
ar
X

iv
:n

lin
/0

30
90

34
v1

  [
nl

in
.P

S]
  1

0 
Se

p 
20

03

Shear dispersion along circular pipes is affected

by bends, but the torsion of the pipe is

negligible

A. J. Roberts∗

September 9, 2003

Abstract

The flow of a viscous fluid along a curving pipe of fixed radius is
driven by a pressure gradient. For a generally curving pipe it is the
fluid flux which is constant along the pipe and so I correct fluid flow so-
lutions of Dean (1928) and Topakoglu (1967) which assume constant
pressure gradient. When the pipe is straight, the fluid adopts the
parabolic velocity profile of Poiseuille flow; the spread of any contami-
nant along the pipe is then described by the shear dispersion model of
Taylor (1954) and its refinements by Mercer, Watt et al. (1994,1996).
However, two conflicting effects occur in a generally curving pipe:
viscosity skews the velocity profile which enhances the shear disper-
sion; whereas in faster flow centrifugal effects establish secondary flows
that reduce the shear dispersion. The two opposing effects cancel at
a Reynolds number of about 15. Interestingly, the torsion of the pipe
seems to have very little effect upon the flow or the dispersion, the cur-
vature is by far the dominant influence. Lastly, curvature and torsion
in the fluid flow significantly enhance the upstream tails of concentra-
tion profiles in qualitative agreement with observations of dispersion
in river flow.
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Figure 1: perspective figure of a helical pipe as an example of the curv-
ing pipes containing fluid flow and contaminant dispersion that is modelled
herein. On the right is a schematic diagram of the orthogonal curvilinear
coordinate system local to the curving centre line of the pipe: u points along
the centre line and s measures axial distance.
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1 Introduction

Consider the dispersion of a contaminant, with diffusivity κc, in the steady
laminar flow, velocity field q, of a Newtonian fluid of density ρ and kinematic
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1 Introduction 3

viscosity ν in an arbitrarily curving pipe of radius a such as the helical pipe
shown in Figure 1. The flow is pumped by an overall pressure drop which
maintains a fixed fluid flux along the pipe; that is, a constant mean velocity U
is maintained irrespective of curvature. Non-dimensionalise quantities with
respect to the pipe radius a, the cross-pipe diffusion time a2/κc, and the
reference pressure ρνU/a. The Navier-Stokes and continuity equations for
the steady, incompressible fluid flow then become

Rq ·∇q = −∇p+∇2q and ∇ · q = 0 , (1)

where R = aU/ν is the Reynolds number. The contaminant evolves accord-
ing to the non-dimensional advection-diffusion equation

∂c

∂t
+ Pq ·∇c = ∇2c , (2)

where P = aU/κc is the Peclet number. In typical liquids the Peclet number
is much larger than the Reynolds number as their ratio, the Schmidt (or
Prandtl) number σ = P/R = ν/κc, is normally large: approximately 103 for
the diffusion of material in liquids [28, p1119, e.g.]; although only about 8 for
the diffusion of heat [1, p597];1 whereas in typical gases the Schmidt number
is roughly 1 and so the Peclet and Reynolds numbers are comparable. The
analysis is interpreted with these two cases in mind of the Schmidt number
being either O(1000) or O(1).

Here we analyse the flow and dispersion in an arbitrarily curving cir-
cular pipe. Most analysis of dispersion assumes a curved pipe is toroidal
[28, 23, 14, 6, e.g.] and most experiments are performed in helical pipes
[33, e.g.] (see further discussion by Berger et al. [3]). Neglecting molecular
diffusivity, dispersion in toroidal flow has been characterised from analytic
formulae by Ruthven [28] and numerical solutions by McConalogue [20] us-
ing the residence time of different streamlines. Interestingly, using similar
ideas Jones [15] deduced a regime of anomalous dispersion in a twisted but
piecewise toroidal pipe. The fluid flow in helical pipes has been the sub-
ject of recent analysis [12, 34, 19, 38, e.g.], whereas the flow in arbitrarily
curving and twisting pipes has received little attention although Pedley [24]
accounted for leading order effects of variable curvature but ignored torsion,
and Gammack & Hydon [11] investigate flow in pipes with exponentially
varying curvature and torsion. Here I take these analyses further by simulta-
neously determining the fluid flow and the dispersion in arbitrarily curving

1The Prandtl number of water is 13.4 at 0◦, 9.5 at 10◦, 8.1 at 15◦, 7.1 at 20◦, 5.5 at 30◦,
4.3 at 40◦, 3.0 at 60◦, and 2.2 at 80◦. Whereas the Prandtl number of air is 0.71 .
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1 Introduction 4

circular pipes. The analysis is restricted to parameter regimes where the
fluid flow is laminar—because of the induced secondary circulation, laminar
flow is stable to higher Reynolds numbers in a curving pipe [33, 3]. The
results thus will also be important in the flow and dispersion in microfluidic
channels [13, e.g.].

In §2.1 we establish an orthogonal coordinate system based upon the
arbitrarily curving geometry of the circular pipe, although requiring that the
curvature of the centre line varies smoothly. Let the centre line of the pipe be
described by R(s) where s measures arclength along the centre line. Then a
useful set of vectors for space in the vicinity of the pipe are the unit tangent
u(s) = R′ of the centre curve, unit normal p(s) and the unit binormal b(s)
(see Figure 1). These vectors and the curvature κ(s) and torsion τ(s) of the
pipe are all connected by the Frenet formulae [17, §8.7,e.g.]

u′ = κp , p′ = −κu+ τb , b′ = −τp . (3)

Throughout this article I use a dash to denote ∂/∂s. In a thin pipe the non-
dimensional velocity is approximately Poiseuille flow, u ≈ 2(1−r2). However,
there are corrections of O(κ) due to the curvature which are determined by
solving the Navier-Stokes equations (1) for the fluid flow, see §2 where low
order expressions agree with the careful analysis of the flow in helical pipes
by Tuttle [34].

Centre manifold theory provides a rationale to form low-dimensional mod-
els of dynamics as I elaborated in the overview [27]. Here we model the long-
time evolution of the large scale dispersion of contaminant along the pipe.
Models of “long-waves” or “slowly varying in space” dynamics are justified
in the centre manifold approach by requiring resolved longitudinal spatial
structures to have small wavenumber [25]. With this proviso, diffusion acts
relatively quickly across the pipe to cause the contaminant concentration to
be approximately constant in any cross-section: to leading order c ≈ C(s, t)
where C = c̄ is an average over a pipe cross-section. The centre manifold
analysis then systematically accounts for how variations along the pipe are
affected by the varying velocity profile to disperse the contaminant. We thus
deduce in §3, as a generalisation of Taylor’s model [30, 31], the advection-
diffusion model

∂C

∂t
≈ −P ∂C

∂s
+

∂

∂s

(

D
∂C

∂s

)

, (4)

where for the case of a pipe of circular cross-section the effective diffusivity

D =

(

1 +
κ2

4

)

+
P2

48

[

1 + κ2

(

863

120
− 7267R2

241920
+

599R4

48384000
− 2569σ2R4

68428800

)]

+O(κ4, δ) . (5)
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1 Introduction 5

That is, the shear dispersion in a straight pipe, D = P2/48, is in a curved
pipe modified by a factor approximately

1 + κ2

[

7.2− 3.0

(

R
10

)2

+ (0.12− 0.38σ2)

(

R
10

)4
]

,

As found by others, secondary circulation caused by fluid inertia depresses
the effective dispersion, by about κ2[3.0(R/10)2 + 0.38σ2(R/10)4] , but only
for Reynolds numbers sufficiently large. In slow viscous flow, pipe curvature
actually enhances the effective dispersion by about 7.2κ2—an effect that has
apparently often been neglected [33, p317] in experimental determination of
dispersion coefficients.

• For dispersion in gas flow, with O(1) Schmidt number σ, the dispersion
is depressed by secondary circulation only if R is greater than about 15
as otherwise the viscous enhancement is stronger. Remarkably, if the
Schmidt number σ is small, less than about 0.5, inertial effects in the
fluid flow enhance the effective dispersion for R greater than about 50.

• For dispersion in liquids, with say O(1000) Schmidt number σ, the term
in κ2R4σ2 dominates the other terms for Reynolds number greater than
about 0.5. Hence, in liquids and due to secondary circulations due to
inertia, I reaffirm the reduction in effective dispersion.

Since the Dean number2 D = 2
√
κR this last is the shear dispersion cor-

rection verified by Nunge [23] and Johnson [14] as being significant for D2σ
greater than about 100. A limitation of the expression (5) is that it pre-
dicts a physically unrealisable negative effective diffusivity for large enough
Reynolds number. In most cases, Schmidt number σ larger than 1, the term
in κ2σ2R2 dominates the correction. Hence to maintain a positive diffusion
coefficient the Dean number D < 25/

√
σ or equivalently σD2 < 650 . The

expression (5) is a low order approximation to the correct curve, describing
the downwards curving shape on the left side of Figure 3 of Johnson [14],
but needing the higher order corrections described in §3.4 to describe the
dispersion coefficient at higher Dean number.

For lower Reynolds number the qualitative deductions above vary from
those of Nunge [23] because their dispersion coefficient is different, see their

2As discussed by Berger et al. [3, §2.1.1.2], there are various and conflicting definitions
of the Dean number: Berger et al. recommended the use of D = 2

√
κR which I have

adopted here. This Dean number could be viewed as
√
κR for a Reynolds number based

upon the pipe diameter rather than the radius that I have used.
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1 Introduction 6

equation (76). In particular, I predict that shear dispersion is frequently
enhanced for gases, the reverse conclusion to that of Erdogan [9] and later
Nunge [23, pp.363,375]. I argue that the differences occur because all previous
work, based upon the fluid flow solutions of Dean [8, 7] and Topakoglu [32],
have assumed that the pressure gradient is fixed in the expansion in cur-
vature κ—an adequate assumption for flow in a torus or helix where the
curvature and the torsion are constant. But in a pipe of generally varying
curvature and torsion, as developed here, it is the mean fluid flux which
is fixed along the pipe, not the pressure gradient.3 Since, for a constant
pressure gradient the fluid flux varies with curvature and torsion—generally
first decreasing with increasing torsion then later increasing with torsion,
see Yamamoto [36] and its correction [37]—it follows that the mean pressure
gradient (24) varies along a generally curving pipe. To check my computer
algebra program (listed in Appendix A) I temporarily fixed the pressure gra-
dient in a helical pipe and found the resulting dispersion coefficient to be
exactly equivalent to that given by Nunge [23], equation (76), except that
the one term in R2σκ2 (my κ is their 1/λ) is zero in my results—I conjecture
theirs is in error in this term. Because of the requirement to fix the fluid flux
I recommend the use of (5) instead of the earlier published models of shear
dispersion.

The error of O(δ) in the shear dispersion coefficient given by (5) encom-
passes modifications due to torsion τ and to variations in curvature κ along
the pipe: the parameter δ corresponds to the parameter η in Gammack &
Hydon’s analysis of exponentially varying pipes, κ ∝ eηs. The torsion only
affects the dispersion coefficient at O(κ2τ 2), as see §3, and so does not ap-
pear in (5). The effects of axial variations are reformulated as memory of the
effective dispersion coefficient some distance upstream. Such memory effects
in shear dispersion in varying channels were first recognised by Smith [29].

Using computer algebra it is also straightforward to determine both higher
order corrections to the dispersion coefficient and high-order terms in the
advection-diffusion equation itself. These terms may be either used to refine
the approximations, or to give good estimates of the errors in a lower-order
approximation. Earlier work by Mercer & Roberts [21] gave a sharp estimate
for the limit of spatial resolution in a straight circular pipe.

3Even Gammack & Hydon [11, p363] appear to fix the pressure gradient in their expo-
nentially varying pipes by requiring the second order pressure correction p2 ∝ sin ξ , where
ξ is their angular variable, and so their pressure correction has zero mean.
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2 The fluid flow

The first task is to find the laminar viscous fluid flow in the curving pipe.
The focus of the paper is the dispersion in the pipe by the flow, but there
are enough interesting and relevant features in the fluid flow itself to be dis-
cussed briefly here—in particular this section confirms aspects of my analysis
by reproducing many results of other authors about steady laminar flow in
curved and twisted pipes.

We assume that the flow is steady as appropriate to flow driven by a con-
stant pressure drop through a fixed pipe. However, to maintain everywhere
constant fluid flux, the mean pressure gradient, p̄′, varies with the curvature
of the pipe as given in (24).

2.1 The orthogonal curvilinear coordinate system

Expressions for the flow are derived in an orthogonal curvilinear coordinate
system matched to the geometry of the circular pipe. The orthogonal coor-
dinate system has been used by Germano [12], Kao [16], Liu [19] and Ya-
mamoto [36, 37] to investigate the structure of the fluid flow in helical pipes
up to Dean numbers of 2, 000, and is well known in hydromagnetodynamics.
One difference here is that we do not assume the pipe is helical, instead we
allow arbitrary variations in the curvature and torsion of the pipe—the one
important restriction is that the curvature and torsion must vary only slowly
along the tube. Such slow variations along the pipe were also assumed by
Murata [22] in their analysis of the flow in tubes bent sinusoidally in a plane,
and Pedley [24] in a leading approximation to the effects of curvature. As
shown schematically in Figure 1, positions in space are labeled by (s, r, ϑ)
and have position vector

r = R(s) + r cos θ p+ r sin θ b , where θ = ϑ+ φ(s) (6)

measures the angle from the plane of the normal p to the point r; thus θ = 0
corresponds to the inside of the local bend whereas θ = ±π corresponds to
the outside. However, due to torsion in the shape of the pipe the reference
plane of the orthogonal coordinate system must twist along the pipe by an
amount φ(s) where

dφ

ds
= −τ .

Tony Roberts, October 30, 2018



2 The fluid flow 8

The unit vectors and scale factors of this orthogonal coordinate system are
then

hs = 1− κr cos θ , es = u ,
hr = 1 , er = cos θ p+ sin θ b ,
hϑ = r , eϑ = − sin θ p+ cos θ b .

(7)

Note that all expressions for fluid and concentration fields are written in
terms of θ, the angle relative to the local direction of curvature of the bent
pipe—because it is this angle that primarily determines the shape of the local
fields—but all equations are written in terms of the angular coordinate in the
orthogonal system, namely ϑ; remember that θ varies with ϑ and s according
to (6). Observe the scale factors are all positive provided 0 < r < 1/κ
and so the coordinate system is well defined for unit radius pipes provided
the non-dimensional centre line curvature κ < 1 . Let the velocity field,
with components the axial velocity u, the radial velocity v, and the angular
velocity w, be denoted by

q = ues + ver + weϑ .

Then, noting it is convenient to compute the viscous dissipation term via the
vorticity (as does Tuttle [34, p548]),

∇2q = −∇× ω , ω = ∇× q ,

standard formulae apply for computing components of the Navier-Stokes
equations (1) [1, Appendix B, e.g.]:

ωs =
1

r

(

∂(rw)

∂r
− ∂v

∂ϑ

)

, (8)

ωr =
1

rhs

(

∂(hsu)

∂ϑ
− ∂(rw)

∂s

)

, (9)

ωϑ =
1

hs

(

∂v

∂s
− ∂(hsu)

∂r

)

, (10)

0 =
1

hs

∂p

∂s
+

1

r

(

∂(rωϑ)

∂r
− ∂ωr

∂ϑ

)

+R
(

u

hs

∂u

∂s
+ v

∂u

∂r
+

w

r

∂u

∂ϑ
+

uv

hs

∂hs

∂r
+

uw

rhs

∂hs

∂ϑ

)

, (11)

0 =
∂p

∂r
+

1

rhs

(

∂(hsωs)

∂ϑ
− ∂(rωϑ)

∂s

)

+R
(

u

hs

∂v

∂s
+ v

∂v

∂r
+

w

r

∂v

∂ϑ
− w2

r
− u2

hs

∂hs

∂r

)

, (12)
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0 =
1

r

∂p

∂ϑ
+

1

hs

(

∂ωr

∂s
− ∂(hsωs)

∂r

)

+R
(

u

hs

∂w

∂s
+ v

∂w

∂r
+

w

r

∂w

∂ϑ
− u2

rhs

∂hs

∂ϑ
+

vw

r

)

, (13)

0 =
1

rhs

(

∂(ru)

∂s
+

∂(rhsv)

∂r
+

∂(hsw)

∂ϑ

)

. (14)

These are solved with a fixed fluid flux and with zero velocity on the pipe
walls: u = v = w = 0 on r = 1 . The computer algebra program in Ap-
pendix A solves these equations iteratively.

There are some subtleties in the geometry of the coordinate system. As
discussed by Zabielski [38, §2.2], observe that because of the twist in a helical
pipe the axial unit vector u is not everywhere tangent to the lines of helical
symmetry—the s-coordinate curves are not curves of helical symmetry. Thus
be careful in interpreting cross-flow velocities v and w because in one view
they will involve a small component of the relatively large velocity along the
lines of helical symmetry. In an alternative presented by Tuttle [34], the
twist in the coordinate system caused by torsion generates an effect similar
to that caused by a coordinate system rotating in time. However, here we
consider flow in a generally curving pipe with no large scale symmetry, so
the only definite longitudinal direction is the local unit vector u and we thus
discuss v and w as cross-flow velocities, as does Gammack & Hydon [11].
Similarly, in helical symmetry one cannot find a cross-section plane normal
to the lines of helical symmetry [38, p300] so an arbitrary decision is needed.
As is conventional for helical pipes and as simplest for generally curving
pipes, we conventionally take a cross-section to be normal to the centreline
of the pipe. In these cross-sections the pipe is circular.

2.2 Slow Stokes flow

Solving the fluid equations using the computer algebra program in Ap-
pendix A I deduce the Stokes flow field, R = 0, is

u =
(

1− r2
) [

2 + κ3

2
r cos θ + κ2 5

8
r2 cos 2θ − κ2 11

48
(1− 3r2)

]

+O(κ3, δ2,R) , (15)

v = 1

3

(

1− r2
)2

[cos θ κ′ + sin θ κτ ]

+ 1

96
r
(

1− r2
)2 [

(38 + 43 cos 2θ)κκ′ + 43 sin 2θ κ2τ
]

+O(κ3, δ2,R) , (16)

w = 1

6

(

1− r2
) (

2− r2
)

[− sin θ κ′ + cos θ κτ ]
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Figure 2: (a) contours of axial velocity u of the viscously dominated Stokes
flow in a helical pipe with curvature κ = 0.8 (chosen so large to accentuate the
modifications); (b) corresponding torsion induced cross-pipe fluid velocities
to leading order in the torsion. The plots are evaluated from the asymptotic
solution with errors O(κ5).

+ 1

96
r
(

1− r2
) [

(43− 29r2)(cos 2θ κ2τ − sin 2θ κκ′) + (6− 2r2)κ2τ
]

+O(κ3, δ2,R) , (17)

p̄′ = −8 + 1

6
κ2 +O(κ3, δ2,R) , (18)

p = p̄− 1

3
r
(

1− 3r2
)

[cos θ κ′ + sin θ κτ ]

− 1

24

(

5 + 4r2 − 21r4
)

κκ′ − 1

24
r2

(

9− 26r2
) [

cos 2θ κκ′ + sin 2θ κ2τ
]

+O(κ3, δ2,R) , (19)

where δ is used to denote the order of magnitude of derivatives of the quan-
tities varying slowly along the pipe. For example, κ′ and τ = −φ′ are
thus O(δ).

See that, for example, the Stokes flow in a torus (κ = const and τ = 0) is
simply one of axial flow, see Figure 2(a), in an adjusted mean pressure gradi-
ent as all other components vanish. The axial velocity maximum is shifted to
the inside of the curve (to the right in Figure 2(a)) and is increased slightly.
In contrast to flows at significant Reynolds number, the pressure gradient
around a curve is less than that in a straight pipe presumably because the
bulk of the fluid travels a shorter path than the centre line—this agrees with
Larrain [18] who used computer algebra to also find high order approxima-
tions to the flow in a coiled pipe.

The cross-pipe velocities in a helical pipe are indicated in Figure 2(b)
where the torsion induces velocities proportional to those shown in the fig-
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Figure 3: (a) axial velocity u contours of the inertial corrections to Poiseuille
flow in a helical pipe with curvature κ = 0.5 to leading order in the torsion τ
of the helix; (b) corresponding inertia induced cross-pipe fluid velocities inde-
pendent of the torsion. The plots are evaluated from an asymptotic solution
with errors O(κ5).

ure; the generally upwards velocity matching the upwards twist of positive
torsion. Observe that torsion, τ , and variations in curvature, κ′, only affect
the cross-stream velocities and do not influence the axial velocity u to this
order. Conversely, observe that this Stokes flow does not have cross-pipe
circulation—the strong viscosity eliminates inertia. Instead the curvature of
the pipe just skews and alters the velocity field. For curvature κ 6= 0 the
maximum of the axial velocity u increases and moves towards the inner wall
of the pipe. This last effect, though seemingly small even for the large cur-
vature of κ = 0.8 used in Figure 2, is enough to have a strong influence on
the shear dispersion as seen in (5).

2.3 Laminar flow at finite Reynolds number

Incorporating the terms representing the advection of fluid momentum into
the computer algebra program of Appendix A leads to effects parametrised
by the Reynolds number R. I find that the fluid fields given previously
in (15–19) are modified by the addition of the following terms:

u = · · ·+ R
144

r
(

1− r2
) (

29 + 5r2 − 3r4
)

[cos θ κ′ + sin θ κτ ]

− R2

1440
r
(

1− r2
) (

19− 21r2 + 9r4 − r6
)

cos θ κ
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2 The fluid flow 12

+
R3

1814400
r
(

1− r2
) (

2969− 4381r2 + 3249r4 − 1301r6

+ 274r8 − 20r10
)

[cos θ κ′ + sin θ κτ ] +O(κ2, δ2) , (20)

v = · · · − R
72

(

1− r2
)2 (

4− r2
)

cos θ κ

+
R2

8640

(

1− r2
)2 (

13− 15r2 + 7r4 − r6
)

[cos θ κ′ + sin θ κτ ]

+O(κ2, δ2) , (21)

w = · · ·+ R
72

(

1− r2
) (

4− 23r2 + 7r4
)

sin θ κ

+
R2

8640

(

1− r2
) (

13− 224r2 + 266r4 − 124r6

+ 17r8
)

[− sin θ κ′ + cos θ κτ ] +O(κ2, δ2) , (22)

p = · · · − R
3
r
(

9− 6r2 + 2r4
)

cos θ κ

+
R2

2160
r
(

101− 120r2 + 90r4 − 30r6 + 3r8
)

[cos θ κ′ + sin θ κτ ]

+O(κ2, δ2) , (23)

where “· · ·” denote the terms already given for Stokes flow in (15–19). The
modifications to the cross-pipe velocities that are proportional to Rκ(=
D

2/4R), plotted in Figure 3, agree with those of the Dean flow as used by
Johnson [14, p330], in their work on dispersion. The cross-pipe velocity field
exhibits circulation across the pipe induced by the pipe curvature because of
fluid inertia. The term in the axial velocity u proportional to κR2 = D

2/4
also agrees with that of Johnson & Kamm. These terms in the veloc-
ity fields are those previously found for the “loosely coiled limit” [3, p467]
when curvature κ is negligible by itself but the Dean number D = 2

√
κR

is significant. The above expressions appear to agree precisely with the ex-
pressions (58–61) carefully obtained by Tuttle [34] for low Reynolds number
flow in a helical pipe—the only differences lie in various factors of two due to
the different non-dimensionalisation and because my angular velocity w is in
a “space-centred” coordinate system whereas Tuttle’s Φ is “body centred”.4

4Although the components of the velocity proportional to curvature κ and the leading
order terms inRκ′ reduce to those of Murata [22, Eqn. (21–22)], in their case of a sinusoidal
centreline, the terms in R2 are different in detail to those of Murata [22, Eqn. (22)], as
is the pressure. Terms in curvature κ in the above velocity field agree with those of
Pedley [24, Eqn. (4.13)], and terms in the gradient κ′ with highest power of Reynolds
number R also agree [24, (4.18–19)] except for the axial velocity u. The above expressions
also agree with the small Dean number expansion derived by Kao [16, p341], for flow in a
helix except for his w2 which does not match my expression (20) for u.
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Figure 4: coefficients in the expression (24) for the mean pressure gradient
as a function of the centreline curvature κ and its gradient κ′.

Lastly, the components of the physical fields (15–23) involving sin θ and cos θ
cross-sectional structures agree with those of Hammack & Hydon [11, p363],
but their formulae have none of the components in sin 2θ, cos 2θ, nor a mod-
ification to the mean pressure gradient as in (24). Observe in all of the
formulae (16–23) that torsion coupled to curvature, κτ , appears to have the
same effect as longitudinal gradients of curvature, κ′, but the fluid fields
are rotated in angle by 90◦. The above expressions are the first to combine
torsion and general variations in curvature.

With fixed fluid flux, the mean pressure gradient, to one higher order in
curvature than the fields above, is

p̄′ = −8 +
(

1

6
− 11

540
R2 − 1541

32659200
R4

)

κ2

+
(

23

80
R+ 1433

241920
R3 + 6191

410572800
R5

)

κκ′ +O(κ3, δ2) . (24)

See from the coefficients plotted in Figure 4, that although the pressure gra-
dient is lessened by curvature for low Reynolds number, for Reynolds number
approximately R > 3 there is an increased pressure gradient loss in a curving
pipe. This is attributed to the greater mixing caused by the induced cross-
pipe circulation. Also see that a region of tightening curvature, increasing κ2,
has a lesser drop in pressure gradient relative to that for a toroidal pipe,
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3 Advection-dispersion along the curving pipe 14

whereas conversely a lessening in the curvature, decreasing κ2, has a higher
drop in the pressure gradient. This effect is interpreted as a “memory” in
the mean pressure gradient of the upstream conditions: retaining just the
highest order terms in R the mean pressure gradient

p̄′ ≈ −8 − 1541

32659200
R4κ2 + 6191

821145600
R52κκ′

≈ −8 − 1541

32659200×16
D

4
∣

∣

s−4337R/271216
, (25)

where the evaluation of the Dean number at an effective distance upstream
of approximately R/6 pipe radii seems to show the typical distance necessary
for the fluid flow to develop in order to accord with the curvature of the pipe.
This agrees qualitatively with experiments on a pipe with a finite bend as
discussed by Berger et al. [3, p494], where the influence of the bend on the
mean pressure gradient extends far downstream. This upstream memory also
matches nicely with the commonly quoted distance, ls ≈ 1

4
aR [10] and [3,

p488], required for flow entering a straight pipe to become fully developed,
and with the observation by Murata [22, §4], that the flow in a sinusoidally
bent pipe has a lag in its adaptation to the local conditions, the lag increasing
with increasing Reynolds number.

The above formulae for both viscous and inertia effects of curvature and
torsion are only of low-order. Computer algebra computes the velocity field to
as high an order as is necessary for the demands of modelling the dispersion
in the pipe, described in the next section. Van Dyke [3, p475] has shown
the asymptotic expansions of the fluid flow field converge for Dean number
D < 96.8/4

√
2 = 17.1 (for negligible κ but finite D). However, I have not

explored this issue as here we are primarily concerned with the advection-
diffusion model (2) of the dispersion and its asymptotic approximations.

3 Advection-dispersion along the curving

pipe

Having determined the fluid flow within the pipe, I now address the advection
and longitudinal dispersion within the pipe. We solve the advection-diffusion
equation (2) for the evolving concentration c(s, r, ϑ, t) of contaminant within
the fluid. Writing the concentration in terms of the cross-pipe average C(s, t)
and its derivatives I use centre manifold techniques to construct the Taylor
model (4), and its higher order generalisations, of the advection-dispersion
in the bent and twisted pipe.
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3.1 The concentration field within the pipe

Using the coordinate system described in §2.1, the advection-diffusion equa-
tion (2) for the evolution of the concentration of the contaminant is

∂c

∂t
+ P

(

u

hs

∂c

∂s
+ v

∂c

∂r
+

w

r

∂c

∂ϑ

)

=
1

rhs

[

∂

∂s

(

r

hs

∂c

∂s

)

+
∂

∂r

(

rhs
∂c

∂r

)

+
∂

∂ϑ

(

hs

r

∂c

∂ϑ

)]

. (26)

This is solved with no flux through the circular walls of the pipe: ∂c/∂r = 0
on r = 1 .

The computer algebra program (Appendix A) simultaneously determines
from the contaminant conservation equation (26) the dynamics on the low-
dimensional centre manifold, namely the Taylor model (4). Over a cross-pipe
diffusion time the concentration field evolves to be, for example, approxi-
mately

c = C − P ∂C

∂s

1

24

(

2− 6r2 + 3r4
)

+ P ∂C

∂s
κ cos θ

[

−1

6

(

4r − 3r3 + r5
)

+
R2

172800

(

256r − 285r3 + 200r5 − 75r7 + 15r9 − r11
)

+
σR2

34560

(

68r − 120r3 + 130r5 − 75r7 + 21r9 − 2r11
)

]

+O(κ2, δ2) . (27)

To this order neither torsion nor gradients of curvature affect the concen-
tration field within the pipe, but this is not surprising as one order of δ is
counted in ∂C/∂s leaving no scope for derivatives of the curvature κ to be in-
volved in the above terms. Expressions for the concentration field to the next
order in either the curvature κ or longitudinal derivatives δ are algebraically
formidable and are not recorded.

From such expressions, the computer algebra determines the mean flux
of contaminant through a cross-section of the pipe:

F (C, s) = uc− 1

hs

∂c

∂s
,

where the overbar denotes the average over a cross-section. Then by con-
servation of contaminant, the model for the evolution of the contaminant
is known to follow Ct = −Fs . Using the flux F like this I determine the
right-hand side of the model to one order higher in axial derivatives, δ, than
would otherwise be possible.
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3.2 Arbitrary curvature causes upstream memory

The error of O(δ) in the shear dispersion coefficient given by (5) encompasses
modifications due to both torsion τ and to variations along the pipe in the
curvature κ. The torsion only affects the dispersion coefficient at O(κ2τ 2)
and so does not show up in (5).

Variations in curvature along the pipe (κ′ 6= 0) cause the effective dis-
persion coefficient to become, using R to denote the scaled Reynolds num-
ber R/10 and remembering P = Rσ,

D = 1 +
1

4
κ2 +

7

48
(κκ′)

′ − 7

96

(

κ2τ 2 + κ′2
)

(28a)

+
P2

48

[

1 + κ2
(

− 64225

171072
R

4σ2 + 2995

24192
R

4 − 36335

12096
R

2 + 863

120

)]

(28b)

+ Pκκ′
[

R
6
(

9050586625

26900729856
σ4 + 246093875

1630347264
σ3 − 6234774125

53801459712
σ2 − 1760495125

40351094784
σ
)

+R
4
(

−1068925

2322432
σ3 + 33738035

20901888
σ2 + 2310385

4478976
σ
)

+R
2
(

−383695

96768
σ2 + 19465

12096
σ + 985

12096

)

− 13

32

]

(28c)

+P2(κ2τ 2 + κ′2)
[

R
6
(

2542365125

58692501504
σ4 − 1039029345155

126541033242624
σ2 − 5542735225

3515028701184

)

+R
4
(

14791164485

33108590592
σ2 + 739414405

11036196864

)

+R
2
(

−7181

9072
σ2 + 7619671

41803776

)

− 5357

55296

]

(28d)

+PR(κκ′)′
[

R
6
(

−2219783253125

3012881743872
σ5 − 3007270625375

9038645231616
σ4 + 7670650920025

63270516621312
σ3

+ 2879131496575

23726443732992
σ2 + 396673566125

15817629155328
σ
)

+R
4
(

318184675

306561024
σ4 − 3159503125

752467968
σ3 − 9765145925

16554295296
σ2 − 2663242675

5518098432
σ
)

+R
2
(

40508065

4644864
σ3 − 3081595

1548288
σ2 − 3844625

2612736
σ − 16835

373248

)

+ 32413

27648
σ − 191

1728

]

+O(κ4, δ3) , (28e)

In this large but comprehensive expression observe:

(28a) gives the molecular diffusivity along the pipe in the presence of the
bending and twisting of the pipe when there is no flow;

(28b) gives the usual shear enhanced dispersion in a straight pipe, P2/48,
modified by the leading order (quadratic) effects of pipe curvature
(these were the terms of the shear dispersion discussed in the Intro-
duction (5);

(28c) gives the leading order effects on the dispersion due to variations in
curvature along the pipe;
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(28d) gives the leading order effect of torsion on the dispersion, namely
quadratic but moderated by the multiplication by κ2;

(28d–28e) through κ′2 and κ′′ terms, gives the second order effects of the
variations in curvature.

It is intriguing to see that the effects of torsion and second order gradi-
ents of curvature factorise as shown in (28d–28e). I suggest the reason
for this factorisation is due to two effects: firstly, upstream “memory”
of the dispersion, to be discussed later, involves

κ2
∣

∣

s−ξ
= κ2 − 2ξκκ′ + ξ2(κκ′)′ +O(ξ3)

which may explain the appearance of the combination (κκ′)′; and sec-
ondly, curvature gradients and torsion, κ′ and κτ respectively, both
create the same but orthogonal structures in the fluid flow as com-
mented after (20–23).

For large Schmidt number σ (typical for material dispersion in liquids)
there are two distinguished limits of the above expression for the effective
dispersion coefficient, the second being a subset of the first.

• Firstly, for large Schmidt number σ the highest powers of σ domi-
nate. However, in various subexpressions they appear in combina-
tion with the Reynolds number R = 10R. Thus there is a distin-
guished limit with large σ and small R in which R2σ is of order 1 .
In terms of the magnitude δ of the slow axial variations, an appropri-
ate scaling is that the fluid flow is slow, R ∼ δ, the Schmidt num-
ber large enough, σ ∼ 1/δ2, so that the Peclet number is also large,
P ∼ 1/δ, then the effective diffusion coefficient is large, D ∼ 1/δ2.
Using these orders of magnitude, introducing the order 1 parameter
α = RP/100 = R2σ/100 and evaluating fractions, the leading order
terms in the dispersion coefficient (28) are

D ≈ .02083P2 + (.1498− .007821α2)P2κ2

+ (−.03965− .004603α+ .003364α2)P3κκ′

+ (−.007916 + .0004332α2)P4(κ2τ 2 + κ′2)

+ (.008721 + .001038α− .0007368α2)P4(κκ′)′ . (29)

• Secondly, for a typical Schmidt number σ bigger than 103 or so, and
for any flow with Reynolds number R bigger than about 1, then the
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parameter α will be bigger than about 10 and the above expression (29)
will be dominated by the quadratic powers in α. That is, the dispersion
coefficient

D ≈
(

P
10

)2
{

2.083 +

(

R2σ

100

)2
[

−0.7821 κ2 + 3.364
P
10

κκ′

+

(

P
10

)2
(

4.332 (κ2τ 2 + κ′2)− 7.368 (κκ′)′
)

]}

. (30)

We noted in (25) that the mean pressure gradient in the fluid flow at any
location was appropriate to the curvature some distance upstream. Similar
memory effects are seen in the dispersion coefficient. The subexpression
−0.7821 κ2 + 0.3364Pκκ′ appearing in the first line of (30) is equivalent to
simply −0.7821 κ2 evaluated at a distance ξ = 0.2151P upstream from any
particular location. I do not attempt to complicate this memory effect any
further by trying to include the second order term (κκ′)′, as there are a
plethora of possibilities, but for the purposes of discussion I assume both κκ′

and (κκ′)′ terms are attributable to upstream memory. The ratio of the
coefficients of κκ′ and κ2 in (29) similarly quantify the upstream memory for
low Reynolds number flows as shown in Figure 5. Such memory effects in
shear dispersion in varying channels were first recognised by Smith [29].

From the coefficient approximations (29) and (30) see that torsion and
curvature gradients generally enhance dispersion along the pipe except for
low Reynolds numbers, R2σ < 427.4 , when they make the dispersion coeffi-
cient smaller. However, the effect torsion has upon the dispersion coefficient
seems small because not only is the effect quadratic in the torsion τ , it is
also ameliorated by the multiplication by the curvature squared. However,
ignoring the κκ′ terms and noting that κ′ = κ(log κ)′, I write (30) as

D ≈
(

P
10

)2{

2.083

− 0.7821

(

κR2σ

100

)2
[

1−
(

P
10

)2

5.539 (τ 2 + (log κ)′
2
)

]}

. (31)

This suggests that torsion, or proportional gradients of curvature, greater
than about 4/P may cause the dispersion coefficient D to increase with
curvature κ, instead of decreasing. That torsion could eliminate the increased
mixing due to secondary circulations seems unlikely so I predict higher order
terms in the torsion τ would limit its influence on the dispersion.
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Figure 5: in a generally curving pipe the effective dispersion has the value
appropriate to the curvature a distance ξ upstream.

For the dispersion of heat in water with a Prandtl number of σ = 8.1
at 15◦C the dispersion coefficient (28) reduces to

D = 1.3669R2 + 1

+ κ2
(

−.003350R6 − .04106R4 + 9.830R2 + .25
)

+ κκ′
(

.01232R7 − .1090R5 − 2.01R3 − 3.291R
)

+ (κ2τ 2 + κ′2)
(

.01220R8 + .1928R6 − 33.95R4 − 6.356R2 − .07292
)

+ (κκ′)′
(

−.02191R8 + .1777R6 + 36.39R4 + 7.602R2 + .1458
)

. (32)

For Reynolds number R > 7 the highest powers in R dominate; see Figure 6
for the dependence on smaller R. Observe: for Reynolds number R > 6.95
curvature enhances the dispersion of heat and vice-versa; whereas for R >
6.74 torsion and curvature gradients reduce the dispersion and vice-versa.

For the dispersion of heat in air with a Prandtl number of σ = 0.71
at 15◦C and recalling that R = R/10, the dispersion coefficient (28) reduces
to

D = 1.080R2 + 1
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Figure 6: coefficients of the dispersion coefficient D for water at 15◦C given
by (32). For higher Reynolds number the highest powers in R dominate the
coefficients.

+ κ2
(

−.07649R6 − 3.244R4 + 7.767R2 + .25
)

+ κκ′
(

.3979R7 + 7.462R5 − 5.871R3 − 2.925R
)

+ (κ2τ 2 + κ′2)
(

.3011R8 + 15.48R6 − 11.82R4 − 5.022R2 − .07292
)

+ (κκ′)′
(

−.7615R8 − 13.98R6 + 8.055R4 + 5.282R2 + .1458
)

. (33)

For Reynolds number R > 15 the highest powers inR dominate; see Figure 7
for the dependence on smaller R. Observe: for Reynolds number R > 15.18
curvature enhances the dispersion of heat and vice-versa; whereas for R >
10.35 torsion and curvature gradients reduce the dispersion and vice-versa.

3.3 Skewness is very sensitive to curvature

Computer algebra straightforwardly determines high order terms in the advec-
tion-diffusion equation (2). Chatwin [4] investigated the relatively slow ap-
proach to normality in shear dispersion. Here expect the variations in pipe
curvature and torsion to distort any normal profile. Hence expect such vari-
ations to have a large effect on skewness.
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Figure 7: coefficients of the dispersion coefficient D for water at 15◦C given
by (33). For higher Reynolds number the highest powers in R dominate the
coefficients.

The third order modification to the Taylor model of dispersion is

∂C

∂t
≈ −P ∂C

∂s
+

∂

∂s

(

D
∂C

∂s

)

+
∂

∂s

(

E
∂2C

∂s2

)

, (34)

where the skewness coefficient

E = − P3

2880
(35a)

+ Pκ2
[

R
6
(

3241338875

107602919424
σ4 + 1104359125

35867639808
σ2
)

− 4085615

20901888
R

4σ2

+R
2
(

68855

96768
σ2 + 985

12096

)

− 13

32

]

(35b)

+ κκ′
[

R
8
(

−5943982203125

9038645231616
σ6 − 1183708683125

2259661307904
σ5 − 12012557065375

9038645231616
σ4

− 4304114889625

5931610933248
σ3
)

+R
6
(

1250362375

1379524608
σ5 + 820657375

64665216
σ4 + 14670875

4138573824
σ3 + 1214048125

4138573824
σ2
)

+R
4
(

−11414525

290304
σ4 + 1917625

193536
σ3 − 25984475

5225472
σ2 − 84175

93312
σ
)

+R
2
(

17795

1152
σ2 − 955

432
σ
)

+ 7

12

]

(35c)

+ P(κ2τ 2 + κ′2)
[

R
8
(

254564364353125

1434131710083072
σ6 − 9130311425570375

34419161041993728
σ4
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− 545957180588375

29041167129182208
σ2
)

+R
6
(

9773515705025

2259661307904
σ4 + 241252377733475

759246199455744
σ2
)

+R
4
(

−1227346555

114960384
σ4 − 24438946685

16554295296
σ2 − 159535

2128896

)

+R
2
(

1325215

258048
σ2 − 118243

580608

)

+ 801

2560

]

(35d)

+ P(κκ′)′
[

R
8
(

− 26098554271144375

206514966251962368
σ6 + 10015284615625

204875958583296
σ5

+ 83884205830882375

206514966251962368
σ4 + 68444215116292625

464658674066915328
σ3 + 44871973001125

691456360218624
σ2
)

+R
6
(

71359651375

6025763487744
σ5 − 516258977875

111588212736
σ4 − 596762793925

2875932573696
σ3

− 2958969842375

23007460589568
σ2 − 62332574575

1977203644416
σ
)

+R
4
(

48287105

3784704
σ4 − 480287515

172440576
σ3 + 4233379915

2759049216
σ2 + 89672375

459841536
σ + 159535

2128896

)

+R
2
(

−23023685

4644864
σ2 + 2964127

4644864
σ + 501107

2322432

)

− 2257

5760

]

+O(κ4, δ3) . (35e)

The skewness coefficient for flow in a straight pipe, −P3/2880 from (35a),
is well known [5]. One outstanding puzzle in the field of dispersion is that
in rivers one observes contaminant concentrations with long tails upstream
(not downstream) [2, e.g.]. But theoretical models predict either only a weak
enhancement of upstream tails or more confoundedly, as the above nega-
tive skewness coefficient implies for straight pipe flow, a weak downstream
tail. However, as we now see, curvature effects, presumably induced by the
secondary flows, significantly change the skewness coefficient thereby enhanc-
ing the upstream tail of a contaminant release. With the caveat that this
derivation is for pipes, not rivers, this is a qualitative improvement in the
theoretical model compared with observations.

For large Schmidt number σ (typical for the dispersion of material in
liquids), and similar to the dispersion coefficient D, there are two distin-
guished limits of the above expression for the skewness coefficient.

• Firstly, in terms of the magnitude δ of the slow axial variations, the
appropriate scaling is that the fluid flow is slow, R ∼ δ, the Schmidt
number large enough, σ ∼ 1/δ2, so that the Peclet number is also large,
P ∼ 1/δ, then the skewness coefficient is large, E ∼ 1/δ3. Recalling
the parameter α = RP/100 = R2σ/100 and evaluating fractions, the
leading order terms in the skewness coefficient (35) are

E ≈ − P3

2880

[

1− κ2
(

.8675α2 + 20.49
)

+ Pκκ′
(

.1894α2 − .2610α+ 11.32
)

+ P2(κ2τ 2 + κ′2)
(

−.05112α2 + 3.075
)

+ P2(κκ′)′
(

.03640α2 − .003411α− 3.674
)]

(36)

Tony Roberts, October 30, 2018



3 Advection-dispersion along the curving pipe 23

• Secondly, for a typical Schmidt number σ bigger than 103 or so, and
for any flow with Reynolds number R bigger than about 2, then the
parameter α will be bigger than about 40 and the above skewness
coefficient (36) is dominated by the quadratic powers in α:

E ≈ P3

2880

{

−1 +

(

R2σ

100

)2 [

0.8675 κ2 − 1.894
P
10

κκ′

+

(

P
10

)2
(

5.112 (κ2τ 2 + κ′2)− 3.640 (κκ′)′
)

]}

. (37)

In this regime, even small curvature, through the κ2 term, will cause
the skewness coefficient to become positive, possibly large, and so lead
to concentration tails upstream (qualitatively as observed in rivers).
Torsion in the pipe leads to the same upstream tails.

Recognise another upstream memory effect. The subexpression 0.8675 κ2−
0.1894Pκκ′ appearing in the first line of (37) is equivalent to simply 0.8675 κ2

evaluated at a distance ξ = 0.1092P upstream from any particular location.
This upstream memory is approximately half that of the dispersion coeffi-
cient.

For the dispersion of heat in water with a Prandtl number of σ = 8.1
at 15◦C the skewness coefficient (35) reduces to

E = −0.1845R3

+ κ2
(

−3.291R+ 3.788R3 − .01039R5 + .001067R7
)

+ κκ′
(

.5833 + 9.956R2 − 16.43R4 + .08625R6 − .002101R8
)

+ (κ2τ 2 + κ′2)
(

2.534R+ 27.28R3 − 37.30R5 + .1509R7 + .003968R9
)

+ (κκ′)′
(

−3.174R− 25.91R3 + 43.37R5 − .1589R7 − .002604R9
)

.(38)

For Reynolds number R > 11 the highest powers in R dominate. Observe
that for these Reynolds numbers both curvature and torsion may easily re-
verse the sign of of the skewness paramater E through the combination

+R7

[

.001067 κ2 + .003968R2(κ2τ 2 + κ′2)
]

.

Again this effect promotes upstream tails in the dispersion. Although the
terms in κκ′ and (κκ′)′ may keep E negative, we prefer to interpret these as
representing upstream memory.
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For the dispersion of heat in air with a Prandtl number of σ = 0.71
at 15◦C and recalling that R = R/10, the dispersion coefficient (35) reduces
to

E = −0.1242R3

+ κ2
(

−2.884R+ 3.124R3 − 0.6995R5 + 0.1645R7
)

+ κκ′
(

0.5833 + 6.217R2 − 9.592R4 + 3.537R6 − 0.7762R8
)

+ (κ2τ 2 + κ′2)
(

2.221R+ 16.93R3 − 25.07R5 + 8.940R7 − 0.3844R9
)

+ (κκ′)′
(

−2.782R− 12.99R3 + 22.94R5 − 9.478R7 + 1.287R9
)

. (39)

For Reynolds number R > 40 the highest powers in R dominate. Observe
that for such larger Reynolds number the sign of the skewness coefficient
changes sign sensitively depending upon the torsion τ , curvature κ, and its
gradients.

3.4 Higher order curvature affects the dispersion

Computer algebra also straightforwardly determines even higher order cor-
rections to the dispersion coefficient. These terms may be used, for example,
to give estimates of the errors in the earlier approximations. However, the
algebraic expressions quickly become extremely complicated. We just extend
the analysis to the next order in curvature, but no higher order in gradients,
to obtain the following correction to the dispersion coefficient (28):

D = · · ·+ 1

8
κ4

+
P2κ4

48

[

R8
(

6959456407

3094629863915520000
σ4 + 148720297230839

464658674066915328000000
σ2

− 11319036743801

14297189971289702400000

)

+R6
(

21839753491553

12654103324262400000
σ2 + 1800408289399

2711593569484800000

)

+R4
(

− 24648813997

64377815040000
σ2 + 5096950451

21459271680000

)

− 4685593

348364800
R2 + 13829

9216

]

+O(κ6, δ) ; (40)

or approximately

D ≈ · · ·+ 1

8
κ4

+
P2κ4

48

[

(

R
10

)8
(

0.22σ4 + 0.032σ2 − 0.079
)

+

(

R
10

)6
(

1.7σ2 + 0.66
)

+

(

R
10

)4
(

−3.8σ2 + 2.4
)
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Figure 8: comparison of the Padé approximant (42) (solid) with experimen-
tal estimates (circles) collated by Johnson [14], Fig. 9, and the predictions
(dashed line) of their spectral method based on Poiseuille flow.

− 1.3

(

R
10

)2

+ 1.5

]

+O(κ6, δ) . (41)

I also computed the dispersion coefficient to the next correction, with er-
rors O(κ8, δ). Then recalling the Dean number D = 2

√
κR, the dominant

terms for the coefficient of dispersion of material in liquids, large Schmidt
number σ, are:

D ≈ P2

48

[

1− 0.3754

(

D
2σ

400

)2

+ 0.2249

(

D
2σ

400

)4

− 0.1388

(

D
2σ

400

)6

+O(D16σ8)

]

.

This expression is valid for small enough D
2σ . Using the additional informa-

tion [14, §4.3] that the limit at large D
2σ is approximately 0.20 , I construct

the following Padé approximant in terms of α = D
2σ/400

D ≈ P2

48
× 1 + 0.3068α2 + 0.007811α4

1 + 0.6822α2 + 0.03905α4
. (42)
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See in Figure 8 that this expression for the dispersion coefficient matches
reasonably well with experiments over the whole range of D2σ .

4 Conclusion

Computer algebra handles the considerable details of deriving the compli-
cated expressions describing dispersion in generally curving pipes, §A. Fix-
ing one of the fluid flux or the mean pressure gradient affects the dispersion,
§1, and throughout I present results for the appropriate case of fixed fluid
flux. The Padé approximation (42) for the dispersion in a constant curvature
pipe is reasonably accurate over the entire range of Dean numbers. When
the pipe’s curvature and torsion vary, much of the effects of variations upon
the dispersion may be recast as an upstream memory. Overall, torsion τ in
the pipe seems to have little effect on the dynamics except for a sensitivity, in
combination with the curvature κ, of the skewness, §3.3. The skewness coef-
ficient is very sensitive to curvature, hence is easily made positive, and which
may thus explain the observations of long upstream tails in the dispersion of
material in rivers.

A Computer algebra derivation

Computer algebra is a very powerful means to derive asymptotic expansions.
In order for other people to reproduce and verify the results recorded herein,
I list here the core of the program used to derive the asymptotic expansions;
obtain the full program by request.

The computer algebra program was written in reduce5 to calculate the
asymptotic expansions of the centre manifold models described in this article.

There is a lot of detail to the computer algebra program. However, the
key to the correctness of the results is the coding of the governing equations
which forms the key part of the core printed here. The algorithm iteratively
drives to zero the residuals of these equations, see Roberts [26] for a generic
description of the algorithm. Thus the details about how the residuals are
reduced are not vital, only that they are correctly computed and ultimately
zero.

5At the time of writing, information about reduce was available from Anthony
C. Hearn, RAND, Santa Monica, CA 90407-2138, USA. mailto:reduce@rand.org

There were demonstration versions of reduce freely available at
ftp://ftp.zib.de/pub/reduce/demo or ftp://ftp.maths.bath.ac.uk/pub/algebra .

Tony Roberts, October 30, 2018

mailto:reduce@rand.org
ftp://ftp.zib.de/pub/reduce/demo
ftp://ftp.maths.bath.ac.uk/pub/algebra


A Computer algebra derivation 27

1 comment Find the flow in an arbitrarily curving pipe,

2 Simultaneously determine the shear dispersion in such a flow:

3 eps=magnitude of curvature terms,

4 del=magnitude of axial derivatives and of torsion.

5 ;

6 depend kap,s; % curvature

7 depend tau,s; % torsion

8 % local coordinate system is (s,r,th), tp=th+phi(s)

9 depend tp,s,th;

10 let { df(tp,s)=>-tau, df(tp,th)=>1 };

11 hs:=1-eps*kap*r*cos(tp);

12 hr:=1;

13 ht:=r;

14 % trigonometry rules OK

15 let { sin(~a)*cos(~b) => (sin(a+b)+sin(a-b))/2

16 , cos(~a)*cos(~b) => (cos(a-b)+cos(a+b))/2

17 , sin(~a)*sin(~b) => (cos(a-b)-cos(a+b))/2

18 , cos(~a)^2 => (1+cos(2*a))/2

19 , sin(~a)^2 => (1-cos(2*a))/2

20 };

21 % mean over a cross section (mult by r to use)

22 depend r,rt;depend tp,rt;

23 operator mean; linear mean;

24 let { mean(r^~m*cos(~n),rt) => 0

25 , mean(r^~m*sin(~n),rt) => 0

26 , mean(r^~m,rt) => 2/(m+1)

27 , mean(r,rt) => 1

28 };

29 % operators to solve for updates

30 ...

31 % initial approximations

32 u:=2*(1-r^2) +eps*3/2*kap*(r-r^3)*cos(tp);

33 v:=0;

34 w:=0;

35 % pressure = ps + p

36 % = (local mean gradient) + (zero mean fluctuation)

37 ps:=-8; p:=0;

38 % concentration of tracer, mean c.

39 depend c,s,t;

40 let df(c,t)=>g;

41 cc:=c;

42 g:=0;

43 pe:=re*sc; % Peclet number = Reynolds * Schmidt

44 rh:=1; % approx reciprocal of axial scale factor hs

45

46 % iterate until residuals are negligible

47 let { eps^3=>0, del^5=>0 }; % truncate the asymptotics

48 repeat begin

49 % reciprocal of scale factor
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50 eqr:=hs*rh-1;

51 rh:=rh-eqr;

52 % vorticity

53 oms:=(df(r*w,r)-df(v,th))/r;

54 omr:=(df(hs*u,th)-del*df(r*w,s))*rh/r;

55 omt:=(del*df(v,s)-df(hs*u,r))*rh;

56 % Navier-Stokes equation

57 nss:=rh*(ps+del*df(p,s)) +(df(r*omt,r)-df(omr,th))/r

58 +re*( del*u*df(u,s)*rh+v*df(u,r)+w*df(u,th)/r

59 +u*df(hs,r)*v*rh+u*df(hs,th)*w*rh/r );

60 nsr:=df(p,r) +(df(hs*oms,th)-del*df(r*omt,s))*rh/r

61 +re*( del*u*df(v,s)*rh+v*df(v,r)+w*df(v,th)/r

62 -w^2/r-df(hs,r)*u^2*rh );

63 nst:=df(p,th)/r +(del*df(omr,s)-df(hs*oms,r))*rh

64 +re*( del*u*df(w,s)*rh+v*df(w,r)+w*df(w,th)/r

65 -u^2*df(hs,th)*rh/r+v*w/r );

66 % continuity equation

67 cty:=(del*df(r*u,s)+df(r*hs*v,r)+df(hs*w,th))*rh/r;

68 ...

69 % equation for tracer evolution

70 ceq:= df(cc,t) +pe*( del*u*df(cc,s)*rh+v*df(cc,r)+w*df(cc,th)/r )

71 -(del^2*df(rh*r*df(cc,s),s)+df(r*hs*df(cc,r),r)

72 +df(hs/r*df(cc,th),th))*rh/r;

73 cmean:=mean(r*hs*cc,rt)-c;

74 ...

75 end until (eqr=0)and(nss=0)and(nsr=0)and(nst=0)

76 and(cty=0)and(ceq=0)and(cmean=0);

77

78 % check subsiduary conditions

79 uwall:=sub(r=1,u);

80 vwall:=sub(r=1,v);

81 wwall:=sub(r=1,w);

82 umean:=mean(r*u,rt);

83 pmean:=mean(r*p,rt);

84 cwall:=sub(r=1,df(cc,r));

85 cflux:=mean(r*(u*pe*cc-del*rh*df(cc,s)),rt);

86 end;

Observe that the pressure is decomposed into a mean gradient and a
cross-pipe fluctuating component. There is code to adjust the mean pressure
gradient to ensure a constant mean fluid flux. To adapt to the traditional
fixed pressure gradient in a helical or toroidal pipe, one just needs to omit
the modifications. However, the results are then inappropriate to a pipe with
varying curvature or torsion.
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