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Abstract

The vertex- (resp., edge-) deletion graph bipartization problem is the problem of delet-
ing a set of vertices (resp., edges) from a graph so as to make the remaining graph bipartite.
In this paper, we first show that the vertex-deletion graph bipartization problem has a so-
lution of size k or less if and only if the edge-deletion graph bipartization problem has a
solution of size k or less, when the maximum vertex degree is limited to three. This imme-
diately implies that (1) the vertex-deletion graph bipartization problem is NP-complete for
cubic graphs, and (2) the minimum vertex-deletion graph bipartization problem is solvable
in polynomial time for planar graphs when the maximurﬁ vertex degree is limited to three.
We then prove that the vertex-deletion graph bipartization problem is NP-complete for
planar graphs when the maximum vertex degree exceeds three. Using this result, we finally
show that the via minimization problem, which arises in the design of integrated circuits
and printed circuit boards, is NP-complete even when the maximum “junction” degree is

limited to four.

Key words. computational complexisty, maximum bipartite subgraphs, NP-completeness,
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1. Introduction

A graph G is an ordered pair (V, E') where V is a set of elements, called vertices and E
is a set of unordered pairs of distinct vertices in V, called edges. If (u,v) € E, vertices u
and v are said to be edjacent to each other, and the edge (u,v) is said to be incident upon
each of v and v. A sequence of vertices [v;,,v;,,...,v;,]) is called a path from v;, to v;, in
G if the vertices are all distinct and (vi;,vi),,) € E for j = 1,2,...,k — 1. Furthermore,
if v;, = v;,, the path is called a cycle. The length of a'path (or cycle) is the number of
edges on the path (resp., cycle). If the length of a cycle is odd (resp., even), it is called an
odd (resp., even) cycle. The degree of vertex v, denoted by dg(v), is the number of edges
incident upon v in G. Let A(G) = mazev{ds(v)}.

Given a graph G = (V,E), we can partition V into subsets Vi, V,,...,V, such
that vertices u and v belong to V; if and only if there is a path from u to v in G.
Let E(V;) = {(u,v) € E|u,v € V;} for ¢ = 1,2,...,r. The graphs G; = (V;, E(V})) are
called connected components of G.

A graph G = (V, E) is called a planar graph if it can be drawn in the plane in such a
way that each vertex in V is represented by a point; each edge (u,v) € E is represented
by a continuous line connecting the two points which represent u and v; and no two lines,
which represent edges, share any points, except in their ends. Such a drawing is called
a planar embedding of G. A graph G = (V,E) is called a bipartite graph if V can be

partitioned into two nonempty subsets V; and V; such that V; NV, = ¢ and no two vertices



in the same subset are adjacent. It is well known [4] that a graph G is bipartite if and only
if there is no odd cycle in G.

For a subset V! C V of G = (V, E), the graph obtained by deleting from G all vertices
in V' and all the edges incident upon them is called a vertez-deleted subgraph of
G and is denoted by G¥(V —V’). Namely, G*(V - V') = (V = V', E(V — V")) where
E(V = V') = {(u,v) € E|u,v € V- V'}. Likewise, for a subset E'C Eof G=(V,E), an
edge-deleted subgraph of G, denoted by G*(E — E'), is obtained by deleting all edges in E'
from G; thatis, G¢(E — E')=(V,E - E').

Given a graph G = (V, E) and an integer k > 0, the vertez- (resp., edge-) deletion graph
bipartization problem, abbreviated to VDB (resp., EDB), is the problem of finding a set of
k or fewer vertices V' C V (resp., edges E' C E) in G sucil that the subgraph G¥*(V — V')
(resp., G¢(E — E')) is bipartite, or equivalently, free of odd cycles. The minimum vertez-
(resp., edge-) deletion graph bipatization problem, abbreviated to MVDB (resp., MEDB),
is the problem of finding such a vertex (resp., edge) set of minimum cardinality.

Garey, Johnson and Stockmeyer [7] and Yannakakis [17] proved that the EDB problem
is NP-complete even if G = (V, E) is a cubic graph, i.e., dg(v) = 3 for every v € V. On the
other hand, Hadlock [8,1] showed that the MEDB problem is solvable in O(|V]?) time if
the graph is planar. As for the VDB problem, combined results of Garey and Johnson [6]
and Krishnamoorthy and Deo [11] imply that it is NP-complete even if G is planar and
A(G) = 6. Given a graph G = (V,E),.the line graph, denoted by G| = (Vi, Ey), of G is

defined as follows: There is a one-to-one correspondence between V; and E. If two edges in



E are incident upon the same vertex in G, then there is an edge in E; which connects the
two corresponding vertices in V. One can easily show by constructing the line graph of a
cubic graph that the VDB problem is NP-complete for a general graph G with A(G) = 4.

The first goal of this paper is to present complete complexity results for the VDB
problem. We arrive at this by first establishing a relationship between the VDB and
EDB problems for a graph G = (V, E) with A(G) < 3. Namely, we prove that the VDB
problem has a solution V' C V with |V’| < k if and only if the EDB problem has a solution
E’' C E with |E’| < k. Since the EDB problem is NP-complete for cubic graphs [7,17], this
immediately implies that the VDB problem is NP-complete for cubic graphs. Furthermore,
since the MEDB problem is solvable in O(|V|?) time if G = (V, E) is planar [8,1], this
relationship also implies that the MVDB problem‘is solv:able in O(|V]?) time for the case
when G is planar and A(G) < 3. It should further be noted that if A(G) < 2, the graph G
is always planar and hence the VDB problem is solvable in polynomial time, and in fact, in
O(|V]) time. Finally, we prove that the VDB problem becomes NP-complete for a planar
graph G if A(G) = 4. We give a polynomial transformation from the Planar 3-Satisfiability
problem [12] to this problem. The complete complexity results for the VDB problem are
summarized in Table 1.

The second goal of this paper is to show the NP-completeness of the via minimization
problem which arises in the design of integrated circuits and printed circuit boards. Given
a set of wire segments and two layers for routing, the problem is to assign the segments to

one of the layers so that the number of vias required to electrically connect the segments



A(G)

G <2 =3 >4

General || O(|[V|) | NPC | NPC

Planar || O(|V]) | O(JV]?) | NPC

Table 1: Complexity Results for the VDB Problem
which are assigned to different layers is minimized.

In 1971, Hashimoto and Stevens [9] first considered this problem for the case of grid
based layouts with the maximum “junction” degree being limited to two, where a grid
based layout is a layout in which all wire segments are plaped in parallel to one of the two
perpendicular axes, and “junction” degree is defined to be the number of wire segments
which meet at a single point and which are to be electrically connected. In 1980, Kaji-
tani [10] showed that the problem is solvable in polynomial time for this particular case.
Later Chen, Kajitani and Chan [2] and Pinter [16] extended its polynomial solvability
for grid-based layouts to the case of the maximum junction degree three. Quite recently,
Molitor [13] and Naclerio, Masuda, and Nakajima [14] showed that the via minimization
problem is solvable in polynomial time even for general layouts if the maximum junction
degree is limited to three.

On the other hand, Naclerio, Masuda, and Nakajima [15] showed that the via mini-

mization decision problem is NP-complete if the maximum junction degree exceeds five.



Thus, the cases of the maximum junction degrees 4 and 5 have been left as open problems.
In this paper, using the NP-completeness result for the VDB problem for planar graphs, we
prove that the via minimization decision problem is NP-complete even when the maximum
junction degree is limited to four.

In Section 2, we first show that the MVDB problem for a general graph G = (V, E)
is easily solvable in O(|V]) time if A(G)-< 2. We then prove that if A(G) = 3, the VDB
problem has a solution of size k or less if and only if the EDB problem has a solution of size
k or less. As colloraries of this result, we show that (1) the VDB problem is NP-complete
even for cubic graphs, and (2) the MVDB problem is solvable in O(|V|*) time when G
is planar and A(G) = 3. Finally, using a transformation from the Planar 3-Satisfiability
problem [12], we prove that the VDB problem becomes I;TP;complete for a planar graph
G if A(G) = 4. In Section 3, we consider the via minimization problem for two layers. We
show how the VDB problem for planar graphs can be transformed to this problem. This
leads us to prove that the via minimization decision problem is NP-complete even when
the maximum junction degree is limited to four. Section 4 concludes the paper with some

further comments on the via minimization problem.

2. Graph Bipartization

In this section, we investigate the computational complexity of the VDB problem from
the point of view of vertex degree constraints. We first show that there is a close rela-

tionship between the VDB and EDB problems for a graph G = (V, E) with A(G) <3. If



A(G) £ 2, each connected component of the graph G is either a single vertex, a path or a
cycle. Therefore, the MVDB and MEDB problems can be solved by first finding all odd
cycles and then selecting an arbitrary vertex and edge, respectively, from each such cycle.
This can easily be done in O(|E|) time, which is in fact, O(|V]) time, since G is planar

in this case. We now consider the case of A(G) = 3, and establish a close relationship

between the VDB and EDB problems.

Theorem 1. For any graph G = (V, E) with A(G) = 3, there ezists a subset E' C E such
that |E'| < k and G°(E — E') is bipartite if and only if there ezists a subset V' C V such

that |V'| < k and G*(V — V') is bipartite.

Proof. Suppose that there exists a subset E' C E with [E’| < k such that G*(E — E') is
bipartite. Let V' = {v € V| for each edge (u,w) € E', v 1s either u or w}. It is clear that
V| < |E'| <k and G¥(V — V') is bipartite.

Conversely, suppose that there exists a subset V' C V with |V’| < k such that G¥(V —
V') is bipartite. First, we construct, if necessary, a new graph G = (V, E) from G = (V, E)
such that (1) for any pair of vertices u,w € V', (u,w) & E and (2) GV - V') is bipartite.
Let E, = {(u,w) € E |u,w € V'}. If E, = ¢, we do nothing, .e., G = G. Otherwise, we
replace each edge (u,w) € E, by a path of length three [u,u’,w’,w] in G. More precisely,
V=vu{u, v|(u,w) € E,} and E = E—E,U{(u,u), (v, '), (w,w)|(u,w) € E,}. Note
that any odd (resp., even) cycle containing (u,w) € E, in G remains odd (resp., even) in

G, and hence G¥(V — V') remians bipartite. Furthermore, A(G) =3



Next, we obtain, from V’, a subset E' C E such that |E'| < k and G (E - E) is
bipartite. Since G*(V — V') is bipartite and for any two vertices u,w € V', (u,w) ¢ E, the
vertex set V can be partitioned into three mutually disjoint subsets, V', X, and Y such
that no two vertices in the same subset are adjacent.

We first remove from V' those vertices v with ds(v) = 1 because the edges incident upon
v are not-in any cycle in G. Let V" denote the set of the remaining vertices. It is not difficult
to see, as illustrated in Fig. 1 (a), that an odd cycle is formed only if there exists a vertex
in V" which is adjacent to a vertex in X and a vertex in ¥ simultaneously. Otherwise, as
can be seen from Fig. 1 (b), all cycles are of even length since G*(V — V') = G (X U Y)
1s bipartite. Note that if not all of the vertices adjacent to a vertex v in V” are in one
of the two sets X and Y, then either X or .Y contains exactly one vertex, say w, since
ds(v) < 3. It is clear that if we delete this edge (v, w), all odd cycles passing through v will
be removed. Therefore, we select all such edges (v,w) as members of E/. Then G°(E — E)
is bipartite and |E'| < |[V"| < |V'| < k.

Finally, from E’ we construct a subset E' C E such that |E'| < k and G*(E — E")
is bipartite. Let e € E'. Ife € E, we put e into E'. Ife ¢ K, then e must be of
the form (u,u’) such that w € V' C V and v’ € V — V. In this case, there is a vertex
w € V' C V such that (u,w) € E, and we put this edge (u,w) into E’. The deletion
of the edge (u,u’) from G has the same effect on the elimination of cycles as that of its
corresponding unique path of length three from u to w in G. Thus, the deletion of the edge

(u,w) from G eliminates all cycles passing through u. Therefore, G*(E — E') is bipartite,



and furthermore, |E’| < |E'| < k. This completes the proof of the theorem. [J

Garey, et. al [7] and Yannakakis [17] showed that the EDB problem is NP-complete
even if a graph G = (V, E) is a cubic graph, i.e., dg(v) = 3 for every v € V. Thus, we can

derive the following result from Theorem 1.
Corollary 1. The VDB problem is NP-complete even for a cubic graph. O

On the other hand, if the graph G = (V, E) is planar, Hadlock [8,1] showed that the
MEDB problem can be solved in O(|V]?) time. Therefore, we obtain the following result

from Theorem 1.

Corollary 2. For a planar graph G = (V,E) with A(G) = 3, the MVDB problem 1s

solvable in O(|V[?) time. O

Remark 1. The above discussion suggests a way to solve the MVDB problem for a
planar graph G with A(G) = 3. That is, we first solve the MEDB problem using Hadlock’s
approach [8], and then convert its solution to a solution to the MVDB problem. We present
a more direct approach to the MVDB problem. This approach can also be used to obtain
an approximate solution for the case of A(G) > 4.

Let G = (V,E) be a given planar graph. Without loss of generality, we can assume
that G is biconnected, that is, for every pair of vertices u and v in V, there are at least two
vertex disjoint paths from u to v.

Let G be a planar embedding of G. Since G is biconnected, G partitions the rest of



the plane into a number of connected regions. The closures of those regions are called the
faces of G. Let F be a set of such faces. F includes a special face called an ezterior face
which represents the infinite region outside the embedding G. Note that each face in F
corresponds to a cycle in G, which is called a fundamental cycle. We create a new graph
G" = (V" E"), where V" = VU F and E" = {(v, f) |v € V i3 on the fundamental cycle
corresponding to f € F'}. Then we follow Hadlock [8] and find a pairing of odd degree
vertices (or faces) in F' such that the total sum of lengths of shortest paths between such

pairs is a minimum. [J

We now consider the case in which G = (V, F) is planar and A(G) = 4. We prove that

the VDB problem becomes NP-complete for this case.

Theorem 2. The VDB problem ts NP-complete for a planar graph even if A(G) = 4.

Proof. Since the VDB problem belongs to the class NP, it suffices to show that a known
NP-complete problem is transformable in polynomial time to this problem. We start with

the following problem which was shown to be NP-complete by Licktenstein [12].

Planar 3-Satisfiability (P3SAT)

Instance: A set U = {v;]1 <7 < n} of n Boolean variables and aset C = {¢;|1 < j < m}
of m clauses over U such that each clause ¢; contains exactly three variables or their
complements. Furthermore, the following graph is planar:

Ge = (Ve, Ec), where

Ve={c;|1<j<m}u{vi|1<i<n} and



Ec = {(c;,vi) | vi € cj or 0; € ¢;} U {(vi,vit1) |1 < ¢ < n} U {(vn,v1)}.
Question: Is C satisfiable? Namely, is there a truth assignment for U such that each

clause in C is true?

Given U = {v;|1 <7 < n} and C = {¢;|1 < j < m} together with a planar embedding
of Gc = (Ve, Ec), we construct a planar graph G = (V, E) in the following way. The
graph contains two kinds of components: clause components and variable components.
And each of them is placed in the region in which the corresponding vertex ¢; € V¢ or
v; € V¢ is drawn. For each clause ¢; € C we create a clause component of four vertices
w}, w?, w, w} and one edge (w},w}) as shown in Fig. 2 (a). As will be explained later,
each pair of vertices w§ and w;-“ for I = 1,2,3, will be connected to a pair of vertices
of an appropriate variable component. For each variable v; € U we construct a variable
component of 8n; vertices and 12n; edges, where n; is the number of times variable v; or
its complement 9; appears in . As illustrated in Fig. 2(b), each variable component is
made up of 4n; triangles whose bottom edges form a cycle of length 4n;. The vertices on
this cycle correspond to v; and ¥;, alternately. Namely, bf' and b correspond to v; and
b¥? and b correspond to ¥; for k = 1,2,...,n;. Note that a group of four consecutive
triangles, more precisely, eight vertices a¥ and b for I = 1,2,3,4 correspond to variable
vi. If 9; € ¢; (resp., v; € ¢;), then the two top vertices af’ and af? (resp., a¥? and a¥®) for
some k € {1,2,...,n;} are connected to a pair of vertices wﬁ- and w;-“ for some [ € {1,2,3}

of the clause component corresponding to ¢;. For example, see Fig. 3. It is easy to see

10



that |V| = 4m + T, 8n; = 28m and |E| = Tm + Y%, 12n; = 43m. Therefore, this
transformation is done in polynomial time. Furthermore, it is clear that G is planar and
A(G) = 4.

We now prove that there is a truth assignment for U such that each clause ¢; € C
is true if and only if there is a subset V! C V of G = (V, E) such that |V'| = 6m and
G¥(V — V') is bipartite.

Suppose that there is a subset V' C V such that |V’| = 6m and G¥(V — V') is bipartite.
Since each variable component contains 4n; triangles, which are odd cycles, we must delete
at least 2n; vertices to break these triangles. This can be done only if every other vertex on
the cycle of length 4n; is so chosen. More precisely, we must delete n; pairs of vertices either
b and b* or b2 and b for k = 1,2,...,n,, foreach ¢ = i,z, ...,n. Since "%, 2n; = 6m,
no other vertices are deleted. Therefore, we can make a consistent assignment of value
true or false to each variable v; in the following manner: If vertex b} (resp., b!3) is
deleted from the variable component corresponding to v;, assign false (resp., true) to v;,
fori=1,2,...,n

Note that all four vertices in each clause component belong to a cycle of length 13 which
connects those four vertices and three vertices, one from each of the three corresponding

variable components. We call such a cycle a clause cycle. For example, a cycle [w3, al?,

bi3, al? wi, a2? b2, all, wi, @23, b33, al?, wi, w}] is a clause cycle for clause c; in Fig. 3.

Since by assumption, each such cycle is broken, at least one vertex labeled b in the three

variable components must be deleted. Since the variable or its complement corresponding

11



to such a vertex is assigned true, the clause corresponding to this cycle of length 13 is true.
Therefore, there is a truth assignment for U such that each clause in C is true.

On the other hand, suppose that'there is a truth assignment for U such that each clause
¢; in C is true. If v; is assigned true (resp., false), then delete n; pairs of vertices b%? and
b%* (resp., b5' and bf°) for k = 1,2,...,n,, for each 1 = 1,2,...,n. As mentioned before,
the removal of these vertices breaks all 4n; triangles and leaves 2n; paths of length 2 in
the variable component corresponding to v;. It also breaks all clause cycles. -Furthermore,
it is clear that all the other (possibly odd) cycles are eliminated because each variable
component is chopped into 2n; paths of length 2. Therefore, the remaining graph dose not

contain any odd cycles and hence it is bipartite. This completes the proof. O

3. Via Minimization

In this section, using Theorem 2, we prove that the via minimization decision problem
for two layers is NP-complete even if the maximum junction degree is limited to four. We
start with some definitions.

A circuit is specified by a set of modules M, a set of terminals T' and a set of nets N.
The terminalsin T are located on the boundary of the modules in M and each net specifies
which terminals are to be electrically connected. Such connections are made by patterning
conductive paths on one of two layers. Such paths are made up of straight line segments,
called wire segments. We assume that the terminals are available on both layers and each

wire segment can be assigned to either layer. Note that the vertical projection of each wire
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segment is fixed in the plane but its layer assignment is not specified. A point other than a
terminal at which two or more wire segments meet and are electrically connected is called
a junction. A wire segment is said to be incident upon a junction at which it meets. Wire
segments which are incident upon the same junction are said to be adjacent to each other,
and the number of such segments is called the junction degree. If wire segments incident
upoﬁ the same junction are assigned to different layers, a via is placed at the junction to
electrically connect them. If the vertical projections of two wire segments that are not
electrically connected intersect, they are said to cross each other. A layer assignment is
said to be valid if no two wire segments that cross each other are assigned to the same
layer and no two adjacent wire segments are assigned to different layers without a via.
The vie minimization ‘dcci.sion problem (abbreviated t~o VM) for two layers is defined

as follows:

Via Minimization (VM)

Instance: A set M = {m;|1 <i < p} of modules, a set T = {t;|1 <7 < ¢} of terminals,
aset W = {w;|1 <17 <r} of wire segments whose vertical projections are fixed in the
plane, and an integer £ > 0.

Question: Is there a valid layer assignment for W which reqﬁires k or fewer vias using

two layers?

In order to show a transformation from the VDB problem for planar graphs to the

VM problem, we will use the sublayout L shown in Fig. 4. L has a single module m, two
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terminals ¢ and #' on its boundary, and wire segments w and w’ which connect terminals
t and ¢’ to junctions j and j’, respectively. Note that the terminals ¢ and #' belong to
different nets and thus the wires w and w’ must be assigned to different layers.

Let G = (V,E) be a planar graph. A straight line planar embedding of G is a planer
embedding of G in which every edge in G is represented by a straight line segment. It is
known [3,5] that such an embedding of G can be obtained in polynomial time, and we will
denote it by G. For simplicity, we call a straight line segment in G which represents an
edge (z,y) in G, a segment (x,y), and the endpoints of the line segment which represent
vertices ¢ and y, points = and y, respectively.

We first create a small region surrounding each segment (z,y) in G so that no two such
regions overlap. We then replace each segment (z,y) by z; sublayout L in such a manner
that L is completely within the region surrounding (z,y) and junctions j and j' coincide
with points z and y, respectively.

We denote the resultant layout by L(G). Fig. 5 shows an example graph G; and its
corresponding layout L(G;). Note that for each cycle in G, there is a cycle of sublayouts
or modules in L(G). We call such a cycle of modules an m-cycle. if the number of modules
in an m-cycle is odd (resp., even), it is called an odd (resp., even) m-cycle. Consider the m-
cycle consisting of modules m,,m; and m3 shown in Fig. 5(b). Suppose that wire segment
wi 1s assigned to layer 1. Then w; must be assigned to layer 2. To avoid a via at Jjunction
J2, w2 should be assigned to layer 2. Consequently, w} must be assigned to layer 1 and

hence wj should be assigned to layer 1. This implies that w; must be assigned to layer

14



2. In order to electrically connect the wire segments w3 and w;, a via needs to be placed
at junction j;. It is not difficult to see that a via is always required to have a valid layer
assignment if there is an odd m-cycle in L(G).

On the other hand, suppose that there is no odd m-cycle in L(G). Then, a valid
layer assignment for L(G) which requires no via will be obtained in the following manner.
Assign an arbitrary wire segment and all of its adjacent wire segments to layer 1. Find wire
segments which cross the wire segments just assigned to layer 1. Assign those segments
to layer 2. Then find unassigned wire segments which cross the segments just assigned to
layer 2 and assign them to layer 1. Repeat this process until all segments are assigned to
one of the layers. Since there is no odd m-cycle, no conflict on layer assignment would

occur. Therefore, we have the following lemma.

Lemma 1. There ezists a valid layer assignment for layout L(G) which requires no via if

and only if it is free of odd m-cycles. O

We are now ready to show the NP-completeness of the VM problem even when the

maximum junction degree is limited to four.

Theorem 4. The VM problem is NP-complete even when the mazimum junction degree
s limaited to four.

Proof. It is easy to see that the VM problem belongs to the class NP. Thus, it suffices
to show that the VDB problem for a planar graph G with A(G) = 4 is transformable in
polynomial time to the VM problem.

15



Let G = (V, E) be a planer graph such that A(G) = 4 and k be a nonnegative integer.
We construct a layout L(G) in the manner described above.

Suppose that there is a set of vertices V' C V such that |V'| < k and G¥(V — V') is
bipartite. Let J be a set of junctions in L(G) which correspond to the vertices in V'. We
first delete from L(G) all junctions in J and the wire segments incident upon them. Let
L4(G) denote the resultant layout. Fig. 6 (a) depicts such a layout which is obtained by
deleting junction j; from L(G;) of Fig. 5 (b). Note that there are two types of “degenerated”
sublayouts in L¢(G). Sublayouts of Type 1 (resp., 0) are those that consist of a module
and one (resp., no) wire segment. In Fig. 6 (a), sublayouts containing modules m;, ms, me,
and mg are of Type 1. If junction j; were also deleted, the sublayout containing module
m; would be of Type 0. We then delete those degeneraéed sublayouts from L¢(G). Let
L'(G) be the resultant layout. Since L'(G) does not contain any odd m-cycle, by Lemma 1
there exists a valid layer assignment for L'(G) which requires no via. Fig. 6 (b) illustrates
such a layer assignment for L'(Gy). Then, based on this layer assignment, we can obtain
a valid layer assignment for LY(G) as follows: For each degenerated sublayout of Type 1,
assign its only wire segment to the same layer as all of its adjacent wire segments in L'(G).
Such a layer assignment for L'(G1) is shown in Fig. 6 (c).

We now find layer assignments for those wire segments which are incident upon the
junctions in J. For each wire segment which is missing from some degeneratéd sublayout of
Type 1, if the remaining wire segment is assigned to layer 1, we assign the missing segment

to layer 2 and vice versa. We assign a pair of wire segments in each degenerated sublayout
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of Type 0 to different layers arbitrarily. Because vias are placed at those junctions in J,
necessary electrical connections will be made. Therefore, a valid layer assignment exists
for L(G) which requires k or fewer vias, since |J| < k. A final valid layer assignment for
L(G,) is shown in Fig. 6 (d).

Conversely, suppose that there is a set of k or fewer vias for which a valid layer assign-
ment for L(G) exists. Let J be the set of junctions at which the vias are placed. Let V'
be the set of vertices which correspond to the junctions in J.

Consider the vertex-deleted subgraph G*(V —V’) and its corresponding layout L(G¥(V —
V")). It is not difficult to see that L(GY(V — V")) is obtained by deleting all such sublayouts
that contain at least one wire segment which is incident upon some junction in J. Since
the layer assignment for L(G*(V — V')) is valid and requi;‘es no via, by Lemma 1 there is
no odd m-cycle in L(G¥(V — V’)). This implies that there is no odd cycle in G*(V — V")
and hence G¥(V — V') is bipartite. Therefore, there exists a set of vertices V' such that
|[V'| = |J| < k and G*(V — V') is bipartite.

We have proved that there is a set of vertices V' C V such that |V'| < k and G*(V —V")
is bipartite if and only if a valid layer assignment exists for L(G) which requires k or fewer
vias. Since the construction of L(G) only requires replacing each segment in G with a
sublayout L, it can easily be accomplished in polynomial time. Furthermore, the number
of wire segments incident upon a junction in L(G) is the same as the number of segments
incident upon the corresponding point in G. Since A(G) = 4, the maximum junction

degree in L(G) is limited to four. This completes the proof of the theorem. O
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Remark 2. Using the same arguments as in Naclario, Masuda, and Nakajima [15], one can
establish the NP-completeness of the VM problem for two layers under any combination
of the following two constraints as long as the maximum junction degree is limited to four
or more:

1. The layout is restricted to be grid based.

2. Vias are placed only at the junctions which existed in the input layout.

4. Conclusion

We have presented complexity results for the vertex-deletion graph bipartization (VDB)
problem. These results completely close the gap between 'the polynomially solvable cases
and NP-complete cases for general and planar graphs as shown in Table 1. We have also
shown that the via minimization decision problem is NP-complete for two layers when
the maximum junction degree is limited to four. Quite recently, Molitor [13] showed that
the problem of assigning wire segments to three or more layers without using vias is NP-
complete when the maximum junction degree is limited to four. Since the via minimization
problem for two layers is solvable in polynomial time when the maximum junction degree
is limited to three [2,13,14,16], our result has completely settled the complexity issues on

via minimization.
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(a) A case in which an odd cycle is formed.

V!

(b) A case in which an even cycle is formed.

Fig. 1. Formation of cycles.



(a) Clause component.

(b) Variable component.

Fig. 2. Clause and variable components.
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Fig. 4. Sublayout L.
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Fig. 5. An example graph G; and its corresponding layout L(Gy).
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(b) A valid layer assignment for L(GY).

Fig. 6. Illustrations for the proof of Theorem 3.
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(d) A valid layer assignment for L(G;).

Fig. 6 (cont’d). Illustrations for the proof of Theorem 3.
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