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Abstract. When processing observational data, statistical testing is an essential instrument to
hopefully render harmless incidental anomalies and disturbances in the measurements. A commonly
used test statistic based on the general linear model is the generalized likelihood ratio test statistic.
The standard formula given in the literature for this test statistic is not defined if the noise covariance
matrix is singular, and is not suitable for computation if any of the matrices involved is ill-conditioned.
Based on Paige’s generalized linear least squares method [Comm. Statist., Vol. B7, 437–453, 1978],
a numerically stable approach is proposed for the computation of the test statistic, as well as for the
estimates of the parameter vectors, and reliable representations of the error covariance matrices for
these estimates are presented. This approach allows the noise covariance matrix to be singular, and
can be applied directly to the linear model with linear equality constraints.

Key words. Data quality control, statistical testing, generalized likelihood ratio, generalized
least squares, generalized QR factorization, numerical stability.

AMS subject classifications. 62J12, 62J20, 65F20, 65F25

1. Introduction. For a very wide range of applications, data processing involves
least squares (LS) estimation. The LS estimate in itself, however, does not offer any
indication of the validity of the result. Once some basic conditions are met, LS
estimates for the unknown parameters, for example the position coordinates in a
Global Positioning System (GPS) application, are computed. Usually these give no
indication as to whether, or to what extent, the input measurements are corrupted,
i.e., do not satisfy the assumed mathematical model. In critical applications such
as real-time navigation, the user has to be protected against misleading (position)
information, caused by one or more anomalies in the measurements underlying the
resulting position estimate. The incoming data need to be carefully validated by
means of statistical testing, using the redundancy in the measurement set-up and
the consequent strength of the mathematical model. Only then can the integrity
of the eventual position solution be assured. A discussion of statistical testing for
data quality control can be found for example in [11, Chap. 7] (mainly for GPS data
processing) and [12].

A commonly used general test statistic for model validation based on linear mod-
els is called the generalized likelihood ratio test statistic, which follows the Chi-square
distribution. A direct evaluation of the standard formula for the test statistic (see
(2.8)) may lead to large rounding errors in the result when any of the matrices in-
volved is ill-conditioned (i.e., has a large ratio of maximum to minimum singular
value). In particular, those methods which use the inverse of the covariance matrix
are numerically unstable, and so can lead to large errors with finite precision compu-
tation. This was illustrated by example in [5, §4]. Furthermore, the formula is not
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defined when the noise covariance matrix is singular. To our knowledge, there has not
yet been a numerically sound approach for computing this test statistic. The goal of
this paper is to present a numerically stable algorithm to compute the test statistic
and the estimates of the parameter vectors as well, based on Paige’s generalized linear
least squares method (see [5]–[8]). Our approach can handle the case where the noise
covariance matrix is singular. This will also allow us to deal with linear models with
linear equality constraints without altering the algorithm.

It appears unlikely that a very ill-conditioned noise covariance matrix will arise
directly in standard GPS applications. But constraints do appear, and these have
been handled by introducing an additional noise vector whose covariance matrix has
very small diagonal elements, leading to an inexact model whose noise covariance
matrix is very ill-conditioned. Ill-conditioned or singular noise covariance matrices
can of course appear in other applications.

This paper is organized as follows. In Section 2 we introduce the general linear
model and derive the test statistic, then Section 3 shows the dangers of some obvious
ways of computing this test statistic. In Section 4 we first reformulate the optimization
problems for estimating the parameter vectors and give an equivalent formula for
the test statistic, then present an algorithm for computing the test statistic and the
estimates of the parameter vectors as well, and give reliable representations of the
error covariance matrices for the estimates. The backward numerical stability of the
algorithm is proven in Section 5. In Section 6 we show how to compute the test
statistic and the estimates of parameter vectors when the noise covariance matrix
may be singular. We also illustrate how linear equality constraints result in a model
which effectively has a singular noise covariance matrix, so that the method here can
be applied directly. Finally we give a brief summary in Section 7.

Throughout this paper we work with reals only. <m denotes the class of real
m-dimensional vectors, while <m×n denotes the class of real m × n matrices. R(A)
denotes the range of the matrix A. The identity matrix is denoted by I and its i-th
column by ei. For a matrix A, A† denotes its Moore-Penrose generalized inverse. We
write ‖x‖2 =

√
xT x for vectors and ‖A‖F =

√∑
ij a2

ij for matrices. We use E{·}
to denote the expected value, and cov{·} to denote the covariance, that is cov{x} =
E{(x−E{x})(x−E{x})T } for a random vector x. If v is a normally distributed random
vector with mean v̄ and covariance σ2V , we write v ∼ N (v̄, σ2V ). V is sometimes
called the cofactor matrix in geodesy, see for example [3, p. 250]. If a random variable
δ follows a Chi-square distribution with non-centrality parameter λ and q degrees of
freedom, we write δ ∼ χ2(q, λ).

2. Linear model and test statistic. Suppose we have a linear model

y = Ax + v, v ∼ N (0, σ2V ), (2.1)

where y ∈ <m is a random measurement vector, A ∈ <m×n with m ≥ n is a design
matrix with full column rank, x ∈ <n is an unknown parameter vector, and v ∈ <m

is a random noise vector following a normal distribution with zero mean and a known
symmetric nonnegative definite covariance matrix σ2V .

The above model may, however, not reflect reality properly in all cases. The
model is misspecified when for instance one or more measurements are corrupted
by outliers. They will invalidate the results of estimation. To safeguard against
anomalous measurements, it is important to validate the data and model used. Here
we restrict the misspecification to the mean of the measurement vector y, i.e. an
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error of additive nature. Suppose (2.1) above represents the working model, the null
hypothesis H0. In a general form the alternative hypothesis Ha then reads

y = Ax + C∇+ v, v ∼ N (0, σ2V ), (2.2)

where the known matrix C ∈ <m×q with 1 ≤ q ≤ m − n specifies the type of model
error that occurred, [A,C] has full column rank, and ∇ ∈ <q is an unknown constant
vector (see for example [12, Sec 4.1]). One special case which leads to the so-called
w-test statistic is where the cofactor matrix V is the identity matrix, and there is
only a possible outlier in the i-th measurement, i.e. C = ei. If we take i = 1, . . . ,m,
we will have m alternative hypotheses. For other special cases which may arise from
GPS, see [11, p. 280].

Initially we assume that V is nonsingular. Following [12, Sec 4.1], we briefly
derive the generalized likelihood ratio test statistic for testing the null hypothesis H0

against the alternative hypothesis Ha.
Let p(y|x) and p(y|x,∇) denote the density functions of y under H0 and Ha,

respectively. Then

p(y|x) =
1

(2π)
m
2 σ det(V )

1
2

exp
[
− 1

2σ2
(y −Ax)T V −1(y −Ax)

]
, (2.3)

p(y|x,∇) =
1

(2π)
m
2 σ det(V )

1
2

exp
[
− 1

2σ2
(y −Ax− C∇)T V −1(y −Ax− C∇)

]
. (2.4)

Let x0 be the maximum likelihood estimator of x under H0, and let {xa,∇a} be the
maximum likelihood estimator of {x,∇} under Ha, respectively, i.e.,

p(y|x0) = max
x

p(y|x) ≤ p(y|xa,∇a) = max
x,∇

p(y|x,∇).

We expect these values to be comparable under H0. Obviously x0 and {xa,∇a} are
respectively the solutions of the following two generalized linear least squares (GLLS)
problems (also referred to as weighted linear least squares problems in some literature):

GLLS0 : min
x

(y −Ax)T V −1(y −Ax); (2.5)

GLLSa : min
x,∇

(y −Ax− C∇)T V −1(y −Ax− C∇). (2.6)

The two estimators are also the best linear unbiased estimators (BLUE) of x under
H0 and {x,∇} under Ha, respectively (see for example [4, Sec 3.2]). For later use, we
define the corresponding residuals

r0 ≡ y −Ax0, ra ≡ y −Axa − C∇a. (2.7)

The generalized likelihood ratio is defined to be (see for example [12, Sec 4.1])

L(H0,Ha)≡ maxx p(y|x)
max{x,∇} p(y|x,∇)

=
p(y|x0)

p(y|xa,∇a)
= exp

[
− 1

2σ2

(
rT
0 V −1r0 − rT

a V −1ra

)]
,

and the test statistic can be defined by

δTS ≡ −2 loge L(H0,Ha) = σ−2(rT
0 V −1r0 − rT

a V −1ra) ≥ 0. (2.8)
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For some equivalent formulas for δTS, see [12, Sec 4.1]. It can be shown that (we
illustrate this in Section 4, see (4.23))

δTS ∼ χ2(q, 0), under H0;

δTS ∼ χ2(q, λ), λ = σ−4∇T CT V −1cov{r0}V −1C∇, under Ha, (2.9)

where cov{r0} = σ2[V −A(AT V −1A)−1AT ]. When δTS is larger than a given thresh-
old, one decides to reject the null hypothesis H0 in favor of the alternative hypothesis
Ha. Otherwise the null hypothesis H0 will be accepted. The threshold is usually
determined by the requirements of the specific application. For a discussion on this
issue for general hypothesis testing, see for example [4, Sec 4.2.1] and [12, Sec 1.4].

3. Computational dangers. It is easy to assume that any reasonable method
can be used to compute a simple result like δTS in (2.8). However this is not true,
and we give a small artificial example to illustrate some computational dangers. On
the surface the following example looks fairly harmless, since the 2-norm condition
numbers of A and V are about 4.44 and 33,000 respectively:

y=
[

5.48223618514353
0.90878847962427
25.94493985828999
5.91432884267696

]
, A=

[
0.73591311187945 1.98690117078759
0.01599725305719 1.85723508466859
0.15632753551635 2.35754116764473
0.65858764131884 0.21189908130823

]
, C =

[
2.72281454895206
1.87323437713309
2.51387627488834
0.87049065185808

]
,

V =
[ 9.140496886810 −5.179920639550 22.018803142087 −2.448166448348
−5.179920639550 31.269615846900 −38.726345506531 1.768700005165
22.018803142087 −38.726345506531 244.102164709880 43.463631186108
−2.448166448348 1.768700005165 43.463631186108 15.497722556410

]
, σ2 = 1.

This example was chosen to have x0 = [1, 2]T and (see below) a large δTS = δ0− δa =
2 − 1 = 1, which we would expect to be able to compute quite accurately. We
carried out computations using Matlab 6 on an Apple Macintosh 450MHz PowerPC
G4 running OSX 10.2.6, so the floating point relative precision was ε ≈ 2.22 ∗ 10−16.
Now from (2.5) x0 = (AT V −1A)−1AT V −1y, and r0 = y −Ax0, so

δ0 ≡ rT
0 V −1r0 = yT V −1y − yT V −1A(AT V −1A)−1AT V −1y.

We computed this last expression using the Matlab code:
Vinv=inv(V); Atilde=A’*Vinv; W=Atilde*A;
delta_0=y’*(Vinv*y)-y’*(Atilde’*(inv(W)*(Atilde*y)));

and computed δa ≡ rT
a V −1ra by replacing A by [A,C] in the above. From (2.8) we

see δTS = δ0 − δa ≥ 0. But our Matlab result was δ0 − δa = −14.02906911842439, an
obviously nonsensical result. This was not caused by a fault in our programming, or
in Matlab (our computations gave reasonable answers for all reasonable problems).
It is a simple reminder that combining a sequence of seemingly reliable computations
does not necessarily lead to an overall numerically stable computation.

The approach of computing x0 above, then r0 = y − Ax0, then δ0 ≡ rT
0 V −1r0,

and similarly for δa, gave δ0−δa = 0.43885318681141, which is meaningful, but still in
error by more than 50%. The numerically stable method we recommend in Section 4
gave δTS = 1.00000000078345 and xT

0 = [1.00000000000001 2.00000000000001]. Since
a numerically stable computation gives the exact result to a nearby problem, see
Section 5, we suspect that the above problem is reasonably well conditioned, and see
that it is important to use a proven numerically stable algorithm for computing δTS.
This is all the more important in many real time applications where we might not
have the luxury of IEEE standard double precision floating point arithmetic.

The numerical instabilities of the above two “obvious” methods for δTS were
revealed here by [A,C] having a 2-norm condition number of about 1.6 ∗ 106.
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4. The algorithm. An obvious approach to solving problems GLLS0 (2.5) and
GLLSa (2.6) is to transform the problems to the corresponding ordinary LS problems.
Suppose the symmetric positive definite V has the factorization

V = BBT , (4.1)

where B ∈ <m×m is nonsingular. In some applications B itself is given rather than
V , then computing V can result in loss of important information, and could cause the
computed V to be singular even when B is nonsingular, see for example [1, p.163].
Even if B is not given, we can compute the Cholesky factorization of V to find B.
Then by forming B−1y, B−1A and B−1C, (2.5) and (2.6) can be transformed to

GLLS0 : min(B−1y −B−1Ax)T (B−1y −B−1Ax); (4.2)

GLLSa : min(B−1y −B−1Ax−B−1C∇)T (B−1y −B−1Ax−B−1C∇). (4.3)

For these ordinary LS problems, the QR factorization method or the normal equation
method can then be used to compute the optimal solutions and the test statistic δTS.
This approach is still often used in some practical areas. But the solutions may un-
necessarily lose accuracy when B is ill-conditioned. Another problem is that for some
applications the cofactor matrix V may be singular, so that the GLLS formulations
(2.5) and (2.6) (or (4.2) and (4.3)) and the test statistic δTS in (2.8) are not defined.
Fortunately we can use Paige’s approach to solving GLLS problems (see [5]-[8]) to de-
sign a numerically stable method to compute the test statistic and the estimates of x
under H0 and under Ha as well. Our algorithm can handle a singular cofactor matrix
V , but in order to expose the ideas quickly, we still assume that V is nonsingular in
this section and the next. We will show how to handle singular V in Section 6.

With (4.1), for the random noise vector v in (2.1) and (2.2) we can write

v ≡ Bu, u ∼ N (0, σ2I). (4.4)

Then the linear models (2.1) and (2.2) can be replaced by

y = Ax + Bu, u ∼ N (0, σ2I), under H0; (4.5)

y = Ax + C∇+ Bu, u ∼ N (0, σ2I), under Ha. (4.6)

Therefore problems GLLS0 in (4.2) and GLLSa in (4.3) can be reformulated as follows:

GLLS0 : min
u,x

‖u‖2
2 subject to y = Ax + Bu; (4.7)

GLLSa : min
u,x,∇

‖u‖2
2 subject to y = Ax + C∇+ Bu. (4.8)

Even if B is not square or is singular, we can still find the optimal solutions for GLLS0

and GLLSa as long as the constraints in (4.7) and (4.8) are consistent (see Section 6).
Let u0 and ua denote the optimal u for problems GLLS0 and GLLSa, respectively.
Then with the assumption that B is nonsingular (see (2.7))

u0 = B−1(y −Ax0) = B−1r0, ua = B−1(y −Axa − C∇a) = B−1ra. (4.9)

When B = I, u0 and ua are just the ordinary LS residuals r0 and ra, respectively. So
they can be called the generalized least squares (GLS) residuals. From (2.8), we have

δTS = σ−2(‖u0‖2
2 − ‖ua‖2

2). (4.10)
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Introducing C∇ decreases the square of the GLS residual norm from ‖u0‖2
2 to ‖ua‖2

2,
so δTS is a scaled measure of this decrease. Note that in the formulations (4.7),
(4.8) and (4.10), no inverse of B or V appears. This is the key to the design of the
numerically stable algorithm that we now develop.

First consider solving problem GLLSa in (4.8). Let [A,C] and B have the follow-
ing generalized QR (GQR) factorization (see [9])

PT [A,C] =

[
UA UAC

0 UC

0 0

]
n q

n

q

m−n−q

, PT BQ =

RA RAC RA3

0 RC RC3

0 0 R3


n q m−n−q

n

q

m−n−q

, (4.11)

where

P = [PA
n

, PC
q

, P3
m−n−q

] ∈ <m×m and Q = [QA

n
, QC

q
, Q3
m−n−q

] ∈ <m×m (4.12)

are orthogonal (P−1 = PT , Q−1 = QT ), and UA, UC , RA, RC and R3 are nonsingular
upper triangular. Multiplying the constraint equality in (4.8) by PT from the left and
using QQT = I, we have

PT y = PT Ax + PT C∇+ PT BQQT u under Ha.

Then substituting (4.11) into the above equation and defining

z ≡ PT y ≡

zA

zC

z3

n

q

m−n−q

, w ≡ QT u ≡

wA

wC

w3

n

q

m−n−q

, (4.13)

we can transform problem GLLSa in (4.8) to

min(‖wA‖2
2 + ‖wC‖2

2 + ‖w3‖2
2) subject tozA

zC

z3

 =

UA

0
0

x +

UAC

UC

0

∇+

RA RAC RA3

0 RC RC3

0 0 R3

wA

wC

w3

 , (i.e. under Ha). (4.14)

Obviously the optimal solution xa, ∇a, wa ≡ [(wa
A)T , (wa

C)T , (wa
3)T ]T satisfies

wa
A = 0, wa

C = 0,

UA UAC RA3

0 UC RC3

0 0 R3

xa

∇a

wa
3

 =

zA

zC

z3

 . (4.15)

The upper triangular system in (4.15) can easily be solved by back substitution. From
(4.14) and (4.15) we have wa

3 = w3 under Ha. Since w = QT u ∼ N (0, σ2Im),

wa
3 ∼ N (0, σ2Im−n−q), under Ha. (4.16)

Thus wa
3 is a vector of uncorrelated residuals with respect to the model (4.14), which

can be regarded as the extension of the LUSH residuals (linear unbiased with scalar
covariance matrix using Householder transformations) to a linear model with a general
noise covariance matrix. For the LUSH residuals, see [10]. Thus the GLS residual ua

(the optimal u under Ha) satisfies, see (4.13),

ua = Qwa = Q3w
a
3 , ‖ua‖2

2 = ‖wa‖2
2 = ‖wa

A‖2
2 + ‖wa

C‖2
2 + ‖wa

3‖2
2 = ‖wa

3‖2
2. (4.17)
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Note that unlike the elements of wa
3 , the elements of ua are correlated, since from

(4.16) and (4.17) cov{ua} = σ2Q3Q
T
3 .

Now consider solving problem GLLS0 in (4.7). Note that the difference between
GLLS0 and GLLSa is that the constraint equality in GLLS0 does not have the ∇
term. Thus from (4.14) it follows that GLLS0 in (4.7) can be transformed to

min(‖wA‖2
2 + ‖wC‖2

2 + ‖w3‖2
2),

subject to

zA

zC

z3

 =

UA

0
0

x +

RA RAC RA3

0 RC RC3

0 0 R3

wA

wC

w3

 . (4.18)

It follows that the optimal solution x0, w0 ≡ [(w0
A)T , (w0

C)T , (w0
3)

T ]T satisfies

w0
A = 0,

UA RAC RA3

0 RC RC3

0 0 R3

x0

w0
C

w0
3

 =

zA

zC

z3

 . (4.19)

This upper triangular system can also be solved by back substitution. Note that the
matrix coefficients and the right hand sides of both (4.15) and (4.19) were found from
the one GQR in (4.11). Similar to wa

3 ,
[

w0
C

w0
3

]
is a vector of uncorrelated residuals,

since from (4.18), (4.19), (4.13) and (4.4)[
w0

C

w0
3

]
=

[
wC

w3

]
∼ N (0, σ2Im−n), under H0. (4.20)

Thus the GLS residual u0 (the optimal u under H0) satisfies

u0 = Qw0 = QCw0
C + Q3w

0
3, ‖u0‖2

2 = ‖w0‖2
2 = ‖w0

C‖2
2 + ‖w0

3‖2
2. (4.21)

From (4.15) and (4.19) we observe that wa
3 = w0

3. By using the equivalent formula
of δTS (see (4.10)), from (4.17) and (4.21) we obtain a result not involving differences:

δTS = σ−2(‖u0‖2
2 − ‖ua‖2

2) = σ−2‖w0
C‖2

2. (4.22)

From (4.20) we see w0
C ∼ N (0, σ2Iq) under H0, and we know wC ∼ N (0, σ2Iq),

see (4.13), (4.4). Combining (4.19) with (4.14) we have under Ha,[
RC RC3

0 R3

] [
w0

C

w0
3

]
=

[
zC

z3

]
=

[
UC∇

0

]
+

[
RC RC3

0 R3

] [
wC

w3

]
,

so w0
C = R−1

C UC∇ + wC ∼ N (R−1
C UC∇, σ2Iq) under Ha. Therefore from (4.22) and

the definition of the Chi-square distribution, we have

δTS ∼ χ2(q, 0) under H0; δTS ∼ χ2(q, σ−2‖R−1
C UC∇‖2

2) under Ha. (4.23)

It can be verified from (4.11) that the noncentrality parameter σ−2‖R−1
C UC∇‖2

2 is just
the λ given in (2.9).

The above derivation leads to the following algorithm to compute the test statistic,
the BLUE x0 under H0 and the BLUE xa under Ha.
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Algorithm:
Compute the generalized QR factorization of [A,C] and B (4.11);

Solve
[
RC RC3

0 R3

] [
w0

C

w0
3

]
=

[
zC

z3

]
; (see (4.19))

Compute δTS = σ−2‖w0
C‖2

2; (see (4.22))
If δTS is smaller than a given threshold, accept the null hypothesis,

and solve UAx0 = zA −RACw0
C −RA3w

0
3; (see (4.19))

else accept the alternative hypothesis,

and solve
[
UA UAC

0 UC

] [
xa

∇a

]
=

[
zA −RA3w

0
3

zC −RC3w
0
3

]
. (see (4.15))

In the following we give a few comments about the above algorithm.
The GQR factorization (4.11) can be computed using Householder transforma-

tions. P and Q are not needed to be formed in the computation. Note that RA is
not involved in the computation. Thus it is not required to be upper triangular, or
even square (RA may not be square when B is not square, see Section 6). After we
compute the QR factorization of A, we apply PT to B and obtain

PT B =

PT
A B

PT
C B

PT
3 B

 . (4.24)

Then we determine Q by the RQ factorization:[
PT

C B
PT

3 B

]
Q =

[
0 RC RC3

0 0 R3

]
.

Although both RAC and RA3 are involved in computing x0, and RA3 is involved in
computing xa, we do not need to explicitly compute them. In fact what we need to
compute are RACw0

C + RA3w
0
3 and RA3w

0
3. Note that by (4.11)

RACw0
C + RA3w

0
3 = PT

A BQ

 0
w0

C

w0
3

 , RA3w
0
3 = PT

A BQ

 0
0

w0
3

 ,

where PT
A B has been computed in (4.24). The above computation can be performed

by using only matrix-vector multiplications.
Sometimes one is interested in the covariance matrices cov{x0} under H0 and

cov{xa} under Ha. First we consider computing cov{x0} under H0. From (4.14)
without the ∇ term on the right hand side, and (4.19), we obtainUA RAC RA3

0 RC RC3

0 0 R3

 x0 − x
w0

C − wC

w0
3 − w3

 =

RAwA

0
0

 .

This shows that w0
3 − w3 = 0 and w0

C − wC = 0, so

UA(x0 − x) = RAwA.

Since w = QT u ∼ N (0, σ2I), see (4.13) and (4.4), we have

UA · cov{x0} · UT
A = σ2RART

A . (4.25)
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We see that here RA is needed, although it is not needed in computing the test statistic
and the estimates x0 and xa. If cov{x0} will be involved in other computations, it
might be useful to have an upper triangular RA. Notice if RA is upper triangular,
σU−1

A RA is the Cholesky factor of cov{x0}. Computing this, however, could lead to
loss of accuracy if UA is ill-conditioned. In many applications we may not need to
compute cov{x0} explicitly. In general (4.25) gives the most reliable representation
of cov{x0}.

Now we consider computing cov{xa} under Ha. From (4.14) and (4.15) we obtainUA UAC RA3

0 UC RC3

0 0 R3

 xa − x
∇a −∇
wa

3 − w3

 =

RA RAC

0 RC

0 0

[
wA

wC

]
.

This shows that wa
3 − w3 = 0, so[

UA UAC

0 UC

] [
xa − x
∇a −∇

]
=

[
RA RAC

0 RC

] [
wA

wC

]
.

Again since w ∼ N (0, σ2I), we have the representation of cov
{[ xa

∇a

]}
:[

UA UAC

0 UC

]
· cov

{[
xa

∇a

]}
·
[
UA UAC

0 UC

]T

= σ2

[
RA RAC

0 RC

] [
RA RAC

0 RC

]T

, (4.26)

and cov{xa} can be found by solving this. If we want to get the reliable representation
of cov{xa} similar to (4.25), we find two orthogonal matrices G1 and G2 such that

GT
1

[
UA UAC

0 UC

]
=

[
ŨA 0
ŨCA ŨC

]
, GT

1

[
RA RAC

0 RC

]
G2 =

[
R̃A 0
R̃CA R̃C

]
, (4.27)

where G1 is a product of Givens rotations, G2 is a product of Householder trans-
formations, and ŨA and R̃A are still upper triangular. This computation can be
implemented to make full use of the structures of the relevant matrices for efficiency.
Combining (4.26) and (4.27) shows[

ŨA 0
ŨCA ŨC

]
· cov

{[
xa

∇a

]}
·
[

ŨA 0
ŨCA ŨC

]T

= σ2

[
R̃A 0
R̃CA R̃C

] [
R̃A 0
R̃CA R̃C

]T

.

The (1,1) block of the two sides of this equality gives the representation of cov{xa}:

ŨA · cov{xa} · ŨT
A = σ2R̃AR̃T

A .

5. Numerical stability of the algorithm. In this section we will prove the
numerical stability of the computation of the test statistic δTS, the BLUE x0 of x
under H0 and the BLUE xa under Ha. The proof extends the approach in [7].

Let the computed triangular matrices in the GQR factorization (4.11) be denoted
by Û and R̂. We can show (see for example [2, Lem. 18.3, Thm. 18.4]) that there
exist orthogonal P̃ ∈ <m×m and Q̃ ∈ <m×m such that

P̃T [A + ∆A1, C + ∆C1] =

ÛA ÛAC

0 ÛC

0 0

 ,

‖∆A1‖F = O(ε)‖A‖F , ‖∆C1‖F = O(ε)‖A‖F ,

(5.1)
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P̃T (B + ∆B1)Q̃ =

R̂A R̂AC R̂A3

0 R̂C R̂C3

0 0 R̂3

 , ‖∆B1‖F = O(ε)‖A‖F , (5.2)

where ε is the unit roundoff, and for simplicity we use O(ε) instead of the product
of ε and a constant dependent only on the dimensions of the problem, and here and
later we ignore any O(ε2) terms.

Note that z = PT y (see (4.13)). We can show that the computed z satisfies (see
for example [2, Lem. 18.3])

ẑ = P̃T (y + ∆y), ‖∆y‖2 = O(ε)‖y‖2,

and the computed solution x̂0, ŵ0
C , ŵ0

3 of (4.19) satisfies (see [2, Lem. 8.5])ÛA + ∆UA R̂AC + ∆RAC R̂A3 + ∆RA3

0 R̂C + ∆RC R̂C3 + ∆RC3

0 0 R̂3 + ∆R3

 x̂0

ŵ0
C

ŵ0
3

 =

ẑA

ẑC

ẑ3

 ,

‖∆UA‖F = O(ε)‖ÛA‖F ,

∥∥∥∥∥∥
∆RAC ∆RA3

∆RC ∆RC3

0 ∆R3

∥∥∥∥∥∥
F

= O(ε)

∥∥∥∥∥∥
R̂AC R̂A3

R̂C R̂C3

0 R̂3

∥∥∥∥∥∥
F

.

(5.3)

For the computation of δTS = σ−2‖w0
C‖2

2, it is easy to show that the computed
δTS satisfies (see [2, p. 69])

δ̂TS = (σ + ∆σ)−2‖ŵ0
C‖2

2, ∆σ = O(ε)σ. (5.4)

Combining (5.1), (5.2), (5.3) and (5.4), we can easily verify that δ̂TS and x̂0 are the
exact test statistic and the BLUE of x under H0, respectively, for the initial data

ỹ ≡ y + ∆y, ‖ỹ − y‖2 = O(ε)‖y‖2,

Ã ≡ A + ∆A1 + P̃

∆UA

0
0

 , ‖Ã−A‖F = O(ε)‖A‖F ,

B̃ ≡ B + ∆B1 + P̃

∆RAC ∆RA3

∆RC ∆RC3

0 ∆R3

 Q̃T , ‖B̃ −B‖F = O(ε)‖B‖F ,

σ̃ ≡ σ + ∆σ, |σ̃ − σ| = O(ε)|σ|.

Thus the computations of δTS and x0 are numerically stable. It is pleasing that δ̂TS

and x̂0 are exact for initial data with the same small perturbations.
Similarly we can easily show the computation of the BLUE xa of x under Ha is

numerically stable.

6. Extension to the singular case. In this section we assume that the rank
of the cofactor matrix V is k ≤ m. Suppose V still has the factorization (4.1), where
B ∈ <m×k has full column rank. If B is not given, we can use diagonal pivoting to
compute the Cholesky factorization of V (see for example [1, §2.2.2.]) to give (4.1),
where the strictly upper triangular part of B is zero, i.e., bij = 0 for i < j, or the
‘reverse’ Cholesky factorization of V to give (4.1), where bij = 0 for i > m − k + j.
So we still have models (4.5) and (4.6).
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If y /∈ R([A,B]) then y could not have come from the model (2.1), and this has
to be checked. For simplicity we assume that the two models are consistent, so that
unique optimal solutions {x0, u0} and {xa,∇a, ua} exist for problems GLLS0 in (4.7)
and GLLSa in (4.8), respectively. Now (see [5, §3]), the solution of GLLS0 results in
the BLUE of any estimable function of x under H0. Also since B has full column rank
we have B†B = I, and writing v = Bu in (2.1) we see that in (4.5) and (4.6)

u = B†v ∼ N (0, σ2Ik). (6.1)

From this we will show that we can still use the formula for the test statistic δTS in
(4.10). Unlike u0 and ua in (4.9), y = Ax0 + Bu0 etc. lead to

u0 = B†(y −Ax0), ua = B†(y −Axa − C∇a).

In the following we will make a sequence of orthogonal transformations to compute
GQR factorizations involving A, C and B. Based on these, we then discuss the
computation of δTS, x0 and xa.

Just as in (4.11), we find the QR factorization of [A,C]:

P̄T [A,C] =

[
UA UAC

0 UC

0 0

]
n q

n

q

m−n−q

. (6.2)

Then apply P̄T to B to get

P̄T B =

BA

BC

B3


k

n

q

m−n−q

. (6.3)

We would like to transform B3 to a nonsingular upper triangular matrix. First find
the RQ factorization of B3 with row pivoting:

ΠT
3 B3Q =

[
0 R̄3

]
k−l l

m−n−q , (6.4)

where Π3 is a permutation matrix, Q is orthogonal, and R̄3 is a full-column-rank
trapezoidal matrix with zeros in its strictly lower left triangle. Then find the QR
factorizations of R̄3:

P̌T
3 R̄3 =

[
R3

0

]
l

l

m−n−q−l
, (6.5)

where P̌3 is orthogonal and R3 is nonsingular upper triangular. Combining (6.4) and
(6.5) leads to

P̌T
3 ΠT

3 B3Q =
[

0 R3

0 0

]
k−l l

l

m−n−q−l
. (6.6)
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Defining

P ≡ P̄

In 0 0
0 Iq 0
0 0 Π3P̌3

 ,

we then have from (6.2), (6.3) and (6.6) that

PT [A,C] =


UA UAC

0 UC

0 0
0 0


n q

n

q

l

m−n−q−l

, PT BQ ≡

B̄A RA3

B̄C RC3

0 R3

0 0


k−l l

n

q

l

m−n−q−l

. (6.7)

Here B̄C does not have any special structure.
As in Section 4, defining

z ≡ PT y ≡


zA

zC

z3

z4


n

q

l

m−n−q−l

, w ≡ QT u ≡
[
wAC

w3

]
k−l

l
, (6.8)

we transform problem GLLSa in (4.8) to (cf. (4.14))

min(‖wAC‖2
2 + ‖w3‖2

2)

subject to


zA

zC

z3

z4

 =


UA

0
0
0

x +


UAC

UC

0
0

∇+


B̄A RA3

B̄C RC3

0 R3

0 0

[
wAC

w3

]
. (6.9)

Here the ∇ term will disappear when we transform problem GLLS0 in (4.7) by
the same transformations. Note that z4 in (6.9) must be a zero vector, since the
original model (4.6) is consistent. Obviously the optimal solution xa, ∇a, wa ≡
[(wa

AC)T , (wa
3)T ]T satisfies (cf. (4.15))

wa
AC = 0,

UA UAC RA3

0 UC RC3

0 0 R3

xa

∇a

wa
3

 =

zA

zC

z3

 . (6.10)

Then it follows that the GLS residual ua (the optimal u under Ha) satisfies

ua = Qwa, ‖ua‖2
2 = ‖wa‖2

2 = ‖wa
3‖2

2. (6.11)

Now we consider solving problem GLLS0 in (4.7). From (6.9) we observe that
GLLS0 can be transformed to

min(‖wAC‖2
2 + ‖w3‖2

2)

subject to

zA

zC

z3

 =

UA

0
0

x +

B̄A RA3

B̄C RC3

0 R3

[
wAC

w3

]
. (6.12)
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Note that (6.12) is just (6.9) except that the ∇ term and z4 rows have been removed.
In order to estimate x, we have to transform B̄C to a nonsingular upper triangular
matrix. As we did to B3 (see (6.6)), we can find orthogonal P̌C ∈ <q×q and Q̌C ∈
<(k−l)×(k−l), and a permutation ΠC ∈ <q×q such that

P̌T
C ΠT

C B̄CQ̌C =
[

0 RC

0 0

]
k−l−p p

p

q−p
, (6.13)

where RC is nonsingular upper triangular. Let

P̌T
C ΠT

C zC ≡
[
žC

z̃C

]
p

q−p
, P̌T

C ΠT
C RC3 ≡

[
ŘC3

R̃C3

]
p

q−p
, (6.14)

B̄AQ̌C ≡ [ RA

k−l−p
, RAC

p
] n , Q̌T

C wAC ≡
[
wA

wC

]
k−l−p

p
. (6.15)

Therefore from (6.12) with (6.13)–(6.15) we observe that problem GLLS0 can be
further transformed to

min(‖wA‖2
2 + ‖wC‖2

2 + ‖w3‖2
2)

subject to


zA

žC

z̃C

z3

 =


UA

0
0
0

x +


RA RAC RA3

0 RC ŘC3

0 0 R̃C3

0 0 R3


wA

wC

w3

 . (6.16)

Notice that the bottom block equation in (6.16) can uniquely determine the estimate
of w3, since R3 is nonsingular. Since the equations in (6.16) are consistent, the
third block equation can be removed. Then obviously the optimal solution x0, w0 ≡
[(w0

A)T , (w0
C)T , (w0

3)
T ]T satisfies

w0
A = 0,

UA RAC RA3

0 RC ŘC3

0 0 R3

x0

w0
C

w0
3

 =

zA

žC

z3

 . (6.17)

Then from the second equality in (6.8) and the second equality in (6.15), we observe
that the GLS residual u0 (the optimal u under H0) satisfies

u0 ≡ Q

[
Q̌C 0
0 I

]w0
A

w0
C

w0
3

 , ‖u0‖2
2 = ‖w0

C‖2
2 + ‖w0

3‖2
2. (6.18)

As in Section 4, wa
3 = w0

3 (see (6.10) and (6.17)), so using the formula of the test
statistic in (4.10) we have from (6.11) and (6.18) that

δTS = σ−2(‖u0‖2
2 − ‖ua‖2

2) = σ−2‖w0
C‖2

2, (6.19)

so that once again introducing C∇ decreases the square of the GLS residual from
‖u0‖2

2 to ‖ua‖2
2, and δTS is a scaled measure of this decrease.

Now we look at the distribution of δTS. Using the fact that orthogonal transfor-
mations of a unit covariance random vector do not change its covariance matrix, we
see from (6.16) and (6.17) that w0

C = wC , and from (6.15), (6.8) and (6.1) that

w0
C ∼ N (0, σ2Ip), under H0.
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Under Ha the transformed model has the form (6.9). Let (cf. (6.14))

P̌T
C ΠT

C UC ≡
[
ǓC

ŨC

]
p

q−p
,

then (6.9) with the z4 rows removed can be transformed to (cf. (6.16))
zA

žC

z̃C

z3

 =


UA

0
0
0

x +


UAC

ǓC

ŨC

0

∇+


RA RAC RA3

0 RC ŘC3

0 0 R̃C3

0 0 R3


wA

wC

w3

 . (6.20)

Then from (6.17) and (6.20) we see RCw0
C = žC = ǓC∇+ RCwC , so

w0
C ∼ N (R−1

C ǓC∇, σ2Ip), under Ha.

Thus δTS in (6.19) is the desired test statistic, since (cf. (4.23))

δTS ∼ χ2(p, 0) under H0; δTS ∼ χ2(p, σ−2‖R−1
C ǓC∇‖2

2) under Ha.

From (6.13) we see that p is the rank of B̄C , and this can be determined in
computing (6.13). Here we give a theoretical formula for it. Suppose for P in (6.7)

P ≡ [P1, P2, P3] such that
[
PT

2

PT
3

]
BQ =

B̄C RC3

0 R3

0 0

q

l

m−n−q−l

.

Thus it follows that

rank([P2, P3]T BQ) = rank(B̄C) + rank(R3), rank(PT
3 BQ) = rank(R3) = l. (6.21)

But

rank([P2, P3]T BQ) = rank((P2P
T
2 + P3P

T
3 )B), rank(PT

3 BQ) = rank(P3P
T
3 B),

(6.22)
and from the QR factorization of [A,C] in (6.7)

P2P
T
2 + P3P

T
3 = I −AA†, P3P

T
3 = I − [A,C][A,C]†. (6.23)

Substituting (6.22) and (6.23) into (6.21), we obtain

p = rank(B̄C) = rank((I −AA†)B)− rank((I − [A,C][A,C]†)B).

Notice that when B is nonsingular,

p = rank(I −AA†)− rank(I − [A,C][A,C]†) = (m− n)− (m− n− q) = q.

This is the case we discussed in Section 4.
We could discuss the computation of the covariance matrices for the estimates in

the same way as we did in Section 4. But for brevity we omit this.
Since the theory and algorithm here can handle a singular noise covariance matrix,

we can now easily handle linear equality constraints without needing to develop a new
theory or algorithm. Suppose the two hypotheses are

H0 : y = Ax + v, v ∼ N (0, σ2V ), subject to Ex = d;

Ha : y = Ax + C∇+ v, v ∼ N (0, σ2V ), subject to Ex = d,
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where [A,C] has full column rank and the symmetric nonnegative definitive V has
the factorization (4.1) with B being of full column rank. Then we can apply our
algorithm directly to the following GLLS problems to find the test statistic and the
estimates as well:

GLLS0 : min ‖u‖2
2 subject to

[
y
d

]
=

[
A
E

]
x +

[
B
0

]
u;

GLLSa : min ‖u‖2
2 subject to

[
y
d

]
=

[
A
E

]
x +

[
C
0

]
∇+

[
B
0

]
u.

Note that [ A
E ], [ A C

E 0 ] and [ B
0 ] have full column rank.

7. Summary. The standard formula for the generalized likelihood ratio test
statistic is not suitable for numerical computation when any of A, [A,C], or the noise
covariance matrix σ2V in (2.1) and (2.2) is ill-conditioned. Also the formula is not
defined when the noise covariance matrix is singular. To overcome these problems, we
gave a new formula for the test statistic after reformulating the two GLLS problems
for estimating the parameter vectors. The new formula is mathematically equivalent
to the standard one when the noise covariance matrix is nonsingular, and is well de-
fined when the noise covariance matrix is singular. With this formula, a numerically
stable algorithm based on Paige’s GLLS method was proposed to compute it. The
computations of the test statistic and the BLUEs of the parameter vectors are closely
connected—they are obtained from the solutions of two upper triangular linear equa-
tions, (4.15) and (4.19). We also showed how to compute reliable representations of
the error covariance matrices for the BLUEs, see (4.25) and (4.26) et seq.. In our
algorithm, we did not assume that B has any special structure. If B comes from the
Cholesky factorization of the noise covariance matrix, then we can use the structure
of B to design a faster algorithm by following the approach in [8].
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