
TECH REPORT
7~

2..11 z...,

Relating Equivalence and Reducibility
to Sparse Sets

Eric Allender, Lane A. Hemachandra,
Mitsunori Ogiwara, and Osamu Watanabe

Technical Report 358 Revised
April 1991

UNIVERSITY OF

ROC
COMPUTER SCIENCE



Relating Equivalence and Reducibility to Sparse Sets

Eric Allender!
Department of Computer Science

Rutgers University
New Brunswick, NJ 08903

Mitsunori Ogiwara3

Department of Computer Science
University of Electro-communications

Tokyo 182

Lane A. Hemachcndrc?
Department of Computer Science

University of Rochester
Rochester, NY 14627

Osamu Watanabe
Department of Computer Science

Tokyo Institute of Technology
Tokyo 152

November 12, 1990; Revised April 23, 1991

! Research supported in part by the National Science Foundation under grant CCR-9000045 and
by the International Information Science Foundation under grant 90-1-3-227.

2Research supported in part by the National Science Foundation under grant CCR-8996198 and
a Presidential Young Investigator Award, and by the International Information Science Foundation
under grant 90-1-3-228.

JResearch done in part while at the Tokyo Institute of Technology.



Abstract

For various polynomial-time reducibilities r , this paper asks whether being r-reducible to

a sparse set is a broader notion than being r-equivalent to a sparse set. Although distin­

guishing equivalence and reducibility to sparse sets, for many-one or t-truth-rable reduc­

tions, would imply that P # NP, this paper shows that for k-truth-table reductions, k ;::: 2,

equivalence and reducibility to sparse sets provably differ. Though Gavalda and Watanabe

have shown that, for any polynomial-time computable unbounded function f(·), some sets

f(n)-truth-table reducible to sparse sets are not even Turing equivalent to sparse sets, this

paper shows that extending their result to the 2-truth·table case would provide a proof

that P # NP. Additionally, this paper studies the relative power of different notions of

reducibility, and proves that disjunctive and conjunctive truth-table reductions to sparse

sets are surprisingly powerful, refuting a conjecture of Ko [K089].



1 Introduction

Computer science is the study of information-coding information, decoding informa­

tion, organizing information, and accessing information. Sets whose information content

is small, intnitively the structurally simplest of sets, have played a central role in the de­

velopment of the theory of computing. Sparse sets-sets with at most polynornially many

elements of each length--are one natural notion of "sets of small information content,"

and, indeed, sparse sets have been essential to recent advances in computational complexity

theory ([HM80J, see also [Mah85,MaI189)).

However, in complexity theory it is common to investigate notions sufficiently robust so

as to be invariant under polynomial-time reductions, Thus, an even more natural notion of

"small information content" is Rj,(SPARSE), the class of sets that polynomial-time Turing

reduce to sparse sets.' The sense in which R.j.(SPARSE) sets are of small information con­

tent can be crisply formalized: Rj,(SPARSE) is precisely the class-more commonly referred

to as P Jpoly-of sets having polynomial-sized (nonuniform) circuits (Meyer, see [BH77]).

Rj,(SPARSE) has been intensely studied, both in terms of the question "NP ~

Rt(SPARSE)?" [KL80,IM89,CGH+89,Kad89], and in terms of the robustness of

Rj,(SPARSE). R.j.(SPARSE) is indeed quite robust; in addition to its characteriza­

tion in terms of small circuits, Rj,(SPARSE) is easily noted equivalent to R.j.(TALLY),

Ri,(TALLY), and Rl',(SPARSE) (see [BDG88]). Nonetheless, Book and Ko showed that

there were limits to the robustness of Rj,(SPARSE); they initiated the study of the classes

of languages reducible to sparse (and tally) sets under various weak notlons of polynomial­

time reducibility, and proved that such classes differed both from Rj,(SPARSE) and from

each other ([BK88], see also the earlier related work on two subclasses of Rj.(SPARSE):

"almost polynomial time" [MP79] and the P-close sets [Yes83.Sch85a]).

Tang and Book initiated an analogous study of the classes Df languages equivalent to

sparse (and tally) sets under various notions of polynomial-time reducibility, and proved that

in many cases such classes differed from each other [TBJ. Additionally, equivalence has been

used by Balcazar and Book to completely characterize a natural subset of Rj,(SPARSE),

namely the sets with self-producible circuits [BB86].

The study of equivalence to sparse sets and the study of reducibility to sparse sets

have each yielded a flurry of results [BK88,TB,CGH+89,IM89,Kad89,K089,AW90,AH.Ko].

Nonetheless, many of the most basic questions have remained unanswered and, in some

"Though formal definitions will be given in Section 2.1, it is useful t.o introduce some nota.tion here. For

a. given reducibility .:s~, we define: (1) R~(SPARSE) as the class of sets L such that, for some sparse set 5,
L :5:~ 5, and (2) R~(TALLY) as the class of sets L such that! for some tally set T, L :S~ T.

1



cases, unasked.

In particular, the relationships between equivalence and reducibility to sparse sets have

remained wholly unknown. The first results along this line are those of the present paper and

the companion paper of Gavalda and Watanabe (see Theorem C below). The present paper

asks, for the case of bounded truth-table reductions, whether reducibility to sparse sets is

a broader notion than equivalence to sparse sets. We provide answers to this question and

indicate some areas in which further progress is unlikely until longstanding open problems

in complexity theory are resolved. Among our results are the following.'

Theorem A R~_tt(SPARSE) ~ Ej(nj_tt(SPARSE), for any f(n) = no(l).

Theorem B If P = t\P then Rf_tt(SPARSE) = Ef_tt(SPARSE). If P = NP then

~(SPARSE)= El'.,(SPARSE) U{!:"}.
Theorem A implies that reducibility and equivalence to sparse sets differ sharply for

$~-tt reductions. In contrast, Theorem B indicates that proving an analogous result for

$f-tt or $1:, reductions would involve proving Pi' NP. Theorem A raises the issue of

the strength of reducibility that will suffice to provide equivalence to some sparse set for

sets bounded truth-table equivalent to sparse sets. That is, what is the cost paid-in

terms of increase in strength of reduction-to achieve equivalence? Gavalda and Watanabe

have shown that for any unbounded truth-table function f( n), an extremely heavy price is

exacted. We show that the Gavalda-Watanabe result cannot be extended to the 2-truth­

table case without providing a proof that P i' NP.

Theorem C [GW] Let f(n) be any unbounded polynomial-time computable function.

Then Rj(nj_tt(SPARSE) ~ Ej(SPARSE).

Theorem D Let € > O. If P = NP then R~_tt(SPARSE)<;; E~'_tt(SPARSE).
Theorem D shows that Theorem A is optimal, and provides an upper bound, conditioned

upon the assumption that P = NP, for the complexity of equivalence, We also provide

unconditional upper bounds.

Finally, turning to one of the key open qnestions about the structure of R~(SPARSE)

classes, we refute a conjecture of Ko [K089] by showing:

Theorem E R~tt(SPARSE) c R~tt(SPARSE).

This may be interpreted as saying that disjunctive truth-table reductions to sparse sets

are surprisingly powerful. We prove related results showing that the power of conjunctive

truth-table and many-one reductions, in the nondeterministic model of Ladner, Lynch, and

iNotation: given a notion of reducibility 5~, we define: (1) E~(SPARSE) as the class of sets L such thet.,

for some sparse Bet S, L $~ S and S $r L, and (2) E~(TALLY) as the clees of sets L such that, for some
tally set T, L ~~ T and T 5~ L.

2



Selman [LLS75], is also substantial.

T'heorern F

1. R~P(SPARSE) = Rhi'T(SPARSE).

2. R;;l{(SPARSE) = RYP(SPARSE).

The paper is organized as follows, Section 2 is devoted to preliminaries; Section 2.1

reviews notations and definitions, and Section 2.2 studies the relationship between reduc­

tions and equivalences for the cases of many-one and I-truth-table reducibilities. Section 3

studies the case of k-truth-table reductions, k ~ 2-a case that differs sharply from those

of Section 2.2. Section 4 investigates the interrelationships between reducibility classes and

their seemingly restrictive (but surprisingly powerful) disjunctive and conjunctive versions,

Section 5 presents open problems and conclusions.

2 Preliminaries

2.1 Notation and Definitions

Let Iyl denote the length of string y, and let IISII denote the cardinality of set S. Let

X 6Y denote (X - Y) UCY - X). For a set T, we define T?": = {y lYE T and lyl = n}

and TSn = {yl YET and lyl:; n}.

Let (" ')2 denote a pairing function over finite strings, with the standard nice com­

putability and invertibility properties. Let (y) denote (1, Yh, and, for every k ~ 2, let

(y" Y2,"" Yk) denote ik; (YI> (Y2' (... , (Yk-I> Yk)2)2)2)2}2' This function is polynomial­
time computable and polynomial-time invertible, and unambiguously codes a variable num­

ber of arguments.P

We adopt the standard notions of reducibility, as introduced by Ladner, Lynch, and

Selman. (We make slight alterations in the definitions; these alterations do not effect the

reductions defined.)

Definition 2.1 [LL575J

1. A It-condition is a finite string of the form (Yl' Y2, ...), where each Yo' is a member of

E'.

2. A tt-condition generator is a recursive mapping from E- into the set of tt-conditions.

3 For notational convenience, when speaking of functions f of more tha.n ODe argument, we'll freely write

j(Yl, ... ) as a shorthand for f(Y',·· .)).

3

-



3. A tl-condition evaluator is a recursive mapping from {(X,OI'''' on) I X E

E* and (lti)[<Y; E {O, 1}l} into {O, I}. (We'll use the convention of Footnote 3 of­

ten on arguments of tt-condition evaluators.)

4. Let e be a tt-condition evaluator. A tt-condition (YI, ..... , Yk) is e-satisfied on input x

by B<; E* if and only if e(x, XB(YI),"" XB(Yk)) = 1.

5. Let 9 be a tt-condition generator and e be a tt-evaluator. Let oX = (g, e). We'll say

that oXs(x} accepts if the tt-condition generated by g(x) is e-satisfied on input x by S.

6. We say that A :S~j B if there exist a polynomial-time computable generator 9 and

a polynomial-time computable evaluator e such that, for all z , x E A -<=> g(x} is

e-satisfied on input x by B. If A :S~t B we say that A is truth-table reducible to B in

polynomial time.

7. We say that A :s~_" B provided that A :sf, B via a generator 9 and evaluator e such

that 9 has range {(YI, ... , Yk) IYi E E*}.

8. We say that A :S];" B (A is polynomial-time bounded truth-table reducible to B)

provided that A :s~_" B for some k.

9. We say that A :s~, B (A is polynomial-time conjunctive truth-table reducible to B)

provided that A :sf, B via a generator 9 and evaluator e such that the evaluator e has

the property that for every z ; e(x, 01, ..• , Ok} = 1 -<=> (lti: 1 :s i :s k)[Oi = 1].

10. We say that A :s~" B (A is polynomial-time disjunctive truth-table reducible to B)

provided that A :sf, B via a generator 9 and evaluator e such that the evaluator e has

the property that for every a , e(x, OJ, ••• , Ok) =0 -<=> (Iti: 1 :s i :s k}[O'i = OJ.

11. Bounded versions of conjunctive and disjunctive reductions can be defined by COm­

bining the above restrictions in the obvious way. In particular, we'll refer to :S~btt,

bounded conjunctive truth-table reductions, at One point in this paper.

In addition to the above reductions, we'll also be concerned with nondeterministic re­

duction types. We defer the definitions of such reductions to Section 4.

Having defined the above types of reductions, we can now speak of the class of sets

reducible or equivalent to a certain class of sets via a certain type of reduction. Such

notions were Iirst investigated in a systematic way by Book and Ko [BK88] and Tang and

Book [TB]. We modify their nomenclature to allow a uniform notation for all reduction

types.

4



Definition 2.2 1. Let C be a class of sets and let $; be a reducibility. We define

R;(C) = {A I(3B)[B E C and A $; Bl}.

2. Let C be a class of sets and let :5~ be a reducibility. We define E;(C) = {A I(3B)[B E

C and A $; Band B $; An.
2.2 Many-One and I-Truth-Table Reductions

We first note that, if P = NP, then all sets many-one reducible to sparse sets are in fact

many-one equ.ivalent to sparse sets.

Theorem 2.3 If P = NP then R:;'(SPARSE) = ~(SPARSE) U{~.}.

Proof: Let L $:;' 5. 5 sparse, via many-one reduction g(.). Define 5' = {(Ol,x) I x E

5 and (3y)[y ELand Iyl = I and g(y) = xl} (see [Mah82] for a similar "multiple-copy"

approach). First, note that L $:;' 5', as y E L ¢=} (Olvl, g(y)) E 5'. Second, note that

5' $;;' L if P = NP. This is because, when asked whether (01, x) E 5', we may use the

fact that P = NP to determine whether there exists a y such that Iyl = I and g(y) = z . If

not, reject (01, x) by mapping onto an element out of L. If so, use the P = NP assumption

to find one such y, call it y', and map to asking whether y' E 1. Finally, note that,

immediately from the definition of 5' and the fact that 5 is sparse, that 5' is sparse. Thus,

L E ~(SPARSE). I
The proof of Theorem 2.3 can easily be modified to the case of I-truth-table reductions.

We need only change the definition of 5' to 5' = {(Ol, x) I either (1) (3y)[y ELand Iyl = I

and the truth-table for input y accepts if and only if x E 5], or (2) (3y)[y ~ Land Iyl = I

and the truth-table for input y accepts if and only if x ~ 5l}.

Theorem 2.4 If P = NP then Rj_tt(SPARSE) = Ej_tt(SPARSE).

By modifying the proof of Theorem 2.3 so that 5' = {(Ol , Zl, Z2, ••• , zm) I each Zi is in

5 and (3y)[Iyl = I and g(y) = (z}, Z2, ... , zm)J, we can apply Theorem 2.3 to conjunctive

bounded truth-table reductions.

Theorem 2.5 If P = NP then R~,,(SPARSE)= E:;'(SPARSE).

We say that a truth-table reduction, with truth-table condition generator g, is honest

if there exists a polynomial q(.) such that whenver y is one of the query strings generated

by g(x), it holds that q(lyl) 2: Ixl. Both Theorem 2.4 and Theorem 2.5 in fact give honest

equivalence.

5



Note that Theorem 2.3 does not estahlish that R~(SPARSE)= ~(SPARSE) U{~·}

is equivalent to the claim that P=NP. We now note that analogous questions ahout tally

sets are indeed equivalent to important open questions in complexity theory.

First, we present some definitions. A function f is weakly invertible if there is a

polynomial-time computahle function h such that f(h(x» = x for all z E range(f). Let E

denote U k~o DTIME[2knJ, and let NE denote U k~O NTIME[2kn ] .

It is shown in [AW90] that the following are equivalent:

1. Every NE predicate is E-solvahle.

2. Every honest polynomial-time computahle function f : I;. ~ O· is weakly invertible.

3. ~(TALLY) U {I;"} = E\'_tt(TALLY).

4. ~(TALLY) U{I;.} = E~tt(TALLY).

Condition 1 above is the natural "witness-finding" analog of the E = NE question. Im­

pagliazzo and Tardos [lT89] have recently shown that there are relativized worlds in which

Condition 1 fails to hold, yet E = NE. Their work provides a relativized refutation of a

conjecture of Sewelson [Sew83], whose thesis forms the protasis of the [AW90,lT89] research

stream.

We note that the above equivalence can be extended to include classes of the form

R~tj(TALLY), and, equivalently, R~(TALLY). The following result, alluded to in [AH89],

was observed independently by Fu Bin [Bin89].

Theorem 2.6 Every NE predicate is E-solvable if and only if R~tj(TALLY) =

E~(TALLY) U{I;.}.

Proof Under the assumption that R~tt(TALLY)= ~(TALLY) U{I;.}, it follows imme­

diately that R~tt(TALLY) ~ ~(TALLY)U{I;.} c E~tt(TALLY) c R~tj(TALLY). Thus,

~(TALLY)U{I;·} = E~tt(TALLY), and by the result of [AW90j mentioned above, it

follows that every NE predicate is E-solvable.

Conversely, assume, via the above-mentioned equivalence of [AW90j, that every honest

polynomial-time computable function f : l;. ~ O· is weakly invertible, and let L ::;~ T,
for some tally set T, via many-one reduction g(.). As in the proof of Theorem 2.3, define

T' = {O(I, i + 1) IOi E T and (3y)[y ELand jyl = I and g(y) = Oil}. Then the function f
defined by

{
o(lxl, i)

f(x) = o(lx!,O)
if g(x) = 0;

ifg(x)Ii"Wli~O}

6



is a many-one reduction from L to T'. Furthermore, under the assumption that f is

weakly invertible (and assuming that L i- ~'), it is easy to see that T' :0::;' L. Thus,

under this assumption, R:;'(TALLY) = E:;,(TALLY) U {~'}, and thus-via the fact that

~(TALLY)= Rrtt(TALLY) [BK88]-it holds that ~,,(TALLY) = EJ'm(TALLY) U {~'}.

I

3 Bounded-Truth-Table Reductions

3.1 A Lower Bound

Gavalda and Watanabe have proven that for any unbounded polynomial-time com­

putable function fIn), Rjenl_,,(SPARSE) !l EHSPARSE) [GW]; their techniques do not

seem to apply to the classes of sets reducible to sparse sets via :o:~_" reductions, for con­

stants k . However, Theorem 3.1 establishes, for the case of bounded truth-table reductions,

a wide separation between reducibility and equivalence.

Theorem 3.1 Let h(n) = nO(ll. Then ~_tt(SPARSE) !l E~(n)_tt(SPARSE).

Proof: For the purposes of this proof, we assume that one of the properties of the pairing

function (', ')2 of Section 2.1 is that ('lix, y)[I(x, y)21 = 21xl + Iyl]. Note that in this proof
(and only in this proof) we'll use both our standard pairing function (...) and its constituent

function (-, ')2'
Let us define an operator A such that, for any set S, A(S) = {(x,y)21Ixl =

Iyl and x lexicographically precedes y and (x E S or yES)}. Note that for any sparse

set S, A(S) E Ri_tt(SPARSE). We will construct a sparse set S so that A(S) f­
E~(nl_tt(SPARSE).

In the following, for each k ~ 1, we use Pk to denote the polynomial nk + k . Consider

some enumeration {/kh~1 of :O:~(n)-tt reductions; without loss of generality, we may assume

that, for all k ~ 1 and z E E', the length of queries asked by !k(x) is bounded by Pk(lxl).

Let C(i,j,l) denote the condition that, for each set W with census function bounded by PI,

either fi is not a :O:~(nl-tt reduction from A(S) to W, or Ii is not a :O:~(n)-t' reduction from

W to A(S).

Let us introduce some notations so that we may state the condition C(i,j,l) more
precisely. For any polynomial P, we say that set L is p-sparse if the census of L is bounded

by p. For any set L, let fi'(L) denote the set {x I the truth-table condition of fi(x)

evaluates to true when given L as the oracle}. Then we can now restate C(i,j, I) as the

disjunction of the following two conditions:

7



I: Ij-I(A(S)) is not PI-sparse.

II: A(S) i li-I(fj-I(A(S))); that is, some v exists such that

v E A(S) <==} v t/. li- 1(fj-I(A(S))).

We will build our set S in stages, where stage (i, j, I) will guarantee that C(i, j, I) is

satisfied. Note that tills suffices to prove that S has the desired properties.

Stage (i,j,I):

Choose n large enough so that:

(i) interference with previous stages is avoided,

(ii) (2n/(2pl 0 p;(3n))h(3nl) - h(3n)h(Pi(3n)) - 1 > 0, and

(iii)h(Pi(3n)) < n.
(Note that such an n always exists.)

Case I: If there is a set D ~ E=n, IIDII:5 h(3n)h(Pi(3n)) + 1, such that

ITI(A(S U D)) is not PI-sparse, then set S to SUD.

Case II: If there is a set D ~ E=n, IIDII :5 h(3n)h(Pi(3n)) + 1, such that

A(S U D) i /;-1 (fj-I(A(S U D))), then set S to SUD.

(The construction fails if neither Case I nor Case II holds.)

If the above construction is completed, then the constructed set S clearly satisfies our

purpose, that is, S is sparse and satisfies condition C(i,j,I) for every (i,j,I). Thus, it

remains only to show that the construction can be completed. That is, if Case I fails, then

Case II must hold.

Consider any stage (i,j,I) and any sufficiently large n such that Case I does not hold.

For such (i, i, I) and n, we show that Case II holds with some D. In the following discussion,

let i, j, I, and n be fixed; let h denote h(3n), and let h' denote h(p;(3n)).

Tills paragraph gives an informal overview of the proof, in order to make the construction

easier to understand. If Case I and Case II both fail, then there are sparse sets (call them

~'1 and W2 ) such that the following hold:

1. t. is a :5L" reduction from A(S) to WI and Is is a :5L,t reduction from WI to A(S).

2. Ii is a :5~-tt reduction from A(S U{on}) to W2 and Is is a :5L" reduction from W2

to A(S U{on}).

That is, only a small number of strings (WI UW2 ) are sensitive to the presence or absence

of on in the set we are constructing. It follows that there is some string, WI, that is queried

by a large fraction of the strings in the set {(on,Yh lyE EO} (recall that at tills point,

n is fixed). Thus WI may be thought of as being "influential" in some sense, and we can

8



define YI to be the (large) set of strings that are influenced by WI. Let ZI be the (small)

set of strings queried by the reduction !i on input WI. By setting membership for all of the

strings in Zh we completely determine membership for WI, which means that there must

be some string '"' and some large subset Y, <;:: Y I such that 10, influences Y2 • We continue

in this way until we arrive at a non-empty set of strings, each of which is influenced by (and

thus queries) Xl, X2, ... , XII.+I. But this is a contradiction, since no string makes more than

h queries. This informal argument is made precise below.

We construct sets DI, ..., Dko, Dt, ... , Dt, so that either Dk, or »: satisfies Case II.

The construction proceeds as follows:

Basis:

Set Yo = ~;" - {O"}, Do = 0, and Zo = 0.

Definition of Dk and Dt (1 ~ k):

Set o, = Dk_1 U Zk-J, Dt = u, U{O"}.
Set Ak = A(S U Dk), At = A(S U Dt!.

For each W E ~., set Qk(W) = {y E Yk-I\ f;(O",y),) queries w}.
Set Ck = {w IQk(W) '10 and WE fj-I(Ak)Dft(At)};

if Ck is empty, then terminate the construction.

Set Wk to be a string in Ck such that IIQk(wk)11 ~ IIYk-III/2PI oPi(3n);
if such Wk does not exist, then terminate the construction.

Set Zk = {z E ~;" - {O"} I!i(Wk) queries (O",z),).
Set Yk = Qk(Wk) - Zk.

Now we show, in the following claims, that the construction terminates at some ko,

1 ~ ko ~ h + 1. Note that the construction terminates either because Ck, is empty

or because no Wko exists. For each case, we prove that either Ak, 'I fi-IUj-I(Ak,)) or

At, 'I fi-IUT1(At,)) occurs; that is, either Dk, or Dt; satisfies Case II.

Before going further, let us explain the purpose of each of the sets in this construction.

For each k; Yk is a (large) set of strings that queries each of {WhW2, ,Wk}. Zk is the

set of strings queried by Wk, and Dk = U.$k Z.. (The strings WI> W" are chosen to

be "influential," and the sets Dk are constructed so as to eliminate the influence of these

strings.] Dt is just Dk U {O"}, and the sets Ak and At are constructed from Dk and Dt
using the A(·) operator. Ck is the set of those strings that are sensitive to the difference

between Ak and At, under reduction fj.
Claim 1 states some properties that are immediate from the construction; its proof is

omitted.

9



Claim 1
(1) For any k, 1 :::: k :::: h + 1, such that Ak and At are defined:

(a) IIDkll:::: IIDt" :::: (k - l)h' + 1,

(b) {(on,z)2IzE UI~.<kZ.} <; Ak <; At,

(c) IIYk-i II ~ (2n/(2plopi(3n))k-i) - (k-l)h'-1 > 0, and

(d) At - Ak ;;> {(on, Y)21 Y E Yk-Jl to 0.
(2) Let k, 1 :::: k :::: h+ 1, be any index such that Yk is defined. For every Y E Yk,

f;( (on,Y)2) queries WI, ... , Wk·

The set Ck is the set of strings W such that (i) W is queried by f;( (on,Y)2) for some

Y E Yk-I, and (ii) fj(w) evaluates differently between oracle Ak and At. The following

property of Ck is central to our construction.

Claim 2 Let k, 1 :::: k:::: h+1, be any index such that Ck is defined. For every

S, 1 s S < k, w. rf. c..
Proof of Claim 2 Note that every (on,z)2 (except (on,on)2) that is queried

by fj( w.) is in Ak. Thus, the truth-table value of 1;(w.) does not vary by

changing an oracle from Ak to At.

End of Proof of Claim 2 I

Claim 3 Suppose that the construction does not terminate at h. Then CHI

is empty; thus, the construction terminates at most at h + l.

Proof of Claim 3 It follows from Claim 1, Part (2), that for every Y E Yh,

fit (on,Y)2) queries WI, ... , ui«. Since Ji is a ::::Ltt reduction, {Wb ... , Wh} are all

and only the queries that are asked by f;( (on,Y)2) for some y E Yh • (Recall that

l(x'Y)21 = 3n whenever x E ~~n and y E ~~n.) Thus, Ch+1 <; {Wb ... ,Wh}. On

the other hand, from Claim 2, none of WI, ... , Wh belongs to CHI. Therefore,

CHI = 0.
End of Proof of Claim 3 I

Claim 4 Suppose that the construction terminates at ko. Then either Ak, to
fi-IUt(Ak<ll or At, to fi-l(Jj-I(A't,ll·

Proof of Claim 4 First suppose that the construction terminates at ko be­

cause Ck, = 0. Since ko :::: h + 1, it follows from Claim 1, Part (l.d), that

(on, YO)2 EAt, - Ak< for some Yo E Yk<-I. On the other hand, since Ck< = 0,

the truth-table values of fi((on,YO)2) relative to fTI(Ak<) and ft(At,) are the

same. Hence, either Ak, to fi-I(JTI(Ak,ll or At, to fi-1Uj-1(A't,ll.

10



Next we show that if no Wk, exists (and thus the construction terminates

at ko), then either Ak' # fi-tU;I(Ak,)) or At, # t;'ut(At,))· We prove
the contrapositive, i.e., for any k, 1 :5 k :5 h, if Ak = fi-IUt(Ak)) and

At = fi-1Ut(At)), then Wk certainly exists.

We show that Yk-I = {z I(3w E Ck)[Z E Qk(W)]} and IICkl1 :5 2pI 0 p;(3n),

thereby proving that some Wk E C; exists such that IIQk(wklil ~ IlYk-JlI/2pl 0

p;(3n ).

Consider any y E Yk-I' Since (on, Y)2 is in Ak.6 At (from Claim 1,

Part (1.d)), and Ak = rtut(Ak)) and At = fi-IUj-1(At)) (from the as­

sumption), /;((on,Yh) must query some wy that is in ft(Ak).6fj-
I(At). Re­

call that Ck is the set of strings in ft(A k) .6fj-
t(At) that are queried by

f;((on'Y)2) for some Y E Yk - I. Hence, wy is in C»- Thus, for each Y E Yk-l,

there is some wy E Ck such that /;((on,Yh) queries wy , i.e., Y E Qk(Wy ) ; in

other words, Yk-l = {z I(3w E Ck)[Z E Qk(W)]).

Recall that we are assuming that i;' (A( SUD)) is PI-sparse for any D ~

E=n, IIDII :5 hh' + 1. Hence, both fj-t(Ak) and ft(At) are PI-sparse; then

clearly Ck ~ f,-' (Ak).6 ft(At) is 2PI-sparse. Note that each WE C« is queried

by f;( (on, yh) for some y E E=n and that the length of such a string is bounded

by Pi(i(on'Y)21):5 p;(3n). (Recall that l(x,Yhl = 3n for every x and Y E E=n.)

Thus, liCkII :5 2p/(p;(3n)).

End of Proof of Claim 4 I

End of Proof of Theorem 3.1

The following is an immediate corollary.

Corollary 3.2 For every k ~ 2, it holds that RL,,(SPARSE) # E~_,,(SPARSE).

I

3.2 Upper Bounds

Corollary 3.2 establishes that, for all k ~ 2, R~_,,(SPARSE) # E~_,,(SPARSE).

Gavalda and Watanabe [GWJ have proven that, for any unbounded polynomial-time com­

putable function f(n), Rj(n)_,,(SPARSE) 'l E~(SPARSE). Both these results suggest that

equivalence exacts a price; in order to achieve equivalence to sets reducible to sparse sets,

one must use a more powerful type of reduction.

It is natural to seek the exact price that equivalence extracts. This section shows that,

unless P # NP, every set 2-truth-table reducible to a sparse set is truth-table equivalent to

11



a sparse set. It follows that the result of Gavalda and Watanabe cannot be extended to

2-truth-table reductions without providing a proof that P ". NP.

Theorem 3.3 If P = NP then R~_tt(SPARSE)~ Eft(SPARSE).

Proof: Let L ::;~-tt S, S sparse, via truth-table generator 9 and evaluator e [LLS75].

Under our hypothesis that P = NP, we construct a sparse set S such that L =ft S. Let

{T, 11 ::; i ::; 16} represent the sixteen truth-tables of arity two. Let Hi = {z I the truth

table e(x, " .) uses is table To}. For each i, we'll define a sparse set S, and truth-table

reductions Ai = (g" e.) and " = (gl, ei) such that:

1. (Vi: 1 ::; i ::; 16)(Vx E Hi)[x E L <==:> Af'{x) accepts] and

2. (Vi: 1 s i s 16)(Vy)[y E S, <==:> I~' nL(y) accepts] and

3. (Vi: 1 ::; i ::; 16)(Vy)[gl(y) queries only strings in H;].4

Set S = {(i, j) Ii E s, and 1 ::; i::; 16}. By the above three conditions, L ::;f, S via

the reduction that, on input z , determines which Hi contains z and uses Ai modified so

that each query z to S, becomes a query (i, z) to S. Clearly, S ::;f, L via (g", e"), where

g"( (i, z)) = gl(z) and e"( (i, z), ...) = e:(z," .), for 1 ::; i ::; 16, and as noted in footnote 4

for other i, Thus, S =ft L.

Figure 3.2 lists the sixteen truth-tables of size two. We proceed to define the sets

Slo ... , S16.

Note that without loss of generality we may assume:

Assumption 3.4 9 is length-increasing and g(x) = (b, c) => Ibl = lei-

Tills is simply because if A ::;~-tt B, B sparse, via truth-table generator h, then A ::;~-t, B'
via truth-table generator hi, where B' = {(Or, y) lYE S} and if h(x) outputs (qlo q2)

then h'(x) outputs ((Olq,I+lq,I+lx l+l,q1)' (Olqd+I"I+lxl+l,q2))' Note that B' is sparse and hi

maintains the properties asserted in 3.4. \Ve assume these properties throughout this proof.

Tables 1 and 16 are trivial; let SI = SI6 = 0. Tables 6, 8, 9, and 11 are I-truth­

table reductions; thus the construction of S6, S8, S9, and S" is essentially handled by

Theorem 2.4. Similarly, Table 4 represents conjunctive 2-truth-table reductions and is thus

essentially handled by the construction of Theorem 2.5 .

.. We assume that each H. is non-empty; the case where some Hi are empty can easily be dealt with by

using vacuous truth-table reductions. For example, if H7 = 0, then set S7 = e and reduce 57 to L via. the

truth- table evaluator tha.t always rejects. Similarly, when resolving the membership in Sof elements of the

form (i, i), with i ~ {I, 2, ... 1 16}, we can also use a vacuous reduction.

12



Table First Query Answered "no" First Query Answered "yes"

Number 2nd Ans. "no" 2nd Ans. "yes" 2nd Ans. "no" 2nd Ans, "yes"

I 0 0 0 0

2 1 0 0 0

3 0 0 1 0

4 0 0 0 1

5 0 1 0 0

6 1 0 1 0

7 1 0 0 1

8 1 1 0 0

9 0 0 1 1

10 0 1 1 0

11 0 1 0 1

12 1 0 1 1

13 1 1 1 0

14 1 1 0 1

15 0 1 1 1

16 1 1 1 1

Figure 1: Truth-tables of arity two.

13



Let us say that 2-truth-table a is the complement of 2-truth-table b if a and b differ

on each possible response; for example, Tables 4 and 13 are complementary. Suppose we

have proven that: (") if A reduces to sparse set B via a 2-truth-table reduction that

always uses Table r, then A E Ef,(SPARSE). It follows immediately that we have also

proven: if A reduces to sparse set B via a 2-truth-table reduction that always uses Table

complement(r), then A E Ef,(SPARSE). This is so because A 2-truth-table reduces to S
via truth-table complement(r) if and only if A2-truth-table reduces to S via truth-table r ,

Thus, if we have established ("), we can conclude that (3 sparse set C)[A =f, C], and thus

A =f-tt A =ft C, so A =f, C. Thus it follows that the case of Table 13 follows immediately

from that of Table 4. Below, we will use complementarity to reduce our work.

Consider the case of Table 15 (2-disjunctive reductions). Let 5\s represent all strings

in 5 that are queried by some truth-table reduction from a member of HIS' Recalling

Assumption 3.4, let polynomial q(n) strictly upper-bound the number of elements in 5\5

of length at most n. We'll say that a string x is busy if there are more than q(lxl) distinct

strings W (each necessarily of the same length as x) that satisfy the condition:

there exists a string Ow E HIs n L such that the (unordered) pair of strings

queried by g(ow) is {x, w}.

All busy strings are in SIS' However, there may also be strings in SIS that are not busy.

We now define SIS = {(Of, z) I(3y, w)[lyl = I and the (unordered) pair of strings queried

by g(y) is {z, w} and z is busy]} U {(O l , y, z) I(3w)[lwl = I and w ELand tbe (unordered)

pair of strings queried by g(,,') is {y, z} and neither y nor z is busy}].

Clearly, for strings in HIS, membership in L can be tested via $~-tt reduction to SIS,

and clearly SIS is sparse.

Claim 1 If P = NP then SIS truth-table reduces to L via a truth-table reduc­

tion that queries only members of HIS'

Proof of Claim 1

There are two cases, corresponding to the two types of strings in 515 , In the

first case, we are asked whether a string (01, z) is in SIS' Use our assumption

that P = NP to findS if possible (if not, then reject) more than q(lzl) strings

(not necessarily of length I) Qi E HIS, with each Q; mapping to {z, Wi}, with all

the Wi'S distinct, and use our P = NP assumption to find an appropriate y (of

!IVia binary search, in the standard fashion, using a test set such as {(Zl pref1x, 0'1, ... ) I there exists a.

string Q E HJ~ whose prefix is prefix and that differs from all the a, and g(o) yields the pair 1%, p} and

this pair is not yielded by g(a,) for any I}.

14



length 1 and in H I 5 ) . Then, via a truth-table query to L, check whether all the

o. are in L and accept if and only if all are.

In second case, we are asked whether a string (01, y, z) is in S15. Use our

assumption that P = NP to attempt to find more than q(lzl) strings 0; E HIS'

with each 0; mapping to {z, w;} with all the w;'s distinct. Also, use our assump­

tion that P = NP to attempt to find more than q(\zl) strings /3. E H 15, with

each /3i mapping to {V, Vi} with all the v;'s distinct. Finally, use our P = NP

assumption to find a string w E H 15 , of length I, such that g(w) maps to the pair

{V, z}. Now, we make a truth-table query to L, inquiring about the membership

of w, the o;'s, and the /3;'s. We accept if and only if (1) w ELand (2) either

we failed to find the requisite number of 0;'5 or some of the o;'s found are not

in Land (3) either we failed to find the requisite number of /3;'s or some of the

/3;'5 found are not in L.

End of Proof of Claim 1 I

Note that, by the earlier complementation argument, solving Table 15 implicitly solves

Table 2.

Consider now the case of Table 10 (exclusive or). Let 510 represent all strings in 5 that

are queried by some truth-table reduction from a member of HIO • Recalling Assumption 3.4,

let polynomial q(n) strictly upper-bound the number of elements in 510 oflength at most

n. We'll say that a string z is heavy if there are more than q(lxl) distinct strings w (each

necessarily of the same length as x) that satisfy the condition:

there exists a string" Ow E H IO n L such that the (unordered) pair of strings

queried by g(ow) is {x, w}.

All heavy strings are in 510 . However, there may also be strings in 510 that are not heavy.

We now define 510 = {(Ol , z) Iz is heavy} U {(Ol , w, z) Iw is heavy and (3y)[lyl = I and y r/. L

and the (unordered) pair of strings queried by g(y) is {w, x}]} U{(l l , w, z) I(3y)llyl = I

and y ELand the (unordered) pair of strings queried by g(y) is {w, x} and neither w nor

z is heavy]}.

Clearly, for strings in H IO , membershlp in L can be tested via ::;~-tt reduction to SIO,

and clearly SIO is sparse.

Claim 2 If P = NP then SIO truth-table reduces to L via a truth-table reduc­

tion that queries only members of H IO •

6Unlike the case of disjunctive reductions, in the exclusive-or case a. string in RIO - L may ma.p to two

strings in the sparse set, and we wish not to allow such cases to contribute towards heaviness.

15



Proof of Claim 2

There are three cases, corresponding to the three types of strings in 510,
Case 1: In the first case, we are asked whether a string (0/, z) is in 5 10, Use

our assumption that P = NP to find (as before) as many 0, as possible (but no

more than 2q(lzl) + 1) such that 0. E H IO and g(o.) queries the (unordered)

pair {z, w;} and j i k =? Wj i Wk. If we have found x q(izll such o;'s, then

reject. Otherwise, make a truth-table query to L regarding the o;'s, and see if

more than q(lzl) of the o;'s are in L, and accept if and only if this is the case.

Note: the above strategy works since (1) if z is heavy, then there are no more

than q(lzll values w, such that some nonmember of H IO - L maps to {z, Wi} (as

these w;'s must be in 510), and (2) if z is not heavy, there can be at most q(izl)

distinct values w. such that some member of L nH IO maps to {z, wo}.

Case 2: In the second case, we are asked whether a string (0/, W, z) is in 510'

Check whether w is heavy as in Case 1. Also, use our P = NP assumption to

find a y as in the definition of 510, and use L to check whether y ¢ L. Accept

if and only if an appropriate y was found and y ¢ Land w is heavy. (Note that

all the above can be done via a single round of truth-table queries to L.)
Case 3: In the third case, we are asked whether a string (1/, w, z) is in 5 10 .

Check that w is not heavy and that z is not heavy as in Case 1, except exchanging

criteria (that is, if there are less than or equal to q(izl) values 0. then we find a

string "not heavy," otherwise a string is "not heavy" if and only if no more than

q(lzl) of the o;'s are in L). Also, use our P = NP assumption to obtain yas in

the definition of 510, and use L to verify that y E L. Accept if and only if an

appropriate y exists and y ELand w is not heavy and z is not heavy. (Again,

note that all the above can be done via a truth-table query to L.)
End of Proof of Claim 2 I

Note that, by the earlier complementation argument, solving Table 10 implicitly solves

Table 7.

Consider now the case of Table 3. Let 53 represent all strings in 5 that are queried by

some truth-table reduction from a member of H3 . Recalling Assumption 3.4, let polynomial

q(n) strictly upper-bound the number of elements in 53 of length at most n. We'll say that

a string x is top-heavy if there are more than q(lxl) distinct strings w (each necessarily of

the same length as z ) that satisfy the condition:

there exists a string Ow E H3 nL such that the (ordered) pair of strings queried

by glow) is (z , w).

16



All top-heavy strings are in S3. However, there may also be strings in S3 that are not

top-heavy. We now define S3 = {(Ol, z) Iz is top-heavy} U{(OI, z', z"} Iz' is not top-heavy

and (3y)[lyl = I and y E L nH3 and g(y) = (z', z")]} U {(11, z, z') I z is top-heavy and

(3w)[lwl = I and wE H3 - Land g(w) = (z, z')]}.

Clearly, for strings in H3, membership in L can be tested via $~-lt reduction to S3, and

clearly S3 is sparse.

Claim 3 If P = NP then S3 truth-table reduces to L via a truth-table reduc­

tion that queries only members of H3 •

Proof of Claim 3

There are three cases, corresponding to the three types of strings in S3.

Case 1: In the first case, we are asked whether a string (01, z) is in S3' Use our

assumption that P = NP to find (as before) as many 0; as possible (but no more

than 2q(lzl) +1) such that 0; E H3 and g(o;) = (z, Wi) and j "I k ~ wi "I wk.

If we have found more than q(lzl) such o;'s that are in L, then accept, otherwise

reject.

Note: the above strategy works since if z is top-heavy, then there are no

more than q(lzl) values 0; as above such that 0; E H3 - L.

Case 2: In the second case, we are asked whether a string (01, e', z") is in S3.

Check whether z' is not top-heavy as in Case 1, except flipping our notions of

acceptance and rejection. Also, use our P = NP assumption to find y as in the

definition of S3 (reject if there is no such y). Accept if and only if y is in Land

z' is not top-heavy.

Case 3: In the third case, we are asked whether a string (11,z, z') is in S3'

Check whether z is top-heavy as in Case 1. Also, use our P = NP assumption

to find w as in the definition of S3 (reject if there is no such w). Accept if and

only if w is not in Land z is top-heavy.

End of Proof of Claim 3 I

Note that, by the earlier complementation argument, and by symmetry, and by both

complementation and symmetry, solving Table 3 implicitly solves Tables 14, 5, and 12.

End of Proof of Theorem 3.3 I
In fact, a careful inspection of the proof of Theorem 3.3 reveals that various stronger

statements than Theorem 3.3 have been implicitly proven. These improvements show,

among other things, that Theorem 3.1 cannot be improved. Also, the power of unbounded­

truth-table reductions, and the strength of the P = NP assumption, are both used only in

one direction. Thus we have:

17



Theorem 3.5 Let f > O. If L E R~_,,(SPARSE) then there exists a sparse set 5' such

that:

• L ~L" 5', and

• if P = NP then 5' ~~,_" L.

Proof: The proof of Theorem 3.3 provides a set S such that L ~~_" S, and if P = NP

then S ~~._" L for some k, Now let 51 = {xIOlxl' : XES} for some I such that kll < e; it

is immediate that L ~~_" 51, and if P = NP then 51 ~~._" L. •

Of course, the assumption that P =NP is a very strong one. However, though the

P = NP assumption gives polynomial-time computations access to the full power of the

polynomial-hierarchy, in fact the above proofs only used the P = NP assumption to give

polynomial-time computations access to the power of NP (and in particular, the power

to find sets of inverses of honest polynomial-time many-one functions). Thus the above

proof in fact proves Theorem 3.6 below, whose oracle access mechanism is exactly that

used in defining the extended-low-two sets [BBS86]-a mechanism that appears in other

applications also [HH90]. Of particular note is that the set L is-as in Theorem 3.3 but

unlike Theorem 3.7-queried only polynomially often.

Theorem 3.6 If L E ~_,,(SPARSE) then there exists a sparse set 51 such that:

• L ~~_" 5', and

• s' E pNPillL.

The above results are all conditioned upon the assumption that P = NP or the essentially

equivalent use of an l\P oracle. In fact, we can outright eliminate such assumptions, at the

cost of acquiescing to relatively powerful reductions that are allowed to access the set L far

more than polynomlally often. Thus, the following theorem neither implies nor is implied

by Theorem 3.6.

Theorem 3.7 If L E ~_,,(SPARSE) then there exists a sparse set S' such that:

• L ~L" 51, and

• 5 f E Dp L
•

Here, DP, difference polynomial time, is the class of sets-first studied by Papadimitriou

and Yannakakis [PY84]-that can be represented as the difference of two NP sets; DP sets

are crucial to the normal-form structure of the boolean hierarchy [CGH+88] and ·appear

naturally in many settings [CM87]. Informally, we may describe Theorem 3.7 as stating

IR



that all sets 2-truth-table reducible to sparse sets are DP-equivalent to sparse sets. We omit

the proof, as it is based on a detailed analysis similar to that of Theorem 3.3.

Finally, we note that all the theorems of this section yield not only equivalence but

indeed honest equivalence.

4 On the Power of Conjunctive and Disjunctive Reductions

In this section, we will show several inclusions among classes of sets that are reducible

to sparse sets. We first show the following lemma.

Lemma 4.1 RI'_tt(SPARSE) ~ R~tt(SPARSE).

Proof Let L be a set that is ~I'-tt reducible to a sparse set S. Then, we will show that

L ~~tt U for some sparse set U. To prove this, we need to define some notation. For a

string x and n <: 1, we'll use X n to denote the nth symbol in x. For two strings x and y and

a set A, xAy denotes the set {xwy Iw E A}. Let # be a special symbol not in ~. For two

sets A and B, A Ell B denotes the set OA U lB. Since S is sparse, there exists a polynomial

Po such that for every n <: 0 it holds that IIs~nll ~ Po(n).

Let T = {OzO I z E S} U 01'. Then, it is not hard to see that for every x E ~',

xES <=> OxO E T. Moreover, for every n <: 0,

Therefore, T is sparse.

Furthermore, let U be the set of strings of the form #nu#b such that:"

(1) u E ~~n and b E ~,

(2) ub~' nT=n = 0, and

(3) u~' nT=n i 0.

Then, for every n <: 0:

lIu~nll <

<

<

s
<

11{#mu#b E U 11 ~ m s n}11
II{ru#b/1 s m s n and b E I; and u~· nT=m i 0}11
2nll{ wi w is a prefix of some string in T~n}ll

2n211T~nll

2n2(po(n) +n).

7As a. notational convenience we use E· in An informal WAy; for example, by uU;· we mean {ubs Is E Eel,
and 150 on.

J9



Therefore, U is sparse.

We now establish the following claim.

Claim 1 Let It E E" and Y = OxO. Then, Y rf. T if and only if

{#I.l y1·· 'Yk#Yk+l 11 :::: k :::: lyl - 1} nU 1 0 and YET if and only if

#IYly#O E U.

Proof of Claim 1 Let x be any string and let Y = 0",0. Furthermore, let n

denote lyl (= Ixl + 2). Define m = max{111 :::: I :::: nand Yl" 'Y1E- n r-» 1
0}. Since Y, = 0 and DE" n T=n 1 0, m ~ 1. Furthermore, since lyl = n,

yE" nT?" 1 0 if and only if yET. Therefore, YET if and only if m = n; in

other words, Y rf. T if and only if 1 :s m :s n - 1.

For each k, 1 :::: k :s n, define z(k) = #nYl ... Yk#Yk+' if k < nand #ny#O

otherwise. We will show that for every k,l :s k :s n, m = k if and only if

z(k)EU.

First, suppose that 1 :s k < m. Since Y, ... YkYk+l ... YmE- n T?": 1 0, it

follows that Y, ., 'Yk+l nT?" 10. So, z(k) does not satisfy the condition (2).

Therefore, if 1 :s k < m, then z(k) rf. U.

Next, suppose that m < k :s n - 1. Since m = max{11 1 :s I :s
nand Y," ·y/E" nT=n 1 0}, it follows that Y," 'Ym+JE" nT=n = 0. This

implies Yl ... Ym+l ... YkE" nT?" = 0. So, z(k) does not satisfy the condition

(3). Therefore, if m < k:S n - 1, then z(k) rf. U.

Finally, suppose that k = m. If m < n, then since m = max{II 1 ::::

I :s nand Yl ... y/E" n T=n 1 0}, it follows that Y, ." YkE" n T=n 1 0 and

Y," 'Yk+lE" nT?" = 0. Therefore, z(k) E U. Similarly, if m = n, since YET,

yE" nT=n 1 0 and yOE" nT=n = 0. This implies z(k) E U. Therefore, if

k= m, z(/.-) E U.

From the above considerations, k = m if and only if z(k) E U. And now

recall that yET if and only if m = n. Since k = m if and only if z(k) E U, we
have

yET <=;>

yrf.T <=;>

This proves the claim.

End of Proof of Claim 1

z(n) E U and

{z( k) 11 s k :::: n - 1} nU 1 0.

20

I



Since :r: E S if and only if VET, from Claim 1, we have

:r: E S ~ z(n) E U and

:r: ¢ S ~ (3k: 1 $ k $ n - 1)[z(k) E UJ.

Therefore, SEll 5 $~" U. Since L $~-tt S implies that L $~ S Ell 5, L $~tt U and this

proves the theorem.

End of Proof of Lemma 4.1 I

From Lemma 4.1, we obtain the following theorem.

Theorem 4.2 R~tt(SPARSE)~ R~,,(SPARSE).

Proof Let L be a set $~-tt reducible to a sparse set S for some k ~ 0 via a polynomial­

time computable function f. To establish the theorem, we have only to show that there

is another sparse set A to which L is $~" reducible. Since f witnesses that L $L" S,

without loss of generality (see [LLS75]), we may assume the following: For every :r: E E',

(a) f(:r:) is of the form bll • • ·b1k$· .. $bm 1 · • ·bmk$Wl$·· ·$Wk, where (1) $ is a new symbol

not in {O, 1, #}, (2) for every i,1 $ i $ m and i. 1 $ j $ k, b;j E {O, I}, and (3) for

every i, 1 $ i $ m, Wi E E', and

(b) :r: E L if and only if (3i : 1 $ i $ m)(Vj : 1 $ j $ k)[xs(wj) = true ~ b;j = 0],

where xs is the characteristic function of S; that is, for every w, xs(w) = true if

W E S and false otherwise.

Since SEll 5 is {Os Is E S} U{Is Is E 5}, it is not hard to see that the condition (b) is

equivalent to the following:

(bl) x E L if and only if (3; : 1 $ ; $ m)(Vj : 1 $ j $ k)[b;jwj E SEll 5].

Now recall that we showed in Lemma 4.1 that there is a sparse set U to which SEll 5 is $~tt

reducible. Let g be a $~tt reduction from S EB 5 to U. Then, without loss of generality, we

may assume that for every VEE',

(c) g(V) is of the form Zl $ ... $zm, where m = p(l vI) for some polynomial p and

(d) V E S (fj 5 if and only if {ZI, ... , zm} n U i- 0.

For each V, let u(V) denote the set of all strings {z[,"', zm} that g outputs upon input V.

Then, the condition (b l ) is equivalent to the following:

(b2) z E L if and only if (3;: 1 $ i $ m)(Vj: 1 $ j $ k)[u(b;jwj) n U i- 0J.

21



Moreover, for each i, 1 ::; i::; m, let H(i) denote the set

and define

A = {UI$ ... $Uk I("Ij: l::; j::; k)[uj E Un.
Then, it is not hard to see that the condition (b2) is equivalent to

(b3) x E L if and only if (3i: 1 ::; i ::; m)(3v E H(;))[v E A].

Since f and 9 are polynomial-time computable and k is a constant, there is a polynomial q

such that II{zl (3i: l::; i::; m)[z E H(i)]}ll::; q(lxl).
Furthermore, it is easy to see that the set {z I(3;: 1 ::; i::; m)[z E H(i)]} is polynomial­

time computable in [z], So, let h be a function that computes VI $ ... $vn so that VI,' • " Vn

is an enumeration of all strings in H (i) for some i, 1 ::; ; ::; m. h is polynomial-time

computable. z E L if and only if {VI, . ", vn } nA -I 0. Thus, h witnesses L ::;~tt A. Finally,

since U is sparse and k is a constant, clearly A is sparse. Therefore, L E R~tt(SPARSE),

and this proves the theorem. I

Next we consider the classes of sets that are reducible to sparse sets via polynomial-time

nondeterministic Turing machines. The following definitions are due to Ladner, Lynch, and

Selman.

Definition 4.3 [LLS75]

(1) A set A is polynomial-time nondeterministic many-one reducible to a set B (denoted

A ::;:;:P B) if there exists a polynomial-time nondeterministic Turing machine M such

that for every x E ~.,

(lA) for each computation path of M on z , M outputs some string, and

(lB) z E A if and only if there exists some string y E B that M outputs for some

computation path on input z.

(2) A set A is polynomial-time nondeterministic Turing reducible to a set B (denoted

A ::;!j.P B) if there exists a polynomial-time nondeterministic oracle Turing machine

M such that for every z E ~', z E A if and only if there exists an accepting compu­

tation path of M on x relative to B.

(3) A set A is polynomial-time nondeterministic bounded truth-table reducible to a set

B (denoted A ::;f,f' B) if there exist k 2: 0 and a polynomial-time nondeterministic

Turing machine M such that for every x E ~.,

22



(3A) for each computation path of M on z , M outputs a string of the form

(O,Yl,"',Yk), where 0 is a k-truth-table and Yh"',Yk E r:', and

(3B) x E A if and only if there exists some output (0, Yh"', Yk) of M on z for

some computation path such that a(XB(yIl,'''' XB(Yk)) = true, where XB is

the characteristic function of B.

(4) A set A is polynomial-time nondeterministic truth-table reducible to a set B, denoted

by A :'Sap B, if there exists a polynomial-time nondeterministic Turing machine M

and a polynomial-time computable truth-table evaluator such that x E A if and only if

M, on input z , computes on some computation path a tt-condition Y that is e-satisfied

by B.

(5) A set A is polynomial-time nondeterministic conjunctive truth-table reducible to a set

B, denoted by A :'S~r B, if there exists a polynomial-time nondeterministic Turing

machine M such that for every x E E',

(5A) for each computation path of M on z , M outputs a string of the form

(Yh"', Yk), where Yl,''', Yk E r:", and

(5B) x E A if and only if there exists some output (Yl,"', Yk) of M on z for some

computation path such that {YI," ',Yd ~ B.

(6) A set A is polynomial-time nondeterministic disjunctive truth-table reducible to a set

B, denoted by A :'S;;;; B, if there exists a polynomial-time nondeterministic Turing

machine M such that for every x E r:-,

(6A) for each computation path of M on z , M outputs a string of the form

(Yh . ", Yk), where YI,' . " Yk E r:', and

(6B) x E A if and only if there exists some output (YI,' . " Yk) of M on z for some

computation path such that {YI,"', ykl n B 'I 0.

Definition 4.4 ~P(SPARSE) (R.¥P(SPARSE), RCW(SPARSE), Rf,P(SPARSE),

R~f(SPARSE), R;;;;(SPARSE)) denotes the class of sets that are :'S;;:P (respectively, :'S¥P,
:'Sc;;, :'SffP, :'S~r, :'S;;;n reducible to some sparse set.

We may also use Lemma 4.1 to obtain the following theorem. It is important to em­

phasize that the results of this section depend crucially on the fact that we are reducing

to the class of sparse sets. In particular, the following theorem should be contrasted with

23



the fact that there are classes C, and indeed single sets, such that Refi(C) and ~P(C)

differ [LLS75J.

Theorem 4.5 R~P(SPARSE)= Refi(SPARSE).

Proof To prove this, we will show that Ref{'(SPARSE) C;; R:;';{'(SPARSE). Ladner,

Lynch, and Selman [LLS75, Theorem 4.1, Part (iii)] have shown that for every pair of sets

sets A and B, it holds that A S~P B if and only if A S:;';{' B. It follows immediately

that R:;';f(SPARSE) C;; R~P(SPARSE). Thus, it suffices to show that Ref{'(SPARSE) C;;

R:;';{'(SPARSE).

Let Lbe a set that, for some k; is SC"'!;, reducible to a sparse set 5 via polynomial-time

nondeterministic Turing machine M. Without loss of generality, we may assume that there

is a polynomial p such that for every z E ~', each computation path of M on z has length

exactly p(lxl). Denne A = {x#y lyE ~=p(lxl) and M(x) on computation path y has output

of the form (0:, y""', Yk) such that a(xs(YIl,"', XS(Yk)) = true}. It is not hard to see

that A S~-tt 5, and for every z E ~', z E L if and only if for some Y E ~=p(lxl) it holds

that x#y E A. Since A S~_" 5, from Theorem 4.2, there exist a sparse set 5' and a

polynomial-time computable function f such that A S~tt 5' is witnesses by f. Consider a

machine N that, on input x E ~', nondeterministically guesses Y E ~=p(lxl) and outputs

f(x#y). Clearly, the machine N witnesses L S:;,;r 5'. I
Next we prove the following theorem.

Theorem 4.6 Rtii(SPARSE) = ~P(SPARSE).

Proof Let L be a set in ~P(SPARSE). Thus, there exists a polynomial-time nondeter­

ministic oracle Turing mach.ine and a sparse set 5 such that for every x, x E L if and only

if M on input x relative to 5 accepts. Here, without loss of generality, we may assume the

following: There exist two polynomials p and q such that for every z ,

(1) M on input z has exactly p(ixl) nondeterministic steps for each computation path, and

(2) for every computation path and for every oracle set X, M on z queries the oracle set

exactly q(lxl) times.

We'll encode each computation path of M on input x as a string of length p(lxl).

Moreover, since 5 is sparse, there exist a polynomial-time computable function f and a

sparse set U such that 5 Ell S S~" U via f.
Now consider the following nondeterministic Turing machine M':

(Description of M')

24



1. On input z , M' nondeterministically guesses a string W E E=p(l·1l and b", .. , bq(I' 1l E

{O, I}. M' simulates the computation of M on input x for the computation path w

in the following way: whenever the ith query Yi is made, instead of querying to the

oracle M' regards the answer to the query as YES if bi = 0 and NO otherwise, and

M' stores the query string on its tape. If the simulation of M on x terminates at an

accepting state, then M' proceeds to the next step. Otherwise, M' outputs a fixed

string not in U and halts.

2. For each i,l $ i $ q(lx\), M' looks up the table of query strings computed in the

previous step, computes f(b'Yi), and nondeterministically picks a string z; in the

output of f.

3. Finally, M' outputs z,$ ... $Zk and halts.

(End of the Description of M')

From the above description, as in the proof of the previous theorem, it is not hard

to see that (1) M' runs in time polynomial in Ixl and (2) x E L if and only if M' on

x outputs (zJ,"', Zq(I.I) such that {Zl,"" Zq(l.I)} ~ U. Therefore, M' witnesses that

L E R~rcSPARSE), thus proving the theorem. I

5 Conclusions and Open Problems

This paper addressed the question of whether reducibility to sparse sets is a broader

notion than equivalence to sparse sets. For the many-one and I-truth-table cases, we showed

that differentiating reducibility from equivalence would yield a proof that P t- NP. In

contrast, for the k-truth-table case, k 2: 2, reducibility is a provably broader notion than

equivalence.

Nonetheless, there are limits on how much broader it can be. Gavalda and Watanabe

have proven that for every nice unbounded function f, some sets f(n)-truth-table reducible

to sparse sets are not Turing equivalent (or even strong-nondeterministic equivalent) to

any sparse set. However, we showed that their result can not be extended to the 2-truth­

table case without yielding a proof that P t- NP. In particular, if P = NP then all sets

2-truth-table reducible to sparse sets are truth-table equivalent to sparse sets.

Finally, we addressed the power of disjunctive and conjunctive reductions to sparse sets.

Refuting a conjecture of Ko [K089], we proved that all sets bounded truth-table reducible

to sparse sets are indeed disjunctive truth-table reducible to. sparse sets. Relatedly, for

nondeterministic reductions to sparse sets, we proved that bounded truth-table reductions

25



are no stronger than many-one reductions, and that Turing reductions are no stronger than

conjunctive truth-table reductions.

A number of questions remain open. Regarding Section 4, though we refuted Ko's

conjecture about disjunctive reductions, Ko's other conjectures have as yet been neither

proven nor refuted. Regarding Section 3.2, can our proof be generalized from the 2-truth­

table case to the bounded truth-table case?

A particularly interesting issue is that, even in the wake of the Gavalda and Watanabe's

study of the case of Turing reductions, many of the same questions remain open for the

Turing case. Galvalda and Watanabe [GW] show that not ali sets Turing reducible to

sparse sets are even strong-nondeterministic equivalent to sparse sets. This is essentially an

NP n coNP lower bound on the strength of the reduction needed to achieve equivalence. A

moment's thought reveals-via [Sch86b, Lemma 5.6]-an upper bound of ~~; that is, every

set Turing reducible to a sparse set is =~~ to some other sparse set.s However, the exact

location of the optimal strength of reduction needed to achieve equivalence has not yet been

pinpointed more accurately than the range (NP n coNP, ~~J.

Acknowledgments

We are grateful to Ronald Book for making our collaboration possible, and to Russell

Impagliazzo, Sanjay Jain, Robert Szelepcsenyi, and Jozef Vyskoc for helpful comments and

conversations. We thank the Tokyo Institute of Technology for hosting a workshop on

computational complexity, in August 1990, at which this work was done in part. We are

particularly grateful to Ricard Gavalda for pointing out an error in an earlier version of this

paper.

References

[AH] E. Allender and 1. Hemachandra. Lower bounds for the low hierarchy. Journal
of the ACM. To appear. Preliminary version appears in ICALP '89.

[AH89] E. Allender and L. Hemachandra. Lower bounds for the low hierarchy. In
Proceedings of the 16th International Colloquium on Automata, Languages, and

SIt is important to note that we are not asserting that every set A that is Turning-reducible to a sparse

set is Turing reducible to some sparse set in I:~, ..... i the best bound on such sets seems to be 6.~' A I via extend­

ing ISch86b, Lemma 5.6] by first taking prefixes and then using adaptive search to find the lexicographically

first suitable sparse set (circuit). The somewhat subtle point at work here is that in some cases equivalence

allows us to trade off quantifiers between different directions of the equivalence, but reduction allows no such

trade-offs.

2G



[AW90]

[BB86]

[BBS86]

[BDG88]

[BH77]

[Bin89]

[BK88]

[CGH+88]

[CM87]

[GWj

[HH90]

[HM80]

[IM89)

Programming, pages 31-45. Springer- Verlag Lecture Notes in Computer Science
#372, July 1989.

E. Allender and O. Watanabe. Kolmogorov complexity and the degrees of tally
sets. Information and Computation, 86(2):160-178, 1990.

J. Balcazar and R. Book. Sets with small generalized Kolmogorov complexity.
Acta Informatica, 23(6):679-688, 1986.

J. Balcazar, R. Book, and U. Schiining. Sparse sets, lowness and highness. SIAM
Journal on Computing, 15(3):739-746, 1986.

J. Balcazar, J. Diaz, and J. Gabarr6. Structural Complexity 1. EATCS Mono­
graphs in Theoretical Computer Science. Springer-Verlag, 1988.

1. Berman and J. Hartrnanis. On isomorphisms and density of NP and other
complete sets. SIAM Journal on Computing, 6(2):305-322, 1977.

F. Bin, September 1989. Personal communication.

R. Book and K. Ko, On sets truth-table reducible to sparse sets. SIAM Journal
on Computing, 17(5):903-919, 1988.

J. Cai, T. Gundermann, J. Hartrnanis, 1. Hemachandra, V. Sewelson, K. Wag­
ner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM
Journal on Computing, 17(6):1232-1252, 1988.

J. Cai, T. Gundermann, J. Hartrnanis, 1. Hemachandra, V. Sewelson, K. Wag­
ner, and G. Wechsung. The boolean hierarchy II: Applications. SIAM Journal
on Computing, 18(1):95-111, 1989.

J. Cai and G. Meyer. Graph minimal uncolorability is DP.complete. SIAM
Journal on Computing, 16(2),1987.

R. Gavalda and O. Watanabe. On the computational complexity of small de­
scriptions. In Proceedings of the 6th Structure in Complexity Theory Conference.
To appear, 1991.

J. Hartrnanis and 1. Hemachandra. Robust machines accept easy sets. Theo­
retical Computer Science, 74(2):217-226, 1990.

J. Hartrnanis and S. Mahaney. An essay about research on sparse NP com­
plete sets. In Proceedings of the gth Symposium on Mathematical Foundations
of Computer Science, pages 40-57. Springer-Verlag Lecture Notes in Computer
Science #88, September 1980.

N. Immerman and S. Mahaney. ReJativizing relativized computations. Theoret­
ical Computer Science, 68:267-276, 1989.

27



[IT89] R. Impagliazzo and G. Tardos. Decision versus search problems in super­
polynomial time. In Proceedings of the 90th IEEE Symposium on Founda­
tions of Computer Science, pages 222-227. IEEE Computer Society Press, Oc­
tober/November 1989.

[Kad89] J. Kadin. pNP~ognl and sparse Turing-complete sets for NP. Journal of Com­
puter and System Sciences, 39(3):282-298,1989.

[KL80] R. Karp and R. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th ACM Symposium on Theory of
Computing, pages 302-309, 1980.

[Ko] K. Ko. On adaptive versus nonadaptive bounded query machines. Theoretical
Computer Science. To appear.

[K089] K. Ko. Distinguishing conjunctive and disjunctive reducibilities by sparse sets.
Information and Computation, 81(1):62-87, 1989.

[LLS75] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time re­
ducibilities. Theoretical Computer Science, 1(2):103-124, 1975.

[Mah82] S. Mahaney. Sparse complete sets for NP: Solution of a conjecture of Berman
and Hartmanis. Journal of Computer and System Sciences, 25(2):130-143, 1982.

[Mah86] S. Mahaney. Sparse sets and reducibilities. In R. Book, editor, Studies in
Complexity Theory, pages 63-118. John Wiley and Sons, 1986.

[Mah89] S. Mahaney. The isomorphism conjecture and sparse sets. In J. Hartmanis,
editor, Computational Complexity Theory, pages 18-46. American Mathematical
Society, 1989. Proceedings of Symposia in Applied Mathematics #38.

[MP79] A. Meyer and M. Paterson. With what frequency are apparently intractable
problems difficult? Technical Report MIT/LCS/TM-126, MIT Laboratory for
Computer Science, Cambridge, MA, 1979.

[PY84] C. Papadimitriou and M. Yannakakis. The complexity offacets (and some facets
of complexity). Journal of Computer and System Sciences, 28(2):244-259, 1984.

[Sch86a] U. Schiining. Complete sets and closeness to complexity classes. Mathematical
Systems Theory, 19(1):29-42, 1986.

[Sch86b] U. Schoning. Complexity and Structure. Springer Verlag Lecture Notes in Com­
puter Science #211, 1986.

[Sew83] V. Sewelson. A Study of the Structure of NP. PhD thesis, Cornell University,
Ithaca, NY, August 1983. Available as Cornell Department of Computer Science
Technical Report #83-575.

[TB] S. Tang and R. Book. Reducibilities on tally and sparse sets. Theoretical Infor­
matics and Applications (RAIRO). To appear. Preliminary version appears in
ICALP '88.

28



[Yes83] Y. Yesha, On certain polynomial-time truth-table reducibilities of complete sets
to sparse sets. SIAM Journal on Computing, 12(3):411-425, 1983.

29






