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Symmetric Chaos in a Local Codimension Two Bifurcation
with the Symmetry Group of a Square∗

Stella Abreu†, Philip Aston‡, and Ian Melbourne‡

Abstract. We study a codimension two steady-state/steady-state mode interaction with D4 symmetry, where
the center manifold is three-dimensional. Primary branches of equilibria undergo secondary Hopf
bifurcations to periodic solutions which undergo further bifurcations leading to chaotic dynamics.
This is not an exponentially small effect, and the chaos obtained in simulations using DsTool is
large-scale, in contrast to the “weak” chaos associated with Shilnikov theory.

Moreover, there is an abundance of symmetric chaotic attractors and symmetry-increasing bifur-
cations. The local bifurcation studied in this paper is the simplest (in terms of dimension of the
center manifold and codimension of the bifurcation) in which such phenomena have been identified.
Numerical investigations demonstrate that the symmetric chaos is part of the local codimension two
bifurcation. The two-dimensional parameter space is mapped out in detail for a specific choice of
Taylor coefficients for the center manifold vector field. We use AUTO to compute the transitions
involving periodic solutions, Lyapunov exponents to determine the chaotic region, and symmetry
detectives to determine the symmetries of the various attractors.
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1. Introduction. In dynamical systems with symmetry, it is possible to obtain chaotic
attractors with symmetry on average, where the symmetry of the attractor as a set is greater
than the symmetry of the individual points in the attractor. Such symmetric attractors were
studied by Chossat and Golubitsky [7], who also identified a mechanism called symmetry-
increasing bifurcation, where distinct but symmetrically related chaotic attractors collide to
produce an attractor with greater symmetry. (This is related to the notion of crises [17].)
Subsequent work on numerical and theoretical aspects of symmetric attractors includes [21,
9, 23, 2, 11, 14, 20].

Hitherto, the notions of symmetric chaos and symmetry-increasing bifurcation have been
seen as part of global, rather than local, bifurcation theory. In this paper, we show that a
variety of symmetry-increasing bifurcations between chaotic attractors occur in an (at first
sight, simple) example in low-codimension, low-dimensional bifurcation theory. In contrast
to codimension two bifurcations for nonsymmetric vector fields [18, Chapter 7], the chaotic
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dynamics is determined at finite order in the Taylor series of the vector field.
The existence of chaotic dynamics determined at finite order in low-codimension bifurca-

tions is not new; such dynamics in codimension one and codimension two bifurcations can be
found, for example, in [1, 19, 13, 24, 8]. However, we note that the center manifold is at least
four-dimensional in these references. The center manifold here is three-dimensional and arises
in a codimension two bifurcation with real eigenvalues, so in a sense this is the simplest local
bifurcation in which chaotic dynamics is determined at finite order.

Perhaps of greater significance is the extent—both in phase space and in parameter space—
to which chaotic dynamics exists in the bifurcation studied in this paper. In phase space, our
chaotic attractors are not merely thickenings of quasi-periodic attractors (see Figure 12) and
could not possibly be mistaken for such. In parameter space, the chaotic regions are not
exponentially thin and can be found even by a casual numerical investigation. This is in
contrast to the weak chaos in [18, Chapter 7].

In this paper, we are not interested in the provable aspects of chaotic dynamical systems
theory; the large-scale chaos discussed in the previous paragraph is surely well beyond existing
methods of proof. Instead, our purpose is to use primarily numerical techniques to demon-
strate and investigate the extent of the chaos. Starting with analytic calculations to compute
primary branches of equilibria and secondary Hopf bifurcation points, we then use AUTO to
path-follow the secondary branches of periodic solutions and compute the tertiary bifurcation
points. Using DsTool, it is easily seen that subsequent bifurcations lead to extensive chaotic
dynamics, symmetric attractors, and symmetry-increasing bifurcations, as mentioned earlier.
To automate the investigation, we use maximal Lyapunov exponents to map out the chaotic
region in parameter space and symmetry detectives [4, 10] to map out the regions in parameter
space in which attractors of various symmetry types exist.

The specific bifurcation that we study is a codimension two steady-state/steady-state
mode interaction with D4 symmetry, where two independent steady-state bifurcations coalesce.
We assume that there is a simple zero eigenvalue and simultaneously a zero eigenvalue of
multiplicity two corresponding to the standard representation of D4. Hence, center manifold
reduction leads to a three-dimensional vector field. The action of D4 on the center manifold R

3

is defined by

ρ : (x, y, w) �→ (−y, x, w), κ : (x, y, w) �→ (x,−y,−w).

Thus (x, y) transforms under the standard action of D4, while rotations act trivially on w.
It follows from standard arguments that there are three primary branches of equilibria with
maximal isotropy which we label Z4, D

e
1, and D

v
1. (These are cyclic subgroups generated by ρ,

κ, and κρ, respectively. The superscripts e and v stand for “edge” and “vertex,” distinguishing
the two different types of reflection symmetry of a square—axes through opposite edges and
axes through opposite vertices.)

In a mode interaction, the primary branches may undergo secondary bifurcations to
branches of mixed-mode solutions. It turns out that all three of the primary branches above
may undergo secondary Hopf bifurcations leading to periodic solutions with trivial spatial
isotropy and nontrivial spatiotemporal symmetry. In what follows, we disregard the D

v
1 branch

and focus on secondary bifurcations from the Z4 and D
e
1 branches. There is a scenario where

both the Z4 and D
e
1 branches lose stability to supercritical Hopf bifurcations. The resulting
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Figure 1. Schematic bifurcation diagrams for mode interactions in steady-state/steady-state bifurcations
with (a) Z2 × Z2 symmetry, and (b) D4 symmetry. Solid lines denote asymptotically stable solutions, and
dashed lines denote unstable solutions.

periodic solutions have 1
4 and 1

2 phase shift symmetries, respectively. Since these periodic
solutions have different phase shift symmetry, they cannot coalesce, and further tertiary bi-
furcations are required if the branches are to connect.

The situation up to this point is summarized in Figure 1. In Figure 1(a), we show the
“classical” bifurcation diagram for codimension two mode interactions, where there are non-
hysteretic transitions between two primary branches of “pure mode” solutions via a secondary
branch of mixed-mode solutions. This particular diagram occurs in a steady-state/steady-state
bifurcation with Z2 ×Z2 symmetry [15, Figure 4.3(3), Chapter X]. (All branches here consist
of equilibria, and, in the usual way, solid lines denote asymptotically stable solutions and
dashed lines denote unstable solutions.)

In contrast, Figure 1(b) shows the bifurcation diagram for the steady-state/steady-state
bifurcation with D4 symmetry studied in this paper. The mixed-mode branches now consist of
periodic solutions, but more significantly their spatiotemporal symmetries are different, and
so the bifurcation diagram cannot be complete.

Surprisingly, we find that the missing portion of the bifurcation diagram in Figure 1(b)
takes the form of symmetric chaos. Indeed, we compute the existence of attractors with
symmetry on average D

v
1 and D4, as well as asymmetric chaotic attractors, and we compute

transitions between these different types of chaotic attractor. (We also find chaotic attractors
with symmetry D

e
1 and D

e
2, but we do not focus on these here.)

Symmetric chaos has been previously seen in D4 symmetric Takens–Bogdanov bifurcations
(codimension two bifurcation, four-dimensional center manifold) [1, 25]. Armbruster, Guck-
enheimer, and Kim [1] found a “weakly chaotic” symmetric attractor, though the symmetry
was not mentioned explicitly. In the same situation, Rucklidge [25] made an extensive study
of symmetric chaos and symmetry-increasing bifurcations, though the analysis was restricted
to parameters near an O(2) symmetric limit, so the effective codimension was three.

The mode interaction that we study has been partially analyzed in previous work of
Lari-Lavassani et al. [22, section 4.2]. In particular, [22] pointed out that the existence
of secondary periodic solutions bifurcating from the Z4 equilibria should be expected on
representation-theoretic grounds. There are no general principles that predict the nature
of secondary bifurcations from the remaining primary branches, but concrete calculations
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show that both secondary steady-state and Hopf bifurcations can occur depending on the
details of the bifurcation problem. These bifurcations and the existence of symmetric chaos
and symmetry-increasing bifurcations were not studied in [22].

The remainder of this paper is organized as follows. The analytic computations, which
suffice for the primary and secondary bifurcations, are carried out in section 2. Tertiary
bifurcations are analyzed using AUTO [12] and DsTool [3] in section 3. In sections 4 and 5,
the existence of symmetric chaotic attractors is established by computing Lyapunov exponents
and symmetry detectives [4, 10]. In section 6, we summarize our results and describe possible
future directions.

2. Primary and secondary bifurcations. We begin by writing the general form of the
vector field on the center manifold.

Proposition 2.1. The general smooth D4-equivariant mapping f : R
3 → R

3 has the form

f1(x, y, w) = h1(x
2, y2, w2)x− h2(x

2, y2, w2)wy,

f2(x, y, w) = h1(y
2, x2, w2)y + h2(y

2, x2, w2)wx,

f3(x, y, w) = h3(x
2 + y2, x2y2, w2)w + h4(x

2 + y2, x2y2, w2)xy(x2 − y2),

where h1, h2, h3, h4 are smooth real-valued functions.
Proof. This is standard, as in [16].
In this paper, we consider the truncated vector field

ẋ = (λ− x2 + by2 + dw2)x− wy,

ẏ = (λ− y2 + bx2 + dw2)y + wx,

ẇ = (µ + c(x2 + y2) − w2)w + exy(x2 − y2).

⎫⎪⎬
⎪⎭(2.1)

In the usual way, certain (generically nonzero) coefficients can be normalized to ±1, and we
have chosen −1 to ensure that certain primary branches are supercritical.

Remark 2.2. For computations of equilibria, it is possible to use singularity theory to
find a suitable truncation of these equations. Recent techniques [6] make the application
of singularity theory more tractable. For our situation, a computation [5] shows that the
bifurcating equilibria are determined by the vector field (2.1) with d = e = 0. However, this
leads to degenerate secondary Hopf bifurcations, necessitating nonzero values for d and e.

Isotropy subgroups. The isotropy subgroups are given up to conjugacy by D4, Z4, D
e
1, D

v
1,

and 1, with the following lattice of inclusions:

D4

Z4 D
e
1 D

v
1

1

�

�

�
��

�
��

�
��

�
��

The proper isotropy subgroups Z4, D
e
1, and D

v
1 have one-dimensional fixed-point subspaces:

Fix Z4 = {(0, 0, w)}, Fix D
e
1 = {(x, 0, 0)}, Fix D

v
1 = {(x, x, 0)}.
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Primary bifurcations. Table 1 lists the three primary branches of equilibria, showing the
branching equations and the eigenvalues for the equilibria.

Table 1
Branching equations and stability assignments for the primary branches of equilibria.

Isotropy Fix Σ Branching Eigenvalues
Σ equation

Z4 (0, 0, w) µ = w2 −2µ, λ + dµ± i
√
µ

D
e
1 (x, 0, 0) λ = x2 −2λ, eigenvalues of 2 × 2 matrix with

tr = µ + (1 + b + c)λ
det = λ{(1 + b)µ + ((1 + b)c− e)λ}

D
v
1 (x, x, 0) λ = (1 − b)x2 −2λ, eigenvalues of 2 × 2 matrix with

tr = µ− 2(1 + b− c)x2

det = −2x2{(1 + b)µ + 2((1 + b)c− e)x2}

Proposition 2.3. The Z4 equilibria exist for µ > 0. They are asymptotically stable if λ +
dµ < 0 and unstable if λ + dµ > 0.

The D
e
1 equilibria exist for λ > 0. They are asymptotically stable if

µ + (1 + b + c)λ < 0, (1 + b)µ + ((1 + b)c− e)λ > 0

and are unstable if one or both of these inequalities is reversed.
The D

v
1 equilibria exist for λ > 0 provided b < 1, in which case they are asymptotically

stable if

(1 − b)µ− 2(1 + b− c)λ < 0, (b2 − 1)µ + 2(e− (1 + b)c)λ > 0

and are unstable if one or both of these inequalities is reversed.

Secondary bifurcations. Next, we describe the secondary bifurcations of equilibria and
periodic solutions that bifurcate from the three primary branches of equilibria.

Table 1 gives information on the eigenvalues associated to the three primary branches of
equilibria. Secondary bifurcations occur when the real parts of the eigenvalues vanish. Zero
eigenvalues signify steady-state bifurcation to secondary branches of equilibria, and imaginary
eigenvalues signify Hopf bifurcation to secondary branches of periodic solutions.

Proposition 2.4. (a) Secondary branches of equilibria bifurcate from the primary branches
of equilibria as follows:

Z4 None.
D
e
1 At (1 + b)µ + ((1 + b)c− e)λ = 0.

D
v
1 At (b2 − 1)µ + 2(e− (1 + b)c)λ = 0.

These secondary bifurcations are pitchfork bifurcations, and the bifurcating equilibria have
trivial isotropy.

(b) Secondary branches of periodic solutions bifurcate from the primary branches of equi-
libria as follows:

Z4 At λ + dµ = 0.
D
e
1 At µ + (1 + b + c)λ = 0 provided (1 + b)2 + e < 0.

D
v
1 At (1 − b)µ− 2(1 + b− c)λ = 0 provided −(1 + b)2 + e > 0.
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The resulting periodic solutions have trivial spatial symmetry and spatiotemporal symmetry
Z4, D

e
1, and D

v
1, respectively. For example, the Z4 branch has quarter-period phase shift

symmetry coupled with the action of ρ.
Proof. The eigenvalues for Z4 are given explicitly in Table 1, so the secondary bifurcations

are immediate. The results for D
e
1 and D

v
1 are obtained by noting that for a 2×2 matrix, zero

eigenvalues are signified by detA = 0 and imaginary eigenvalues are signified by trA = 0,
detA > 0.

Finally, the results on spatiotemporal symmetry are a consequence of the equivariant Hopf
theorem [16].

It follows from general principles that the secondary branches of equilibria and periodic
solutions in Proposition 2.4 satisfy “exchange of stability,” so their stability is governed by
the stability of the primary branch together with the branching direction. Computing the
direction of branching is elementary but tedious. We focus on asymptotically stable periodic
solutions bifurcating from the Z4 and D

e
1 branches.

Lemma 2.5. If b + 4cd < 3, then the Z4 periodic solutions bifurcate supercritically (for
λ + dµ > 0) and are asymptotically stable. If

(1 + b)2 + e < 0 and (1 + b)(2b3 + 3b2 − 3b + 2be + 3bc + 2ce + 2b2c) > 0,

then the D
e
1 periodic solutions bifurcate supercritically (for µ + (1 + b + c)λ > 0) and are

asymptotically stable.
If the appropriate inequality is reversed, then the corresponding periodic solutions exist

subcritically and are unstable.
The proof is given in the appendix.

3. Tertiary bifurcations. To compute the loss of stability of the secondary branches of
periodic solutions, and the onset of symmetric chaos, it is necessary to use numerical methods.
From now on, we specify the values of the constants b, c, d, e in the vector field (2.1) as follows:

b = 0.9, c = −2.1, d = −0.05, e = −19.2.

We concentrate on the positive quadrant λ, µ > 0 of parameter space. Applying the results
of section 2 with these values, we find that the primary branches of equilibria with Z4 and D

e
1

symmetry are initially asymptotically stable, and each undergo supercritical Hopf bifurca-
tion to secondary branches of periodic solutions with spatiotemporal Z4 and D

e
1 symmetry.

The Hopf bifurcations occur at µ = 20λ and µ = 0.2λ, respectively. Primary branches of
D
v
1 equilibria exist but are unstable.

In this section, we use AUTO and DsTool to study the dynamics that occurs when the
secondary branches of Z4 and D

e
1 symmetric periodic solutions lose stability.

Loss of stability of the secondary periodic solutions. In this subsection, we use AUTO
[12] to determine curves in λ-µ parameter space where tertiary bifurcations take place from
the secondary branches of periodic solutions. At the same time, we determine the manner in
which the periodic solutions lose stability.

The use of AUTO is slightly nonstandard due to the spatiotemporal symmetry of the
periodic solutions. Standard implementation of AUTO leads to bifurcations that AUTO
cannot recognize, and so the approach must be modified as described below.
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Z4 periodic solutions. The Z4 periodic solutions have spatiotemporal symmetry

(x, y, w)(t + T/4) = ρ · (x, y, w)(t) = (−y, x, w)(t),

where T is the period of the periodic solution.
Solutions with this symmetry type can be computed numerically by constructing a modi-

fied Poincaré map P . Let X be a local two-dimensional cross-section. Let g : X → ρX be the
first hit map and define P = ρ−1g : X → X. Then periodic solutions with Z4 spatiotemporal
symmetry correspond to fixed points of P . In practice, we chose X to be contained in the
plane {w = c} for some constant c and computed g by using an initial value solver to deter-
mine the next intersection of the orbit with this plane. Mapping the intersection point back
under the action of ρ−1 gives the definition of the map P for which AUTO seeks fixed points.
Working with P is more efficient numerically than working with the usual Poincaré map since
it is sufficient to compute only one quarter of the solution. More significantly, the bifurcations
for P are the generic ones, though the consequences for the flow must be interpreted with
care; see Remark 3.1 below.

To compute the solutions, we used AUTO to find fixed points of P , starting with a solution
near the Hopf bifurcation point. By increasing λ, a path of periodic solutions was computed,
and it was found that the solutions on this path lost stability at a turning point. Two-
parameter continuation was used to follow the path of turning points in the two-parameter
(λ, µ) space shown in Figure 2.

D
e
1 periodic solutions. The D

e
1 periodic solutions have spatiotemporal symmetry

(x, y, w)(t + T/2) = κ · (x, y, w)(t) = (x,−y,−w)(t).

We again consider a local cross-section X and let g : X → κX denote the first hit map.
Periodic solutions with D

e
1 symmetry correspond to fixed points for the modified Poincaré

map P = κg : X → X. As in the previous case, we chose X to be contained in the plane
{w = c} and used a similar approach to construct the map in AUTO.

Using AUTO, we found that the path of stable fixed points for P loses stability via a
period-doubling bifurcation. For the underlying flow, this corresponds to a symmetry-breaking
pitchfork bifurcation to nonsymmetric periodic solutions. The path of bifurcations is shown
in the (λ, µ) plane in Figure 2.

Remark 3.1. We note that this is not a period-doubling bifurcation for the flow and is
an example of “suppression of period-doubling” [26]. In fact, the bifurcating nonsymmetric
periodic solutions are approximately of the same period as the D

e
1 periodic solutions near the

bifurcation point.
If we had ignored the spatiotemporal symmetry, then the ordinary Poincaré map obtained

by integrating around the full periodic solution would have an eigenvalue 1 at the bifurcation
point, but the bifurcation is a pitchfork rather than a turning point. This is a highly degenerate
bifurcation in systems without symmetry and is not recognized by AUTO.

The pitchfork bifurcation to nonsymmetric periodic solutions turns out to be subcritical,
resulting in unstable solutions initially. However, there is almost immediately a turning point
at which they regain stability. The corresponding hysteretic region of bistability is extremely
thin. The turning point is quickly followed by a period-doubling cascade. We computed the
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Figure 2. Secondary and tertiary transitions for the vector field (2.1) with b = 0.9, c = −2.1, d = −0.05,
e = −19.2.

first period-doubling bifurcation, and the path of bifurcation points is shown as a dashed curve
in Figure 2.

To summarize, Figure 2 shows the paths of Hopf bifurcations from primary equilibria
to secondary periodic solutions (solid straight lines) and the paths of initial loss of stability
of the secondary periodic solutions (solid curves). The thin hysteretic region where stable
D
e
1 periodic solutions and asymmetric periodic solutions coexist is not shown (the curve of

turning points where the asymmetric periodic solutions gain stability is omitted), but the
dashed curve shows the path of first period-doubling bifurcations for the asymmetric periodic
solutions.

Chaotic transitions. In this subsection, we explore the nature of the tertiary transitions
using DsTool [3]. Throughout, we fix λ = .16 and vary µ.

Periodic solutions with spatiotemporal symmetry D
e
1 and Z4 are shown in Figures 6 and 7.

The parameter values are µ = .68 and µ = .82, respectively.

The turning point loss of stability for the Z4 periodic solutions takes place near µ = .8186.
Experiments with DsTool indicate that at the turning point there is a hysteretic transition to
a D4 symmetric chaotic attractor. Bistability between Z4 symmetric periodic attractors and
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D4 symmetric chaotic attractors occurs for values of µ roughly in the range .8186 < µ < .8202.
The D4 symmetric attractor persists until near µ = .739, after which point there is a collapse
to a D

v
1 symmetric chaotic attractor. Varying µ in the other direction, it can be seen that

this is a symmetry-increasing bifurcation from D
v
1 to D4 symmetric chaos. The D4 and D

v
1

symmetric attractors for µ = .74 and µ = .73 are shown in Figures 8 and 10. As µ increases
from .73 to .74, four symmetry-related D

v
1 symmetric attractors (one of which is shown in

Figure 10) collide to form the single fully D4 symmetric attractor shown in Figure 8.

In Figure 9, we show an amalgamation of the D
e
1 and Z4 periodic solutions from Figures

6 and 7, together with their symmetry-related images. This should be compared with the
D4 symmetric chaotic attractor in Figure 8.

Turning to the D
e
1 periodic solutions, the subcritical pitchfork bifurcation to unstable

nonsymmetric periodic solutions occurs at µ = .6835. Asymptotically stable nonsymmetric
periodic solutions exist for .6821 ≤ µ ≤ .6869 with a period-doubling bifurcation at µ = .6869.
Experiments with DsTool indicate that a sequence of period-doubling bifurcations follows,
leading to a nonsymmetric chaotic attractor at around µ = .688. There is then a symmetry-
increasing bifurcation at around µ = .6891 to a fully D4 symmetric chaotic attractor. (We
caution the reader that there is a long transient at this parameter value where the attractor
appears to have only D

v
1 symmetry.)

The ensuing region of parameter space seems to be extremely complicated with numerous
transitions between periodic/chaotic solutions with/without D

v
1 symmetry. The transitions

take the form of period-doubling sequences, gluing bifurcations and symmetry-increasing bi-
furcations. Periodic solutions with no symmetry and with D

v
1 symmetry are shown in Fig-

ure 11.

Eventually, a region of parameter space is reached (.720 ≤ µ ≤ .738) where D
v
1 sym-

metric chaotic attractors appear to dominate. This region terminates in the aforementioned
symmetry-increasing bifurcation to the D4 symmetric attractor.

It is not entirely clear from Figure 8 that the chaotic attractor at λ = 0.16, µ = 0.74
is fully D4 symmetric as claimed. In fact, it is hard to plot a trajectory of sufficient length
to resolve this issue. (There are 200,000 data points, but our time step is 0.01, so the total
integration time is only 2000 time units.) In Figure 12, we show the same attractor but now
in terms of pixels hit by the trajectory. There is no longer a data-storage difficulty, and we use
100,000,000 data points (corresponding to a total integration time of 1,000,000 time units).
The symmetries are now clear. Also, we color the pixels according to how often the pixel is
hit. This gives an idea of the density function for the invariant measure.

4. Lyapunov exponents. Our analytic calculations, and the computations using AUTO,
leave a large region of parameter space unexplored. The simulations using DsTool indicate that
there are chaotic attractors throughout much of this region. To confirm this we computed the
maximal Lyapunov exponent for a fixed initial condition (chosen arbitrarily to be (x, y, w) =
(0.008, 0.044, 0.005)) and a grid of values of λ and µ. Our results are shown in Figure 3.

Most of Figure 3 was obtained by varying λ from 0 to 0.2 in increments of 0.002, and
varying µ from 0 to 1 in increments of 0.01. To obtain greater resolution near the origin, and
to convince ourselves that the chaotic region goes all the way to the origin in parameter space,
we zoomed in for 0 ≤ λ ≤ 0.042, using increments of 0.002 for µ.
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Figure 3. Region of (λ, µ) parameter space with positive Lyapunov exponent for the vector field (2.1) with
b = 0.9, c = −2.1, d = −0.05, e = −19.2. The boundaries of the regions studied analytically and using AUTO
(cf. Figure 2) are also shown.

For each point in the (λ, µ) grid, we allowed a transient of 20,000 time units and then
computed the maximal Lyapunov exponent over the next 10,000 time units, using a time step
of 0.01. The exact numerical values of these finite-time Lyapunov exponents are of course
meaningless—for such small values of the parameters, 10,000 time units is unlikely to be
sufficient to provide an accurate estimate. Our aim is not to estimate the actual value of the
Lyapunov exponents but only to determine whether the dynamics is chaotic or not. For this
purpose, we found that 10,000 time units suffice. Indeed, there was a clear cutoff between
“positive” and “zero” values of the Lyapunov exponent, with the value 0.001 sufficing. For
example, fixing λ = 0.1 and letting µ vary from 0.38 to 0.45 in increments of 0.01 yield the
exponents

1.47 × 10−4, 7.17 × 10−2, 5.85 × 10−4, 5.86 × 10−2,

7.47 × 10−2, 9.13 × 10−2, 1.06 × 10−1, 2.26 × 10−4,

clearly indicating five chaotic parameter values µ = 0.39, 0.41, 0.42, 0.43, 0.44.
The results we obtain in this way are in perfect agreement with the computations done

analytically and with AUTO; see Figure 3. In addition, we have compared the results of the
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Lyapunov exponent calculation with simulations using DsTool (both along slices in parameter
space and at certain nonchaotic windows indicated in Figure 3) and found no discrepancies.

5. Symmetry detectives. Symmetry detectives [4, 10] are a method for numerically com-
puting the symmetry of an attractor. In general, there are two advantages to proceeding in
this way:

(i) For high-dimensional dynamical systems and complicated symmetry groups, it might
be hard to determine the symmetries visually.

(ii) The approach can be automated and so can deal with a large number of parameter
values, producing a detailed map of parameter space.

In principle, it is not hard to determine the symmetry of a chaotic attractor for the three-
dimensional vector field (2.1) by looking at the projections into the (x, y) plane. The detective
approach is used here primarily because of advantage (ii).

The problem is to determine numerically the symmetries inside D4 that preserve a set A
in R

3. As shown in Barany, Dellnitz, and Golubitsky [4], this can be done by converting the
set A into a point ψA in some higher-dimensional representation space V for D4 and then
computing the symmetry of the point ψA. The key property of V is that every subgroup of D4

should be an isotropy subgroup for the action of D4 on V .

We take the representation space V = R
5 with coordinates v = (v1, . . . , v5), where the

action of D4 is defined by

ρ · v = (v1,−v2,−v3,−v5, v4), κ · v = (−v1, v2,−v3, v4,−v5).

Note that V splits up into three distinct nontrivial one-dimensional representations R{v1},
R{v2}, and R{v3} and the standard two-dimensional representation R{v4, v5}.

Up to conjugacy, there are eight subgroups of D4. Six of these are normal subgroups with
fixed-point subspaces in V given by

Fix D4 = {0}, Fix D
e
2 = R{v2}, Fix D

v
2 = R{v3},

Fix Z4 = R{v1}, Fix Z2 = R{v1, v2, v3}, Fix1 = V.

The remaining subgroups D
e
1 and D

v
1 each have two conjugate copies (conjugated by ρ), and

the union of fixed-point spaces is a pair of planes in each case:

Fix D
e
1 = R{v2, v4} ∪ R{v2, v5}, Fix D

v
1 = R{v3, v4 + v5} ∪ R{v3, v4 − v5}.

These fixed-point spaces are distinct, so each subgroup of D4 is indeed an isotropy subgroup
for the action on V .

Next, we define the detective

φ(x, y, w) = (w, xyw, xy, x, y).

It is easy to see that φ : R
3 → V is D4-equivariant with respect to the given actions of D4 on

R
3 and V . In addition, φ is a polynomial map, and each component of φ is nonzero. Hence

φ satisfies the hypotheses of [4, Theorem 5.2].
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At this point we switch to the numerically more efficient method developed by Dellnitz,
Golubitsky, and Nicol [10]. Given an attractor A with trajectory u(t), we define

ψA = lim
T→∞

1

T

∫ T

0
φ(u(t)) dt.

It follows from the ergodic theorem that ψA ∈ V is well defined for almost every initial condi-
tion u(0), and the point ψA inherits the symmetry of the set A (under reasonable but technical
hypotheses about the ergodic measures on A). Moreover, it follows from the properties of φ
(being a detective) that typically, the symmetry of ψA is identical to the symmetry of A.

It remains to compute the distance of ψA from the various fixed-point spaces and hence
to determine the symmetry of A. Of many possible algorithms, we chose the following:

(i) If v2
1 + v2

2 + v2
3 + v2

4 + v2
5 = 0, then D4.

(ii) Else, if v2
2 + v2

3 + v2
4 + v2

5 = 0, then Z4.
(iii) Else, if v2

1 + v2
3 + v2

4 + v2
5 = 0, then D

e
2.

(iv) Else, if v2
1 + v2

2 + v2
4 + v2

5 = 0, then D
v
2.

(v) Else, if v2
4 + v2

5 = 0, then Z2.
(vi) Else, if v2

1 > 0, then 1.
(vii) Else, if v2

3 > 0, then D
v
1.

(viii) Else, D
e
1.

(In practice, we have to choose the range of values that numerically constitutes zero.)

Our results are shown in Figure 4. These are based on the same initial conditions for
(x, y, w) and the same values of (λ, µ) in parameter space that were used in computing Lya-
punov exponents in Figure 3. Again, we used time step 0.01 and transient 20,000 time units,
but we integrate for the longer time of 100,000 time units. This is necessary to distinguish
D4 chaotic attractors from D

v
1 chaotic attractors near the symmetry-increasing bifurcations.

In numerical simulations, the chaos is seen immediately, but it sometimes takes longer to see
the fully symmetric attractor.

In Figure 5, we show a blown-up version of part of Figure 4.

6. Conclusions and future directions. In this paper, we have studied a simple-looking
codimension two mode interaction with D4 symmetry. The codimension two point is the coa-
lescence of two steady-state bifurcation points, and the center manifold is three-dimensional.

We computed analytically primary branches of equilibria with maximal isotropy giving
rise through Hopf bifurcation to secondary branches of periodic solutions with spatiotemporal
symmetry.

Surprisingly, we found tertiary bifurcations leading to symmetric chaos. Using AUTO,
DsTool, Lyapunov exponents, and symmetry detectives, we obtained convincing numerical
evidence that the symmetric chaos is part of the local bifurcation, as is various symmetry-
increasing bifurcations between chaotic attractors of differing symmetry types.

There are three natural directions that are worthy of further study:

• The corresponding bifurcations with Dn symmetry for n �= 4 are only partially studied.
From now on, we write D1 as shorthand for D

v
1 and D

e
1 when n is even and for the

unique subgroup of order two (up to conjugacy) when n is odd. The primary branches
of equilibria with Zn and D1 symmetry are essentially unchanged, and there is still a
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Figure 4. Symmetry types of attractors in (λ, µ) parameter space for the vector field (2.1) with b = 0.9,
c = −2.1, d = −0.05, e = −19.2. Solid symbols denote chaotic; clear denote nonchaotic. (The D4 symmetric
attractors are all chaotic.)

Hopf bifurcation to a secondary branch of periodic solutions with Zn spatiotemporal
symmetry. However, a calculation for n ≥ 5 shows that generically the D1 equilibria
lose stability only via a steady-state bifurcation, hence producing a secondary branch
of asymmetric equilibria. In general, the cases n ≥ 5 are likely to be simpler than
the case n = 4 studied in this paper, since various important terms are now at higher
order. The case n = 3 is potentially even more complicated than n = 4 since there are
now additional terms at cubic order.
We have not carried out the numerical simulations required to determine the existence
of large-scale symmetric chaos and symmetry-increasing bifurcations when n = 3 and
n ≥ 5.

• It should be straightforward to write a system of reaction-diffusion equations in a
square domain undergoing the steady-state/steady-state mode interaction studied in
this paper. Hence, it should be possible to realize symmetric chaos and symmetry-
increasing bifurcations in a local bifurcation in a system of partial differential equa-
tions.

• One implication of our investigations is that symmetric chaos should be more common



SYMMETRIC CHAOS IN A LOCAL BIFURCATION 45

0.1 0.12 0.14 0.16 0.18 0.2
λ

0.4

0.6

0.8

1

µ

D
4

D
1

v

1
D

1

e

Z
4
 periodic

D
1

e
 periodic

Figure 5. Blow up of subregion of parameter space in Figure 4.

near onset in real experiments than might previously have been anticipated. Likely
situations include transitions from a square symmetric equilibrium in an experiment
in a square domain but also transitions from a four-fold symmetric equilibrium in an
experiment in a circular domain (for example, cellular flames in a circular burner). In
the situation of a circular domain, the total dynamics would consist of a rotational
drift superimposed on the dynamics described in this paper.

Appendix. Direction of branching for secondary branches of periodic solutions. In this
appendix, we give the proof of Lemma 2.5 which establishes the conditions under which the
secondary branches of periodic solutions bifurcate supercritically and hence are asymptotically
stable.

Direction of branching for Z4 periodic solutions. Setting ν = λ + dµ, ŵ = w − √
µ, and

dropping the hats, we obtain

ẋ = [ν − x2 + by2 + 2d
√
µw + dw2]x− (

√
µ + w)y,

ẏ = [ν − y2 + bx2 + 2d
√
µw + dw2]y + (

√
µ + w)x,

ẇ = (c(x2 + y2) − 2
√
µw − w2)(

√
µ + w) + exy(x2 − y2).
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To obtain the center manifold for the secondary bifurcation, write w = h(x, y), where h is
at least quadratic. In fact, h is Z4-invariant, so w = α(x2 +y2)+ · · · , where we have neglected
terms of order 4 or higher. A calculation shows that α = c

2
√
µ + · · · , and the center manifold

equations are given by

ẋ = [ν + (cd− 1)x2 + (b + cd)y2 + · · · ]x− (
√
µ + · · · )y,

ẏ = [ν + (cd− 1)y2 + (b + cd)x2 + · · · ]y + (
√
µ + · · · )x.

Next we put the equation into Birkhoff normal form. Abstractly, we can write the system as

ẋ = (ν + αx2 + βy2)x− ωy,

ẏ = (ν + αy2 + βx2)y + ωx.

Making the near identity Z4-equivariant change of coordinates (x, y) = (X + δY 3, Y − δX3)
yields at lowest order

Ẋ = (ν + (α + ωδ)X2 + (β − 3ωδ)Y 2)X − ωY,

Ẏ = (ν + (α + ωδ)Y 2 + (β − 3ωδ)X2)Y − ωX.

Setting δ = (β − α)/(4ω) yields

Ẋ = (ν + C(X2 + Y 2))X − ωY,

Ẏ = (ν + C(X2 + Y 2))Y − ωX,

where C = 1
4(3α + β) = 1

4(b + 4cd− 3). Thus supercritical bifurcation corresponds to C < 0,
yielding the condition b + 4cd < 3 in Lemma 2.5.

Direction of branching for D
e
1 periodic solutions. Setting ν = µ+(1+b+c)λ and x̂ = x−

√
λ

and dropping the hats, we obtain

ẋ = (
√
λ + x)(−2

√
λx− x2 + by2 + dw2) − wy,

ẏ = y((1 + b)λ− y2 + 2b
√
λx + bx2 + dw2) +

√
λw + wx,

ẇ = w(ν − (1 + b)λ + 2c
√
λx + cx2 + cy2 − w2) + e(x +

√
λ)y(x2 + 2

√
λx + λ− y2).

To obtain the center manifold equations, set x = αy2 + βyw + γw2. Plugging this in and
equating coefficients at quadratic order leave the following system of linear equations to be
solved for α, β, γ:

2
√
λα + 2λβ + 2eλ3/2γ = −1, 2(2 + b)

√
λα + eλβ = b,

√
λβ − 2bλγ = d

√
λ.

We find

α = {2b2 + 2be− de2λ}/4λ1/2∆,

β = {−2b(1 + b) + (b + 2)deλ}/2λ∆,

γ = {−2(1 + b) + d(e− 2b− 4)λ}/4λ3/2∆,

where ∆ = b2 + 2b + e < 0 (by the hypothesis in Proposition 2.4).
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The equations on the center manifold are given by

ẏ = (1 + b)λy +
√
λw + (2

√
λbα− 1)y3 + (2

√
λbβ + α)y2w

+ (2
√
λbγ + d + β)yw2 + γw3,

ẇ = eλ3/2y + (ν − (1 + b)λ)w + e(3λα−
√
λ)y3 + (2c

√
λα + c + 3eλβ)y2w

+ (2c
√
λβ + 3eλγ)yw2 + (2c

√
λγ − 1)w3.

Linear algebra plus Birkhoff normal form leads to the normal form equations

ż =

(
1

2
ν + iω

)
z + C|z|2z + · · · .

Here, ω = λ
√

−((1 + b)2 + e) and C = 1
4(1 + b)kλ/∆ + O(λ2), where

k = 2b3 + 3b2 − 3b + 2be + 3bc + 2ce + 2b2c.
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Figure 6. Projection into the (x, y) and (x,w) planes of the D
e
1 symmetric periodic solution at λ = 0.16,

µ = 0.68. The plot includes 7,000 data points gathered with time step 0.01.
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Figure 7. Projection into the (x, y) and (x,w) planes of the Z4 symmetric periodic solution at λ = 0.16,
µ = 0.82. The plot includes 7,000 data points gathered with time step 0.01.
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Figure 8. Projection into the (x, y) and (x,w) planes of the D4 symmetric attractor at λ = 0.16, µ = 0.74.
The plot includes 200,000 data points gathered with time step 0.01.
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Figure 9. Amalgamation of the plots of the Z4 symmetric and D
e
1 symmetric periodic solutions shown in

Figures 6 and 7, together with their symmetric images.
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Figure 10. Projection into the (x, y) and (x,w) planes of the D
v
1 symmetric attractor at λ = 0.16, µ = 0.73.

The plot includes 200,000 data points gathered with time step 0.01.
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Figure 11. Projection into the (x, y) plane of the asymmetric and D
v
1 symmetric periodic solutions at

λ = 0.16, µ = 0.70 and at λ = 0.16, µ = 0.71. Each plot includes 7,000 data points.
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Figure 12. Pixel-based xy-plot of the D4 symmetric attractor at λ = 0.16, µ = 0.74, using 100,000,000
iterates and a grid of 110 × 110 pixels of size .01 × .01. A pixel is switched “on” if at least one iterate lands
there. The shading is graduated depending on the number of times the pixel is hit.
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