B2,72) is made of quadratic residues.”
Randomly choose and send (s, s2, s3), a square root of (ag, B2,72).

e For each of the assigned triplets (21, 29, 23) of ¢, choose i, 1 < i < 8, so
that (z1, 22, 23) ~4 (@, Bi,v:). Randomly choose and send a (o, 8;,7i)-
root of (z1, 22, 23).

end{Prove}

Instructions for V.
“V receives from P the auxiliary pair (z,y) and two strings Proof; and Proof,.”
V.0. Compute n from p o 7 and verify that ® has at most n clauses and each of
them has three literals. If not, stop and REJECT. Else,
V.1. Run algorithm B of §4 on inputs p, (z,y), and Proofi.
If B stops and rejects, stop and REJECT. Else,
V.2. If Check Prove(®, z,y, 7, Proofs)=ACCEPT then ACCEPT, else REJECT.

Procedure Check_Prove(®,z,y, 7, Proofs)

“D =y Ao A--- A @, is a formula with n clauses over the variables uy,us, - -, ug.
x,y are 2n-bit integers. 7 is a 2n*-bit long string. Proof, is a string.”

begin{Check_Prove}

1. “Verify that the assigned triplets are proper.”
Consider T as the concatenation of n3 2n-bit integers. If there are fewer than
33n? integers in J}! stop and ACCEPT. Else, let 7,,---,T33n2 be the first
33n? integers belonging to J!.
“This happens with very low probability.”
Group the 7;’s in 11n? triplets (7,,7,,7,), (7,, 75, T, ), - - -. The first 11n triplets
are assigned to ¢, the second 11n triplets are assigned to ¢o, and so on. Verify
that they have been properly computed by P.

2. “Verify that ® has a proper labeling.”
For each variable u;, verify that the label of the literal @; is equal to the label
of the literal u; multiplied by y modulo z.

3. For each clause ¢ of ® do:
3.1. Let (o, Bi,7v), ¢ = 1,---,8, be the verifying triplets of ¢ sent by P.
3.2. Verify that (ay, 81,71) is formed by the labels of the three literals of ¢.
3.3. Verify that (s1, sg, s3) is a square root of (ag, B2,72)-
3.4. Verify that for each assigned triplet (z1,22,23) of ¢, you received a

(i, Bi, vi)-root of (21, 22, 23), for some i, 1 <7 < 8.

4. If all the above verifications have been successfully made, return ACCEPT;

otherwise return REJECT.
end{Check Prove}

5.2. (P,V) is a bounded noninteractive proof system for 3SAT. First,
note that (P, V) is a sender-receiver pair. Further, all checks of V' can be performed
in polynomial time, since only simple algebraic computations modulo x and a scanning
of the strings p and 7 are needed.

Completeness. The same reasoning done in Theorem 4.3 shows that the proba-
bility that V does not REJECT at step V.1 is overwhelming. Let us now consider
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step V.2. The verification of the proper labeling of ® is always passed. Since t is a
satisfying truth assignment for ®, each clause ¢ has at least one literal true under t.
This implies that the label of ¢ contains at least one quadratic nonresidue. Because of
this, and because there are eight =, equivalence classes, P can compute eight verify-
ing triplets satisfying properties (a) and (b). Moreover, since each =, equivalent class
contains a verifying triplet, each assigned triplet is =2, equivalent to some (o, B, 7i)

and thus possesses an (ay, 3;,7:)-root. Therefore, if check V.1 is passed, so is check
V.2.

Soundness. An honest prover chooses the pair (z,y) randomly. A cheating one,
though, may choose this pair as function of the reference string. All arguments below
thus have the following form. First, we compute the probability that the verifier can
be mislead with a fixed pair, and show that this probability is suitably small. Then,
we prove that, even summing up over all possible choices of pairs, we still obtain a
small probability.

Assume that, in a computation with a cheating prover Prover’, V accepts a
formula ® ¢ 3SAT. Then, one of the following three events must happen: (a) the
pair (z,y) chosen by Prover’ is not in NQR(2n); (b) (z,y) € NQR(2n), but Prover’
stops at step P.1 in Prove; and (c) (z,y) € NQR(2n), Prover’ does not stop at step
P.1 in Prove, but ® is not 3-satisfiable. We shall prove that each of these events
is very improbable. The probability that (a) occurs has already been computed in
Theorem 4.3 and shown to be exponentially vanishing in n. Now, consider event (b).
For each fixed T € Regular(2),T < m, since each 7; has probability greater than or
equal to % of being in J; 1 we expect n® /8 such elements in J;f 1. By the Chernoff
bound (see [AnVa, [ErSp]), the probability that no more than 33n? belong to JZ' is,

for large n, at most e . Thus, the probability that there is an integer x such that
case (b) occurs is, for large n, at most 22"e~"". Let us now consider event (c). If (c)
occurs, then the following event (d) must also occur: at least 11n consecutive assigned
triplets (74, Ti+1, Ti+2) must belong to the union of seven =, equivalence classes. In
fact, if ® is not satisfiable, for every labeling of ®, one of its clauses is labeled with
a triplet of quadratic residues (else, all clauses would be satisfiable). Let ¢ be such a
clause. Since verification step 3.3 must be passed, Prover’ must exhibit a square root
of (a2, 82,72), and thus this triplet is &, equivalent to ¢’s label, (a1, 31,71). Thus,
all verifying triplets of ¢ are contained in the union of at most seven =2, equivalence
classes. Since each (7, T;+1,7i+2) is proved in step 3.4 to be =, equivalent to one
verifying triplet, then event (d) must be true. The probability of event (d) is at most
n(0.93)". Indeed, for each fixed T the probability that at least 11n assigned triplets
belong to the union of 7 ~z equivalence classes is less than 7n(%)11"; this can be

explained as follows: % is the probability that each triplet belongs to the union of

seven fixed equivalence classes, there are 11n triplets, there are at most (g) = 8 ways
to choose seven classes out of eight, and there are n clauses altogether. Therefore,
the probability that there exists an integer x such that case (d) occurs is at most

22"7n(Z)1™ < 7n(0.93)". This concludes the proof of soundness.

Remark. (P,V) can be modified in the same way as (A, B) was to achieve perfect
completeness. This is the reason why the verifier in step 1 of Check_Prove accepts if
there are fewer than 33n? integers in J}!. Note also that the prover need not have
infinite computing power. In fact, an efficient algorithm can perform all required
computations provided that it has as an additional input the satisfying assignment
for &.

We show now that the proof system (P,V) is also zero-knowledge over 3SAT.
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We first exhibit a simulator for V’s view and then prove that it works.

5.3. The simulator. The following algorithm S, on input a formula ® € 3SAT
(but not a satisfying assignment for ®) generates a family of random variables that,
under the QRA, no efficient nonuniform algorithm can distinguish from the view of V.
Note that the view of V consists of a quadruple (p o 7, (z,y), Proofi, Proofs); thus,
the task of the simulator is to produce a quadruple that cannot be distinguished,
under the QRA, from a correct quadruple. Looking ahead, the two crucial points in
the strategy of the simulator are:

1. To choose the auxiliary pair (x,y) so that z € BL(n) but y is a quadratic
residue modulo z.

2. To choose a portion of the reference string not at random. Rather, select it
from among the strings that do not contain any quadratic nonresidue modulo
zin JF1.

This strategy is viable because the simulator can choose the reference string (which
is instead fixed for the prover) and because it is hard to distinguish between random
members of JF! and random quadratic residues modulo z.

For a clearer presentation, S’s program has been broken down into procedures.
To give informal help in reading these procedures, we write 2’ for a value computed by
the simulator, when we want to emphasize that this value is “fundamentally different”
from the “corresponding” value z computed by the prover P, though an exponentially
long computation may be required to determine this fact.

S’s program
Input: a 3-satisfiable formula ® = ¢; A2 A+ - - A ¢, over the variables uq,usq, - - -, ug,
k < 3n.
1. Randomly select two n-bit primes p,q = 3 mod 4 and set x = pq.
Randomly select r € Z} and set ¥’ = r2 mod z. “Call (z,y’) the auziliary
pair.”
2. Execute procedure Gen_p_and Proof1(z,y’) obtaining the strings p’ and Proof;.
3. Generate a random 2n*-bit string 7.

4. Execute procedure Gen Proof2(®,z,y’,p,q, 7) obtaining the string Proofs.
Output: (o’ o7, (z,y'), Proofi, Proofs)

Procedure Gen_p_and Proofi(z,y)

“This procedure is used both by the simulator S and, later on, by some probabilistic
algorithm. In any call, z € BL(n) and y € J}!. When the procedure is called by the
simulator S, y is a quadratic residue modulo z.”
begin{Gen_p_and Proof1}
1. Set Proof; = empty string.
2. For i = 1 to 4n?
Randomly select a 2n-bit integer s;, with possible leading 0’s.
If s; ¢ J}! then set p; = s;.
else
Toss a fair coin.
If HEAD then set p; = s? mod z and append s; to Proof;.
Proof,. If TAIL then set p; = y‘132 mod z and append s; mod z to

3. Set p=p1--: pan2.
4. Return(p, Proofi)

end{Gen_p_and Proofl}
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Let us now see that sometimes Gen_p_and Proofl “generates what the legitimate
prover would generate.”

LEMMA 5.3. Define Spacel(x,y) as the probability space generated by the output
of Gen_p_and Proof1l on input x,y. Then, for all x € BL(n) and y € NQR,

space1(z,y) = {p & {0,1}"""; Proofy & P_Proof1(z,y,p): (p, Proof1)},

where P_Proof1 is P’s procedure to compute Proof; (i.e., step P.2).

Proof. Fix x € BL(n) and y € NQR,. It can easily be seen that the first
component of Gen_p_and_Proof1’s output is randomly distributed among the 8n3-bit
long strings. Moreover, if p; € JF!, the corresponding s; is a random (z,y)-root
of p;. Thus s; has the same probability of belonging to Gen_p_and Proofl’s output
as it has of being sent, at step P.2, from prover P to verifier V on inputs (z,y)
and p. O

Procedure Gen Proof2(®,z,y',p, q,7)

“This procedure is used both by the simulator S and, later on, by some probabilistic
algorithm. In any call, x € BL(n) and 3y’ € QR,. It returns a string Proof, that
‘proves’ that the formula ® = ¢; A ¢a A - -+ A ¢, is 3-satisfiable using the string 7 and
the pair (z,y’) even without knowing any satisfying assignment for ®.”
begin{Gen_Proof2}

0. Set Proof, = empty string.

1. Consider T as the concatenation of n3 2n-bit integers. If there are fewer than
33n? integers in J;!, stop. Else, let 7,,---,733,2 be the first 33n? integers
belonging to J;!.

Group the 7;’s in 11n? triplets (1,,7,,7,), (T,, 75, Ts), - - - The first 11n triplets
are assigned to ¢1, the second 11n triplets are assigned to ¢2, and so on.

2. For each variable u;, randomly select w; € NQR, and label the literal u;
with w; and the literal %; with y'w; mod z.

“Since ¥y’ is a quadratic residue, all labels are quadratic nonresidues.”
Append the labeling of ® to Proofs.

3. For each clause ¢ of @ do:

e Let aj, 31, and 73 be the labels of the three literals of ¢. Thus, a;, 51,71 €
NQR,.
Choose at random seven triplets (a2, 32,72), -, (as,Bs,7s) in J 1 x
J;l X J;l such that (ai,ﬂi,%) Géx (aj,ﬂj,'yj), forl1 <i< ] < 8 and
Qm(a2) = Qm(/B2) = Qw('}?) =0.
Append the triplets (a1,81,71), ", (as, 3s,7s) as the verifying triplets
of ¢ to Proofs.

o Randomly choose and append a square root of (a3, B2,72) to Proofs.

e For each of the assigned triplets (21, 22, 23) of ¢, choose i, 1 < i < 8,
so that (21,22,23) =~; (@i, B8i,7:). Randomly choose and append an
(i, Biyvi)-root of (21, 22, z3) to Proofs.

4. Return(Proofs)
end{Gen_Proof2}

LEMMA 5.4. Algorithm S is efficient.
Proof. The main body and procedure Gen_p_and Proofl are computationally
trivial. The first two steps of procedure Gen Proof2 are also quite easy as, due to
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Fact 2.9, generating a random quadratic nonresidue in J;}! is easy when z € BL.
Let us now see also that step 3 can always be completed, and efficiently as well.
Given that the first verifying triplet has been chosen to be composed by quadratic
nonresidues in J}! and the second by quadratic residues, it is certainly possible to
choose the other six verifying triplets so that all of them belong to eight distinct =,
equivalence classes. Moreover, given that the factorization of x is an available input,
the remaining part of step 3 can be efficiently executed. O

5.4. (P,V) is zero-knowledge.

THEOREM 5.5. Under the QRA, (P,V) is a bounded noninteractive ZKPS for
3SAT.

Proof. All that is left to prove is that (P, V') satisfies the zero-knowledge condition.
We do this by showing that algorithm S of the previous section simulates the view of
the verifier V.

We proceed by contradiction. Assume that there exists a positive constant d, an
infinite subset Z C N, a set {®,, }ncz such that each ®,, is a 3-satisfiable formula with
n clauses, and an efficient nonuniform “distinguishing” algorithm {D, },ez such that
forallne

|Ps(n) — Py(n)| > n™4,
where
Ps(n) = Pr(s & S(1™,®,,): Dy(s) =1)
and
Py(n) = Pr(s & View(®,): Dy(s) = 1).

We derive a contradiction by showing an efficient nonuniform algorithm {C, }nez
violating the QRA. On input randomly chosen z € BL(n) and y € J}!, C, constructs
a string SAMPLE which is distributed according to S(1",®,) if y € QR,, and ac-
cording to View(®,) if y € NQR,. Thus, as the nonuniform algorithm {Dp}nez is
assumed to distinguish the two probability spaces, this is a violation of QRA.

The Algorithm C,

“C, has “wired-in” a formula ®,, along with ¢, the lexicographically smaller satisfying
truth assignment for ®,,, a description of D,,, and the probabilities Ps(n) and Py (n).”

Input: (z,y) such that x € BL(n) and y € J}1.
1. Execute procedure Gen_p_and_Proofi(z,y), thus obtaining p and Proof;.
2. Execute procedure Sample_7_and Proof2(®,,t,z,y), thus obtaining 7 and
Proofs.
3. Set SAMPLE = (po,(,y), Proofy, Proofs).
4. If D,(SAMPLE) =1 then set b=1 else b = 0.
5. If Pg(n) > Py(n) then Output(b) else Output(1l — b).

Procedure Sample_7_and Proof2(®,t,z,y)

“© = 1 Ao A--- A ¢, is a 3-satisfiable formula with n clauses over the variables
UL, U2,y Uk, K < 3n. t: {u,ug, -, ux} — {0,1} is a satisfying truth assignment
for ®. x € BL(n) and y € Jf'.”
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begin{Sample_r_and Proof2}
1. For i = 1 to n® do:
randomly select a 2n-bit integer r; (with possible leading 0’s)
if r; ¢ J}! then set s; = 7;
else toss a fair coin: if HEAD then set s; = r? mod z; if TAIL then

set s; = —r2 mod z.

Set Proofs= empty string.

3. Let j1,- -, jasn2 be the indices of the first 33n2 s;’s belonging to J}1.

If there are fewer than 33n? such integers set 7 = s - - - 5,3 and stop.
Else, set 7; = s; for all indices i not in {j1,- -, Jaznz }-

4. Group the j;’s in 11n? triplets (41, j2,73), (ja,J5,76), - -~ Assign the 11n2
triplets to the clauses in the following way: the first 11n triplets are assigned
to the first clause, ¢;, the second 11n triplets are assigned to the second
clause, ¢2, and so on.

5. For each variable u;, randomly select v; € Z; and assign the label w; to the
literal u; and the label yw; mod z to the literal %;, where

R

_[-vimodz ift(u;) =1, and
Wi —yvimod z if t(u;) = 0.

Call @’ the labeling of ®. Append @' to Proofs.
6. For each clause ¢ of ® do:

e Let —ya®? mod z, —yb® mod z, —c? mod x be the label of the three literals
of ¢, and a, b, ¢ previously computed values in Z7.
“We consider only one case, not to overburden our notation. The other
cases are treated similarly.”

o Randomly choose 21 elements a1,b1,c1,--,a7,b7,c7 € Z%, and con-
struct the following eight triplets

(—ya®? mod x, —yb® mod z, —c? mod )
(a? mod z,b? mod z,c? mod )

(a3 mod x, —b2 mod z, c2 mod )
(a2 rn20d z, ——b%zmod T, —g% mod )
(—a% mod z,b; mod z,c; mod z)
(——ag mod z,b% mod x, —c2 mod )
(—a mod x, —b2 mod z, cZ mod z)
(ya? mod z,yb2 mod z, —c5 mod x).

o Construct the eight verifying triplets of ¢ as follows. Set

(a1, B1,m) = (—ya®? mod z, —yb?> mod z, —c? mod z),
(a2, B2,72) = (a2 mod z,b? mod z,c? mod z).

Randomly permute the remaining six triplets and assign them to

(a3, :B3a 73)) ) (a87 /88) ’)/8)

Append (ah /61)71)) Tty (a8a ﬂ8a78) to PT‘OOfQ.
e Append the triplet (a;, b1, c1) to Proofs as a square root of (ag, B2,72).
e For each of the assigned indices (I1,l3,13) of @,
Randomly choose one of the eight verifying triplets, say, (ak, Bk, 7k)-
Randomly choose vi,v2,v3 € Z} and set 7, = v%ak mod z, 7, =
vZB mod z, and 7, = v27y; mod z.
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Compute and append to Proofs (viai mod x,va8k mod z, vs7y, mod x)
as an (o, Bk, Yk )-root of (11,71, Ti,)-
o Set T =1, Tps.
7. Return(r, Proofs).
end{Sample_r_and Proof2}

There is no question that {Cp},ez is an efficient nonuniform algorithm. Now let
Space2(®,,t,z,y) be the probability space generated by the output of
Sample._7_and.Proof2 on input ®,,t,z,y. Then, for all n € 7 and for all z € BL(n),
Space2(®,,t,z,y) is equal to

%) {7‘ & 4o, 1}2"4;Proof2 & Prove(®n,t,z,y,7): (7, Proofz)} ifye NQR,,
{7- il {0, 1}2”4; Proof, & Gen Proof2(®,,z,y,p,q,7): (7, Proofg)}if Yy € QR,,

where p, ¢ are the prime factors of x.

To see (*), note that if y € NQR,, then the label w; assigned to each literal u,
by C,, is a random element selected from either NQR, or QR, depending on whether
t(u;) is true or false, respectively (this is the same computation performed by Prove).
If y € QR,, then the label w; of literal u; is always a random element selected from
NQR; (in the same way as Gen_Proof2 computes it). In both cases the label of @; is
yw; mod x.

Regardless of the quadratic residuosity of ¥y modulo z, for each clause ¢ of ®, the
eight verifying triplets of ¢ computed by C, are always selected at random among
the triplets of elements in J}! that are pairwise not ~, equivalent. The first triplet
consists of the labels of the three literals of ¢, and the second triplet is made of three
quadratic residues.

The string 7 output by C, is truly random (regardless of the quadratic residuosity
of y modulo z). Indeed, each 7; is randomly selected from the 2n-bit long strings, and
independently of the remaining 7;’s.

Finally, for each clause and each of its assigned triplets (m,,7,,7,) the cor-
responding (viog mod z, vef; mod z, v3yrmod z) is a random (ag, Bk, Yk )-root of
(71,5715, Ti3)- This completes the proof of (x).

Since SAMPLE = (p o 7, (,y), Proofi1, Proofs), because of () and because of
Lemma 5.3, for randomly selected z € BL(n) and y € J}!, SAMPLE is distributed
as View(®,) ify € NQR, and as S(1",®,,) if y € QR,. Given our assumption about
the efficient nonuniform algorithm {D,, },cz, it is immediately seen that, for all n € Z,
Pr(z & BL(n); y & JF: Cp(z,y) = Q.(y)) > 1/2+1/(2n?), which contradicts the
QRA. 0

Remark. The reader is encouraged to verify that if the same reference string
o and the same (z,y) are used by the prover to prove that two formulae ® and &
are 3-satisfiable, then “extra knowledge may leak,” for instance, that there exist a
satisfying assignment for ® and a satisfying assignment for & for which the literal u;
in ® and the literal 4, in ® have the same truth value.

The moral is that one must be careful when using the same set-up, i.e., common
reference string, and the same pair (z, y), to prove an “unlimited” number of formulae
to be satisfiable. This is indeed the goal of §6.

5.5. Arthur—Merlin games and bounded noninteractive zero knowl-
edge.

THEOREM 5.6. If 3SAT € Bounded-NIZK, then Bounded-NIZK = AMs,.
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Proof. Since Bounded-NIZK C Bounded noninteractive P = AMj, it only remains
to show that AMy; C Bounded-NIZK. Let L € AM,. Then, there exist a positive
constant ¢ and a sender-receiver pair (Prover, Verifier) such that

1. for all x € L,

e 2
Pr(o & {0,1}"; Proof & Prover(o,z): Verifier(o,x, Proof) = 1) > 3
and
2. for all € L,, for all Turing machines Prover’, and for all sufficiently large
n’

Pr(c & {0,1}™; Proof & Prover'(o,z): Verifier(o,x, Proof) = 1) < %

Moreover, by the result of [FuGoMaSiZa], the proof system (Prover, Verifier) enjoys
perfect completeness. Define now the language L' = U, L'(n), where

L'(n) = {(r,z) : |r| =n° x € L,, and Jw, |w| < n° such that Verifier(r,z,w) =1}

and L and c are as above. Then z € L, if and only if (r,z) € L'(n) for most n°-bit
strings r.” Moreover, L' € NP, thus there is a fixed polynomial-time computable
reduction R such that

(r,z) € L'(n) <= V¥ = R(r,z) € 3SAT3s,

where b > 0 is a fixed constant depending only on the reduction R.

We now describe a bounded noninteractive ZKPS (P, V) for L. On input z € L,
and the reference string 7 = r oo, where |r| = n® and o has the proper length, P con-
structs the formula ¥ = R(r,z) and, if it is 3-satisfiable, then runs the
algorithm for the prover P of §5.1 with input ¥ and o, to prove that, indeed,
¥ e 3SAT, . O

THEOREM 5.7. Under the QRA, Bounded-NIZK = AM,.

6. Noninteractive zero-knowledge. We now want to capture the ability of
giving noninteractive and zero-knowledge proofs of “many” theorems, using the same
common reference string, in an “on-line manner.” That is, each theorem can be
proven independently of all previous and future theorems.

We will present our formal definition when the theorems to be proven are state-
ments about 3-satisfiability.

DEFINITION 6.1. Let (Prover, Verifier) be a sender-receiver pair, where
Prover(-,-) is random selecting and Verifier(:,-,-) is polynomial time. We say that
(Prover, Verifier) is a noninteractive zero-knowledge proof system (noninteractive
ZKPS) if the following three conditions hold.

1. Completeness. For all ® € 3SAT and all n,

Pr (a & {0,1}"; Proof & Prover(o,®): Verifier(o,®, Proof) = 1) =1.

7 Thus an alternative way of proving that £ € Ly, consists of showing that, for a random string
of the proper length, (r,z) € L'(n). Note, though, that there may be two different strings z and y in
Ly, such that (r,z) € L'(n) for all », but (r,y) ¢ L'(n) for some r’s. Thus the fact that for a given
string 7, (r,x) € L'(n) constitutes additional information about = than just membership in Ln, and
this additional information cannot be hidden by a zero-knowledge proof that (r,z) € L'(n)! This is
why we impose the conditions that (Prover, Verifier) possess perfect completeness.
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2. Soundness. There exists a constant ¢; > 0 such that, for all probabilistic
algorithms Adversary outputting pairs (®’, Proof’), where ®' ¢ 3SAT, for
all d > 0, and for all n > ¢y,

Pr(a &{0,1}";(®', Proof') & Adversary(o): Verifier(o,®', Proof') = 1) <n %

3. Zero-knowledge. There exist constant c; > 0, an efficient algorithm S such
that for all ®1,®,,--- € 3SAT, for all efficient nonuniform algorithms D, for
all d > 0, and all n > ¢,

|Pr(s & View(n, 1,8z, +-) : Dy(s) = 1)—Pr(s & S(1™, @1, 82, --) : Du(s) = 1)| < n~¢
where

View(n, ®;, ®y,--+) = {a & {0,1}™; Proof; & Prover(a, ®:);

Proofy & Prover(c,®5);

:‘(o, Proofi, Proofs, - - )}

A sender-receiver pair (Prover, Verifier) is a noninteractive proof system for 3SAT
if completeness and soundness hold.

Discussion. First, note that we have set the probability of acceptance of true
theorems to be 1, since 3SAT € NP. Note also the generality of our definition as
it handles any number of formulae of arbitrary size in completeness, soundness, and
zero-knowledge. That is, every true theorem can be proven, no matter how long. Of
course, longer theorems will have longer proofs. Since the verifier is polynomial-time
in the length of the common input, it will have more time to verify that a longer
formula is 3-satisfiable. Every false theorem, no matter how long, has negligible
probability of being “successfully proved”; however, though the length of the proof
grows with the length of the theorem, “negligible” is defined only as a function of the
length of the reference string.? Finally, every theorem, no matter how long, possesses
a zero-knowledge proof. Of course, a longer theorem will have a longer proof and
thus the polynomial-time simulator will have more time to simulate the proofs. The
zero-knowledgeness of the simulator’s proofs holds only for a nonuniform “observer”
bounded by the length of the reference string.®

The definition of noninteractive ZKPS might be more general if perfect complete-
ness is relaxed to completeness as in §3. In this case the adversary choosing algorithm
Choose-in-L should be given ¢ and access to Prover’s random selector.

6.1. The sender-receiver pair (P,V).In this subsection we describe a
sender-receiver pair (P, V). P can prove in zero-knowledge the 3-satisfiability of any
number of 3-satisfiable formulae with n clauses each. Later, we shall show how to use
the same protocol to prove any number of formulae, each of arbitrary size.

Before going into a formal description of the proof system, we give an informal
view of the protocol.

8 Which, de facto, is a security parameter.

9 In particular, if a theorem and its proof are exponentially long (with respect to the reference
string), the distinguishing algorithm can compare the actual “view” and the output of the simulator
only for a polynomially long prefix.
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An informal look at (P,V).

Observation. A crucial observation that will be (implicitly) proved in this section
is the following. If many certified auxiliary pairs (z,y) (z € BL and y € NQR;) are
available, one can use each (z,y) to prove in zero-knowledge that any single formula
® (5, With n clauses is 3-satisfiable using the same random string 7. For what we
remarked in §5, the same 7 and the same auxiliary pair should not be used to prove
the 3-satisfiability of two different formulae.

In the light of the above observation, we want to construct a mechanism to achieve
the following two goals:

(1) Associating to each formula & an auxiliary pair (z%,y®), of “bounded” size,
so that, with overwhelming probability, different formulae are associated to
different pairs.

(2) Certifying (z®,y?), i.e., proving that z® € BL and y® € NQR,«.

The first goal could be achieved by using the random selector, but the problem of the
certification remains. The current mechanism for certifying in zero-knowledge a single
auxiliary pair (z,y) using p can be extended to handle “a few” more pairs, but not
arbitrarily many.!® Instead, we use a mechanism of recursive nature to simultaneously
achieve (1) and (2).

Let us first describe this recursive mechanism for a prover “with memory.” Such
a prover can construct and store a binary tree of depth n. The left child of each node
will also be denoted as the 0-child, and the right one as the 1-child. Thus each node
in the tree is labeled with a binary string of length at most n + 1. The root is labeled
0, and each other node is labeled with string describing the unique path from the root
to it. Thus, for instance, the left child of the root has label 00 and rightmost leaf
of the tree has label 01™. With each node (labeled) 4, the prover stores a randomly
selected auxiliary pair (z;,y;). The prover uses (z;,y;) for certifying auxiliary pairs of
the children of node i, that is, (20, ¥:0) and (z;1,¥;1). The first auxiliary pair (2o, yo)
is certified using string p as in §4. For each i, the two pairs (zob,..-b;0 Yoby---b;0),
(Zoby--b;15 Yoby ---b;1), are certified together as in §5, using the same string 71. That is,
consider the language L = U, L(n), where

L(n) = {((ug,v,), (u1,v1)) : uy,u1 € BL(n), v, € NQR, , vi € NQRy, }.

Then L € NP. Thus, there exists a fixed polynomial-time computable function CR
such that

((uy,v,), (u1,v1)) € L(n) < ¥ = CR(u,,v,,u1,v1) € 3SAT,.,

where e is a fixed constant depending only on the reduction CR. More precisely, let
T be a polynomial-time Turing machine such that x € L if and only if there is a
“witness” (string) w such that |w| < |z|® and T'(z,w) = 1. Then, the formula ¥ is
obtained by encoding the computation of T as in Cook’s theorem, and then reducing
it to a 3-satisfiable formula, as Cook suggested [Co]. A well-known property of this
reduction is that to each “witness” w one can associate in polynomial time a satisfying
assignment for W. In our case the witness consists of the primes in the factorizations
of u, and u, and their proof of primality. The proof (witness) of the primality of

10 Recall the way p is used. If p; € QR,;, a square root of p; mod z is given; if p; € NQR, a square
root of yp; mod x is given. In our simulation, however, all p; will be chosen in QR;. Thus, if we
want to carry on the simulation for many pairs (z;,y;) we need to construct a p solely consisting of
quadratic residues modulo 1, z2, - - -, which appears very hard to do when the number of z;’s grows
large.
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a prime p is probabilistically constructed in a standard way: by running algorithm
[AdHu] on input p, flipping coins as needed.

We will thus certify (Zob,.--b;0, Y0by---b;0)5 (T0bg---bi1> Yoby.--b;1) Dy showing that the
so constructed

\I’Oblmbi = CR((wOblmbimyObl---biO), ($0b1~~~bi1,y0b1~~~bil)) (S 3SATne.

For each Wop,...;,, this is done using the proof system of §5, and the same string 7,
which in fact has length 2n*, with a = 4e.

What have we gained by this? Essentially, we have transformed the problem
of certifying (Tob,---b;05 Yoby---b:0)s (Toby---b;1, Yoby--b;1) iNtO the problem of proving that
Wop,...b; € 3SATy., and we have observed (but not yet proved) that one can prove
in zero-knowledge arbitrarily many theorems of size n given arbitrarily many inde-
pendent certified pairs (z,y)’s. Since these pairs are randomly and independently
selected, with overwhelming probability, each pair (zop,...b;, Yob,---b; ) is used only once
with 71 to prove Wop,...b, € 3SAT ..

In sum, this mechanism provides each formula ¢ with a certified auxiliary pair
(z®,y?®) that is uniquely determined from ® and the reference string, though still
random.

The prover we just described need not remember the labeled full binary tree;
it can, in fact, (re)grow its branches as needed. It must, though, remember which
auxiliary pairs it had associated with the nodes of the tree. In fact, if it does not keep
track of these pairs, it may use the same auxiliary pair and the same reference string
to prove different theorems, which may not be zero-knowledge. To avoid this, and to
avoid “memory,” the prover uses the random selector to associate a random pair with
the node of the tree. Namely, on input a formula ¥ the prover chooses n bits b1 bs - - - b,
by querying the random selector with a pair whose first entry is ¥ and the reference
string o = poT; o7y, and whose second entry is (a description of) the set {0,1}". This
way, if the same formula is considered twice, the same random n-bit string would be
selected. Then the prover computes a random, first auxiliary pair (zo, yo) (again using
the random selector so that it could recompute the same pair whenever it wanted to).
Then, for ¢ =0, - - -, n, the auxiliary pairs (Zop,.--b;0> Y0by--b;0)s (T0by---b;1 YOby--b;1), ALE
chosen by the random selector on input 0b; ---b;0 and 0b; - - - b;1, respectively. The
pair associated with @ is (Zob,.--b, , Yoby by, )-

We now proceed more formally.

Description of (P,V).

“aq = 4e, where e is the constant of reduction CR. Select is P’s random selector.
PAIR(n) is the set of pairs (z,y) such that € BL(n) and y € NQR,.”

Input to P and V:
e A random string o, o = poT, oT,, where |p| = 8n3, |7,| = 2n° and |7,| = 2n*.
o A formula ® € 3SAT with n clauses.

Instructions for P:

P.1. “Choose and certify the first auxiliary pair.”
Compute auxiliary pair (z,,y,) = Select(o, PAIR(n)).
Send (z,,¥y,) and run algorithm A of §4 on input (z,,y,) and p. “Call Proof,
the output.”

P.2. “Choose and certify other auxiliary pairs.”
Set b, = 0. Compute and send b b1 bs - - - b, =Select(®, {0,1}").
For i =0,---,n do:
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Set s =b,---b;.
Compute and send (zs0,ys0) = Select(s0, PAIR(n)) and (zs1,Ys1) =
Select(sl, PAIR(n)).
Compute ¥3 = CR(xs0,Ys0,Ts1,Ys1) and ts, a satisfying assignment for
v,.
Execute Prove(¥,,ts, zs,ys, 7, ). “Call Proof¥, the output.”
P.3. “Prove ® € 3SAT.”

Set s = b, - - - b,. Let tg be the lexicographically smaller satisfying assignment
for ®.

Execute Prove(®,te,Zs,ys, 7,). “Call Proof® the output.”

Instructions for V:

“V receives from P the bits by, b1, +,bn, (2, 1% )y (T 0r¥si0)y (To1r¥sgn)r o
($b0.~-bn_lo’ ybombn_lo)’ (zbombn_ll’ ybou-bn_ll)’ the formulae \Ilbo"”)‘l,boblmbn’ and
the strings Proof,, Proof¥y ,--- ,Proof\Ilbombn, Proof®.”
V.1. “Verify first auxiliary pair.”
Run algorithm B of §4 on input p, (z,,¥,), and Proof,.
If B stops and rejects, stop and REJECT. Else,
V.2. “Verify other auxiliary pairs.”
For i=1,---,n do:
Set s =1b, - b;.
Compute ¥, = CR(xso» Yso, $slaysl)'
If Check_Prove(¥,, x5, ys, 7, , Proof¥;)=REJECT then stop and RE-
JECT. Else,
V.3. “Verify Proof®.”
Compute n from po7, o7, and verify that ® has at most n clauses, and each
of them has three literals. If not, stop and REJECT. Else,

Set s =b, - by.
If Check Prove(®, zs, ys, T,, Proof ®)=REJECT then stop and REJECT. Else
ACCEPT.

6.2. (P,V) is a noninteractive proof system for 3SAT. The proof system
(P, V) of §5 constitutes the main building block of the just-described sender-receiver
pair (P,V). Therefore, the completeness of (P,V) can be easily derived from the
analysis of completeness in §5.2.

Let us now focus our attention on the soundness. We shall show that, if the for-
mula @ is not 3-satisfiable, then for any Turing machine Adversary (even a “cheating”
one that chooses ® after seeing the reference string), V' will accept the proof provided
by Adversary with sufficiently low probability. The proof closely follows the reasoning
done in §5.2 to prove the soundness of the proof system (P, V') described in §5.1. We
distinguish two cases:

1. For some w, (T, Yuw) € NOR(2n).
2. All the pairs (z,,yw) belong to NOR(2n) but ® & 3SAT.

If (z,,y,) € NOR(2n), we are in the very same situation analyzed in case (a)
in the proof of soundness of §5.2. By the same reasoning, we conclude that the
verification of step 1 is passed with sufficiently low probability. Suppose that for w =
sb, where b € {0,1}, (Tw,yw) € NOR(2n), and (Tw,yw) € NOR(2n). Then, ¥,, ¢
3SAT and therefore the procedure Check Prove invoked for ¥, returns REJECT
with sufficiently high probability.
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Now, suppose that all pairs (z,,%w) belong to NQR(2n) but ® ¢ 3SAT. Since
(zs,9s) € NOR(2n), s = byby - - - by, following the reasoning done for cases (b) and
(c) in the proof of soundness in §5.2, we conclude that verification step V.3 is passed
with very low probability.

Now, we show that the proof system (P, V) is also zero-knowledge over 3SAT .

6.3. The simulator. In this section, we describe an efficient algorithm S; in
the next section we will prove that, on input of a sequence of 3-satisfiable formulae,
S’s output cannot, under the QRA, be distinguished from V’s view by any efficient
nonuniform algorithm.

S’s Program
Input: An integer n > 0. A sequence ®;,®,,--- of 3-satisfiable formulae with n
clauses each.
0. Set Sim_Output = empty string and Tree = empty set.
1. “Choose p’ and choose and certify first auxiliary pair.”
Randomly select two n-bit primes p,,q, = 3 mod 4 and set x, = p,q,. Ran-
domly select y; € QRy, .
Execute procedure Gen_p_and Proof1(z,,y,), thus obtaining the strings p’
and Proof;.
2. “Choose 7, and 7,.”
Randomly select two strings 7, and 7, so that |7,| = 2n® and |7,| = 2n*.
3. For each input formula & do:
3.1. “Choose and certify other auxiliary pairs”
Set b, = 0 and randomly select b; - - - b,. Append (x,,y,), Proof,, and
byby - -+ by, to Sim_Output. For i =0,:--,n do:
Let s = bobl .. b,,
If s & Tree then
Add s to Tree.
Randomly select four n-bit primes pso, ¢s0,Ps1,9s1 = 3 mod 4.
Set T50 = Psogs0 and To1 = Ps1gs1.
Randomly select 3.y € QR,,, and y.; € QR,,,.
Compute \I’s = CR(:E807 y;O) Ts1, y;l)'
Execute procedure Gen_Proof2(¥,, z,, y., s, ¢s, 7, ), thus obtain-
ing Proof%’.
Append (zs0,¥5), (Zs1,Y51), and Proof¥, to Sim_Output.
3.2. “Prove ® € 3SAT.
Set s = byby - b,. Execute Gen_Proof2(®,z,y.,ps,qs,T,) Obtaining
Proofd'.
Append Proof® to Sim_Output.
Output: (p’ o7, o7,,Sim_Output)

LEMMA 6.2. Algorithm S is efficient.

Proof. The running time of S is proportional to the number of input formulae.
For each single input formula, all operations can be efficiently computed. Thus, S is
efficient. (Note, again, that the running time is polynomial with respect to the input
size, though it may be exponential in the parameter n.) O

The random variable output by S is certainly different from View and, before
proceeding any further, let us compare them. In View the string p is truly random,
while the corresponding string p’ constructed by S does not contain any element in
NQR;, . In View, each y, is a quadratic nonresidue modulo the corresponding z,
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whereas in S, y. is chosen among the quadratic residues modulo zs. Because of the
different quadratic residuosity of the y;’s, the two distributions differ also in the ¥,’s
and in the strings Proof¥U, and Proof®. In fact, the formula ¥, is satisfiable if and
only if both (zs0,ys0) and (xs1,ys1) are of the prescribed form. This is certainly the
case in View. But in S, as all y,’s are quadratic residues, none of the pairs (zs, ys)
is of the prescribed form and therefore none of the W,’s is satisfiable. Moreover, the
y,’s are also used to compute the labeling of the literals in the strings Proof¥,’s and
Proof®’s and thus in S all literals are labeled with quadratic nonresidues.

In the next section, we shall prove, using a reasoning similar to the one in Sec-
tion 5.3 that, despite the differences described above, the two families of random
variables cannot be distinguished by any efficient nonuniform algorithm, under the

QRA.

6.4. (P,V) is zero-knowledge.

THEOREM 6.3. Under the QRA, the sender-receiver pair (P,V) of §6.1 is a
noninteractive ZKPS.

Proof. All that is left to prove is that (P, V') satisfies the zero-knowledge condition.
We do this by showing that the output of algorithm S of the previous section cannot
be distinguished from the view of the verifier V' by any efficient nonuniform algorithm.

We proceed by contradiction. Assume that there exists a constant d > 0, an
infinite subset Z C N, a set {(®7, ®F,- - ) }nez of sequences of 3-satisfiable formulae,
where ®7 has n clauses, and an efficient nonuniform algorithm D = {D,},ez such
that for alln € Z

| Py (n) — Ps(n)| >n"9,
where
Py (n) = Pr(s & View(®7,®Y,---): Dy(s) = 1)
and
Pg(n) = Pr(s & S(1™, @7, ®%,---): Dy(s) = 1).

Let R(n) be a polynomial such that the running time and the size of the program
of each algorithm D, is bounded by R(n). Without loss of generality we can consider
R(n)-tuples of 3-satisfiable formulae ®7,-- -, <I>’}i(n), instead of arbitrary sequences of
3-satisfiable formulae ®T,®7, .- -.

As we have seen in the last section, the main difference between S’s output and
the view of the verifier is in the y,’s: they are all quadratic residues modulo the
corresponding z¢’s in S’s output, while they are all quadratic nonresidues in View.
We will now describe an efficient nonuniform algorithm C = {C,, },,cz. Each C,, takes
two inputs: j > 0 and (z,y) € PAIR(n) = {(u,v) : v € BL(n),v € J'}; and
has “wired-in” the formulae ®7,---, @%(n) along with their lexicographically smaller
satisfying assignments. Roughly speaking, C,, produces as output a “random” string
and “proofs” for all formulae ®7’s. C,, selects the input pair (z,y) as the jth auxiliary
pair. All prior pairs are selected as simulator S does and all subsequent pairs as prover
P does. Thus, C, “knows” the factorization of the Blum modulus for all auxiliary
pairs except (z,y). Nonetheless, algorithm C,, will use (z,y) as S would if y € QR,,
and as P would if y € NQR,. More formally, C, is designed so as to enjoy the
following properties. Set

Space(n, j,QR) = {z < BL(n); y < QRu; s < Cn(j,z,y) : s},
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Space(n, j, NQR) = {z < BL(n); y <~ NQRy; s < Cu(j,2,y) : s}.

Then,
Property (1) Space(n,0, NQR) = View(n, @7, -, ®% (),
Property (2) Space(n,nR(n)+1,QR) = {s & S(1",®7,-- -, Qz(n)) : s},
Property (3) Space(n, j, QR) = Space(n,j + 1, NQR).
From these properties we will conclude that the existence of D violates the QRA.
We now formally describe the algorithm, and then prove all the stated properties.

The Algorithm C,
“Cy, has “wired-in” the R(n)-tuple (®7,-- -, ®%,,)) and, for each ® € {®7,---, %,y },
the lexicographically smaller satisfying assignment tg.”

Input: “An integer j € [0,nR(n) + 1]. A pair (z,y) € PAIR(n).”
1. “Choose p and choose and certify first auxiliary pair.”
If j =0 thenset x, =z and y, = y.
Else randomly select two n-bit primes p,, g, = 3 mod 4, set , = p,q,,
and select y, € QR, .
Execute procedure Gen_p_and Proofi(z,,y,), thus obtaining p and Proof,.
2. “Choose other auxiliary pairs.”
“T'ree contains the indices of auxiliary pairs that are used to certify two others
auxiliary pairs. Count contains the number of all selected auxiliary pairs.”
Set Tree = empty set and Count = 1.
For each formula ® € {®7,--, ®%,,)} do:

Set b2 = 0 and randomly select n bits bF,- -+, b%.
Fori=0,---,n do:
Set s = bT--- b
If s &€ Tree then
Add s to T'ree. Randomly select four n-bit primes
P50, 950, Ps1,9s1 = 3 mod 4.
“Choose 0-child.”
If Count = j then set x40 = x, Yso = y.
If Count < j then set xs9 = pspgso and randomly select
Ys0 € Qsto'
If Count > j then set x50 = pspgso and randomly select
Yso € N QRwso .
Count = Count + 1
“Choose 1-child.”
If Count = j then set x5 = x, Yys1 = .
If Count < j then set x5; = ps19s1 and randomly select
Ys1 € QRZ.:I .
If Count > j then set x4 = ps19s1 and randomly select
Ys1 € NQR,,,.
Count = Count + 1
3. “Choose 7, and 7,.”
Let w be the index of (z,y), that is (Zw, Yw) = (z,y). If there is no such w,
set w = empty string.!!
If w € Tree then

11 1t may happen that fewer than j (different) auxiliary pairs will be chosen. To give an extreme
example, it may happen that, for all ®, the bits b‘lI> e bs are always the same.



NONINTERACTIVE ZERO-KNOWLEDGE 1113

Compute ¥,, = CR(Zw0, Ywo, Twi, Yw1) and a satisfying assignment
ty for ¥,,.
Execute procedure Sample_7_and Proof2(¥,,, ty, Ty, Yw) Obtaining 7,
and Proof%,,.
Randomly select a 2n*-bit string 7,.
Else, if w = b7 --- b7, for ® € {@7,---, @} 1}, then
Execute procedure Sample_7_and Proof2(®,ts, z,y) obtaining 7, and
Proof®.
Randomly select a 2n®-bit string 7, .
Else, randomly select a 2n%-bit string 7, and a 2n*-bit string 7,.
4. “Choose proofs with respect to 7, and 75.”
Set PROOF= empty string and Tree = {w}.
For each formula @ € {®,---, @} )} do:
4.1. “Certify auxiliary pairs.”
Append (z,,y,), Proof,, and b? - - - bF to PROOF.
Fori=0,---,n do:
Set s=bf-~bg’.
If s & T'ree then
Add s to Tree.
If ys € NQR,, then
Compute ¥, = CR(zs0,Ys0,Zs1,Ys1) and a satisfying as-
signment tg for U,.
Execute procedure Prove(VUs,ts, x5, ys, 7, ) Obtaining
ProofV,.
If ys € QR,, then execute Gen Proof2(V,, z,,ys,Ps,gs, T, ) Ob-
taining ProofV,.
Append (zs0,ys0), (€s1,Ys1), and Proof¥, to PROOF.
4.2. “Prove 9.7
Set s =bT---by.
If s # w then
If ys € NQR,, then execute procedure Prove(®,tqe,zs,ys,7,) Ob-
taining Proof®.
If ys € QR,, then execute Gen_Proof2(®, z;,ys, s, gs, 7, ) obtaining
Proof®.
Append Proof® to PROOF.
Output:(po 7, o7,, PROOF).

First note that {Cy}nez is an efficient nonuniform algorithm. All z,’s (except
the jth) are selected along with their prime factors and thus all related computations
can be performed in expected polynomial time. All operations concerning = and y
are simple multiplications and testing of membership in J}!. The size of the set
Tree is never bigger than nR(n), and thus membership and add operations are easily
performed.

The strings 7, and 7, constructed by C,, are random. Indeed, either they are
randomly selected or they are generated by Sample_r _Proof2. The analysis in §5.4
shows that in the latter case the resulting string 7 is random.

Proof of Property (1). Assume j = 0 and y € NQR,. All ys’s are quadratic
nonresidues in C,’s output. (z,y) is set equal to (z,,y,) and used twice: at step 1 to
produce p and Proof,, and at step 3 to construct Proof¥,. Both the strings Proof,
and ProofV¥, have the same probability of being chosen as in View when the first
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pair is (z,,y,). From Lemma 5.3, each string p is equally likely to be constructed at
step 1. Thus, Space(n,0, NQR) = View(n, 7, -- 'v‘I’?z(n))'

Proof of Property (2). Suppose j = nR(n) + 1. To prove R(n) formulae, at most
nR(n) auxiliary pairs are needed. Thus, each y, constructed by C,, belongs to QR,,.
All the strings ProofW¥’s and Proof®’s are constructed in exactly the same way, both
by S and by C,. Hence, Space(n,nR(n) +1,QR) = {s & S(1", @7, -- > Phny) * S}

Proof of Property (3). Consider now the two probability spaces Space(n, j, QR)
and Space(n,j+ 1, NQR). In both spaces the auxiliary pairs are randomly chosen so
that the first j ys’s are quadratic residues modulo the corresponding zs’s and, from
the (§ + 1)st on, all the y,’s are quadratic nonresidues. All computations concerning
pairs (zs,ys) different from (z,y) are performed in the same way. The pair (z,y) is
used to construct either a proof Proof¥; for a formula ¥, derived from a reduction
or a proof Proof® for one of the formulae ®7, or is never used. In the former
two cases the proof is generated using the procedure Sample_7_and Proof2. When
y € NQR, (y € QR,), this procedure returns a string Proof that has the same
distribution as if it where generated by the procedure Prove (Gen Proof2). Thus,
Space(n, j, QR) = Space(n,j + 1, NQR).

‘We now conclude the proof of Theorem 6.3. We have assumed that D distin-
guishes between S(17,®7,---, @%(n))’s output and View(n, <I>§‘,--~,<I>'}%(n)). From
properties (1) and (2), then, this is tantamount to saying that D distinguishes be-
tween Space(n,0, NQR) and Space(n,nR(n) + 1, QR). By the pigeon-hole principle,
and because of Property (3), for all n € T there exists j = j(n), 0 < j < nR(n) + 1,
such that D distinguishes between Space(n,j, QR) and Space(n,j, NQR). That is,
foralln € Z,

|Pj(n,QR) — Pj(n, NQR)| > 1/((nR(n) + 2)n*)

where Pj(n,QR) = Pr(s < Space(n, j,QR) : D,,(s) = 1) and Pj(n, NQR) = Pr(s <
Space(n, j, NQR) : D,(s) = 1). Thus, composing each Cy(j(n),-,-) with D,,, one
obtains an efficient nonuniform algorithm that violates the QRA. 0

6.5. Proving theorems of arbitrary size. Given a reference string of 8n3 +
2n® + 2n* bit, the proof system (P, V) of §6.1 can be used to prove in zero-knowledge
the 3-satisfiability of an arbitrary number of 3-satisfiable formulae, but each of them
must have at most n clauses. However, the same proof system can be used to prove
3-satisfiable formulae with any number of clauses. The idea is perhaps best conveyed
in an informal manner. Given a formula ¢ with k clauses, the prover computes a
certified auxiliary pair (z®,y%) and the lexicographically smaller satisfying assignment
t for ®. To label each literal u; of ® the prover randomly selects r; € Z7, and, if
t(u;) = 1 he associates with u; the label w; = r2y® mod z?®; otherwise the label
w; = 1"32. mod z®. The label associated with w; is wqu’mod z®. Essentially, a
literal has an element in NQR_+ as label if and only if it is made true by ¢t. To
prove that & € 3SAT, the prover proves that each clause has at least an element
of NQR_,» among the labels of its three literals. That is, consider the language
L = {(y1,y2,Y3,x): at least one of y;,ya,ys belongs to NQR,}. Then L € NP and
therefore there exists a fixed polynomial-time computable reduction RE D such that

' = RED(y17y29y3am) € 3SATnf A (yl’y21y3a$) € L)

where f is a fixed constant depending only on RED. Therefore, to prove that the ith
clause is satisfied, the prover computes the formula ®; using the reduction RED and
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proves that ®; € 3SAT. By the property of the reduction the length of the formula
is upper bounded by nf and can thus be proved 3-satisfiable using the previously
described proof system (P,V) with a reference string of 8n3f + 2nf 4 2n*/ bits.
Therefore, we have reduced the problem of proving the 3-satisfiability of one formula
with many clauses to that of proving the 3-satisfiability of many formulae, each with
at most n/ clauses.

6.6. Efficient provers. In the proof system of §6.1, for convenience of presen-
tation, the prover P was made quite powerful. For instance, P needs to find the
lexicographically first satisfying assignment of a formula for proving that it is in
3SAT. This, however, is not necessary. It is easily seen that, under the QRA, the
verifier would obtain an undistinguishable view [GoMiRa], no matter which satisfying
assignment the prover may use. Also, it is possible for the prover to have access to
a random oracle instead of a random selector and still generate essentially the same
view to a polynomial-time verifier. In fact, by well-known techniques, a random oracle
can be transformed to a random function associating each string with o a “polynomi-
ally longer” random string. This random string may be used to select the necessary
primes and quadratic residues and nonresidues with essentially the same odds as for
a random selector. Actually, if one replaces a random oracle with a polyrandom func-
tion as in Goldreich, Goldwasser, and Micali [GoGoMi], the view of the verifier would
still be indistinguishable from the one it obtains from P. These functions exist under
the QRA'? and the replacement only entails that the same short, randomly selected
string should be remembered throughout the proving process.

In sum, the prover may very well be polynomial time, as long as it is given satis-
fying assignments for the formulae that need to be proved satisfiable in noninteractive
zero knowledge.

This is an important point, and can be shown to hold not only for our specific
noninteractive ZKPS, but also for any other that shares our algorithmic structure.
Since, however, systems with a different structure and relying on weaker intractability
assumptions have already been found (see below), we decline to formalize this point
in our paper. Our goal, at this point, is making precise the notion of noninteractive
zero-knowledge and showing its feasibility.

7. Recent improvements and related works. Two main open problems were
posed in [DeMiPel], namely,
1. whether many provers could share the same random string and!3
2. whether it is possible to implement noninteractive zero-knowledge with a
general complexity assumption, rather than on our specific number-theoretic
one.
Recently, both our questions have been solved in a beautiful paper by Feige, Lapidot,
and Shamir [FeLaSh]. They show that any number of provers can share the same
random string and that any trap-door permutation can be used instead of quadratic
residuosity. They also show that one-way permutations are sufficient for bounded
noninteractive zero-knowledge, but the prover needs to have exponential computing

12 In fact Blum, Blum, and Shub [BIBISh] show that the QRA implies the existence of a polyrandom
generator in the sense of Blum and Micali [BIMi] and Yao [Ya], and [GoGoMi] show that any
polyrandom generator can be used to construct a polyrandom function.

13 Indeed, if this had been done in our protocol, completeness and soundness would still hold.
However, it is not clear that the zero-knowledge would be preserved. Without changing our proof
systems, we can handle only a moderate number of provers. This number is limited for the same
reasons outlined in footnote 6.
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power. Our first question was also independently solved by De Santis and Yung
[DeYu].

Noninteractive zero-knowledge has been shown to yield a new paradigm for digital
signature schemes by Bellare and Goldwasser [BeGo].

De Santis, Micali, and Persiano [DeMiPe2] show that, if any one-way function
exists, after an interactive preprocessing stage, any “sufficiently short” theorem can
be proven noninteractively and in zero-knowledge.

Kilian, Micali, and Ostrovsky [KiMiOs] have shown that, if any one-way function
exists, after a preprocessing stage consisting of a “few” executions of an oblivious
transfer protocol, any theorem can be proven in zero knowledge and noninteractively.
(Namely, after executing O(k) oblivious transfers, the probability of accepting a false
theorem is 1 in 2*.) Bellare and Micali [BeMi] show that, based on a complexity
assumption, it is possible to build public-key cryptosystems in which oblivious transfer
is itself implementable without any interaction.

8. A general open problem. An obvious open problem in noninteractive zero-
knowledge consists of finding more efficient proof systems. However, in our opinion,
a more important one is decreasing the needed complexity assumption. This effort
should be extended to all of cryptography at this point in its development.

Introducing new cryptographic primitives is crucial, but would be essentially im-
possible without first relying on some special, though hopefully well studied, com-
plexity assumptions. It is important, though, to later find the minimal assumptions
for implementing these primitives. In fact, “extra structure” may make proving that
the desired property holds easier, but may also force the underlying complexity as-
sumption to be false. Personally, Micali finds a dramatic difference between one-way
functions and one-way permutations. (Breaking a glass is quite easy. Putting it back
together is certainly harder, but what if we were guaranteed that there is a unique
way to do so?)

We believe noninteractive zero-knowledge to be a fundamental primitive, one
deserving the effort to establish the minimal assumptions needed for it to be se-
curely implemented. We thus hope the following question will be settled: If one-way
functions exist, does 3SAT have noninteractive zero-knowledge proof systems whose
prover, given the proper witness, needs only to work in polynomial time?
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