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A LARGE DEVIATION RATE AND CENTRAL LIMIT THEOREM
FOR HORTON RATIOS*

STANLEY XI WANGt aND EDWARD C. WAYMIRE}

Abstract. Although originating in hydrology, the classical Horton analysis is based on a geo-
metric progression that is widely used in the empirical analysis of branching patterns found in biology,
atmospheric science, plant pathology, etc., and more recently in tree register allocation in computer
science. The main results of this paper are a large deviation rate and a central limit theorem for
Horton bifurcation ratios in a standard network model. The methods are largely self-contained. In
particular, derivations of some previously known results of the theory are indicated along the way.
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1. Introduction. River systems around the world are known to hydrologists
largely with the aid of maps. This has led to a number of interesting statistical/
geometrical observations about rivers, which are understood to varying degrees of
empiricism and mathematical rigor. In the present paper we consider a statistic in-
troduced by Horton [19], called the stream order statistic, to measure the bifurcation
complexity in river networks. Among other things, this statistic has been used to
provide an estimate on the total length of rivers in the United States at roughly three
million miles; see Leopold [21]. In addition, applications to other naturally occurring
branching patterns can be found in Horsfield [17], [18], Berry and Bradley [3], Borchert
and Slade [4], Steingraeber, Kascht, and Frank [25], Aho, Sethi, and Ullman [1], Fla-
jolet and Odlyzko [11], Flajolet and Prodinger [10], Flajolet, Raoult, and Vuillemin
[12], and Vauchaussade and Viennot [26], to name a few. Some of these and other
references can also be found in Jarvis and Woldenberg [20].

For a theoretical formulation of Horton’s order analysis, geomorphologists and
hydrologists consider an idealized river network represented by a rooted binary tree
digraph having n degree-one vertices representing sources; consult Shreve [24] and
Chartrand and Lesniak [6] for some of the graph theory terminology. The number n
of sources is called the network magnitude. Edges of the graph connecting sources to
adjacent junctions (degree three vertices) are called external links, and those between
two junctions are called internal links. The edge incident to the root is called the
stem. The stem is regarded as an external link if and only if n = 1; otherwise the
stem is internal. Each external link is said to have order one. An edge incident to
two order-one links is then defined to have order two. We now proceed inductively as
follows. An edge has order k > 1 if and only if it is incident to two edges of order ¢ and
j such that either : = j = k — 1 or ¢ # j and max{%,j} = k. A stream (and its order)
is defined as a maximal connected path of incident edges of the same order (which
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is then taken to be the stream order). Thus the order-one streams are precisely the
(order-one) external links. The maximal order taken over streams in the network is
called the network order.

Fluctuations in network statistics are represented by assuming all networks of
the same magnitude n to be equiprobable, called the random model. Because of an
inherent imprecision in the small scale details of large river networks, we typically
would like robust (large source number) asymptotics for the network variables. Precise
asymptotics on the expected (i.e., phase average) network order (maximum stream
order) have been obtained by Meir, Moon, and Pounder [22], who show that for
fixed n, the expected order is 1 log,n + O(1). Shreve has conjectured on the basis
of computer simulation that the location of the mode should also roughly coincide
with this value, the details of which are clarified by the results of Meir, Moon, and
Pounder [22]. Note that for a given value of n, the largest network order possible is
141logy n. Our focus here is on the asymptotics for sample averages of the lower-order
streams and links. Specifically, let L;, and S;n denote the sample numbers of links
and streams, respectively, of order ¢ in a network of magnitude n. These represent
the sample values we compute from a network map. The ratios Ly n/Lin = Lan/n
and S2,n/S1,n = S2,n/n are called Horton link and stream number bifurcation ratios,
respectively. Empirical forms of Horton’s laws refer to the asymptotic stability of
these ratios for basins of large magnitude.

Noting a simple mean and variance computation by Werner [27], Gupta and
Waymire [15] provide the theoretical counterpart in the form of a law of large num-
bers for the stream number bifurcation ratios and Mesa [23] for the link numbers; see
also Gupta and Waymire [14] for a related overview. The purpose of the present paper
is to provide a description of the fluctuations in the form of central limit theorems and
large deviation rates where possible. We consider two statistics, the stream number
bifurcation ratio and the link number bifurcation ratio. We first obtain a large de-
viation rate for the former ratio, from which a central limit theorem will also follow.
Although we have not obtained the corresponding descriptions of the fluctuations for
the link number bifurcation ratio, the computations given in § 4 suggest that similar
results should hold for this ratio.

Some very interesting results have already appeared in the literature, which pro-
vide Gaussian asymptotic approximations to combinatorial enumerations, e.g., see
Carlitz et al. [5], Harper [16], Flajolet and Odlyzko [11], and Bender [2]. In particu-
lar, Bender [2] provides a general condition for the asymptotic normality of a doubly
indexed sequence of positive numbers that essentially requires a pole in the bivariate
generating function. Bender [2] also gives a number of interesting example applica-
tions. However, these results do not seem to be applicable to the present problem
since the singularity in the bivariate generating function is not a pole; see the remark
at the end of the next section.

The precise statements of main results are given in § 2. Various other results
are obtained along the way, including the laws of large numbers, which serve to unify
the previously known asymptotics and exact formulae for stream and link number
probabilities and their expected values. In addition, a few new exact formulae are also
provided in this connection. The proofs of the main results are given in § 5. Both the
calculation of large deviation rates and the central limit theorem rest on the natural
recursive structure of random model described in § 3. An analysis of the asymptotic
form of the factorial moments of the distribution of stream and link numbers is given in
§ 4, which may be read independently of the proofs of the main results. In particular,
we obtain the correct factorial moments of a Poisson distribution with parameter
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A « n for the asymptotic (in n) factorial moments of the bifurcation ratios, but the
(correct) asymptotic Gaussian approximation to this Poisson distribution is wrong for
the bifurcation ratios (i.e., right mean, wrong variance parameter). These factorial
moment calculations illustrate the delicacy of the problems due to the occurence of
0o — oo effects.

2. Statement of results. Let Q, denote the collection of rooted binary tree
graphs of magnitude n. Then, according to a classic (1858) formula of Cayley, its
cardinality Q| is given by

_ 2n—2

(21) |Qn| = ’271—_'—1 (2nn 1) ~ 2\/7_'(' n—3/2, n — o0.
The random model is defined by the probability measure P,, which assigns probability
|Q|~1 to each 7 € Qy. The random variables L; n, Sin, denoting link numbers and
stream numbers of order i, respectively, are defined on €, as in the Introduction. The
random variables Ri"% = Ly, /n and Rg"% = S2.n/n are referred to as link and stream
number bifurcation ratios, respectively.

It is now well known that the value of each of the bifurcation ratios S2,,/n and
L3 » /n stabilizes according to the following law of large numbers.

THEOREM 2.1. (Law of large numbers). For the random model, (i)S2,n/n — 1
in probability as n — oo; (ii) Lan/n — § in probability as n — oo.

In fact, this may be obtained by the methods of the present paper according to
which one has the following properties.

PROPOSITION 2.2. Forn > 3, (i)

E{San} = Enﬂ'ﬂ ~

n(n—1)(n —2)(n —3) N n?

B{S2n(S2n =V} = —4mn —5yn—3) "~ 16’

2n —1 2 2m) 2n-m-2 n
E{Lzn} = Z%—_1>_{22n_3 —9on-2 _ Z ( r;n) — (2n—m-1 —1)} ~ 3
m=1
n

E{Lan(Lnn — 1)} = (_zz_:_i)_{mn —5) (2:_—36)
n

n—4 2
~> (3n -3k —13)(2k + 1) (2:) on—h—3} ~ %
k=0

The exact expressions in (ii) are new, but the exact forms in (i) have been obtained
previously by other methods. It is important to note from the exact calculations
that the asymptotic formulae for the first two factorial moments do not provide the
asymptotic variance; i.e., there is an co — oo contribution. For example,

VarSan = ES2.n(S2,n — 1) + ES2.n — (ES2.n)?
(2.2) __nn-Dmn=-2)n=3) n
2(2n - 3)(2n—3)(2n—5) 16
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while

n? n_ n, n
(2.3) Té + 1 ( ) =71
This point is significant in a theory that rests largely on asymptotics, as is further
demonstrated in §4. This aside, note that Theorem 2.1 follows from the linearity of the
mean and variance in n (Proposition 2.2) by an application of Chebyshev’s inequality.

Proposition 2.2 is proved in § 4 together with a generalization to the precise
asymptotic forms of the higher-order factorial moments. The moment analysis is
based on the following identity which may be of independent interest.

LEMMA 2.1. Let I'(z) denote the gamma function. Then, for eachn =1,2,---,
we have

(2.4) 3 <" + 1) T — %)F(n —i+ %) = 4y/al(n + —;-).

‘ 1
=1

The identity (2.4) has several interesting variants. For example,

(2.5) :1 (":’1> (’Z:%) (227;:22)—1=2(2n—1).

2

Remark. This lemma is used in the moment computations given in § 4. Its veri-
fication is quite amenable to “proof” by symbolic algebra software; e.g., Macsyma or
Maple. This was, in fact, our first approach (after calculator tests) to checking the
assertion. However, the result can also be obtained as a case of Gauss’s theorem for
2F1 hypergeometric functions or by induction, as indicated below. For us, the iden-
tity (2.4) was uncovered by the process of “matching asymptotics,” i.e., in trying to
identify the slowly varying part of the asymptotic Tauberian expansion (4.11) below.

Proof of Lemma 2.1.

Method 1 (Classical identities). We have

a,b
(2.6) 2By i1
c

_T(el(c—a—1b)
T I'(c—a)(c—b)

From this we note in the cases where ¢ = 0 and ¢ = n + 1 that

(2.7) (” * 1) D~ )(n — i+ 3) = ~2V/aT(n + 5),

so that the identity of Lemma 2.1 is reduced to
-n-1 , -1

(2.8) I‘(——;-)l"(n + %) oF) 1] =o.

Likewise, the equivalent variant (2.5) may be obained as a specialization of the (Ha-
gan/Rothe) identity (3.146) given in Gould [13]; take y =2n+1,p=n+1l,z =1,9 =
—1, and z = 2, there.
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Method 2 (Induction). Let B(u,v) denote a Beta function. It is well known that

I(wI(v)

Blu,v) = T(u+v)

Thus, it suffices to show that

(29) 3 f(n ~1)! Z ("f 1) /0 ? (06)26-D) sin8) 209 dg = D + %).
=1

By induction, suppose for k¥ < n (2.9) is true; then for k = n + 1, we have

n+1

1 n+2>/ /2 2(i—1)/ «_p\2(nt+1—i)
lhs = ——=n! cosf sinf do
e 2 (M7 [ o)
w/2
' n+1 n+1 2(i—1) /s g\ 2(n+1—3)
—ﬁn i§=1[< ; ) + (z _1 ] A (cosf) (sinf) de

1 n+2\ [? n
—n
+ 2\/?”' (n+ 1) /0 (cosh)“"db
1 n + 1 /2 2 2(n—3)
=nl(n+ = nZ(n -1)! < ) / (cos)? (sing)*™ g
2 0
n! iy n+1 /2 2i 2(n—i) n'(n + 2) /2 2
LS . 9)% (si rnte) n
+ N 2 ( ; ) + /0 (cosf)“(sinh) do + N (cosf)“"df
B 1 n! T(n+ () 3,
=nl(n+ §)+2ﬁ T+ 1) —I‘(n+§)—rhs.

To accompany the law of large numbers it is important to have some measure of
the fluctuations from the average. The idea behind the large deviation rate is that
the probability of a deviation from the mean by some prescribed amount goes to zero
at an exponentially fast rate, which we may try to calculate. The following results
describe probabilities of fluctuations from this point of view.

THEOREM 2.3. (Large deviation rate). For the random model,

(2.10) Jim —logP(“—gﬁ >y)=-I(y)y€ (%, %)
and
Sa.n 1
(2.11) Jim —logP( <y)=-1(y),y €0, ),
where
(2.12) I(y) = (4y — 1) tanh™}(4y — 1) — log(cosh(tanh™(4y — 1))).

The rate function I(y) is called an entropy function in the theory of large de-
viations; see Ellis [9]. The graph of the entropy function (2.12) is a U-shape on the
interval (0, 3) with a minimum at (},0).
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THEOREM 2.4. (Central Limit Theorem). For the random model, we have

(213) VR 2) = N, 1),

n — oo,

where = denotes convergence in distribution, and N(u,02?) denotes a limit law that is
Gaussian having mean p and variance o2.

Remark. Let l;(n, k), si(n, k) denote the number of trees in £, having k links of
order ¢ and k streams of order ¢, respectively, as defined in the Introduction, and define

(2.14) (z,y) = le (n, k)zryk,
(2.15) 8o(z,y) = 232 n, k)znyk.
Also, let

(2.16) (z,y) = Zl n, k)znyk,

where l5(n, k) denotes the number of trees of network order 2 in 2, having k links of
order 2. Then considerations of the recursive structure give the following relations:

(2.17) 52 = 53 + 205 + 2%y,
4 o
(2.18) la = 2%y + 2zyla,
a A O 22
(2.19) la =l + 2x(l2 — I2) + 2.

Solving for these generating functions, we find singularities other than poles. This
does not seem to be covered by general theory; cf. Bender [2].

3. Some preliminaries. We continue to let I;(n, k), s;(n, k) denote the number
of trees in Qy, having k links of order i and k streams of order 7, respectively. Then
for the random model

li(n, k)
3.1 Pn L; n = k)= : y
(3.1) (Ls, ) ]
(3.2) Po(Sin =k) = ‘”I(;;’ ,k), n>1,k>0
n

In view of the recursive structure of the trees as described precisely in Meir, Moon,
and Pounder [22], we obtain convolution identities among the s2(n, k)’s and la(n, k)’s
of the following forms.
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LEMMA 3.1. For the random model,

(3.3a) (1)  s2(1,k) =bok, s2(2,k) = b1k, $2(4,1) =4, 52(4,2) =1,
(3.3b) s2(n,0) =0, s2(n,1)=27"2 n>2
n—1 k
(3.3¢) s2(n, k) = Z Z sa(m,j)s2(n —m,k—j), n>5k#2;
m=1 j=0
(3.4&) (ii) lz(l, k) = 50,]9, l2(2, k) = 61,k, lz(3,k) = 2(52,k,lz(’n, 0) = 0,
n—2
(3.4b)  la(n,n—1) =27=2l3(n,n —2) = Z la(m,m — 1)la(n — m,n —m — 1),
m=2
n—1 k
(3.4¢) la(n,k) = > > la(m,j)s2(n —m,k—j), n>5,k<n-—3.
m=1j=0

The proof of these recursions are fairly straightforward and will be left to the
reader. It is to be noted that, in either case, special provision must be made for the
order-three networks (i.e., n = 4, k = 2 for stream count, n = 4,k = n — 2 for link
count).

The convolution forms in the identities of Lemma 3.1 transform under

n
(3.5) Sa2(n,z) = Z s2(n, k)zk,
k=1
. n
(3.6) Ia(n,z) =) la(n, k)z*,
k=0
according to the following lemma.
LEMMA 3.2.
(3.7a) (i) 82(1,7) =1,52(2,2) = z,32(3,z) = 2z, §2(4, ) = 22 + 4z,
n—1
(3.7b) s2(n,z) = Y 82(m,x)d2(n — m,z),n >3,
m=1
and

(3.8a) (ii) o(1,z) =1, I2(2,2) =
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(3.9b) fa(n,z) = (2z)"2(z — 1) + nij fa(m, z)la(n — m,z),n > 3.

m=1

Although somewhat lengthy, Lemma 3.2 is easily verified as a consequence of
Lemma 3.1 and its proof is omitted; the details for (ii) can be found in Mesa [23].
These recursions represent the starting point for our proofs. Define moment generating
functions

(3.10) Yn(€) = EetS2n =)~ ekt Py(Sz,n = k) = |Qn|~132(n, €f)
k

and

(3.11) An(€) = Eetlan =" b Py (Lo = k) = |Qn |12 (n, €f).
k

Then Lemma 3.2 provides recursive equations of convolution type for |Qn|¢n(§) and
|25 |An(€) which will be analyzed in §§4 and 5.

For ease in reference, we close this section with the statements of the theorem
to be used in the proofs in § 5. Theorem 3.3 seems to have a somewhat fragmented
history and has been useful in diverse contexts; see Cox and Griffeath [7] and references
therein. A systematic treatment of the elements of large deviation theory can be found
in Ellis [9] and Deuschel and Stroock [8].

THEOREM 3.3. (Sievers,Plachky and Steinbach, Ellis, Cox and Griffeath). Let
{Xn:n=0,1---} be a sequence of random variables and let

(3.12) on(€) = anlogEeéXn,

where {an} is a sequence of positive numbers such that an — 0o as n — co. Assume
that on the interval (£-,€4) 2 0, we have

(3.13) Jim_pn(€) = poo(€) < 00,

where oo (€) is strictly convex and C? on (E-,&+). If oh is convex on [0,&+), and
limp 00 <P4§(0) =o0%= Sogo(o)a then

(3.14) lim a7llogP(2" > 4) = —I(y),y € (u,as)
n—00 Qn
and
. 1 Xn
(3.15) lim an logP(— < y) = —I(y),y € (a-, p),
n—00 Qn

where p = 06o(0), - = Pho(é—+),a+ = Poo(é+—), and I(y) is the Legendre trans-
form of v (§). In addition,

(3.16) N

= N(0,02), n — oo.

4. A moment analysis. This section may be read independently of the proofs
of the main results of the paper given in the next section.
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The factorial moments are defined by

(4.1) v = En[So.nlr = Q|- 1 ,T)|z=1,

dr
(42) lln['n,] = En[L‘Z n]r = 'in—ld

=1,

where [z], = z(z—1)---(z—r+1),z € R,r =1,2---. In view of Lemma 3.2, we have
accordingly, for un] = |Q |1/[ 7] and [z _[T] Iin,un], that for each r =1,2,---,n > 4,

n—-1 r

(43) H = 5 (5) ik,
m=1 j=0

(4.4)

n n—-1 r
] _ 1 _ oY e — mom—2 —[r—4]_1j]
fin {n_lmz_lér,m}r(n D(n-2)-- r)2 +ZZ( ) Hn " Hn—m-

m=1j=0
To obtain these, simply note that

n—1 r "
ZZ( )di"—]JA (m, :c) 2(n m,x),

m=1 j=0

= (2020 = 1)(n = 2) - (= 7)l(n — Do =0+ 7+ on=r-2) - L

n—-1 r .
dr—i A di .
+ E E ( )d — m,x)%;lz(n—m,x),

m=1 j=0

n
T brm
m—1

Proof of Proposition. 2.2. To verify (ii), for example, use (4.4) with & —[1] =0 and
p‘[zl = 1. Then, g1(t) = Y 0r, Ewtn satisfies

oo n—1
t) =12 4 Z 2n—2¢n 4 2 Z E —[I]IQn_m|tn
n=3 n=3 m=1
2 N
= s+ 2 ()00)
where Q(t) = 50 | |Qntr = (1 — /T — 4t)/2. Thus,
alt) = {7+ s} (1 - )12
= 2{2 4n — on}gn+2 Z ( ) (—4t)m
n=0 m=0

= i{ Z {2 4k—2 — 2k-2} ( 3 ) (—4)m}tn,

n=2 {(m,k):m+k=nk>2,m>0}
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Thus,

(4.5)

Since

we have
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n—2 1
ﬂg] = 2{2 - 4n-m=2 _ In—-m-2} (%) (=4)m,n > 2.
m=0

1 2m
—9-2m(_1ym-1__—
(2)=2mcomi= () mz,

3 D=

n—2

m

(4.6) Bl =2.4n-2 —9gn-2 4 Z( 1)2m— 12 1 - (2m) {22n—2m-3 _ gn-m-2},
m —

m=1

Also, /L[ 1 =0 and u[ | = =0, Then, f2(t) = Y02, NL]t" satisfies

(4.7)

oo n—1 2 0o
t>—ZZZ( )‘[2 Iadl e 425" (n — 2)2n-2gn

n=3 m=1 j=0 n=3
oo n—1 oo n—1
T 2t 320 Y Falmlmltn 237 S A AL
n=3m=1 n=3m=1
= A o)) + 202(0)
(1—2t)2 1
413 — 144

T Q-4 -2t

On the other hand,

Thus,

_[2]

=3 il /=3
=i (7)o X (T) coreret-ra, szt

=4(1 — 4¢)=3/2(1 — 2t)=2 — 14¢(1 — 4¢)=3/2(1 — 2t)~2

= f: (?) (—4)ktk i m(2t)m-1 — 14t{:j (f) (—4)ktk i m(2t)m-1
m=1 k=0 m=1

k=0
o0 o0 _—3
=4) > ( ? ) (—4)k2n—k(n — k + 1)tn
n=0m-+k=n
[o 0] oo ;3_
—14y Ny ( 2 ) (—4)k2n—k(n — k + 1)tn+1
n=0m+k=n
oo -3 Jj—1 -3
=4+ 2{4 ; ) -4+ ( ? ) (—4)k2i—k(3k — 35 + 4)}t4.
J:l k=0
'/2[32] =4, and
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i.e.,

=3
E;gl_4< >( —gyn- 3+Z( ? ) (—4)k2n—k=3(3k — 3n + 13),n > 4.

Since
(‘f ) = 2-2k(—1)k(2k + 1) (2kk) :
we obtain,
E{Lzn(Lan — 1)} = 4(2n — 5) (27? _ 36)

k=0

The proof of part (i) of Proposition 2.2 is similar and left to the reader.

For the higher-order moments, the Tauberian theorem can be used with Lemma
2.1 to show for each r > 1,

(4.9) E[Sa.nlr ~ (g)r, n— oo

(4.10) E[Lan]r ~ (g)r, n — oo.

Following is how we obtain (4.10) from Lemma 2.1 and the above. The case
of (4.9) is similar. When the Tauberian theorem is applied, we need only consider
the terms having highest power of (1 — 4¢) in the dominators of (4.4) and, by an
induction argument applied to (4.4), we may check that fir(t) = Yoo, u;{ Itn i o((1-
4t)~(2r=1)/2) as t — 1. With this observation, we are ready to show (4.10). Again by
induction, suppose that (4.10) is true for r < k; so by the Tauberian theorem, we have

1
4.11 ko  _ pk—(3/2)A 22n
( ) Tin, F(k %)n k(n)

where the last term on the right come from a change of variable of the form u = 4.
Since T = |Qn|ulr!, and by (2.1), we have

(412) Aelm) = =D lE = ()~
Now for 7 = k + 1, we have
(4.13) TR Wf@knﬂ/mkﬂ(n)?n.
By (4.4), we have
(4.14) Akt1(n) = Iil (k ;- 1) Agt1-5(n)A;(n).

Jj=0
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By (4.12) and Lemma 2.1, (4.14) is readily simplified. Plug this into (4.13) and the
result follows.

5. Proof of main result. Consider first ¢ (£). Note that

(5.1a) Pi(€) =1,  a(§) = Pa(f) =et.

We will show that

(2n-1)

(5.1b)  ¥n(§) = ( ) Z (n k) 2(n_112)——1 (2";fkk" 1) (ef — 1)k,

Let an(§) = |Qn|thn(§); then a1(£) = 1,a2(£) = €, as(§) = 2¢¢. Also, by (3.7b),

n—1
an() = Z am (§)an—m ().
m=1

Then, a(s, &) = Y -2, an(£)s™ satisfies

n=1

a(s,§) =s+s2(ef — 1)+ i i am(€)s™an—m(€)sn—m.

m=1n=m+1

Thus,

a(s, &) = l{1 — /1 —4s —452(e§ — 1)}
1) (-1mrasn(1+ (e - D)

(
= % Z“g; (7511) (=1)nt1(4)n (Z) (ef — 1)ksn+k
(5.2) = % >

Then we have

63 a@=3 X (2)(§)comare-e

{(n,k):n+k=m,n>kA1}
Thus,
L AN EAVERVIETRY
Yn(§) = aon 2_: | (;) (k) (=1)i+1(4)i (ef — 1)k.
{(Gk):j+k=n,>kA1}

Note that

<%> _2-2+1(—1)5-1(25 — 2)!(2j — 1)
i) -2 -1) '
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Thus,
1 j 1 25 —1
(5.4)  Pa(6) = T 3 (i) 5T ( Jj ) (e€ — 1)k,
" {Gk)Hh=n,j>kAL} J

By change of variable again, we get (5.1b).
Now using (2.1) and (5.1b), we have

[n/2]
_ (n - k)'lﬂn—kKeE _ l)k
(5.5) Pn(§) = :;) (n - 26) QKT
with

In particular, (5.5) may be expressed as

[n/2] ky— k 2k—1
0= HH =8 By
CRONNG, i g k- ¢ (et D

k=0

The appropriate choice of scaling and the computation of the asymptotic variance as
(5.8) an=n and 02 = & (0)

can be determined very simply from (5.7) using (2.2). In particular,

(5.9) 0?2 = lim ¢&(0) = l

Taking a, = n in the application of Theorem 3.3, we may check that

(5.10) lim pa(€) = % + log(cosh(%)) = goo(£).
n—00 4 4

This computation in a neighborhood of zero can be made by a saddle point
method. In particular, for £ > 0 we need only to calculate the maximum term of
the sum for k ranging between 0 and %, and for { < 0 we calculate the maximum
difference between pairwise successive terms 2k and 2k + 1 with k ranging from 1 to
2 (which nicely factors). The parameters a— = 0 and a4 = 1 and the computation
of the Legendre transform as

(5.11) I(y) = (4y — 1) tanh™*(4y — 1) — log(cosh(tanh™*(4y — 1)))
follow. We now apply Theorem 3.3 to get both the large deviation probabilities and

the central limit theorem.
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