
http://wrap.warwick.ac.uk/   

 
 

 
 
 
 
 
 
 
Original citation: 
Paterson, Michael S. (1986) Universal chains and wiring layouts. University of Warwick. 
Department of Computer Science. (Department of Computer Science Research Report). 
(Unpublished) CS-RR-074  
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/60773                            
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here.For more information, please contact the WRAP Team at: 
publications@warwick.ac.uk 
 

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/60773
mailto:publications@warwick.ac.uk


THE 
UNIVERSITY of VVARV'/ICK 

LIBRARY 

05 DEC 1986 

• W4FKIK" PAP RS CiLLECTION' 

 

Researc report 74 

 

   

   

UNIVERSAL CHAINS AND WIRING LAYOUTS 

by 

M.S. Paterson 

(RR74) 

Abstract 

A universal chain can be considered as a fixed schedule 
for a traveller's visits such that any set of m locations to 
be visited can be sequenced so that travelling times are 
accommodated within this schedule. Upper and lower 
bounds are proved for the lengths of universal chains in 
the unit interval, unit square and in higher dimensions. 
Applications to wiring layouts in circuit boards are 
presented. 

Department of Computer Science 
University of Warwick 
Coventry, CV4 7AL, England 

	
April 1986 

(Revised August 1986) 





UNIVERSAL CHAINS AND WIRING LAYOUTS 

by 

M.S.Paterson 

Department of Computer Science 
University of Warwick 

Coventry, CV4 7AL, England 

Abstract 

A universal chain can be considered as a fixed schedule for a traveller's visits such that any set of 
m locations to be visited can be sequenced so that travelling times are accommodated within this 
schedule. Upper and lower bounds are proved for the lengths of universal chains in the unit 
interval, unit square and in higher dimensions. Applications to wiring layouts in circuit boards arc 
presented. 

1. Definitions 

A finite sequence of non-negative real numbers is a chain. The length of a chain is the sum of 

the numbers. 

A chain a1, 	ak_i  covers a multiset of k points in d-dimensional space if there is an ordering 

xi, ..., xk  of these points such that for i = 1, ...,k — 1 the distance d(xi,xj+i) is less than or 

equal to ai. Here we might take any metric d. For the sake of our main application we choose the 

L,,,, metric, d( (u1,u2, 	), (vi,v2, 	) = max{ 1111  — vil, 1u2  — v21, ... }. Other L-metrics 

merely yield different constants in some of our theorems. 

A universal chain for a family F of multisets is a chain which covers each multiset in F. 

We use log to mean log2 throughout. 

2. Main results 

We present our combinatorial results in order of increasing dimension: one, two, many. The 

applications appear in Section 3. The upper bound in Theorem 1 was proved by Tom Leighton. 

improving the result of an earlier version of this paper. 
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Theorem 1 (Leighton and Paterson) 

For the family of all multisets of size m in the unit interval there is a universal chain which is of 

length O((log m)3). Any universal chain for this family has length C2((log m)2). 

Proof 

For the upper bound we construct a universal chain recursively. The resulting path visiting the 

elements of a multiset may be described roughly as follows. A rather compact multiset of elements 

with a binary tree-like structure is identified and these elements are visited in sequence using a 

suitable chain. Then the remaining multiset is visited recursively. The details of this construction 

are given below. 

We shall prove the bound on ui(m), the minimum size of a universal chain for multisets of m 

points in the unit interval, of: 

ui(m) 	c.( log m )3  + 1 where c = (ln 2) / 3. 

Since there must exist some pair of points in the interval with distance apart no more than 1/(m-1), 

the chain 1/(m-1), 1, 1, 	, 1 of total length (m-2) + 1/(m-1) is universal. This suffices to 

prove the bound for all m 5. 31, and yields a base for our induction. The inductive step which 

follows actually holds for all m 10. 

Let the integer d be such that: 

d.2d < m 5 (d+1).2d+1. 

Working through the unit interval from left to right we identify the sequence of disjoint pairs of 

elements whose distance apart is at most 2-d. Since each element which is unpaired by this 

process, except perhaps the rightmost, is followed by an empty interval of size greater than 2-d, the 

number of such elements is less than 2d. Next we identify in a similar way disjoint pairs of these 

pairs whose distance apart is at most 2-d-F1. The number of unpaired pairs is less than 2d-1. 

Continuing in this way we identify disjoint pairs of (2r-1)-tuples with separating distance at most 

2-d+r-1, for r = 1,2,...,d. The total number of elements which are excluded at some stage of this 

pairing process is at most: 

2d + 2d +... + 2d = d.2d < m. 
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Hence the process generates at least one 2d-tuple satisfying the given distance constraints. The 

elements of this 2d-tuple can be visited in left-to-right order using the following chain: 

2-d,  2-d+1,  2-d, 2-d+2,  2-d,  2-d+1, 	2-d+3,  

Half the links have size 2-d, a quarter have size 2-d+1, an eighth have size 2-d+2, and so on. The 

total length is therefore exactly d/2. Our universal sequence begins in this way, then has a unit 

link and continues recursively with a universal sequence for the remaining m - 2d elements. We 

have therefore shown the following inequality: 

u i(m) 	d/ 2+ 1+ ui(m - 2d). 

Now, 

ui(m) 5 d / 2 + 1 + c.(log(m - 2d))3  + 1 

by the inductive hypothesis, 

• d / 2 + 1 + c.(log m)3  + 1 - 2d.c.3(log m)2/(m.ln 2) 

since the derivative of (log m)3  is a decreasing function of m, 

• c.(log m)3  + 1 + (d + 2) / 2 - (log m)2/(2(d+1)) 

using c = (ln 2)/3 and m 	(d+1).2d+1, 

• c.(log m)3  + 1 

since (d+1)(d+2) 5 (log m)2  for m 5 10. 

This establishes the upper bound claimed. 

For the lower bound, suppose C is a minimal length universal chain. We can assume that no 

element of C has length greater than 1, and for i 0 we define ki to be the number of 

elements of C with length in the range [2-i, 2-41). Let F0 be the family of m+1 multisets so, 

...,sm  where si has j of its elements at 0 and m — j at 1. When using C to cover members of 

F0 the only choices which can be made are at which end of the interval to start and then for each 

member of C whether to remain at the current end or move to the other, a total of 2(k0 + 1) 

possibilities. Since C is universal for F0 we must have 

2(ko + 1) > m+1 
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This gives already a lower bound of 0(log m). Now we define Ft  for all t 0 to be the family 

of multisets of size m where each element is at one of the points j.2-t for j = 0, ...,2t. In using 

C to cover members of F t  we have for each element of length less than 2-1+1  , a choice of at 

most 2t-i+2 — 1 points to visit, i.e. at most 2 	— 1 points on either side of the current point. 

Arguing as above that the total number of choices in using C for Ft  must be at least as great as 

the cardinality of Ft  we obtain the following inequality: 

(2 t + 1)  n t4+2 _ i)ki (m+2t 

2t 

Recognising that (T + 1)! < TT for T 3, and taking logarithms we derive: 

2-t ( t — i + 2) ki 	log m — t 

o_ci < t 

for t ?.. 2. The same inequality may be verified explicitly for t = 0 and 1. Summing each side of 

these inequalities for t = 0, ...,log m, we may deduce: 

(2 + 3.2-1  + 4.2-2  + 5.2-3  + 	) Z (2-t.kt) z (log m)2  
log m 

The series on the left has a limit of 6, so we have a lower bound on the total length of C given by 

(log m)2/12. 

For two dimensions our upper and lower bounds are closer. 

Theorem 2 

For the family of all sets of size m in the unit square there is a universal chain of length 0(4m). 

Any universal chain for this family has length f2(4m). 

Proof We shall show a bound of the form vim — 1. If m 5 a 2  then a chain consisting just of 

unit links suffices (in the L. metric). Assume therefore that m > a2  and that there is a chain of 

length at most air — 1 for r points in the square where r < m. Let n = Nm /71 and p = 1/n. 

Divide the unit square into an n x n array of p x p squares. A cluster is defined to be any 

multiset of 10 points lying within one such subsquare. Identify a maximal number of disjoint 
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clusters. The number of points not included within some cluster is at most 9n2. Select q = 

— 9n2)/10)1 clusters and consider the multiset Q consisting of the centres of the subsquares 

containing each cluster. Given a covering chain for Q we can modify this by increasing each link 

by an amount p and inserting 9 links of size p for each cluster. The resulting chain can cover all 

points in the clusters. Our universal chain is got by appending one further link of size 1 and then 

a universal chain for the remaining points. Thus 

total length 5_ aqq —1 + p(q — 1) + 9pq + 1 + aq(m — 10q) — 1 

< aqq' + 10q'/n + a-Am Ll0q1 ) — 1 

for a 10, where q' = (m — 9n2)/10. To show this result to be less than or equal to a-gm — 1 as 

required, we shall verify that: 

a.( 1 — 4( (1 — 9v2)/10 ) — 3v) 	1/v — 9v 

where v = n /4m. We now select the value a = 21 and observe that since 4m > a the choice of 

n ensures that v lies in the interval [1/7, 4/21]. For this range of r the above inequality holds 

and the result is proved. 

The lower bound is obvious from consideration of a set of m points which is distributed as a 

x 4m square array with distance 1/4m between adjacent points. 

Finally in this section we consider the natural extension to higher dimensions and derive bounds 

which tighten asymptotically as the dimension tends to infinity. 

Theorem 3 

For all d 2, if ud(m) is the minimal length of a universal chain for multisets of size m in the 

d-dimensional unit hypercube then there is a constant c(d) such that: 

m1-1/d 	ud(m) 	c(d).m1-1/d 

Furthermore c(d) —> 1 as d —> 

Proof 

The lower bound comes from consideration of an mlid x x mlid array of points with a spacing 

of m-lid.  
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For the upper bound we follow the pattern in the proof of Theorem 2, but now take clusters to be 

multisets of k = Fbd /21 points lying within one b.m-lid x 	x 	subhypercube in a 

regular rn1 /d lb x 	x 	/b array. The number excluded from a maximal set of clusters is at 

most (k-1)m /bd which is less than m/2, so for our construction we select q = Fm/(2k)1 

clusters. The resulting recurrence, following the pattern from Theorem 2, is: 

ud(m) 	f(q) + kqb.m-1/d + ud(m — qk) 

The claimed upper bound is shown by the following inequalities: 

c.q1- 	+ kqb.m- lid + c.(m_cik)1-1/d 	mi-1/d (c/b(d-1) + b/2 + c/21-1/d) 

c.m1-1/d 

provided that 

c = c(d) 	b/(2 — 2/bd-1  — 2-1/(1).  

Any large enough constant b is adequate here. For the claim that c(d) 	1 we choose b = b(d) 

such that b 	1 but bd-1 	as d —> 

3. Applications 

Although the above results are offered as being of purely combinatorial interest, the motivation for 

our research comes from the design of "semi-custom" integrated circuits. Here the main 

components of a layout are designed and positioned in advance leaving various wiring details and 

local choices to be made for particular applications. As an example of a fragment of such a design 

consider figure 1. 

n inputs 	 n - m outputs 

Figure 1. Input /output board with drop-offs 
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On the circuit board shown above there are contacts for n wires to enter from the left edge and for 

n — m of these to leave at the right edge. Some m of these, which will be specified in the 

particular application are to be connected in an arbitrary order to the m "vias" (connections 

between the front and back faces) which are shown as black squares. Furthermore no wires arc 

allowed to touch or cross. It should be clear that if two inputs separated by r inputs on the left 

edge are chosen to connect to adjacent vias then there must be a sufficient spacing between these 

vias to allow r wires to pass through. Figure 2 shows the form of a simple partial weave 

layout method which can always be used if the above spacing condition between adjacent vias is 

met. The asterisks show which subset of the inputs is to terminate at vias in this instance. The 

wires that pass above a via run in a contiguous parallel group at the top of the rectangle, and 

similarly for those passing below. Between each pair of vias there is room for all the required 

transfers between top and bottom. Extra spaces of size n and n — m are allowed at the left and 

right ends respectively. As a final design stage the height of the layout is reduced as much as 

possible. 

Figure 2 Partial weave layout 

Theorem 4 

The layout problem posed above can be solved within a rectangle as shown in figure 1 of height 

0(n) and width O(n(log m)3). If the vias are constrained to lie in a horizontal line, the layout 

requires height n(n) and width S2( (n — m)(log m)2). 

Proof 

The spacing of vias used corresponds to a universal chain for sets of size m within an interval of 

size either n or n — m for the upper or lower bound respectively. 
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A two-sided permutation board of order n is a square with two faces described as 

follows. Along one edge of the front face are n input terminals labelled x 1, ... ,xn, while along 

one edge of the back face are n output terminals labelled yi, ... ,yn. In addition there are n vias 

arranged in the interior of the square. (See figure 3.) 

front 
wiring 

back 
wiring 

Figure 3. Two-sided permutation board 

The board is to have the property that, for any n-permutation, there is a planar layout on the front 

face of n disjoint wires from the inputs to the vias and a similar layout from vias to outputs on the 

back face, such that the connections from inputs to outputs realise the permutation. 

Theorem 5 

There is a two-sided permutation board of order n with area 0(n5r2). 

Proof Consider a weave layout as shown in figure 4. This is just a special case of the partial 

weave layout used above, where all of the inputs are terminated at vias. 

, 	 
	 111  i  _II  

Figure 4. Weave layout 

8 



Labelling the vias v1, ...,vn  from left to right, we see that it is enough for the horizontal spacing 

between vias to satisfy: 

d(vi,vi+i) > I ni — ni+i  I for i = 1, ...,n — 1 

where input ni is connected to via j for all j. 

Represent some permutation to be realised on the permutation board as an n x n permutation 

matrix. Embed this matrix in a unit square and consider the set of n points defined by the l's in 

the matrix. By Theorem 2 there is a fixed universal chain a l, 	, an_ i  of length O("im) which 

covers any such set, visiting it in some order. Using this order for the ones of the matrix let the 

corresponding order for the rows and the columns be ni, 	,Tr n  and TC1', 	,1E n' respectively. 

A weave layout with horizontal spacings n•a1, 	n.an_i can be made corresponding to the 

connection pattern given by the row order or the column order. A rectangular permutation board 

can therefore be made with the input and output terminals on the two faces of the left-hand edge and 

the vias arranged in a horizontal row with the spacings given above. This would have height 0(n) 

and width 0(n3/2). This strip can be "folded" as indicated in figure 5, and the terminals set in 

whichever edges are desired within a final square permutation board of area 0(n5/2). This folding 

technique is described in [4]. • 

-L2 

Figure 5. Folded weave layout 
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4. Related work and Conclusions. 

Cutler and Shiloach 121 showed that 0(n3) area was sufficient for the layout of all permutations 

between n input and n output terminals in fixed locations. Their construction is like a single 

weave layout as in fig. 4, but with the vias replaced by the output terminals spaced regularly with 

an interval of 0(n). In [1] a matching lower bound of S2(n3) is stated for this problem. This 

S2(n3) lower bound result has been extended [3] to permit the use of both sides of a circuit board 

and cn fixed vias, where c < 1. Our Theorem 5 shows that the area can be reduced to 0(n2.5) 

when c = 1. Of course if the locations of the vias are not fixed then a straightforward crossbar 

layout achieves an area of 0(n2) using n vias. 

It is an open problem to improve the bound in Theorem 5, though the lower bound from Theorem 2 

suggests that this may be optimal. For the unit interval, the upper and lower bounds given in 

Theorem 1 leave in question the true value of ul. 
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