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EDGE-DISJOINT HOMOTOPIC PATHS IN STRAIGHT-LINE
PLANAR GRAPHS*

A. SCHRIJVER?}

Abstract. Let G be a planar graph, embedded without crossings in the euclidean plane R?, and let ], - - -,
I, be some of its faces (including the unbounded face), considered as open sets. Suppose there exist (straight)
line segments L,, - - - JLinR*sothat GUL U ---UL,=LU---ULUI U ---UI,and so that each
L, has its end points in I; U ++ - U I,. Let C, - -, Cx be curves in R*\(I; U - - - U I,) with end points in
vertices of G. Conditions are described under which there exist pairwise edge-disjoint paths P, -+, P,in G
so that P; is homotopic to C; in R?\(J; U -+ - U L), for i = 1, - - -, k. This extends results of Kaufmann and
Mehlhorn for graphs derived from the rectangular grid.
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1. Introduction and statement of the theorem. Let G = (V, E) be a planar graph,
embedded without crossing edges in the euclidean plane R2. We identify G with its image
inR2 Let Iy, - - -, I, be some of its faces, including the unbounded face, called the black
holes. (We consider faces as open sets.) Moreover, let paths Cy, - -+, Cy be given with
end points in ¥, not intersecting any black hole. (That is, for each i, C; is a continuous
function [0, 1] = R2\(/; U --- U I,) with C(0), C(1)€ V.)

Motivated by the automatic design of integrated circuits, Mehlhorn posed the fol-
lowing question:

Under which conditions do there exist pairwise edge-disjoint paths Py, -+,
(1) P, in G so that P; is homotopic to C; in the space R*\(/, U - -- U I,) (for i = 1,
cL k)2

Here a path in G is a continuous function P: [0, 1]— G with P(0), P(l)eV.
Paths Py, - - - , P are pairwise edge-disjoint if the following holds: if P;(x) = P(y)&V
then x =y and i=j. (In particular, if P, ---, P, are pairwise edge-disjoint, then
each P; does not pass the same edge more than once.) Two paths P, C: [0, 1] = R*\
(I U - - - U L) are homotopic (in R*\(I; U - -+ U I,)), denoted by P ~ C, if there ex-
ists a continuous function ®: [0, 1] X [0, 1] = R*\(/, U --- U I,) so that for all x €
[0, 1]: ¥(x, 0) = P(x), ®(x, 1) = C(x), (0, x) = P(0), (1, x) = P(1). (In particu-
lar, P(0) = C(0) and P(1) = C(1).)

Mehlhorn proposed to study question (1) with the help of the following “cuts.” A
(homotopic) cut is a continuous function D: [0, 1] > R*\(V U I, U - -- U I,) so that
D(0) and D(1) belong to the boundary of I; U - - - U I, and so that | D™!(G)| is finite.
The cut condition (for G; I, -+ , I,; Cy, -+, Cp) is: :

k

(2) (cut condition) for each cut D:cr (G,D)Z 3. mincr (C;, D).

i=1
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EDGE-DISJOINT HOMOTOPIC PATHS 131

Here we use the following notation for curves C, D: [0, 1] = R?\(/,; U --- U I,)):
cr (G,D):= [{ye[0,1]| D(»)eG},

(3) cr (C,D):= [{(x,»)€[0,11X[0,1]1| C(x)=D(¥) } |,
mincr (C, D):=min {cr (C,D)|C~ C,D~Din R*\(I;U---Ul,)}.

Clearly, the cut condition is a necessary condition for a positive answer to question
(1). It is generally not sufficient, not even for quite simple situations. For example, take
k=2, p =1, and consider

where the straight lines stand for edges of G and where the interrupted lines stand for
curves C, and Cs.

It turned out that one additional condition, the so-called parity condition, can be
helpful (cf. § 2 below):

(4) (parity condition) for each cut D: cr (G, D) = k_, miner (C;, D) (mod 2).

Let us now state our theorem. We say that G; I, -~ -, I,; Cy, -+, Ci is in the
straight-line case if
(5) there are line segments L;, --+ , L;inR?sothat GU LU --- UL, =L, U -+
UL UIU---UI,and so that each L; has its end pointsin I; U - -+ U I
and

if the aperture at vertex v of G is larger than 180°, then the number of times v
(6) occurs as end point of the curves C; is not larger than the number of edges
terminating at v.

Here the aperture at vertex v of G is the largest angle that can be made at v so that none
of the black holes adjacent to v intersect the interior of the angle. (More formally, let
p > 0 be so that the circle K of radius p and centre v does not contain any other ver-
tex of G in its interior and does not intersect any edge except for those adjacent to v. Let
K\(1, U ---UI,) have components K;, - - - , K;, making angles ¢, * - - , ¢;,. Then the
aperture at v is equal to max {¢,, -, ¢s}.) Edge e = {(1 = Nu+ MWw|0 <X < 1} of
G is said to terminate at v if for some p > 1 the set {(1 — M)z + Av| 1 <\ < pu} is con-
tainedin [; U -+ - U [,,.

THEOREM. If'we are in the straight-line case and the parity condition holds, then
there exist pairwise edge-disjoint paths as in (1) if and only if the cut condition holds.

As an illustration, Fig. 1 gives an example of the straight-line case (where the shaded
faces, together with the unbounded face, are the black holes, and where the interrupted
curves stand for the paths C;).

The theorem generalizes a result of Kaufmann and Mehlhorn [2] for graphs derived
from the rectangular grid in the following way. G is a finite subgraph of the rectangular
grid. (That is, V is a finite subset of Z* and each edge is a line segment of length 1.)
I, - -~ , I, are exactly those faces of G that are not bounded by exactly four edges of G.
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Moreover, for each vertex v it is required that deg (v) + r(v) = 4, where deg (v) denotes
the degree of vin G, and

H(o):= [{i=1, -+ ,k|C(0)=v} | +|{i=1, -~ ,k|Ci(1)=D}].

COROLLARY (Kaufmann and Mehlhorn). If the conditions given in the previous
paragraph are satisfied and the parity condition holds, then there exist pairwise edge-
disjoint paths as in (1) if and only if the cut condition holds.

In fact, Kaufmann and Mehlhorn found a linear-time algorithm to find these paths,
if they exist.

In § 4 we give a proof of our theorem. We make use of a lemma to be proved in
§ 3 (showing that in the straight-line case we may restrict the cut condition to (almost)
straight cuts (analogous to the idea of “1-bend cuts” in [2])), and of results of [4] to be
reviewed in § 2.

2. Review of preliminary results. In this section we return to the general case of a
planar graph G = (¥, E) embedded without crossing edges in the Euclidean plane R?,
with black holes I}, - - - , I, (including the unbounded face) and curves C,, - - - , Cj. Let
each C; have its end points in vertices on the boundary of I; U - -- U I,

It was shown by Okamura and Seymour [3] that if p = 1 the cut condition together
with the parity condition imply the existence of paths asin (1). (Note that for p = 1 two
paths P, P' are homotopic if and only if P(0) = P'(0) and P(1) = P'(1).) This was
extended by van Hoesel and Schrijver [1] to p = 2. It cannot be extended to higher p,
as is shown for p = 3 by:

l
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However, it was shown in [4] that, for arbitrary p, the cut condition is equivalent
to the existence of a “fractional” packing of paths as required, i.e., to the existence of

paths P}, ---, P4, P}, --- P}, -+ PFandrationals \}, -+, Ny, AL, «-- , AL, -« -,
¥ > 0 such that:
() Pi~C (=1, kj=1, 1),
17 X
(i) 2 Ni=1 (i=1, - k),
(7) P

k L .
(iil) ¥ 2 NixFi(e)=1  (e€E).
i=1j=1

Here x”(e) denotes the number of times path P passes edge e.

Another result from [4] to be used below was derived with the theory of simpli-
cial approximations. Let C, D: [0, 1] = R?\(/; U - -- U I,,) be continuous. Let C(0),
C(1), D(0), and D(1) be on the boundary of I; U --- U I,, with {C(0), C(1)} N
{D(0),D(1)} = . Let

(8) X:={(y,2)€[0,11X[0,1]|C(y)= D(2) }

be finite, where each (y, z) in X gives a crossing of C and D. For y, )’ € [0, 1] let C|3/
denote the path from C(y) to C()') given by:

(9) (CIFYN):=C((1=N)y+Ny) for Ae[0,1];
similarly for D. Define for (y, z), (), z') € X:
(10) (v, 2)=(y,2)=(Cl})~(D|Z) inR\([,U---Ul).

We call the classes of the equivalence relation ~ the classes of intersections of C and D.
Such a class is called odd if it contains an odd number of elements. Let odd (C, D)
denote the number of odd classes of X. Then

(11) mincr (C,D)=o0dd (C, D).

3. A lemma on straight cuts. We call a cut D: [0, 1] > R:\(VUIL, U --- U 1,)a
straight cut if

either (i) D is linear,
or (i) the line segment connecting D(0) and D( 1) is contained in G, the
(12) functions D|[0, 4] and D|[4, 1] are linear, there is no vertex of G
contained in the interior of the triangle D(0)D(4)D(1), and no
edge is intersected more than once by D.

In (i) we might think of D as being very close to the line segment connecting D(0) and
D(1). So a straight cut is determined by its end points, in case (12) (ii) up to “slight”
homotopic shifts, which, however, do not change the number of intersections with G.

LEMMA. In the straight-line case, the cut condition holds if and only if
cr (G, D) = T4 | mincr (C;, D) for each straight cut D.

Proof. Necessity being trivial, we show sufficiency. Let the cut inequality be satisfied
by each straight cut. Suppose there exists a cut D: [0, 1] > R*\(VU I, U --- U L,)
so that

k

(13) cr (G,D)< 2, mincr (C;, D).

i=1
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We choose D satisfying (13) so that ¢ := cr (G, D) is as small as possible. The idea of
the proof is to straighten out D as much as possible.

First observe that we may assume that if D(1) is not on the line through the edge
containing D(0), then the line segment D(0)D(1) does not intersect V' (this can be
achieved by slightly shifting D(0) along the edge containing D(0)). Moreover, we may
assume that there exists an ¢ > 0 so that

(i) DI][O, ] is linear;

(i) for all § € (0, e]: D(6) does not belong to any line through any pair of
vertices of G nor to any line through a pair of points consisting of a vertex
of G and an intersection of D and G.

Let A\, ---,\ besothat 0=\ <M\ <" <MN_;<X=1, with D(X\;) € G for all
i. Define

(14)

D1:=D(e),
(15) pri=D(N) fori=2, - 1.

Finally, we may assume that D|[e, \,] and D|[X;- 1, \;] are linear functions (i = 3, - -+ , 1)
(since in the straight-line case each face notin {1y, - -+, I,} is convex).

Let #(D) be the smallest index & with 2 = h = ¢t — | so that the angle between
Pr_1Ds and DD+, is not 180°. If no such 4 exists, let #(D) := ¢. We may assume that
we have chosen D so that (fixing t = cr (G, D)) h(D) is as large as possible. Let
h:= h(D).

First consider the case & < r. Choose the largest A € [0, 1] so that the triangle with
vertices py, Pn, and py + N(pr+1 — pn) does not intersect I; U --- U I,. Let p}, := p, +
A(pn+1— pa)- Let D" be the piecewise linear function obtained from D by replacing parts
D1Px and pypj, of D by p,pi. L

If A = 1, then p}, = p»+1, and hence by (14)(ii) p,p} does not intersect any vertex
of G.So D'is a cut, with cr (G, D’) = cr (G, D) (by the conditions (5) and (6) for the
straight-line case) and D’ ~ D. As A(D’) > h(D) this contradicts the fact that we have
chosen D so that /(D) is as large as possible.

If A < 1, then p,p} intersects a vertex v of G, on the boundary of I; U - - U I
This vertex is unique by (14) (ii) and has aperture larger than 180°. Consider a circle K
with center v, not containing any other vertex of G, and not intersecting any edge of G
except for those adjacent to v. Let K\(J, U - - - U I,) have components K, - - - , Kj. So
each K; is a cut. We may assume that K intersects D' twice. So K is a circular arc of
angle larger than 180°. Use the notation 4, B, C, E, F for the parts of D’ and K| as
indicated in Fig. 2. Let H denote the part of D from p}, to p,. As we have chosen D so
that (13) is satisfied with cr (G, D) as small as possible, we have

h
cr(G,D)=cr (G,EBFH)=cr (G,EA)+cr (G,CFH) + 2 cr (G, K;)

j=2
+ (number ofedges terminating atv)
(16) k k hook
2 3 mincr (C;, EA)+ 2 mincr (C;,CFH)+ > > mincr (C, K))
i=1 i=1 j=2i=1
k k

+ > (number of times v is end point of C;}= >, mincr (C;, D)

i=1 i=1

(using (6)). This contradicts (13).
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As h <t leads to a contradiction, we know A = ¢. If the line segment D(0)D(1) is
not contained in G, then by our assumption this line segment forms a straight cut D’,
with cr (G, D') = cr (G, D) and D’ ~ D, whence
k k
(17) cr(G,D)=cr(G,D)z 3, mincr (C;,D')= > mincr (C;, D),
i=1 i=1
contradicting (13). If D(0)D(1) is contained in G, then D itself forms a straight cut,
contradicting ( 13). O

4. Proof of the theorem. We now prove our theorem.

THEOREM. If we are in the straight-line case and the parity condition holds, then
there exist pairwise edge-disjoint paths as in (1) i and only if the cut condition holds.

Proof. The proof is by induction on the number of faces not in {I;, ---, I,}. If
each face belongs to {I;, - - - , I, }, then the theorem is trivially true. So assume that not
all faces belong to {I,, - -+, I,}.

I. We first consider those situations where the following holds:

G has an edge ey, connecting vertices # and w, both of degree 2, so that e,
(18) separates a face in {I,, -+, I,} from a face not in {/;, ---, I,} and so that
one of the curves C; connects « and w following e;.

Without loss of generality, e, separates face I, from face F ¢ {I,, ---, I,}, and C;
connects u and w following ¢,. Moreover, we may assume that none of C,, - - -, Cx
passes ¢o (we can make detours along the other edges of F). By the parity condition,
there exist /4, j so that C), has an end point in » and C; has an end point in w (possibly
h=j).

Now let I, := F.Clearly, G; I, - -+ , I, I,+1; C1, - - -, Ciis again in the straight-
line case, in which the parity condition holds. We show

(19) the cut condition holds for G; Iy, -+, Ip+1; Cy, -+, Ci.
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As the number of faces not in {I;, ---, I, } is one less than in the original situa-
tion, (19) implies by induction that there exist pairwise edge-disjoint paths P, ~ C,
<o Pe~ Crin R2\(J; U -++ U I,4,). This implies P, ~ C}, - -+, Px ~ Cy in R*\
(I; U --- U I,) as required.

We prove (19). We will refer to G; Iy, -+ - , I, 413 Cy, -, Cy as the new structure,
andto G; 1y, -+ ,I,;; Cy, - - -, Cy as the original structure. For the new structure we use
the notation mincr’ instead of mincr.

To show (19) by the lemma, it suffices to prove the cut inequality for straight cuts
only. Let D be a straight cut in the new structure. If D(0) and D(1) belong to the
boundary of I, U --- U I, then D is also a cut in the original structure, and the cut
inequality follows (as mincr' (C;, D) = mincr (C;, D) foreach /). If both D(0)and D(1)
belong to the boundary of I, , = F, then mincr' (C;, D) = 0 for each i (as F is convex),
and the cut inequality follows. So we may assume that D(0) belongs to the boundary of
Iy U --- UI,and D(1) belongs to the boundary of F. We can extend D in Ftoacut
D’ ending on ¢;. Then D’ is a cut in the original structure. Thus we have

k k
(20) e (G,D)=cr(G,D")—1Z 2 mincr (C;,D')—1= 3 mincr' (C;,D),
i=1 i=1
thus showing the cut inequality for D. This proves (19).

II. Now we consider the general case (i.e., we do not assume ( 18)). As not all faces
belong to {1, - -+, I}, there exists an edge, say e, separating a face I, (1 = h = p)
from a face Fnotin {1, ---, I,}. We may assume / = 1. Without loss of generality,
no path C; intersects ¢, or F (we can make detours along the boundary of F). Extend G
to a graph G’ by adding two new vertices, say # and w, on ¢y. Let e; be the edge connecting
wand w. Let Cy, ; and Cy .- be two curves, each connecting 1 and w via ep. We consider
two cases.

Case 1. The cut condition holds for G"; Iy, -« - , I,; Cy, - -+ , Ci, Ciy 1, Cis 2. Now
we can apply part I of this proof above, and paths Py, ---, Py, Py, Pry2 as re-
quired exist.

Case 2. The cut condition does not hold for G'; I, -+, I,; Cy, -+, Ci, Cis1,
Cr+2. Since also in this new situation we are in the straight-line case, by the lemma there
exists a straight cut D so that

k+2
21 cr(G', D)< 2 mincr (C;, D).

i=1

Since mincr (Ci+ 1, D) = mincr (Cy 4>, D) = 1 and since the parity condition holds for
G I, - ,1,;Cy, - -+, Cp we know

k
(22) cr (G,D)= 3 mincr (C;,D),
i=1

and mincr (Cy+ ;, D) = mincr (Cy.+2) = 1. Hence D has one of its end points on ¢j.

As the cut condition holds for G; I, - - - , I,; Cy, - -+, Cy, there exists a “fractional”
packing of paths P}, - -+, Py, ---, Pk, ---, P¥, with coefficients NI, - -+, N, -+,
A, o+, ME> 0, satisfying (7). By (22), at least one of the P/, say P!, passes edge .
So P! = R,eyR, for certain paths R, and R;.

We now show the following claim.

CLAIM. For each straight cut D' (for G') we have

(23) mincr (R;,D')+mincr (Cy 4 1, D") + mincr (R,, D') < mincr (C,,D’)+ 2.
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Proof of the claim. Since

(24) cr(G,D)= Z mmcr(C,,D =

i=1 i

".M’*

14
Z -er(P},D)<cr (G, D),

and since A\ > 0, we know that cr (P}, D) = mincr (C,, D).

Without loss of generality, (P! lo/ *) coincides with path R;, (P! |3/3) with Ciy 1,
and (P} |3,4) with R,. Moreover, we may assume that P}(1/2) = D(0).

Let D’ be any straight cut. To show (23) we may assume that D and D' intersect
each other at most once, and that if D' intersects ey, then D and D’ do not intersect.

Let

(25) X:={(x,»)€[0,11X[0, 1]| Pi(x)=D'(»)}.

Let ~ be as in (10). So mincr (C,, D’) is equal to the number of odd classes of ~.
We show

if (x, p), (X, ¥"), (X", "), (X", ¥") € X so that (x, y) = (x, }'), (x", y") =~
(26) x", y"), x, x” € (0, ) and X', x” € (4, 1), then D and D’ intersect and
(x: y) ~ (.X B y”)'

Indeed, as (x, y) =~ (x, y'), we know (P} ]3") ~ (D'|3'). So (P} |3 )(D'|}) forms a
homotopically trivial cycle K. Since (P} | 1) passes D(0), D splits K into two homotop-
ically trivial cycles. That is, there is a A € (0, 1] so that

either (i) 3z € [x, x']: (P} |}?)(D|}) is a homotopically trivial cycle,
(27) or (i) 3z € (y, ¥): (PY|Y*)(D|}2)(D']%) is a homotopically trivial
cycle.

Since cr (P}, D) = mincr (P}, D), (27) (i) does not occur. So (27) (ii) applies. Hence
(28) (PLY?)~(D'|;)(D]V?).

In particular, D and D’ intersect, with D()\) = D’(z). We similarly derive from the fact
that (x”, yll) ~ (xllf’ ylll) that

(29) (P11~ (D'13)(D]{/?).
Therefore,
(30)  (PHE)~(PHY2)(PLITR) ~ (D' E)NDIYND (DY) ~ (D).

So (x, y) a= (x", y"). This shows (26).
Now cr (Cx+1, D') = 1. If cr (Cy 41, D) = 0, then the above implies

(31) odd (Pi,D")Z(odd (R,,D')—1)+(odd (Ry,D')— 1),

since by (26) all but at most one class of intersections of R, and D' is also a class of
intersections of P} and D’. Similarly for R,. Equation (31) implies (23).

Ifcr (Ciyy, D) = 1, then D and D’ do not intersect, by assumption. Hence, by
(26), no class of intersections of P} and D’ contains both (x, y) and (x', ') with x €
(0, ¥)and x" € (4, 1). Since cr (Cr+,, D') = 1, there is only one element (x, y) in X
with x € (4, 2). Except for the class of intersections of P{ and D’ containing this element,
all other classes also form a class of intersections of R, and D' or of R, and D'. Hence

(32) odd (P!,D’)Zo0dd (R,;,D')+0dd (R,,D')— 1,
and (23) follows. O
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We next show
(33) the cut condition holds for G'; Iy, -+, Ip; Ri, Ry, Co, + -, Gy, Cry i
Suppose not. Since we are again in the straight-line case, by the lemma there exists a

straight cut D' so that

k+1
(34) mincr (R, D)+ miner (Ry, D)+ > mincr (C;,D')Zcr (G,D') +2,
i=2

using the fact that the parity condition holds also for G'; I,, -+, I,; Ry, Ry, Cy, + -+,
Ci+,. Since the cut condition does hold for G'; I, -+, I;; Cy, - - -, Cy, it follows that

(35) mincr (R,, D")+mincr (R,, D') + mincr (Cy + 1, D')> mincer (Cy, D).
Hence
(36) cr(Pi,D)=cr(R,,D")+cr(Ry,D")+cr(Cyiy,D')>mincr (Cy,D").

Therefore,
k . . k4 .
cr(G,DHZ S 3 M- er (P4, D')> Y X Ni-mincr (C;, D')
i=1j=1 i=1j=1
k
= > mincr (C;, D).

i=1

However, (34) and (37) imply

(37)

k+1
miner (R, D')+ mincr (R,, D)+ 2, mincr (C;,D")Zcr (G,D')+2
i=2

(38) .
> > mincr (C;, D)+ 2,

i=1

contradicting the claim.

So (33) holds, and hence by part I of this proof there exist pairwise edge-disjoint
paths Q7 ~ Ry, OF ~ Ry, O, ~ C3, =+, Ox ~ Ci, Ox+1 ~ Ci+1. By sticking 07,
Ok +1, O to one path, which is homotopic to C;, we obtain paths as required. O
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