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Abstract. This article is concerned with the averaging principle and its extensions for stochastic
dynamical systems with fast and slow degrees of freedom. It is demonstrated how the “conventional”
averaging principle results from asymptotic multiscale analysis, how one can construct an indicator
for its (in-)appropriateness, and how, if inappropriate, it may be extended into an improved ap-
proximation. The conventional scheme contains averages over the entire accessible state space of
the fast degrees of freedom and may thus fail if these fast degrees of freedom exhibit long-term
(auto-)correlations. In contrast, the improved scheme combines several conditional averages with
a Markov jump process that is designed to represent the flipping process between the conditional
averages and thus incorporates the important long-term correlations. All important steps of the
derivation are illustrated by numerical experiments. Application to problems from molecular dy-
namics is discussed.
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1. Introduction. Most realistically complex systems from fields like biomolec-
ular dynamics, climate research, or materials science exhibit a rich hierarchy of tem-
poral scales. One of the main strategies of dealing with the enormous complexity of
the corresponding models is dimension reduction: describe the effective dynamical
behavior in terms of some slow (or essential) degrees of freedom (DOF) of the system
while the collective effect of the majority of fast (or inessential) DOF is represented
implicitly.

Many different mathematical techniques are available, e.g., averaging for deter-
ministic [2, 23, 48] and stochastic dynamical systems [22, 23, 31, 32, 33] (often in
combination with large deviation theory), stochastic modeling [39, 40, 43, 56], adia-
batic theories [5, 8, 26, 52], or homogenization in time [6, 7, 8]. These techniques have
mathematically been considered in a variety of articles. Another branch of the liter-
ature is concerned with applications to real-world complex systems. In this direction
the present article focuses on molecular dynamics applications; from this perspective
one should at least mention the following three fields: First, we discuss heat bath
effects, i.e., the idea of describing the collective effect of many (simple) fast DOF
on some slow modes in terms of simple stochastic processes; this idea has influenced
a lot of investigations in the direction of stochastic modeling; the most recent ones
[11, 12, 36] originate from the famous Zwanzig–Mori–Kac approach [43, 56]. Second,
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we analyze strong constraining potentials [45, 46, 54] with their strong relations to
both homogenization in time and averaging. And third, we examine the problem of
resonances between the fast DOF, which is of immense importance for the discus-
sion of strong constraining potentials [6, 48, 54] as well as in the context of adiabatic
theories for quantum dynamics [18, 27, 38, 52, 55].

Focus. Despite this wealth of contributions, surprisingly few articles deal with
the question of when these approximations may be inappropriate to reproduce the
effective dynamics of the original system, and little information is available on the
problem of how to eventually improve them. The present article will focus on exactly
these two questions. The elimination scheme that we will consider is an averaging
procedure with close relations to stochastic modeling. Our aim is to design robust
indicators for its validity and to construct an extended version in the case in which
the original technique is found to fail.

The averaging principle. Averaging results are known for deterministic dynamical
systems, e.g., [2], as well as for stochastic ones, e.g., [23]. For example, they apply
to systems with slow DOF that vary on time scale O(1) and fast DOF on time scale
O(ε). Averaging theorems then describe the effective motion of the slow DOF in the
limit ε → 0. Their statement is based on a decoupling of fast and slow motion:

For any given position of the slow DOF, there is an accessible part
of the state space that the fast DOF completely explore before the
position of the slow ones changes effectively. The fast variables are
eliminated from the original equation of motion by averaging accord-
ing to the probability distribution corresponding to the exploration of
the accessible state space. The effective motion of the slow variables
is governed by an averaged equation of motion.

For illustration let us consider the following SDE:

ẋε = −DxV (x, y) + σẆ1,(1.1)

εẏε = −DyV (x, y) +
√
εσẆ2,(1.2)

with ε > 0, DxV,DyV denoting the derivatives of the potential V = V (x, y) w.r.t.
x ∈ Rm, y ∈ Rn, respectively, and Wj (j = 1, 2) standard Brownian motion. For
ε � 1, this system consists of a fast variable, y, and a slow one, x. It is known that the
SDE (1.1) and (1.2) has an invariant measure µ(dxdy) = µ(x, y)dxdy with smooth
density:

µ(x, y) =
1

Z
exp(−βV (x, y)), Z =

∫
exp(−βV (x, y))dxdy,

which depends on the inverse temperature β = 2/σ2. In the following we assume that
this is the unique invariant measure (sufficient conditions will be given below). In this
case (and under suitable conditions for V ; cf. [23]) averaging completely characterizes
the limit x0 of the slow dynamics xε for ε → 0 obeying an averaged SDE,

ẋ0 = −DxV (x0) + σẆ1.(1.3)

Here, the averaged force DxV (x) on x is given by

DxV (x) =
1

Zx

∫
DxV (x, y) exp(−βV (x, y))dy,

Zx =

∫
exp(−βV (x, y))dy,
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which is the gradient of the averaged potential,

V (x) = − 1

β
log

∫
exp(−βV (x, y))dy.

In the case of mechanical systems the averaged potential is strongly related to the so-
called potential of mean force or conformational free energy landscape [3, 10, 34, 53],
which are both well known from biomolecular applications.

When averaging fails. Our decisive question is, Under which circumstances may
the averaging principle fail, even for significantly small values of ε? Since the averaging
principle is based on the fact that the fast DOF explore the accessible state space
before any effective change in the slow DOF, our question can be reformulated as,

What can prevent the fast DOF for given small ε > 0 from sampling
the accessible state space entirely before the slow ones effectively
change?

This obviously happens if there is some subset of the accessible state space from which
the fast motion will most probably exit only on some scale of order O(1). This phe-
nomenon is related to metastability in the dynamics, i.e., to the existence of metastable
subsets in the state space [14, 51, 30, 50]. Consequently, the main part of the article
is concerned with the effect of metastable subsets in the accessible state space of the
fast DOF on the limit motion of the slow ones.

Averaging, metastability, and transfer operators. Several recent articles address
the relation of metastability and dominant eigenmodes of the transfer operator asso-
ciated with the dynamical system [14, 29, 30, 50, 51]. We will exploit these results in
order to explain possible deviations of the full motion from the averaged motion. This
explanation will also allow us to construct an indicator for these deviations. Further-
more, it will lead towards the derivation of a principle of conditional averaging that,
under certain circumstances, yields an appropriate reduced model in cases where the
“usual” averaging principle fails. Moreover, the resulting numerical scheme can be
handled almost as easily as the usual averaging scheme.

Conditional averaging. In the case considered above, the conditional averaging
scheme has the following form: Suppose that for fixed slow DOF x the accessible state
space of the fast variable y can be decomposed into m(x) metastable subsets Bi(x).
Assume, moreover, that, for the sake of simplicity, the sets Bi(x) if appropriately
ordered depend sufficiently regularly on x. Moreover, let I(x) denote a Markov jump
process with state space {1, . . . ,m(x)} whose transition rates are given by the ex-
pected transition rates between the m(x) metastable subsets. Then the conditionally
averaged limit dynamics has the form

ẋ0 = −DxV
(I(x0))

(x0) + σẆ1,

V
(i)

(x) = − 1

β
log

∫
Bi(x)

exp(−βV (x, y))dy.

That is, the limit dynamics jumps between averaged potentials, each of them being
averaged over one of the metastable subsets, and the rates of the jumps reproduce the
transition rates of the original system. We will give a derivation of this limit dynamics
and present numerical experiments that indicate its reliability.

The phrase conditional averaging is used in several significantly different contexts,
for example in spatial averages in turbulence modeling or averages w.r.t. stationary
conditional probability distributions in biomolecular structure description [47]. The
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present authors are not aware of any notion of conditional averaging that is comparable
to the concept to be presented herein, i.e., that is tailored to the incorporation of
temporal fast scale effects and can be derived by means of linear projection techniques.

The need for conditional averaging in molecular dynamics. Molecular dynam-
ics is concerned with classical or quantum Hamiltonian equations of motion, often
purely deterministic but also stochastically perturbed (so-called Langevin dynamics;
see [1, 49], for example). The basic constituent of all descriptions is the potential
energy that models all covalent, ionic, or associative interactions of atoms in the
molecule. The inherent temporal multiscale structure of the associated Hamiltonian
system spans over several orders of magnitude, from the fastest time scales on the fem-
tosecond scale (10−15s) up to the slowest typically beyond the microseconds (10−6s).
The fastest motions are certain bond length, bond angle, or torsion angle oscilla-
tions that are related (a) to strong constraining parts of the potential and/or (b) to
small parameters, in particular small effective masses. Fast torsion angle modes are
of particular interest for this article: While bond lengths and bond angles typically
have only one equilibrium position, torsion angle dynamics is determined by multiwell
potentials. These multiwell structures can contain significantly large energy barriers
such that the corresponding (fast) torsion angle mode may exhibit metastability. The
elimination of fast torsion angle modes will thus make conditional averaging necessary.

Outline. We will proceed as follows: First, we introduce the stochastic dynamical
systems under consideration. Then we will briefly review the transfer operator ap-
proach to metastability. The main part of the article exploits asymptotic multiscale
techniques to state the averaging principle, to indicate when averaging possibly fails,
and to derive the conditional averaging scheme. Finally, we will illustrate all these
steps by suitable, numerical experiments and discuss the possible applicability of the
concept to realistic molecular dynamics problems and related fields.

2. The system under consideration. In the following we will focus on dif-
fusion processes with fast and slow scales; i.e., we will return to the SDE (1.1) and
(1.2) from the introduction. Under reasonable conditions it has a unique and smooth
invariant density, a property that excludes many nasty questions we are not interested
in at this time. The following sections will be concerned with the approximation of
the full dynamics given by the SDE (1.1) and (1.2) on finite time scales of order O(1);
i.e., we will not consider O(1/ε) or even longer periods. Furthermore, we will ignore
the case of fast scales originating from strong constraining potentials with strong parts
increasing with ε, i.e., of the form V (x, y) = U(x) + V(x, y)/ε2.

Consider the Hilbert space

L2(µ) =

{
g = g(x, y) :

∫
|g(x, y)|2 µ(x, y)dxdy < ∞

}

with the usual scalar product

〈g, f〉µ =

∫
f(x, y)g(x, y)µ(x, y)dxdy,

where z̄ denotes the complex conjugate of z. We want to describe the evolution of
the probability density ρε under the dynamics given by (1.1) and (1.2). For reasons
that become clear later we are interested in probability densities weighted w.r.t. µ;
i.e., ρε(x, y, t)µ(x, y) is the usually considered physical probability density function to
find the system in (x, y) at time t after having started with the probability density
ρε(x, y, t = 0)µ(x, y) at t = 0.
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Consequently, we consider the Fokker–Planck equation corresponding to (1.1) and
(1.2) in the µ-weighted space, which then reads

∂tρ
ε = Lερ

ε,(2.1)

Lε =
1

ε
Lx + Ly,(2.2)

Lx =
σ2

2
∆y − DyV (x, ·) ·Dy,

Ly =
σ2

2
∆x − DxV (·, y) ·Dx.

The indices of the operators Lx and Ly indicate the coordinate that can be considered
fixed for the respective operation; e.g., Lx can be considered as a differential operator
acting on y only, where x is meant to be fixed. The usefulness of this notation will
become obvious subsequently.

In section 4.2 we study the case where the initial condition ρε(x, y, 0) = f(x)
depends on x only; i.e., only the slow variable is observed. For preparation of this
discussion we define the projection operator Π:

(Πg)(x) =

∫
g(x, y)µx(y) dy,

µx(y) =
1

Zx
exp (−β V (x, y)) , β =

2

σ2
,

Zx =

∫
exp (−β V (x, y)) dy.

It is obvious that Π projects on functions which do not depend on y. That is, we can
express the restriction on the initial condition by means of

(Πρε)(·, t = 0) = ρε(·, ·, t = 0).(2.3)

It is likewise obvious that LxΠ = 0 since Lx does act only on y. Due to the properties
of Lx, we furthermore have (for all functions within the domain of definition)

ΠLx = 0 = LxΠ.(2.4)

The aim is to obtain a valid representation of the effective dynamics of (1.1) and
(1.2) in the slow variable x only. Whatever this representation may look like, the
knowledge of the invariant measure µ of the full dynamics already tells us the form
of the invariant measure of the reduced dynamics:

µ(x) =
1

Z

∫
exp(−βV (x, y)) dy.(2.5)

3. Dominant spectra and metastability. There are several recent articles on
the relation between metastability and dominant eigenmodes of the transfer operator
related to the considered dynamical system [14, 29, 30, 50, 51]. Within these ap-
proaches, metastability is a setwise notion conceptually defined in the following way:
Some dynamical system is said to exhibit metastability or to have a metastable decom-
position if its state space can be decomposed into a finite (hopefully small) number of
disjoint sets such that transitions between these sets are extremly rare [14, 51]. There
are basically two different concepts to quantify the “rareness of transitions”: (a) via
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transition probabilities w.r.t. an ensemble of systems and measured as the fraction of
systems that exit the set during some fixed finite time interval [50, 51] and (b) in the
case of a stochastic process via the expected exit probability [9] or via the decay rate
of the distribution of exit times [30]. However, both concepts (a) and (b) are related
to the dominant eigenvectors of the transfer operator. Accordingly, the basic insight
of the transfer operator approach to metastability is as follows [51]:

Identification of metastable decompositions. Metastable decompositions can be
detected via the discrete eigenvalues of the transfer operator P t

ε close to its maxi-
mal eigenvalue λ = 1; they can be identified by exploiting structural properties of the
corresponding eigenfunctions. In doing so, the number of sets in the metastable de-
composition is equal to the number of eigenvalues close to 1, including λ = 1 and
counting multiplicity.

For the diffusion processes Xε = (xε, yε) the transfer operator P t
ε is generated by

the differential operator Lε from (2.2), i.e.,

P t
ε = exp(tLε) in L2(µ),

with a suitable extension of Lε to L2(µ) (cf. [30]).

3.1. Dominant spectrum of the generator in L2(µ). Since Lε is self-adjoint
in L2(µ) its spectrum is real-valued. Moreover, it is nonpositive with largest eigenvalue
λ0 = 0 such that eigenvalues of P t

ε close to its largest eigenvalue 1 correspond to those
of Lε close to (but smaller than) λ0 = 0, while the eigenfunctions are the same in both
cases. Consequently, we can extract metastable decompositions from the dominant
eigenfunctions of the generator Lε. The existence of a metastable decomposition into
M sets is related in the following manner to the spectrum of Lε.

Assumption 1. There is some positive radius R � 1 such that the intersection of
the L2(µ)-spectrum of Lε with the interval [−R, 0] is discrete and contains M isolated
eigenvalue 0 = λ0 > λ1 ≥ · · · ≥ λM−1, where the eigenvalues are repeated according
to their multiplicity.

Rigorous statements on the relation between the dominant spectrum in this sense
and the existence of metastable decomposition can be found in [9, 16, 29, 30, 51]. Here,
we mention only that whenever the process Xε is geometrically ergodic then the largest
eigenvalue λ0 is an isolated, simple eigenvalue [42]; in [41] sufficient conditions for
geometrical ergodicity are given in terms of smoothness and growth of the potential.
The eigenfunction corresponding to the largest eigenvalue λ0 = 0 of Lε is simply given
by the constant function 1 ≡ 1(x, y):

Lε1 = 0.

Let us now assume that the spectrum of Lε has the form described above, and suppose
that M = 2. Let us denote the eigenfunctions associated with the isolated eigenvalues
λ0 = 0 and λ1 < 0 by u0 and u1, respectively. Thus we have a metastable decompo-
sition of the state space X into two disjoint sets, B and its complement Bc = X \B,
which are defined by the zeros of the second eigenfunction in the following manner:

B = {(x, y) : u1(x, y) < 0} and Bc = {(x, y) : u1(x, y) ≥ 0}.(3.1)

Furthermore, the results of [30] tell us that the second eigenfunction u1 can be ap-
proximated by

uB =

√
µ(Bc)

µ(B)
1B −

√
µ(B)

µ(Bc)
1Bc ,(3.2)
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where 1B denotes the indicator function of the set B ⊂ X. In fact, the results of
[29, 30] show that the deviation ‖u1 − uB‖µ decays exponentially with decreasing
noise amplitude σ. The function uB is constant on either of the two sets B and Bc,
is normalized to ‖uB‖2 = 1, and satisfies 〈1X, uB〉µ = 0.

3.2. Freezing the slow DOF. The operators Π and Lx can also be considered
as families of operators acting on the variable y for fixed x. That is, we are interested
in the action on the fiber

Φ(x) = {(x, y) : y ∈ Rn}.

For functions depending on x and y, say g = g(x, y), we then take x as a fixed
parameter and introduce the family of Hilbert spaces

L2(µx) =

{
g = g(y) :

∫
|g(y)|2µx(y)dy < ∞

}
on each Φ(x),

with scalar products

〈f, g〉µx =

∫
f(y)g(y)µx(y)dy.

We know that Lx is self-adjoint on L2(µx). Moreover, we observe that 1(x, ·) is an
eigenfunction of Lx for the eigenvalue λ = 0. Additionally, if we assume that the
Markov process given by (1.2) for fixed x is geometrically ergodic, then 1(x, ·) is the
unique eigenfunction of Lx for the largest eigenvalue λ = 0 in L2(µx). Moreover, since
we can rewrite Π by

Πg(x) = 〈1, g〉µx

and observe that Π, considered in L2(µx), is the orthogonal projection onto the
eigenspace of the lowest eigenvalue λ = 0; i.e., Π projects onto the kernel of Lx.

In addition, geometric ergodicity guarantees that the eigenvalue λ0 = 0 is known
to be isolated in the L2(µx)-spectrum. Thus, the spectrum of Lx restricted to

L2
0(µx) = {g ∈ L2(µx) : Πg = 0}

is bounded away from zero; i.e., there is some δx > 0 such that

supσ(Lx �L2
0(µx)) = −δx < 0.

As a consequence, the inverse exists and satisfies

‖
(
Lx �L2

0(µx)

)−1‖µx ≤
∣∣∣supσ(Lx �L2

0(µx))
∣∣∣−1

= δ−1
x .(3.3)

3.3. Dominant spectrum via potential energy landscape V . In the
Wentzell–Freidlin setting of large deviation theory [23], relations between the domi-
nant spectrum of the generator L or Lx, respectively, and the potential energy land-
scape are studied. It can be shown that in the limit for vanishing noise amplitude σ,
the dominant eigenvalues are related to the local minima of the potential energy land-
scape. More precisely, the eigenvalues correspond to the inverse mean exit time from
small sets around each minimum [9]; information about corresponding exit rates also
is available [30]. The exits from each local minimum take place close to the lowest
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saddle point that allows passing from one minimum to another. The corresponding
exit times are exponentially small in terms of the corresponding potential barriers that
the process has to pass. Thus, the eigenvalues nearest to zero are related to transi-
tions between the most significant wells in the potential energy landscape. In some
of the following steps this would allow us to exploit explicit asymptotic formulae for
the dominant eigenvalues of L or Lx, respectively. However, we will not pursue this
direction since we are aiming at developing a theory that allows for generalization to
dynamical systems for which the relation between metastability, dominant spectrum,
and potential energy landscapes is not as obvious as for diffusion processes.

4. Multiscale asymptotics.

4.1. Multiscale asymptotics of eigenvalues and eigenvectors. We are in-
terested in the eigenvalues and eigenvectors of the full generator Lε. We therefore
assume that λε is some isolated eigenvalue of Lε with multiplicity one and corre-
sponding eigenvector f ε. We make the following ansatz:

f ε = f0 + εf1 + ε2f2 + · · · ,
λε = λ0 + ελ1 + · · · .

Inserting this into the eigenvalue equation, we get via a comparison of powers of ε

ε−1 : Lxf0 = 0,(4.1)

ε0 : Lxf1 + Lyf0 = λ0f0,(4.2)

ε1 : Lxf2 + Lyf1 = λ1f0 + λ0f1.(4.3)

Step 1. (4.1) immediately yields that f0 does not depend on y, i.e,

Πf0 = f0.

Thus the eigenvectors of Lε are almost constant w.r.t. y if ε is sufficiently small.
Step 2. Let Π act on (4.2) and use (2.4). This time we have

λ0f0 = ΠLyf0 = ΠLyΠf0.

Let us abbreviate

L = ΠLyΠ.

Since Ly contains derivatives w.r.t. x only, then we immediately see that

L =
σ2

2
∆x − (ΠDxV ) ·Dx, acting on L2(µ).

One easily computes that ΠDxV can again be expressed as the gradient of the averaged
potential, i.e., ΠDxV = DxV , with

V (x) = − 1

β
logZx,(4.4)

and therefore

L =
σ2

2
∆x − DxV ·Dx on L2(µ).(4.5)
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Thus up to a deviation of order O(ε) the isolated eigenvalues and associated eigenvec-
tors of Lε are given by the corresponding ones of L, which again is a Fokker–Planck
generator with averaged potential V .

Obviously, the averaged potential V is the free energy landscape that has already
been introduced. Next, we will see that the multiscale asymptotics if used for the
dynamics itself results in averaging in lowest order and in second-lowest order tells us
when averaging needs to be corrected.

4.2. Multiscale asymptotics and averaging. We now make the following
ansatz for the solution of the Fokker–Planck equation (2.1) with the initial conditions
described above:

ρε = ρ0 + ε ρ1 + ε2 ρ2 + · · · .

This ansatz is inserted into the Fokker–Planck equation, and then, by comparison of
coefficients of different powers of ε, we get

ε−1 : Lxρ0 = 0,(4.6)

ε0 : Lxρ1 + Lyρ0 = ∂tρ0,(4.7)

ε1 : Lxρ2 + Lyρ1 = ∂tρ1.(4.8)

Step 1. (4.6) immediately yields that ρ0 does not depend on y, i.e,

Πρ0 = ρ0.

Step 2. Let Π act on (4.7) and use (2.4). This time

∂tρ0 = ΠLyρ0 = ΠLyΠρ0.

Thus ρ0 is determined by a Fokker–Planck equation with averaged potential, and its
solution gives us ρε up to error O(ε). The associated SDE

ẋ0 = −DxV (x0) + σẆ1(4.9)

thus describes the limit dynamics of (1.1) and (1.2) in the sense that its solution
satisfies xε → x0 as ε → 0 either pathwise [23] or in the distributional sense [37, 39].
Obviously, the invariant measure of the averaged dynamics (4.9) is given by µ as given
in (2.5). Obviously, we additionally can represent µ via

µ(x) =
1

Z
exp(−βV (x)).

Measuring deviations from averaged dynamics. Now, let Q = 1 − Π act on (4.7).
Since Qρ0 = 0 we get

QLxρ1 + QLyρ0 = 0.

Furthermore, (2.4) allows us to rewrite the parts of this equation:

QLxρ1 = Lxρ1 = −QLyρ0 = Lρ0 − Lyρ0.

Thus, we get an equation for the first order deviation ρ1 that depends on the difference
between the averaged potential and the full one:

Lxρ1 = Lρ0 − Lyρ0 = Dx(V − V ) ·Dxρ0.
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If we decompose ρ1 into the part that is constant in the y-direction, Πρ1, and the
part that is not, ρ1 − Πρ1, we can get an explicit expression for the latter part from
the last equation: Since

Π(ρ1 − Πρ1) = 0,

the last formula can also be expressed as

Lx(ρ1 − Πρ1) = (L − Ly)ρ0,

which together with the estimate (3.3) yields a bound on the correction ρ1 − Πρ1 for
every x (at least for those for which the above assumption of geometrical ergodicity
holds):

‖ρ1 − Πρ1‖µx ≤ ‖
(
Lx �L2

0(µx)

)−1‖µx
‖(L − Ly)ρ0‖µx = δ−1

x ‖(L − Ly)ρ0‖µx ,

since (L − Ly)ρ0 ∈ L2
0(µx). Summarizing we now know the following:

The smaller the spectral gap δx of Lx w.r.t. its lowest eigenvalue
λ = 0 in L2(µx), the larger ‖ρ1 − Πρ1‖µx may become.

Conclusively, if the inequality

1

δx
� 1

ε
,

which establishes a relation between the time scale of the fast motion and the exit
rate/time from metastable subsets in the fast DOF, does not hold, then deviations
from the averaged dynamics may be relevant.

Remark. It follows from (4.8) that ∂tΠρ1 = LΠρ1+ΠLy(ρ1−Πρ1). This yields an
equation of motion for Πρ1 since by our previous findings (ρ1−Πρ1) = L−1

x (L−Ly)ρ0.
If we denote the semigroup generated by L by exp(tL), then Πρ1 can be expressed as

Πρ1(t) = etL Πρ1(t = 0) +

∫ t

0

e(t−s)L ΠLyL−1
x (L − Ly)ρ0(s) ds.

Thus, the first order contribution to the evolution of the Π-averaged density, Πρ1,
also is in danger to become significantly large (in the sense that εΠρ1 is comparable
to Πρ0) if δx is as small (or smaller) as ε.

In the following we aim at cases where δx is of the order of ε such that the standard
averaging scheme is in risk to fail. Then we expect that the original dynamics exhibits
three scales: the fast scale of motion in y, the slow scale of motion in x, and the
(comparable) scale of rare transitions between metastable sets in y (if the gap δx is
O(ε), then the transitions in y happen on time scales O(1)!).

5. Conditional averaging. Whenever ε > 0 is small but not small compared
to the minimal spectral gap δx, averaging might not be appropriate to provide a good
reduced model for the slow dynamics. We will now show that we can construct an
appropriate reduced model under the following assumption, which is the analogue
formulation of the general Assumption 1.

Assumption 2. There is a small positive integer M and some positive radius
R 
 ε such that for every x the intersection of the L2(µx)-spectrum of Lx with the
interval [−R, 0] is discrete and contains at most M isolated eigenvalues 0 = λ0(x) >
λ1(x) ≥ · · · ≥ λm(x)(x), with m(x) < M .
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Remark. We will preliminarily ignore the problem that for some x the number of
dominant eigenvalues m(x) + 1 may be smaller than M . Instead we will assume that
there are exactly M eigenvalues in the dominant spectrum for all x. More precisely,
if we really have to deal with m(x)+1 < M , we will assume that there are additional
isolated eigenvalues λk(x), k = m(x) + 2, . . . ,M − 1, that play the role needed here
but are not contained in the dominant spectrum since λk(x) < −R.

Let u0(x, ·) = 1, u1(x, ·), . . . , uM−1(x, ·) denote the eigenvectors associated with
the eigenvalues λ0, . . . , λM−1 in L2(µx), i.e.,

Lxuk(x, ·) = λk(x)uk(x, ·) in L2(µx).

5.1. Motivation. We observed that deviations from the averaged dynamics have
to be anticipated if the spectral gap δx of Lx w.r.t. its lowest eigenvalue λ = 0 in L2(µx)
is comparable to the scale ε. If we want to study this effect by means of multiscale
asymptotics we have to explicitly couple δx to ε. In order to motivate our further
approach, we therefore assume that λk = ελ̃k, k = 0, . . . ,M − 1, with λ̃k = O(1),
while the reminder of the spectrum is left unchanged, i.e., contributes to order O(1)
only. Explicitly,

σ(Lx) ⊂ {0, ελ̃1, . . . , ελ̃M−1} ∪ [−R,−∞).(5.1)

Remark. The assumption (5.1) represents a modeling step: The dominant eigen-
values of Lx scale like exp(−β∆V x

i ), with ∆V x
i denoting the most important energy

barriers in the system for fixed x. Thus, a situation like (5.1) can explicitly be realized
only if these barriers scale like ∆V x

i ∝ − log ε. However, in this case the correspond-
ing eigenvectors will also depend on ε, an effect that fortunately contributes to higher
orders only (see the remark below (5.7)). The detailed discussion of the effects of such
a scaling of the main potential energy barriers is a lengthy procedure and will not be
included herein but in a forthcoming paper.

As a consequence of (5.1) we can express Lx in the following form:

Lx = ε

M−1∑
k=0

λ̃k(x)〈uk, ·〉µx uk + R̃x = εLact
x + R̃x,(5.2)

with R̃xuk = 0 for all k = 0, . . . ,M − 1.
As we have seen, averaging can be understood as the projection of the dynam-

ics onto the lowest eigenvalue that is associated with the invariant density in the
y-direction; this projection had the form

(Πf)(x) = 〈1, f〉µx 1,

where 1 is the eigenvector associated with λ0(x) = 0 for all x. In the case considered
now the simple idea is to project the dynamics onto the subspace spanned by the
dominant spectrum, i.e., by the M isolated dominant eigenmodes,

Sact = span{uk, k = 0, . . . ,M − 1}.

Thus, the projection is now given by

(Π̃f)(x) =
M−1∑
k=0

〈uk, f〉µx uk.
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We obviously again have LxΠ̃ = Π̃Lx, but this time we do not have Π̃Lx = 0 too but
only

R̃xΠ̃ = Π̃R̃x = 0.

In terms of the multiscale asymptotics of section 4.2 the basic idea of conditional
averaging is to repeat the procedure of section 4.2 and observe some important dif-
ferences: The lowest order (ε−1) now yields R̃xρ

0 = 0; that is, ρ0 satisfies

Π̃ρ0 = ρ0.(5.3)

The next order yields

R̃xρ
1 + Lyρ

0 + Lact
x ρ0 = ∂tρ

0,

which, after application of Π̃, gives us

∂tρ
0 = (Π̃LyΠ̃ + Lact

x ) ρ0,(5.4)

the explicit form of which is evaluated in the next subsections. In addition, measuring
the deviation from the full dynamics gives an indicator for its reliability that contains
the spectral gap δ̃x ≥ R between λ0 = 0 and the remainder of the spectrum (if
Assumption 2 holds, it guarantees δ̃x ≥ R such that the indicator would always
indicate the validity of the procedure).

5.2. Projection onto dominant subspace. The previous motivation tells us
that the projection onto the dominant subspace yields a reduced dynamical model (to
be derived from its Fokker–Planck equation (5.4)) that will have a rigorous justifica-
tion under the scaling assumption (5.1). However, let us for the moment forget about
this assumption and (simply) evaluate the consequences of projecting the full Fokker–
Planck equation (2.1) onto the subspace associated with the dominant spectrum. In
order to do so we consider the ansatz

ρε(x, y, t) =

M−1∑
k=0

ck(x, t)uk(x, y).(5.5)

In Appendix B we show how this ansatz, if inserted into the Fokker–Planck equation
(2.1), yields M independent evolution equations for the coefficients ck:

∂tc0 = L c0 +

M−1∑
k=1

(
〈1,Lyuk〉µx ck − 〈uk, DxV 〉µx ·Dxck

+σ2 〈1, Dxuk〉µx ·Dxck

)
,

and, for k > 0,

∂tck = L̃k ck +

M−1∑
l=0
l �=k

(
〈uk,Lyul〉µx

cl − 〈uk, ulDxV 〉µx
·Dxcl

+ σ2 〈uk, Dxul〉µx
·Dxcl

)
+

1

ε
λk ck,(5.6)

with L̃k given by (B.2). We now can distinguish two cases:
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(1) If we now assume the spectrum obeys the scaling according to (5.1) we obtain
the explicit form of (5.4) by replacing each λk/ε by λ̃k in the evolution equations
(5.6).

(2) In contrast, assume that the dominant eigenvalues do not scale with ε, i.e.,
λk = O(1). Now, careful inspection reveals that for sufficiently small ε the damping
term ckλk/ε < 0 in (5.6) grows, and therefore the ck vanish, except for k = 0. Then
the standard averaged Fokker–Planck equation ∂tc0 = Lc0 turns out to be a special
case of the current scheme.

Unfortunately, the form of the above evolution equations does not allow for a lucid
interpretation or for some simple simulation scheme that could efficiently be applied
to higher dimensions. Therefore, in the next step we will construct an alternative
formulation that models the evolution of the coefficients only approximately but allows
for an intriguing interpretation and direct numerical simulation.

5.3. Derivation of conditional averaging in explicit form. For ease of
derivation let us assume that Assumption 2 is satisfied for M = 2. Then, for each
fixed x, the zero of the second eigenvector u1 of Lx in L2(µx) decomposes the fiber
Φ(x) according to

B1 = Bx = {y : u1(x, y) < 0} and B2 = Bc
x = {y : u1(x, y) ≥ 0}.

Let us denote the indicator functions of Bx and Bc
x by

χ1 = 1B1
= 1Bx , χ2 = 1B2

= 1Bc
x

⇒ χ1 + χ2 = 1(x, ·).

Now, remember that due to (3.2) u1 is an approximate step-function:

u1(x, ·) ≈

√
µx(B2)

µx(B1)
χ1 −

√
µx(B1)

µx(B2)
χ2 = ũ1.(5.7)

Remark. The results of [13], e.g., guarantee that ‖u1 − ũ1‖µx = O(ε1/2) if the
dominant spectrum satisfies (5.1) for M = 2. However, these results hold for arbitrary
Markov semigroups that are generated by nonpositive self-adjoint operators in the
appropriately weighted Hilbert space. The additional structure of the case under
consideration (especially the specific form of the weighted norm) allows significantly
stronger results: For example, if for given x the most important barrier ∆Vx in
the potential energy scales like ∆Vx ∝ − ln ε, then ‖u1 − ũ1‖µx = O(ε); see, e.g.,
Theorem 5.4.2 of [44].

For the next steps we will proceed as if we had equality in (5.7). Then

〈u1, χ1〉µx = −〈u1, χ2〉µx = γ =
√

µx(B1)µx(B2).(5.8)

Therefore

χ1 = µx(B1)1 + γu1,

χ2 = µx(B2)1 − γu1.

If (3.2) holds exactly, {χ1, χ2} is a basis of the dominant subspace of L2(µx) spanned
by the two dominant eigenvectors. Thus we can reformulate our ansatz (5.5) in the
following form:

ρε(x, y, t) = c1(x, t)χ1(x, y) + c2(x, t)χ2(x, y).
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Inserting this into the Fokker–Planck equation yields

µx(B1) ∂tc1 = 〈χ1,Lyρ
ε〉µx +

1

ε
γ2λ1 (c1 − c2),

µx(B2) ∂tc2 = 〈χ2,Lyρ
ε〉µx +

1

ε
γ2λ1 (c2 − c1).

Evaluation of the scalar products on the right-hand side (RHS) of these equations
leads to

〈χ1,Lyρ
ε〉µx =

σ2

2
µx(B1) ∆xc1 − 〈χ1, DxV 〉µx ·Dxc1 + B.T.,(5.9)

〈χ2,Lyρ
ε〉µx =

σ2

2
µx(B2) ∆xc2 − 〈χ2, DxV 〉µx ·Dxc2 + B.T.,

where B.T. stands for boundary terms that depend on the boundary between B1 = Bx

and B2 = Bc
x for different x. These terms are ignored in the following and will be

discussed in Appendix A. In order to compute the remaining terms, it is reasonable
to define two additional measures for each fixed value of x. These correspond to the
densities

µ(j)
x (y) =

1

µx(Bj)
µx(y)χj(y), j = 1, 2.(5.10)

By construction, µ
(1)
x is supported on B1 only, while µ

(2)
x is supported on the comple-

ment B2. With this notation we define two different averaged generators, j = 1, 2:

L(j)
=

σ2

2
∆x −

{∫
DxV µ(j)

x (y)dy

}
·Dx

=
σ2

2
∆x − DxV

(j) ·Dx,

where the two averaged potentials are given by

V
(j)

(x) = − 1

β
log

∫
Bj

exp(−βV (x, y))dy, j = 1, 2.(5.11)

Consequently, the evolution equations for c1 and c2 read

∂tc1 = L(1)
c1 +

1

ε
µx(B2)λ1 (c1 − c2),(5.12)

∂tc2 = L(2)
c2 +

1

ε
µx(B1)λ1 (c2 − c1).(5.13)

5.4. Discretization and interpretation. This section will discuss the con-
struction of some simple discretization scheme for the evolution equations (5.12) and
(5.13). The authors want to emphasize that it is not their goal to construct a dis-
cretization here that may satisfy the standards of numerical mathematics. For the
scope of the present paper we rather are interested in a “quick and dirty version”
that (a) allows us to develop a lucid interpretation of these equations and that (b) al-
lows for pathwise simulation without the need to discretize the evolution equations as
partial differential equations.
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To this end, we introduce the vector c = (c1, c2)
T and rewrite the evolution

equations (5.12) and (5.13) as

∂tc = (£ + Rx) c, with £ =

(
L(1)

0

0 L(2)

)
,

and Rx =
|λ1|
ε

(
−µx(B2) µx(B2)

µx(B1) −µx(B1)

)
.

This equation is now discretized in time by means of some simple splitting scheme,
e.g., by the Trotter scheme, which yields (in the usual somewhat sloppy notation)

c(τ, ·) = exp(τ(£ + Rx)) c(t = 0, ·) = exp(τRx) exp(τ£) c(t = 0, ·) + O(τ2),

where τ (unfortunately) has to be of order o(ε). The advantage of this discretization
is that exp(τ£) has a direct pathwise realization since it denotes the time-τ transport
of the Fokker–Planck equations associated with the two SDEs:

ẋ = −DxV
(j)

(x) + σẆ , j = 1, 2.

The second term, exp(τRx), obviously denotes a “simple” exchange between the two
levels j = 1 and j = 2:

exp(τRx) =

(
1 + µx(B2)(e

τλ1/ε − 1) −µx(B2)(e
τλ1/ε − 1)

−µx(B1)(e
τλ1/ε − 1) 1 + µx(B1)(e

τλ1/ε − 1)

)
.(5.14)

This matrix is x-dependent through the µx(Bj) and λ1 = λ1(x). Nevertheless, it
is a stochastic matrix for all τ ≥ 0. Therefore, one step of the Trotter discretiza-
tion c(t + τ, ·) = exp(τRx) exp(τ£) c(t, ·) has a pathwise realization within a specific
stochastic particle method (cf. [28]):

Let x(j)(t) denote the positions of an ensemble of particles with num-
bers j = 1, . . . , N and level numbers lj ∈ {1, 2}, j = 1, . . . , N , at
time t. Assume that this ensemble represents the initial state c(t, ·)
in the following way: The subsequence x(j)(t) with lj = 1 is a sam-
pling of the probability density function c1(t, ·), and the subsequence
x(j)(t) with lj = 2 is a sampling of c2(t, ·). Realization of the Trotter
discretization then requires two steps:
Step 1 (transport). Determine for each of the particles an updated
position x(j)(t + τ) by solving

ẋ = −DxV
(lj)

(x) + σẆ , x(t = 0) = x(j)(t),(5.15)

over [0, τ ].
Step 2 (exchange). For each particle on level j = 1 (i.e., lj = 1),
set lj = 2 with hopping probability p1→2 = µx(B2)(1 − eτλ1/ε) and
remain at lj = 1 with probability 1−p1→2. For each particle on level
j = 2, set lj = 1 with probability p2→1 = µx(B1)(1 − eτλ1/ε) and
remain at lj = 2 with probability 1 − p2→1.

The resulting ensemble then represents c(t + τ, ·) in the same sense as it previously
did for c(t, ·). Hence, iteration of this procedure means simulation of the evolution
equations of our conditional averaging scheme.
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6. Illustrative examples. In this section we will illustrate the results from the
preceding sections by numerical experiments with appropriate test examples.

6.1. Averaging appropriate. We first are interested in the relation between
the validity of the averaging scheme as an approximate, reduced model with

• the approximate constancy of the dominant eigenvectors in the y-direction,
• the existence of a significantly large spectral gap δx.

First of all we consider the potential

V (x, y) =
1

2
(x2 − 1)2 +

1

2
ω(x)2 y2,

which is nothing more than a double well potential in the x-direction and a harmonic
potential in the y-direction. Both are coupled by the x-dependence of the harmonic
constant ω(x)2. However, we choose ω such that it exhibits some small oscillations
around the constant value 1 mostly but significantly deviates from 1 in the vicinity
of xp = 1:

ω(x) =
3

2
+

1

2
sin (5π/2x) + κ exp(−Σ(x− 1)2), κ = 75, Σ = 185.

Figures 1 and 2 show the form of ω, the full potential, and the corresponding averaged
potential. We observe that the peak at xp = 1 induces an additional barrier in the
averaged potential. This illustrates the case of so-called dynamical barriers that are
induced by collective effects of the fast coordinates only.
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Fig. 1. Form of ω = ω(x) used herein.
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Fig. 2. Full and averaged potential for β = 8.5.
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Table 1

First four eigenvalues of the full generator Lε and the averaged one L. The gap between λ2

and λ3 indicates three metastable sets.

Eigenv. λ0 λ1 λ2 λ3

Lε 0.000 −0.016 −0.290 −1.527

L 0.000 −0.016 −0.323 −1.527

If we choose ε = 0.1 and if β = 8.5, the dominant eigenvalues of the full and
averaged generators, Lε and L, are shown in Table 1.

Figures 3 and 4 show the dominant eigenvectors of the full generator for these
parameters, their projected versions, and the corresponding eigenvectors of the aver-
aging dynamics. For all values of x the spectral gap δx is essentially larger than ε: it
takes values around 1 and even larger values near xp = 1.
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Fig. 3. Second and third eigenvector of full potential for ε = 0.1. There are only minor
deviations from almost constancy in the y-direction.
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Fig. 4. Second and third eigenvector of averaged potential (solid) and projections Πu1 and Πu2

of second and third eigenvector u1 and u2 of full potential (ε = 0.1, β = 8.5).

Note that, for fixed x, the stochastic process on each fiber is of Ornstein–Uhlenbeck
type. Therefore, explicit expressions for the eigenvalues of Lx are known: For exam-
ple, the first eigenvalue is λ1(x) = −ω(x)2, which due to the present choice of ω is
always well separated from λ0 ≡ 0.

According to our theory, this should indicate that the averaging scheme will yield
an appropriately reduced model. In Figure 5 we compare a realization of the averaged
motion to the full motion, which confirms our conjecture.
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Fig. 5. Comparison of a typical realization of the full dynamics’ x-coordinate (top) to the
averaged motion (bottom). The realizations have been computed for one realization of the white
noise.

6.2. Averaging inappropriate. In order to illustrate the problems that may
arise in averaging, we now consider the following potential:

V (x, y) = 5 · (y2 − 1)2 + 1.25 · (y − x/2)2.

The potential energy surface is shown in Figure 6 together with the corresponding
averaged potential.
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Fig. 6. Full and averaged potential for β = 8.5.

We consider ε = 0.005; i.e., diffusion in y is very fast compared to diffusion
in x. However, the important barriers of the potential are barriers in the y-direction;
see Figure 6. Thus for fixed ε, increasing the inverse temperature β increases the
metastability in y. Consequently, by choosing different β one can analyze the effect
of increasing metastability on averaging. For ε = 0.005 and β ≥ 1, Table 2 shows two
eigenvalues near zero.

All other eigenvalues are significantly smaller than −1. The second eigenvector is
shown in Figure 7 for ε = 0.005 and β = 1.00, 1.75, 2.50. One immediately observes
that the eigenvectors are constant in the y-direction for β = 1.0 only. Deviations grow
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Table 2

Dominant eigenvalues of the full generator Lε with ε = 0.005 for different temperatures.
Metastability occurs as the temperature decreases.

Eigenv. of Lε β = 1.00 β = 1.75 β = 2.50
λ0 0.000 0.000 0.000
λ1 −0.160 −0.050 −0.003
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Fig. 7. Second eigenvectors of the full potential for ε = 0.005 and β = 1.0 (left), β = 1.75
(middle), and β = 2.5 (right).

as β becomes larger. From the pictures we may expect that for β ≤ 1.00 averaging
works pretty well, whereas it does not for larger β.

Figure 8 illustrates that the deviation from constancy has to do with a spectral
gap δx taking values in the order of magnitude of ε: For x in a neighborhood of x = 0,
δx comes close to ε for β = 1.75 and is even smaller than ε for β ≥ 2.5, while it is
clearly bounded away from ε for β = 1.0.
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Fig. 8. Spectral gap δx for ε = 0.005.

In order to demonstrate the deviation between averaged and full dynamics, we first
show typical realizations for β = 2.5 and ε = 0.005 in Figure 9. The trajectories have
been generated using the Euler–Maruyama scheme with fixed time step dt = 0.001
for the averaged dynamics and dt = ε/10 for the full system, respectively. We found
that the results are robust under changes of step-size. We clearly observe essential
differences; in particular, the transition rate from x < 0 to x > 0 seems significantly
smaller for the averaged case than for the full one.

In order to analyze this deviation more carefully, we consider the exit times from
the set

S = {x : x < 2}.
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Fig. 9. Single realizations of the averaged (left) and the full (right) dynamics for β = 2.5.

More exactly, we consider the random variable

�S = inf

{
t > 0 :

∫ t

0

1Sc(xε(s)) ds > 0
∣∣∣xε(0) = −2, yε(0) = −1

}
,(6.1)

which measures the first time at which the process exits from S and enters the com-
plement Sc.1 We estimate the expectation value of the first exit time by means of
N = 2000 realizations of both averaged dynamics and full dynamics. For ε = 0.005 we
find significant deviations for larger values of β in full agreement with the observation
of Figures 7 and 8, as it is shown in Table 3.

Table 3

Exit times from the set S = {x : x < 2} for standard averaging.

Dynamical model β = 1.00 β = 1.75 β = 2.00 β = 2.50
E[�S ] standard averaging 16 32 40 63

E[�S ] full dynamics 16 40 70 404

6.3. Conditional averaging. We now demonstrate the preeminence of condi-
tional averaging for the previous case. To this end, we again inspect the long-term
behavior of full dynamics and conditional averaging in Figure 10. Apparently, the
transition rates from x < 0 to x > 0 now coincide to some extent.

However, in order to present numbers instead of pictures we again compute the
expectation value of the exit times �S . From N = 2000 realizations for ε = 0.005 we
get a very good agreement between full dynamics and conditional averaging, as it is
shown in Table 4 (in particular if we take into account the estimated statistical error
of about 5%).

Note that in contrast to the standard averaging procedure the simulations as
shown in Figure 10 suggest that we can only expect convergence of the distributions
instead of pathwise convergence.

Remark. In this example the number of isolated eigenvalues in the dominant spec-
trum of Lx is at most two for all x; i.e., Assumption 2 is satisfied for M = 2. While
for values of x around x = 0 there are definitely two dominant eigenvalues, Figure 8
illustrates that for large negative and positive values of x, say for |x| > xβ , there is

1The attentive reader may wonder why we define the set S by x < 2 rather than by x < 0. The
reason is that by x < 0 we cannot adequately discriminate between the metastable sets corresponding
to the two basins of attraction in the upper right and the lower left corner (cf. Figure 6). But whenever
x > 2 we can assume that most probably the system has left the lower basin.
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Fig. 10. Single typical realizations of the conditional averaging (left) and the full dynamics
(right) for β = 2.5.

Table 4

Exit times from the set S = {x : x < 2} for conditional averaging.

Dynamical model β = 1.00 β = 1.75 β = 2.00 β = 2.50
E[�S ] conditional averaging 16 42 73 395

E[�S ] full dynamics 16 40 70 404

only one dominant eigenvalue (λ = 0) with a large gap to the remaining spectrum.
In view of our theoretical results, we conclude that the standard averaging scheme is
appropriate for large negative and positive values of x, while the conditional averaging
has to be used for values of x around x = 0. However, conditional averaging yields
the same results as standard averaging whenever λ = 0 is isolated by a large spectral
gap (in this case the exchange process is not rare but frequent, and the mixing of
the conditional averages reproduces the standard average). Therefore, conditional
averaging can be used instead of standard averaging even for |x| > xβ . Consequently,
whenever we want to compute a path of the reduced dynamics with an initial value
x < −xβ , for example, we could think of two different algorithmic realizations: (1) We
use the standard averaging scheme and switch to conditional averaging when entering
the inner region |x| ≤ xβ . The switch from standard averaging to conditional averag-
ing is no problem since it is obvious in which of the wells of V (x = −xβ , ·) we have
to continue the path after entering from the left (x < −xβ). However, it is likewise
obvious that we can easily construct potentials V for which the continuation problem
at the switching point is significantly more complicated. (2) Alternatively, we simply
use the conditional averaging scheme throughout the entire simulation (we did this
for computing the realization shown in Figure 10). The advantage is obvious: We do
not have to face any continuation problem. The disadvantage is that the switching
process is fast compared to the slow motion in x. Improved discretization techniques
for this case are subject to further investigation.

7. Molecular dynamics and related fields. The type of averaged equation of
motion (4.9) is well known in molecular dynamics and materials science applications
in the sense that the collective effect of the fast coordinates y can be represented by
means of the averaged potential

V (x) = − 1

β
logZx, Zx =

∫
exp (−β V (x, y)) .

In these fields of application it is well known as conformational free energy potential
or potential of means force [34, 35]. However, it often is derived in a totally different,
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purely statistical way without any reference to dynamical concepts or to averaging or
related techniques; see, e.g., [21] for a typical example.

Application to molecular dynamics? The setting of application to molecular dy-
namics may be sketched as follows: The transition path between some important
initial and final states of the molecule under consideration is described in terms of
the slow coordinates x only; one averages over a vast number of fast coordinates (e.g.,
hundreds up to thousands of coordinates). The motion along the path is governed by
the potential V . However, the actual efficient evaluation of the integral defining V
is a major challenge because of the curse of dimensionality. Therefore, one resorts
to specific iterative sampling techniques, e.g., different Monte Carlo or constrained
molecular dynamics techniques, diffusion or Langevin processes, to compute the inte-
gral Zx, the averaged potential, or the averaged forces for some relevant values of x;
cf. [24, 25, 53]. These techniques are designed to explore the accessible state space
for fixed x efficiently.

However, if the accessible state space contains significantly large energy barriers
that separate some major potential wells from each other, then the sampling iteration
typically gets trapped inside these wells. Then one needs a large number of iterations
to escape from one well, which, in turn, critically slows down the exploration process.
In most articles about state of the art sampling schemes most of the intellectual energy
is invested to overcome this trapping problem or critical slowing down.

Dealing with the topic of this paper, it is of major importance that sampling
schemes are amenable that overcome the trapping problem by means of identification
of metastable sets exploiting the dominant spectrum of the transfer operator (or gen-
erator) of the dynamics [19, 20] in the course of iterating the sampling scheme. This
implies that with such techniques the inevitable computation of Zx or the averaged
forces produces exactly the information that is needed to replace averaging by condi-
tional averaging if necessary. Then the application of conditional averaging produces
only slightly more computational effort than the application of standard averaging.
In forthcoming papers exactly this opportunity will be investigated.

Relation to materials science. The same basic problem (reliable extensive sam-
pling of the accessible state space normal to the coordinates of major interest) emerges
in the most recent approaches to transition path computation [4, 17] in materials sci-
ence, molecular dynamics, and phase transition theory. Concepts and algorithms
considered therein may serve as starting points to generalize the conditional averag-
ing approach towards situations where the fast variable are normal directions of a
nonflat slow manifold.

8. Conclusion. The article deals with averaging and related asymptotic tech-
niques for the elimination of fast DOF in (stochastic) dynamical systems. It is moti-
vated by the observation that the available techniques can be inappropriate if the fast
DOF induce very long transition time scales due to metastability effects. These cases
may appear in real-life applications, e.g., in molecular dynamics applications with fast
torsion angle dynamics. We have derived indicators for the possible inadequacy of the
averaging scheme for simple diffusion processes and have constructed an extension of
the averaging technique for cases where the fast modes cause the longest time scales in
the system. The authors’ conjecture is that this construction is quite general: Its basic
idea, the projection of the fast dynamics onto the dominant eigenspace of the transfer
operator associated with the dynamics instead of projection onto the principal eigen-
mode (invariant measure) only, should be applicable to other classes of dynamical
systems (even to deterministic scenarios; see the work of Dellnitz and Junge [14]).
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Appendix A. Boundary terms in conditional averaging. The boundary
terms B.T. in the evolution equations of the conditional averaging scheme are related
to the dependence of the boundary between B1 = Bx and B2 = Bc

x on x. For example,
the B.T. in (5.9) are given by

B.T. =

2∑
j=1

(
〈χ1,Lyχj〉µx cj + σ2 〈χ1, Dxχj〉µx ·Dxcj

)
.(A.1)

Here, the derivatives w.r.t. x are acting on step-functions. If we parameterize the
boundary by y = γ(x), then taking the first and second derivative, respectively, yields
terms including δ(y − γ(x)) and δ(y − γ(x))/(y − γ(x)), respectively. Under certain
circumstances, these may give significant contributions in the evaluation of 〈·, ·〉µx ,
and we can compute explicit expressions for them.

However, the step-functions result from the approximation (5.7) of the eigenfunc-
tion u1 in L2(µx), and the scalar products include the weight µx. This has mainly
two consequences: (A) The eigenfunction u1 actually is much smoother than the step-
functions, and (B) the boundary typically is near the saddle point of the potential;
i.e., the weight µx is exponentially small near the boundary. Together, these aspects
render the boundary terms to be negligible in all cases considered so far by the au-
thors. Nevertheless, one might be able to make up scenarios where these contributions
cannot be neglected. However, then it is the conjecture of the authors that one should
reformulate conditional averaging in terms of a set of generalized coordinates that are
adapted to the boundary.

Appendix B. Projection onto dominant subspace: Details. As in sec-
tion 5.2 we start with the ansatz

ρε(x, y, t) =

M−1∑
k=0

ck(x, t)uk(x, y).(B.1)

Now, we first insert this into the Fokker–Planck equation (2.1) and then let the M pro-
jections 〈uk, ·〉µx

act on the resulting equation. Since the projections are all orthogonal
this procedure yields M independent evolution equations for the coefficients ck in our
ansatz:

∂tc0 = 〈1,Lyρ
ε〉µx

,

∂tck = 〈uk,Lyρ
ε〉µx +

1

ε
λk(x) ck, k = 1, . . . ,M − 1.

The evaluation of the RHS of these equations proceeds by inserting ρε:

〈1,Lyρ
ε〉µx =

M−1∑
k=0

(
〈1, ukLyck〉µx + ck 〈1,Lyuk〉µx

+ σ2 〈1, Dxuk〉µx ·Dxck

)
.

The different terms of this equation yield

〈1, u0Lyc0〉µx = L c0,

〈1, ukLyck〉µx = −〈uk, DxV 〉µx ·Dxck, k > 0,

〈1,Lyu0〉µx
= 0,

〈1,Lyuk〉µx = 〈1,Lyuk〉µx , k > 0,

〈1, Dxu0〉µx = 0.
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Conclusively, we get for the main coefficient

∂tc0 = L c0 +

M−1∑
k=1

(
〈1,Lyuk〉µx ck − 〈uk, DxV 〉µx ·Dxck

+σ2 〈1, Dxuk〉µx ·Dxck

)
,

while the other coefficients (k > 0) satisfy

∂tck = L̃k ck +

M−1∑
l=0
l �=k

(
〈uk,Lyul〉µx cl − 〈uk, ulDxV 〉µx

·Dxcl

+ σ2 〈uk, Dxul〉µx
·Dxcl

)
+

1

ε
λk ck,

with

L̃k = 〈uk, ukLy〉µx
.(B.2)
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